

HAROKOPIO UNIVERSITY
School of Digital Technology
Informatics and Telematics
Postgraduate Program Informatics and Telematics
Telecommunication Networks and Telematic Services

Energy Efficient DNN Inference Through
Approximate Near-Threshold Voltage Computing

Master’s Thesis
by

Nikolaos Iatridis

Athens, 2022

2

 ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Σχολή Ψηφιακής Τεχνολογίας
Τμήμα Πληροφορικής και Τηλεματικής
Πρόγραμμα Μεταπτυχιακών Σπουδών Πληροφορική και Τηλεματική
Τηλεπικοινωνιακά Δίκτυα και Υπηρεσίες Τηλεματικής

Ενεργειακά αποδοτικά DNN με συνδυασμό
Approximate και Near-Threshold Voltage Computing

Μεταπτυχιακή εργασία

Νικόλαος Ιατρίδης

Αθήνα, 2022

3

HAROKOPIO UNIVERSITY
School of Digital Technology
Informatics and Telematics
Postgraduate Program Informatics and Telematics
Telecommunication Networks and Telematic Services

Committee

Supervisor: Dr. Sotirios Xydis,
Assistant Professor, Department of Informatics and Telematics,

Harokopio University

Dr. Christos Diou,
Assistant Professor, Department of Informatics and Telematics,

Harokopio University

Dr. Thomas Kamalakis,
Professor and Dean, Department of Informatics and Telematics,

Harokopio University

4

Ethics and Copyright Statement (Required)

I, Nikolaos Iatridis, hereby declare that:

1) I am the owner of the intellectual rights of this original work and to the best of my knowledge,
my work does not insult persons, nor does it offend the intellectual rights of third parties.

2) I accept that Library and Information Centre of Harokopio University may, without changing the
content of my work, make it available in electronic form through its Digital Library, copy it in any
medium and / or any format and hold more than one copy for maintenance and safety purposes.

3) I have obtained, where necessary, permission from the copyright owners to use any third-party
copyright material reproduced in the master thesis while the corresponding material is visible in the
submitted work.

4

Dedicated to my Fantastic Three:

Paraskevi, Antonia, Maria

5

QUOTES

“The microprocessor is a miracle.”

Bill Gates

“Everything that civilization has to offer is a product

of human intelligence; we cannot predict what we might

achieve when this intelligence is magnified by the tools

that AI may provide, but the eradication of war, disease,

and poverty would be high on anyone’s list. Success in

creating AI would be the biggest event in human history.

Unfortunately, it might also be the last.”

Stephen Hawking

6

AKNOWLEDGEMENTS

First and foremost, I would like to express a deep appreciation to my supervisor Dr.

Sotirios Xydis for his continuous support, guidance, and patience during the

fulfillment of this work.

I would like to offer special thanks to the other two members of my committee, Dr.

Christos Diou and Dr. Thomas Kamalakis for their endless encouragement

throughout my study at Harokopio University.

I am also grateful to all staff members and people I met there.

Finally, I would like to thank my wife who is the true hero behind this effort.

I wish my research journey would keep going.........

7

TABLE OF CONTENTS

LIST OF FIGURES ... 10

LIST OF TABLES... 12

ACRONYMS .. 14

ABSTRACT .. 17

ΠΕΡΙΛΗΨΗ .. 18

1 INTRODUCTION.. 19

1.1 The Deep Neural Network Challenge ... 19

1.2 Motivation ... 20

1.3 Benefits of Approximate Near-Threshold Voltage Computing 20

1.4 The scope of the thesis .. 22

2 BACKGROUND ON DEEP NEURAL NETWORKS .. 23

2.1 What is Deep Learning? .. 23

2.2 Training and Inference .. 25

2.3 Types of Layers .. 27

2.3.1 Conv Layer .. 27

2.3.2 FC Layer .. 28

2.3.3 Nonlinearity ... 29

2.3.4 Pooling and Unpooling .. 30

2.3.5 Normalization .. 31

2.3.6 Compound Layers ... 32

2.4 The Convolutional Neural Networks .. 33

3 RELATED WORK ON ENERGY EFFICIENT DNN ... 37

3.1 Architectures for DNN Workloads ... 37

3.1.1 CPUs .. 38

3.1.2 GPUs .. 40

3.1.3 FPGAs .. 41

3.1.4 ASICs ... 42

8

3.2 Approximate Computing in DNNs ... 44

3.3 Near-Threshold Computing in DNNs .. 48

4 HARWARE ARCHITECTURES FOR DNN PROCESSING .. 51

4.1 Basic Key Metrics ... 51

4.2 The case of DNN Accelerators ... 53

4.3 Examining Data Reuse ... 54

4.3.1 Temporal Reuse ... 54

4.3.2 Spatial reuse .. 55

4.4 Why Dataflows are important ... 56

5 THE PROPOSED NTV-DNN FRAMEWORK ... 61

5.1 Summary ... 61

5.2 The NTV-DNN architectural model ... 61

5.3 Voltage allocation and scaling for NTV-DNN ... 64

5.4 NTV-DNN error model .. 68

5.5 NTV-DNN assessment tool flow .. 72

5.5.1 Pytorch : An open source machine learning framework ... 72

5.5.2 MAESTRO cost model ... 73

5.5.3 PytorchFI runtime fault injector .. 75

5.5.4 CIFAR-10 dataset .. 76

5.6 Experimental Setup... 77

5.7 Experimental Results .. 83

5.7.1 Exploring voltage island granularity ... 83

5.7.1.1 Intra-layer .. 83

5.7.1.2 Cross-layer policies ... 87

5.7.2 Iso-resource NTV vs STC DNNs .. 90

5.7.3 Iso-performance NTV vs STC DNNs ... 91

5.7.4 NTV-DNN under relaxed error ... 92

5.7.5 NTV-DNN under different dataflows ... 97

9

5.7.6 The effect of Vth variability .. 100

5.8 Conclusions .. 102

5.9 Future Work .. 102

6 REFERENCES .. 103

7 APPENDIX A. .. 108

10

LIST OF FIGURES

Figure 1: An example of DNN used to image recognition .. 19

Figure 2: Power and energy relation .. 20

Figure 3: Energy efficiency of NTV operation .. 21

Figure 4: Trends of major sources of power dissipation in nano-CMOS transistor 22

Figure 5: Deep Learning as a subset of AI .. 23

Figure 6: A single neuron in a DNN and its main structure ... 24

Figure 7: Gradient descent (a) and backpropagation (b) .. 26

Figure 8: Illustration of a Conv operation .. 28

Figure 9: A Fully Connected Network .. 29

Figure 10: Various nonlinear activation functions ... 30

Figure 11: Max Pooling and Average Pooling Methods .. 31

Figure 12: Zero-insertion and Nearest-neighbors Unpooling Methods ... 32

Figure 13: Batch Normalization method.. 33

Figure 14: The architecture of a modern deep CNN .. 34

Figure 15: The architecture of AlexNet DNN model .. 34

Figure 16: Inception module from GoogLeNet .. 35

Figure 17: Residual learning: a building block ... 36

Figure 18: (a) Residual learning: a building block (b) ResNet block ... 36

Figure 19: Fire module: SqueezeNet’s building block ... 37

Figure 20: High parallel architectural paradigms .. 38

Figure 21: Block diagram of a uniprocessor-CPU .. 39

Figure 22: (a) A SIMD unit (b) An FMA unit .. 40

Figure 23: A high-end GPU-based accelerator (NVIDIA Fermi GPU) .. 41

Figure 24: Basic structure of an FPGA ... 42

Figure 25: Block diagram of a TPU .. 43

Figure 26: The Printed Circuit Board of a TPU .. 43

Figure 27: The Systolic dataflow inside the Matrix Multiply Unit ... 45

Figure 28: Overview of Sculptor .. 46

Figure 29: The Scalpel framework ... 47

Figure 30: Overview of TTQ .. 48

Figure 31: FPEC number format and processing element design ... 48

Figure 32: Block diagram of GreenTPU ... 49

11

Figure 33: Overview of SAS .. 51

Figure 34: The energy consumption for various arithmetic operations and memory accesses in a
45nm process ... 53

Figure 35: DNN accelerator architecture .. 55

Figure 36: Overview of data reuse in DNN accelerators .. 56

Figure 37: The actions of read/write in a MAC .. 57

Figure 38: Levels of local storage hierarchy with different energy costs 58

Figure 39: Forms of input data reuse .. 59

Figure 40: Types of dataflows .. 59

Figure 41: Variants of Output Stationary Dataflow .. 60

Figure 42: An overview of Row Stationary Dataflow .. 61

Figure 43: An overview of the proposed NTV-DNN framework .. 63

Figure 44: The NTC Analysis tool .. 64

Figure 45: The NTV-DNN TPU based systolic array accelerator with a VI formation 65

Figure 46: The Power breakdown of an STC-16core and an NTC-128core architecture with and
without DIBL effect... 66

Figure 47: The NTV-DNN TPU based systolic array architecture with a cluster of VIs working in
NTC ... 68

Figure 48: An overview of the NTV-DNN Error Model ... 73

Figure 49: PyTorchFI output summary of the AlexNet error model ... 74

Figure 50: The kcp_ws NVDLA-like dataflow for the 1st conv2d layer of AlexNet 75

Figure 51: The FI procedure in the 1st conv2d layer of AlexNet .. 76

Figure 52: Training a CNN Model with PyTorch ... 78

Figure 53: (a) An overview of mapping CONV2D to an accelerator (b) High-level Tool flow of
MAESTRO .. 79

Figure 54: An overview of the supported hardware in MAESTRO ... 79

Figure 55: An overview of PyTorchFI ... 80

Figure 56: The mapping analysis convention .. 83

Figure 57: Power consumption per layer in NTC for different Vdd, NTC and cluster_sizeNTC
(AlexNet) ... 89

Figure 58: Power consumption per layer in STC for AlexNet ... 90

Figure 59: Energy consumption per layer in STC for AlexNet ... 91

Figure 60: Energy consumption per layer in NTC for different Vdd, NTC and cluster_sizeNTC
(AlexNet) ... 91

Figure 61: Performance per layer in STC for AlexNet .. 92

Figure 62: Performance per layer in NTC for different Vdd, NTC and cluster_sizeNTC (AlexNet) 92

Figure 63: Power consumption of AlexNet for cluster_sizeNTC = 256... 94

12

Figure 64: Energy consumption of AlexNet for cluster_sizeNTC = 256 ... 94

Figure 65: Execution time of AlexNet for cluster_sizeNTC = 256 .. 94

Figure 66: Total power NTC vs. STC for different DNN Models and cluster_sizeNTC 96

Figure 67: Total energy NTC vs. STC for different DNN Models and cluster_sizeNTC 97

Figure 68: Total performance NTC vs. STC for different DNN Models and cluster_sizeNTC 97

Figure 69: Power consumption for different DNN Models in NTC vs. STC 98

Figure 70: Energy consumption for different DNN Models in NTC vs. STC 98

Figure 71: Performance for different DNN Models in NTC vs. STC .. 98

Figure 72: The measured accuracy of different DNN Models in STC .. 99

Figure 73: The measured accuracy of different DNN Models for cluster_sizeNTC = 32 100

Figure 74: The measured accuracy of different DNN Models for cluster_sizeNTC = 64 100

Figure 75: The measured accuracy of different DNN Models for cluster_sizeNTC = 128 101

Figure 76: The measured accuracy of different DNN Models for cluster_sizeNTC = 256 101

Figure 77: The new performance of AlexNet in NTC for different FNTC 102

Figure 78: The power gain of different DNN Models for various dataflow strategies 104

Figure 79: The energy gain of different DNN Models for various dataflow strategies 104

Figure 80: The performance of different DNN Models for various dataflow strategies 104

Figure 81: Power gain of different DNN Models for various Vth .. 106

Figure 82: Energy gain of different DNN Models for various Vth .. 106

Figure 83: Performance of different DNN Models for various Vth ... 107

LIST OF TABLES

Table 1: Shape parameters of a Conv Layer .. 29

Table 2: Different CNN models and their cost .. 34

Table 3: List of functions in NTC Analysis tool .. 63

Table 4: List of functions in NTV-DNN Error Model ... 73

Table 5: The mapping of data on the 1st cluster for the kcp_ws dataflow 75

Table 6: FI locations for the 1st Conv2d layer of AlexNet .. 77

Table 7: List of parameters input to MAESTRO ... 82

Table 8: List of parameters of accelerator_1.m file ... 82

Table 9: List of values altered in MAESTRO source code .. 83

Table 10: List of MAESTRO DNN Models .. 83

13

Table 11: The dimensions of the last layer for each MAESTRO DNN Model 83

Table 12: List of MAESTRO Mapping files for each DNN Model... 84

Table 13: Mappings used to create each MAESTRO Mapping file .. 84

Table 14: List of NTC parameters ... 86

Table 15: List of FI parameters.. 87

Table 16: List of parameters for inference and training ... 87

Table 17: List of parameters for the voltage island granularity analysis 88

Table 18: Best Power/Energy efficiency gains and worst Performance loss of layers for AlexNet
 ... 93

Table 19: Power/Energy efficiency gains and Performance loss of 1st layer per DNN Model 93

Table 20: Best results for Power/Energy consumption and the related performance in NTC for all
layers of different DNN Models .. 95

Table 21: Difference (%) between NTC and STC regime for the total of DNN Models 95

Table 22: The measured accuracy of different DNN Models during bit-flip for various
cluster_sizeNTC and FNTC .. 99

Table 23: The experimental results for AlexNet in NTC with/without Fault Injection 102

Table 24: The scheme of FNTC, Vdd, NTC , num_PEs and cluster_size used for our research 104

Table 25: The experimental results NTV-DNN under different dataflows 105

Table 26: The scheme used when exploring the effect of Vth variability 106

Table 27: The experimental results exploring the effect of Vth variability in NTC (Vdd, NTC =
0.65V) .. 107

14

ACRONYMS

ABS Absolute

AC Approximate Computing

AI Artificial Intelligence

ALU Arithmetic Logic Unit

ANN Artificial Neural Network

ASIC Application-Specific Integrated Circuit

BCR Boost Control Register

BCU Boost Control Unit

BN Batch Normalization

BRAM Block Random Access Memory

CIFAR-10 Canadian Institute For Advanced Research-10

CLB Configurable Logic Block

CNN Convolutional Neural Networks

Conv Convolution

CPI Cycles Per Instruction

CPU Central Processing Unit

CU Control Unit

DC Densely Connected

DIBL Drain-Induced Barrier Lowering effect

DNN Deep Neural Network

DP Dynamic Power

DSE Design Space Exploration

DSP Digital Signal Processing

ECU Error Sensing Unit

EDP Energy-Delay-Product

ELT Error Log Table

FC Fully Connected

FI Fault Injection

FMA Fused Multiply-Add

Fmap Feature map

FPEC Fixed Point with Error Compensation

FPGA Field-Programmable Gate Array

FPU Floating Point Unit

15

GBM Global Buffer Memory

GPU Graphics Processing Unit

GPGPU General Purpose GPU

IFM Input Feature Map

IS Input Stationary

LP Leakage Power

LUT Look-Up Table

MAC Multiply-Accumulate

MAESTRO Modeling Accelerator Efficiency via Spatio-Temporal Resource Occupancy

MLD Multi-cycle Latency Datapath

MLP Multi-Layer Perceptron

NOC Network On Chip

NTC Near-Threshold Computing

NTV-DNN Near-Threshold Voltage DNN framework

OFM Output Feature Map

OS Output Stationary

PE Processing Element

PSUMs Partial Sums

PVs Process Variations

RELU Rectified Linear Unit

RF Register File

RL Reinforcement learning

RNN Recurrent Neural Networks

RS Row Stationary

SAS Self-Adaptive Sprint

SeMU Sequence Monitor Unit

SIMD Single Instruction, Multiple Data

SL Supervised learning

SMT Simultaneous Multithreading

SMs Streaming Multiprocessors

SQRT Square root

TECU Timing Error Control Unit

TOPS TeraOps per Second

TPU Tensor Processing Unit

TTQ Trained Ternary Quantization

16

UB Unified Buffer

UL Unsupervised learning

VI Voltage Island

VR Voltage Regulator

WS Weight stationary

17

ABSTRACT

Artificial Intelligence (AI) evolution is accelerating, and Deep Neural Network (DNN) inference is

at the forefront of computing architectures that are evolving to support the immense throughput

required for AI computation. However, much more energy efficient design paradigms are inevitable

to realize the complete potential of AI evolution and curtail energy consumption. The coordination

of Approximate Computing (AC) together with Near-Threshold Computing (NTC) design

paradigm can serve as the best candidate for providing the required energy efficiency. The scope

of this diploma thesis is to explore and analyze the impacts of AC and NTC principles in modern

multi-/many-core architectures eventually proposing NTV-DNN, a fine-tuned microarchitecture

paradigm for energy efficient DNN inference.

Keywords: Artificial Intelligence (AI), Deep Neural Network (DNN), Near-Threshold

Computing (NTC), Approximate Computing (AC), Tensor Processing Unit (TPU), Energy

efficiency, Μicroarchitecture, Ιnference

18

ΠΕΡΙΛΗΨΗ

Η εξέλιξη της Τεχνητής Νοημοσύνης (AI) επιταχύνεται και η κανονική λειτουργία των Βαθιών

Νευρωνικών Δικτύων (DNN), βρίσκεται στην πρώτη γραμμή των υπολογιστικών αρχιτεκτονικών

που εξελίσσονται, για να υποστηρίξουν τον τεράστιο ρυθμό διαμεταγωγής (throughput) που

απαιτείται για τους υπολογισμούς AI. Ωστόσο, είναι αναπόφευκτη η απαίτηση εύρεσης πολύ πιο

ενεργειακά αποδοτικών προτύπων σχεδιασμού, για την αξιοποίηση του πλήρους δυναμικού της

εξέλιξης της τεχνητής νοημοσύνης και τον περιορισμό της κατανάλωσης ενέργειας. Ο συντονισμός

του Approximate Computing (AC) μαζί με το μοντέλο σχεδίασης Near-Threshold Computing

(NTC), μπορεί να χρησιμεύσει ως ο καλύτερος υποψήφιος για την παροχή της απαιτούμενης

ενεργειακής απόδοσης. Το αντικείμενο αυτής της διπλωματικής εργασίας είναι να διερευνήσει και

να αναλύσει τον αντίκτυπο των αρχών AC και NTC σε σύγχρονες αρχιτεκτονικές

πολλαπλών/πολλών πυρήνων προτείνοντας τελικά το NTV-DNN, ένα βελτιωμένο παράδειγμα

μικροαρχιτεκτονικής για ενεργειακά αποδοτική κανονική λειτουργία DNN.

Λέξεις Κλειδιά: Τεχνητή Νοημοσύνη (AI), Βαθιά Νευρωνικά Δίκτυα (DNN), Ενεργειακή

απόδοση, Μικροαρχιτεκτονική, Κανονική λειτουργία DNN (inference), Τάση κατωφλίου

19

1 INTRODUCTION

1.1 The Deep Neural Network Challenge

Deep neural networks (DNNs) currently form the basis for many modern artificial intelligence

(AI) applications and have become extraordinarily popular. Since the breakthrough of DNNs in

speech and image recognition (see Figure 1), the number of applications using DNNs has exploded.

These DNNs are used in a wide variety of applications, from self-driving cars to cancer detection

to playing complex games. In many of these areas, DNNs are now able to outperform human

accuracy. The superior accuracy of DNNs stems from their ability to extract high-level features

from raw sensory data by applying statistical learning to a large amount of data to obtain an

effective representation of an input space. This differs from previous approaches that use hand-

crafted features or rules developed by experts.

However, DNNs superiority in accuracy comes at the cost of high computational complexity. This

leads to the design of more specialized hardware which gives rise to the need of improving compute

performance and energy efficiency [1]. Until today, there has been tremendous interest in enabling

efficient processing of DNNs. Some of the challenges we face for DNN acceleration are the

following:

• The achievement of high performance and efficiency (e.g., energy).

• To provide sufficient flexibility to cater to a wide and rapidly changing range of

workloads.

• To integrate well into existing software frameworks.

Figure 1: An example of DNN used to image recognition [2]

20

1.2 Motivation

While AI evolution is accelerating, computing architectures are also evolving to support the immense

throughput required for AI computation. However, DNN training and inference requires more and

more energy consumption which leads to the need of much more energy efficient design paradigms to

realize the complete potential of AI evolution. Till today, vast research has been made in the fields of

Approximate Computing (AC) and Near-Threshold Computing (NTC) design paradigms that could

serve as the best candidates for providing the required energy efficiency. Nevertheless, the is not

enough exploration in the field of combining AC and NTC to gain the best of power and energy relation

(see Figure 2).

Figure 2: Power and energy relation [3]

1.3 Benefits of Approximate Near-Threshold Voltage Computing

Employing approximations at the hardware level is a very good design paradigm for achieving high

gains in terms of area, power, energy, and performance efficiency [4]. AC has emerged as a new

technique which serves to reduce the resources (e.g., design area and power) required to realize digital

systems at the expense of a negligible or small amount of reduction in quality-of-results or accuracy.

This trade-off between resources and accuracy is especially relevant for a large class of data-rich

applications such as machine learning and multimedia processing that offer inherent error resiliency.

On the other hand, NTC operation has potential to improve energy efficiency by an order of

magnitude [5]. NTC takes advantage of the quadratic relation between the supply voltage (Vdd) and the

dynamic power, by lowering the supply voltage of chips to a value only slightly higher than the threshold

voltage. At nominal operating voltage, the frequency of operation reduces almost linearly with reduction

in the supply voltage, reducing performance linearly, and reducing active energy per operation

21

quadratically. Leakage power too reduces exponentially, and therefore reducing supply voltage should

not only reduce power but also improve energy efficiency. This effect is expected to continue through

subthreshold region, providing extreme energy efficiency. However, it peaks near the threshold voltage

of the transistor (see Figure 3) and then starts reducing in the subthreshold region. This unexpected

reduction in the subthreshold region is explained by the following argument. In the subthreshold region

leakage power dominates, and it reduces with voltage but the reduction in frequency is larger than

reduction in the leakage power, reducing energy efficiency. Therefore, it is desirable to operate close to

the threshold voltage of the transistor for maximum energy efficiency, providing an order of magnitude

increased energy efficiency compared to operating at the nominal supply voltage. Subthreshold

operation does yield even lower power consumption, but at the expense of reduced energy efficiency,

which may be desired in some applications.

Figure 3: Energy efficiency of NTV operation [5]

22

1.4 The scope of the thesis

As Moore’s law continues to provide designers with more transistors on a chip, power budgets are

beginning to limit the applicability of these additional transistors in conventional CMOS design.

Furthermore, as technology node shrinks towards 45 nm and below, gate leakage (i.e., leakage current

due to direct tunneling) increases owing to the increased electric field (see Figure 4). The scope of this

thesis is to study, explore and analyze the impacts of AC and NTC principles in modern multi / many-

core architectures and to propose a fine-tuned micro-architecture paradigm for energy efficient DNN

inference.

Figure 4: Trends of major sources of power dissipation in nano-CMOS transistor [6]

During our research, as a first step we had to decide which microarchitecture are we going to use

during our study. Among CPUs, GPUs and ASICs (e.g. Deep Learning Accelerators-DLAs), we decided

to focus on DLAs and specifically on the Google’s Tensor Processor Unit (TPU), which is widely used

on training and inference of DNNs.

As a second step, we had to choose among different DLA simulators, which is the best to use in our

research. We understood that the efficiency (performance and energy efficiency) of a DNN accelerator

depends on three factors: 1) the workload (DNN layers), 2) the amount and type of available hardware

resources (hardware), and 3) the mapping strategy of a DNN layer on the target hardware (mapping)

[57]. This led as to choose MAESTRO, an analytical cost model which receives DNN model description

and hardware resources information as a list, and mapping described in a data-centric representation, and

generates more than 20 statistics including total latency, energy, throughput, etc., as outputs.

Then, as a third step we focused on finding, through a thorough study, the appropriate techniques for

AC and NTC so as to implement our Near-Threshold Voltage DNN framework (NTV-DNN) tool for

early assessment of energy at various voltage variation levels. For the part of NTC, we adopted a

23

promising technique proposed from I. Stamelakos, S. Xydis, G. Palermo et al. [60] based on the on the

formation of voltage islands (VIs) for the minimization of the impact of within-die variations, which are

more evident at NTC, in both performance and power. As for AC, we decided to work with a runtime

fault injector (PyTorchFI [59]) with the scope to test the resilience of our examined DNN Models in

errors and how this affects accuracy and performance in an NTC regime. Finding the correct FI tool was

not easy, as most of them were deprecated (e.g., Ares Fault Injection Framework). Finally, we had to

choose among a wide range of DNN Models, the ones that will be examined during our research,

according to different workloads and a dataset (CIFAR-10) for their training and inference.

Our experiments depicted significant reductions in power and energy consumption of about 80% and

50% respectively, for a range of supply voltage between 0.6V to 0.65V for the total of our

simulated 16 x 16 TPU-based accelerator, but with a cost of about 90% reduction in execution time and

3% reduction in accuracy. In addition, we have proven that for a TPU-based accelerator with a total of

256 PEs that works in STC, there is an equivalent accelerator with a double size of PEs and with similar

performance that works in NTC which shows gains of about 50% and 52% in power and energy

consumption respectively. We also concluded that, in terms of energy efficiency and performance,

choosing the right dataflow strategy plays a crucial role for the designing of energy efficient DLAs.

24

2 BACKGROUND ON DEEP NEURAL NETWORKS

In this chapter, we present how DNNs are positioned in the context of artificial intelligence (AI) and

how training and inference works. We also describe the different types of layers of a DNN and finally

we focus on Convolutional Neural Networks (CNNs) which are placed at the frontend of Deep

Learning.

2.1 What is Deep Learning?

Deep learning, which is also referred as DNN, is a subset of AI. AI is the science and engineering of

building intelligent machines that could achieve goals like humans do, according to John McCarthy,

who is considered the father of AI [7]. The relationship of deep learning to the whole of AI can be seen

in Figure 5.

Figure 5: Deep Learning as a subset of AI [8]

An Artificial Neural Network (ANN) is made of inputs and outputs, which are organized into

layers. These layers can be distinguished into three types: an input layer, a hidden layer(s), and an

output layer [9]. Each of these layers is made up of smaller units called neurons, which are the

fundamental computational units of the network for performing a specific task. A deep neural network

or deep learning is essentially an ANN with many hidden layers, where the term “deep” refers to extra

25

layers [10]. Thus, a DNN is a network composed of multiple-computational layers. This involves

numerous simple computations on a weighted sum of the input values.

Based on the internal structure of the network, there are several architectures for DNNs, including

Multi-layer Perceptron (MLP) and Convolutional Neural Networks (CNNs). These two types are

considered as the basis of the DNNs and the most used types. They have also received most of the

attention, both in research and industry. Consequently, MLP and CNN are currently the backbones of

deep learning. A DNN should have inputs, neurons, layers, activation functions, multiply-sum

operations, loss functions, parameters, and a specific topology for being a network [9]. Indeed, DNNs

are models created with linear algebra at their cores, and then later optimized with calculus (i.e., learning

process). As a result, DNNs are fundamentally a chain of matrix operations applied to input data and a

set of parameters required to map the output to the input.

As we understand, the basic operation in DNNs (e.g., CNN and MLP) is a series of matrix

multiplications. Specifically, as seen in Figure 6, each neuron receives some inputs and performs a

convolutional operation between the input and its weights (i.e., multiply-and-sum). Then, it adds the

biases to the intermediate output to obtain the activation (i.e., g) before passing it to an activation

function (i.e., F(g)) for non-linearity, which eventually gives the final output of this neuron. The

mathematical equations that describe neuron’s function are:

 (1)

where w is the weight, x is the input and b is the bias. Therefore, a compulsory operation in any DNN

is a multiply-accumulate (MAC) operation, suitable for all kinds of matrix operations. Although it needs

a large amount of data to be performed, MAC is the primary and most important operation in DNNs

[9].

Figure 6: A single neuron in a DNN and its main structure [9]

26

2.2 Training and Inference

Since DNNs are an instance of machine learning algorithms, the basic program does not change as it

learns to perform its given tasks. In the specific case of DNNs, this learning involves determining the

value of the weights (and biases) in the network and is referred to as training the network. Thus, the

goal of training DNNs is to find a set of weights to minimize the average loss over a large training set.

Once trained, the program can perform its task by computing the output of the network using the

weights determined during the training process. Running the program with these weights is referred to

as inference.

When a neuron is activated, it calculates a function of all data it has, and compares the value of this

function with a threshold value (activation function) which is characteristic of this neuron. If the value

of the function is greater than the threshold value, then the neuron calculates the output, which forwards

as input to the next (or next) neuron (s). During training the only thing that changes is the values of

weights connections of neurons. When training a network, the weights are usually updated using

a hill-climbing (hill-descending) optimization process called gradient descent. In gradient descent, a

weight is updated by a scaled version of the partial derivative of the loss with respect to the weight.

Note that this gradient indicates how the weights should change to reduce the loss. The process is

repeated iteratively to reduce the overall loss. An efficient way to compute the partial derivatives of the

gradient is through a process called backpropagation. Backpropagation (see Figure 7(b)) operates by

passing values backward through the network to compute how the loss is affected by each weight.

(a) (b)
Figure 7: Gradient descent (a) and backpropagation (b) [11][12]

Changes in weight values are not always made with the same way, but it depends a lot on the

method we use. The three basic methods of training are described below:

27

• Supervised learning (SL): SL occurs when we start with random values for weights, and

we know the values of the inputs and the targets that the network must learn. During the

training process, the network changes the values of the weights correcting them depending

on the error we get (difference from the target). The learning process stops when the

algorithm achieves an acceptable level of performance.

• Unsupervised learning (UL): In problems in this category, training data are vectors that

do not have corresponding labels. Therefore, the goal of UL is to find patterns when there

are no "correct answers", or when they are impossible to calculate. A large subcategory of

unsupervised tasks is the problem of clustering. Grouping refers to grouping observations

in such a way that the members of a common group are similar to each other and differ

significantly by members of other groups. Another very interesting category of

unsupervised tasks are genital models. These models mimic the process of creating

training data. A good genital model should be able to create new data which, although

artificial, looks like the original. This way of learning is unsupervised because the process

by which data is created ("born") is not immediately observable - only the data itself is

observable.

• Reinforcement learning (RL): The essence is learning through interaction. An RL agent

interacts with its environment and, upon observing the consequences of its actions, can

learn to alter its own behavior in response to rewards received. In the RL set-up, an

autonomous agent, controlled by a machine learning algorithm, observes a state from

its environment at timestep t. The agent interacts with the environment by taking an action

 in state . When the agent takes an action, the environment, and the agent transition to

a new state based on the current state and the chosen action. The state is a sufficient

statistic of the environment and thereby comprises all the necessary information for the

agent to take the best action, which can include parts of the agent, such as the position of

its actuators and sensors [13].

After training is completed, the networks are deployed into the field for inference (e.g., classifying

data to “infer” a result). With inference you’ll get almost the same accuracy of the prediction, but

simplified, compressed, and optimized for runtime performance. What that means is we all use

inference all the time. Your smartphone’s voice-activated assistant uses inference, as does Google’s

speech recognition, image search and spam filtering applications. Baidu also uses inference for speech

recognition, malware detection and spam filtering. Facebook’s image recognition and Amazon’s and

Netflix’s recommendation engines all rely on inference [14].

28

2.3 Types of Layers

In this section, we present the various popular layers from which DNNs are formed. We begin by

describing the Convolution (Conv) and Fully Connected (FC) layers whose main computation is a

weighted sum, since that tends to dominate the computation cost in terms of both energy consumption

and throughput. We will speak for various layers that can optionally be included in a DNN and do not

use weighted sums such as nonlinearity, pooling, and normalization.

2.3.1 Conv Layer

The CONV layer works by sliding many small filters across an image to extract meaningful features.

Figure 8 displays the data structure of a CONV operation. The inputs to CONV layer are N feature

maps (fmaps). Every fmap is convolved by a shifting window with a kernel, which produces

one pixel in one output fmap. The shifting window has a stride of S which is generally smaller than R.

The N output fmaps are taken as the input fmaps for the next CONV layer [15].

Figure 8: Illustration of a Conv operation [1]

Table 1 displays the shape parameters of a Conv Layer, the computation of which is defined as:

 (2)

where o, i, f, b are the tensors of the output fmaps, input fmaps, filters and biases. U is a given stride
size.

29

Table 1: Shape parameters of a Conv Layer [1]

Shape parameter Description
N Batch size
M Number of channels of output fmaps (output channels)
C Number of channels of filter / input fmaps (input channels)

H/W Input fmap spatial height/width
R/S Filter spatial height/width
P/Q Output fmap spatial height/width

2.3.2 FC Layer

Fully Connected (FC) Layers contain neurons that apply a linear transformation to the input vector

through a weight’s matrix. Every value in the output fmap is the result of a weighted sum of every

input value in the fmap. FC layers do not support weight sharing thus making each calculation memory

bounded. A nonlinear transformation is then applied to the result as shown below:

where x is the input vector, w is the weight’s vector, b is the bias and f is the non-linear activation

function. Figure 9 displays an example of a fully connected network in which the green neurons

represent the input, the blue neurons belong to the hidden layer and the red neurons represent the

output.

Figure 9: A Fully Connected Network [16]

In the above Figure we can understand why we call these kinds of layers Fully Connected or

sometimes Densely Connected (DC). All possible connections layer to layer are present, meaning

every input of the input vector influences every output of the output vector. An FC network is very

useful for the work of Classification in a DNN. As we see in Figure 9 the hidden FC layer serves to

classify the input data into various classes.

30

2.3.3 Nonlinearity

After a Conv or FC Layer, a nonlinear activation function is applied. There are various nonlinear

activation functions, some of which are displayed in Figure 10. Among them the Rectified Linear Unit

(RELU) is considered the most popular due to its simplicity and its ability to enable fast training, while

achieving comparable accuracy [1]. The other variants of ReLU include Leaky ReLU, ELU, SiLU,

etc., which are used for better performance in some tasks and show improved accuracy. The ReLU

activation function is differentiable at all points except at 0. For values greater than 0, we just consider

the max of the function [17]. This can be described as below:

 if input > 0:

 return input;

 else:

 return 0;

Figure 10: Various nonlinear activation functions [1]

Maxout is also a very promising nonlinearity which takes the maximum value of two intersecting linear

functions and has shown to be very effective in speech recognition tasks [18]. The following function

implements maxout:

 (3)

31

2.3.4 Pooling and Unpooling

Pooling is a method that focuses in getting a DNN to focus on higher-level features. In a convolutional

neural network, pooling is usually applied on the fmap produced by a preceding convolutional layer

and a non-linear activation function. During pooling a filter is selected which slides over the output

fmap of the preceding convolutional layer. The most used filter size is 2×2 and it is slid over the input

using a stride of 2. Based on the type of pooling operation you’ve selected, the pooling filter calculates

an output on the receptive field (the part of the feature map under the filter) [19]. The most commonly

used approaches are the following:

• Max Pooling: In this approach the filter simply selects the maximum pixel value in the

receptive field. For example, as in Figure 11, if you have 4 pixels in the field with values 5, 3,

9 and 28, you select 28.

Figure 11: Max Pooling and Average Pooling Methods

• Average Pooling: Average pooling works by calculating the average value of the pixel values

in the receptive field. Given 4 pixels with the values 2, 9, 1 and 7 the average pooling layer

would produce an output of 4.75. As seen in Figure 11, rounding to full numbers gives us 5.

Unpooling or more generally upsampling is the method during which the spatial resolution of a fmap

is increased. A commonly used form of unpooling method is to insert zeros between the activations as

shown in Figure 12. Another method, also displayed in Figure 12, is interpolation with the use of

nearest neighbors. Upsampling introduces structured sparsity in the input fmap and is generally used

before a Conv or FC layer. It is an important tool that can improve energy efficiency and throughput

[1].

32

Figure 12: Zero-insertion and Nearest-neighbors Unpooling Methods

2.3.5 Normalization

When talking about normalization, we refer to the operation during which, given a set of data

 , a normalization function ensures that the transformed data has

certain statistical properties [20]. By this method we can help to significantly speed up training and

improve accuracy. In general terms normalization is a pre-processing technique used to standardize

data. In other words, having different sources of data inside the same range [21]. If we do not normalize

the data before training that can cause problems in our network, making it drastically harder to train

and decrease its learning speed. We can distinguish two methods to normalize our data:

• Scale the data set to a range from 0 to 1:

 (4)

where is a data point, is the mean of the data set, is the highest value and is the

lowest value. This technique is generally used in the inputs of the data.

• Forcing the data points to have a mean of 0 and a standard deviation of 1:

 (5)

where is a data point, is the mean of the data set and is the standard deviation of the data

set.

33

Batch Normalization (BN) is a wide adopted method in the design of CNNs and is usually

performed between the Conv or FC layer and the nonlinear function. The normalization formula is the

following:

 (6)

where is the BN output, is the neuron’s output (before normalization), is the mean of the

neuron’s output and is the standard deviation of the output of the neurons. Figure 13 displays how

normalization works. As we see, while the DNN model learns the parameters and , BN is added

just before the activation function .

Figure 13: Batch Normalization method

2.3.6 Compound Layers

Compound layers are the result of the combination of all the primitive layers described above. An

example of a compound layer is the up-convolution layer that combines upsampling (before applying

convolution) and transposed convolution [22]. Attention layer is also another form of compound layer

that is composed of matrix multiplications and feed-forward, fully connected layers [23]. This

compound layer is commonly used in a type of DNNs called Transformers and can be useful in

processing a wide range of data such as language and images.

34

2.4 The Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are composed of multiple Conv layers. The function of a

CNN is based in the generation of successively higher-level abstracted input data (called feature maps)

through each layer as shown in Figure 14 [1]. Each feature map preserves essential yet unique

information. During time, there have been developed many CNN models, some of which are displayed

in Table 2.

Figure 14: The architecture of a modern deep CNN [1]

Table 2: Different CNN models and their cost [30]

Model Layer Parameter [M] Network size [MB]
AlexNet 8 61 227

GoogLeNet 22 7 27

ResNet-18 18 25.6 96

SqueezeNet 18 1.24 5

AlexNet [24] is considered to be the first CNN that won the ImageNet Challenge in 2012. Its

architecture consists of five convolutional layers with a combination of max pooling followed by three

FC layers. The ReLU nonlinear activation function is used in each of these layers. The max pooling

operation is applied to the outputs of the first, second and fifth Conv layers as displayed in Figure 15.

The network has 62.3 million parameters and needs 1.1 billion computation units in a forward pass.

35

Figure 15: The architecture of AlexNet DNN model [25]

GoogLeNet [26] is a deeper CNN which has 22 layers. The 22 layers consist of three CONV layers,

followed by nine inceptions modules (each of which are two CONV layers deep), and one FC layer.

An inception module, as displayed in Figure 16, has an input which is distributed through multiple

feed-forward connections to several parallel layers. GoogLeNet uses a stack of a total of 9 inception

modules and global average pooling to generate its estimates. Max pooling between inception modules

reduces the dimensionality.

Figure 16: Inception module from GoogLeNet [1]

ResNet [27] is the idea that every additional layer should more easily contain the identity function

(see Figure 17) as one of its elements. These considerations are rather profound, but they led to a

surprisingly simple solution, a residual block. With it, ResNet won the ImageNet Large Scale Visual

Recognition Challenge in 2015. The design had a profound influence on how to build deep neural

36

Figure 17: Residual learning: a building block [27]

networks. Figure 18 illustrates the residual block of ResNet, where the solid line carrying the layer

input to the addition operator is called a residual connection (or shortcut connection). With residual

blocks, inputs can forward propagate faster through the residual connections across layers. ResNet

combines 4 convolutional layers in each block together with the first 7×7 convolutional layer and the

final FC layer, 18 layers in total. Therefore, this model is commonly known as ResNet-18 [28].

(a) (b)

Figure 18: (a) Residual learning: a building block (b) ResNet block [28]

SqueezeNet [29] begins with a standalone Conv layer, followed by 8 fire modules, ending with a final

Conv layer. We gradually increase the number of filters per fire module from the beginning to the end

of the network. The fire module (illustrated in Figure 19) is comprised of: a squeeze Conv layer (which

has only 1x1 filters), feeding into an expand layer that has a mix of 1x1 and 3x3 convolution filters.

ReLU is applied to activations from squeeze and expand layers. With SqueezeNet, we achieve a 50 ×

reduction in model size and obtain better accuracy results compared to AlexNet model.

37

Figure 19: Fire module: SqueezeNet’s building block [29]

38

3 RELATED WORK ON ENERGY EFFICIENT DNN

This chapter is dedicated in presenting the various workloads used for training and inference of DNN

workloads. A description of the study that has been done in the domains of Approximate and Near-

Threshold Computing in DNNs is also given.

3.1 Architectures for DNN Workloads

When talking for both Conv and FC Layers, the fundamental computation are multiple-and-

accumulate (MAC) operations. These operations have negligible dependencies and can be considered

as commutative. This fact gives to MAC operations the characteristic of flexibility on how can be

scheduled and easily parallelized. Therefore, high parallel computing paradigms are used frequently

to achieve high performance for DNNs. We can categorize these architectural paradigms in either

temporal or spatial, as we see in Figure 20.

Figure 20: High parallel architectural paradigms [1]

In a temporal architecture, arithmetic logic units (ALUs) fetch data from the memory hierarchy

and cannot communicate directly with each other. Central Processing Units (CPUs) and Graphics

Processing Units (GPUs) employ such architectures and use a variety of technics to improve

parallelism such as vector instructions or parallel threads. On the contrary when we talk about spatial

architecture, communication between ALUs is allowed, and the use of dataflow processing is

implemented. There are cases that an ALU can have its own control logic and local memory which

39

is called scratchpad. In this case one or more ALUs form a Processing Element (PE). Special designs

of Application-Specific Integrated Circuits (ASICs) and Field-Programmable Gate Arrays (FPGAs)

used for the process of DNNs are commonly based on spatial architectures.

3.1.1 CPUs

CPU has been for years the most essential component in computers of any era. It is sometimes simply

called a processor and is considered as the brain of a computer. Figure 21 displays a simple block

diagram of a uniprocessor-CPU and its building blocks: a Control Unit (CU) that directs the operation

of the processor, a Combinational Logic Known such as ALUs and Floating Point Units (FPUs) thar

Figure 21: Block diagram of a uniprocessor-CPU [31]

 perform the mathematical and logic operations and Registers which provide a quickly accessible

location for fast storage. CPU cores have been enhanced to further support parallelism and specific

type of computations. Some of these are listed below [32]:

• Single Instruction, Multiple Data (SIMD) units: These are hardware components that perform

the same operation on multiple data operands concurrently. Typically, a SIMD unit, as seen

in Figure 22(a), receives as input two vectors (each one with a set of operands), performs the

same operation on both sets of operands (one operand from each vector), and outputs a vector

with the results. SIMD operations include arithmetic operations (such as addition, subtraction,

multiplication, negation) and other operations such as absolute (abs) and square root (sqrt).

The increased performance of SIMD units is based on the fact that multiple data items can be

40

simultaneously loaded/stored from/to memory exploiting the full width of the memory data

bus.

• Fused Multiply-Add (FMA) units: As Figure 22(b) depicts, these units perform fused

operations such as multiply-add and multiply-subtract. The main idea is to provide a CPU

instruction that can perform operations with three input operands and an output result. It is

common for an FMA unit to support single, double precision floating-point and integer

operations, and depending on the data types, to include a rounding stage following the last

operation. Depending on the processor architecture, the input/output of the FMA units might

be associated with four distinct registers or three distinct registers, with one register shared

between the result and one of the input operands of the FMA unit.

(a) (b)

Figure 22: (a) A SIMD unit (b) An FMA unit [32]

• Simultaneous Multithreading (SMT): It is a basic characteristic of modern microprocessors

that aims to provide multiple cores and to allow native support of parallel thread execution by

duplicating hardware in a single core. The execution of multiple threads within the same core

is realized by time multiplexing its hardware resources and by fast context switching. An

example of such a technology is Intel-Hyper Threading that succeeds to increase processor

throughput, improving overall performance on threaded software.

There are various factors for which CPUs are considered to play a crucial role in accelerating

DNNs. First of all, they offer a high memory capacity. Since CPU-managed hosts in cloud and

datacenter scenarios have much larger memory capacities, running memory hungry operations such

as 3D Conv on CPUs is not merely attractive, but often imperative [34, 35]. CPUs are also very useful

for medium-parallelism and sparse DNNs as in some workloads such as Recurrent Neural Networks

(RNN), the number of computations increases with rising sequence length. However, the

41

parallelization of RNN is challenging because of the dependencies between the steps and the use of

small batch size. Similarly, DNNs such as InceptionNet variants have filter shapes of 1x1, 3x3, 1x3,

3x1, etc., which lead to irregular memory accesses and variable amount of parallelism across the

layers. Such applications with limited parallelism fit more naturally to CPUs, which have few fast

cores than to GPUs, which have many slow cores [36]. Another advantage is that CPUs are used

widely in mobile systems where sometimes can provide similar or higher performance than GPUs.

Also, for applications requiring frequent or continuous inference, GPUs may not be most suitable as

they can quickly dissipate the battery [37]. Additionally, CPUs remain the processing system of

choice for executing DNNs in extreme environments [38].

3.1.2 GPUs

GPUs are considered to be the most prominent DNN accelerators. Its massive parallel architecture

and computational power is a big advantage that serves the requirements of DNNs. They have been

used for more than a decade in the acceleration of AI algorithms for training and inference [39].

NVIDIA, Intel, and AMD are some of the leading manufacturers that have succeeded in this domain.

The internal structure of GPUs is hugely complex. Streaming Multiprocessors (SMs) are the

fundamental idea of the parallelism in GPUs. Each SM may have hundreds to thousands of cores,

which are the fundamental processing units. Also, the GPUs’ memory hierarchy is highly parallelized

and shared among various resources. However, this degree of parallelism in GPUs makes them extra

vulnerable to faults. Figure 23 displays the block diagram of a high-end GPU-based accelerator where

LDST identifies a load/store unit, SFU identifies a special function unit, and Tex identifies a Texture

mapping unit [32].

Figure 23: A high-end GPU-based accelerator (NVIDIA Fermi GPU) [32]

42

GPUs have their limitations, such as high-power consumption, and that is where innovation in

other accelerators is emerging. Due to the wide adoption of edge devices that provide mobility

features produced by IoT, the power consumption and response time are two substantial reasons that

make GPUs unsuitable accelerators in some scenarios. However, GPUs are very useful in high-end

scientific and engineering computing where the focus is on high computation throughput.

3.1.3 FPGAs

FPGA technology has become over time a wise choice to accelerate DNN algorithms in certain

scenarios. Its main advantages are reconfigurability, versatility, and low-power consumption. An

FPGA, as seen in Figure 24, is an array of carefully designed and interconnected digital subcircuits

that efficiently implement common functions while also offering very high levels of flexibility. The

digital subcircuits are called configurable logic blocks (CLBs), and they form the core of the FPGA’s

programmable-logic capabilities. Each CLB includes look-up tables (LUTs), storage elements (flip-

flops or registers), and multiplexers that allow the CLB to perform Boolean, data-storage, and

arithmetic operations. FPGAs also use SRAM or Block RAM (BRAM). BRAMs are small and very

fast memories and are more efficient than using LUTs. A big FPGA has nearly 100Mb of BRAM,

chained together as needed.

Figure 24: Basic structure of an FPGA [40]

Deep learning algorithms, such as CNNs and Multilayer Perceptrons (MLPs), are executed in

FPGAs through specialized analog blocks. CLBs and Digital Signal Processing (DSPs) slices are the

basic blocks for the implementation of MAC operations. However, both of these elements are prone

to soft errors that can eventually lead to a failure in the DNN model’s output, making FPGAs

unreliable in processing of DNNs. Another problem is that FGPAs run at low clock frequencies and

43

are often difficult to deploy and maintain [41].

3.1.4 ASICs

ASIC accelerators can be considered as the most promising and reliable components for accelerating

AI algorithms. These processors are explicitly customized to serve one task which cannot be changed

over time. The biggest purpose to utilize ASICs for DNN processing is to solve the power constraints

imposed by GPUs [42]. Memory accesses is recognized as the key bottleneck in DNN computations

and ASICs can use with great success a data reuse pattern to reduce off-chip memory access which

makes them superfast.

Figure 25: Block diagram of a TPU [43]

Google’s Tensor Processing Unit (TPU) is an example of an ASIC accelerator that is used for

training and inference of DNN models in Google’s cloud platform and data centers. Figure 25 displays

the block diagram of a TPU, where the yellow component is the Matrix Multiply Unit. This unit is

responsible for the main computation. Figure 26 displays its printed circuit card, which can be inserted

into the slot of a SATA disk in a server. Its inputs are the blue Weight FIFO and the blue Unified

Buffer, and its output is the blue Accumulators. The nonlinear functions are performed by the yellow

Activation Unit on the Accumulators and the results go to the Unified Buffer.

44

Figure 26: The Printed Circuit Board of a TPU [43]

The heart of the TPU, which is the 65,536 8-bit MAC matrix multiply unit, offers a peak

throughput of 92 TeraOps/second (TOPS) and a large (28 MiB) software-managed on-chip memory

[43]. It contains 256x256 MACs that can perform 8-bit multiply and adds on signed or unsigned

integers. The 16-bit products are collected in the 4 MiB of 32-bit Accumulators below the matrix unit.

The 4 MiB holds 4096, 256-element, 32-bit accumulators. TPU instructions follow the CISC

computer architecture and its average clock cycles per instruction (CPI) is typically 10 to 20. It has

in total about a dozen of instructions overall, but the most important ones are the following:

• Read_Host_Memory: Reads data from the CPU host memory into the Unified Buffer (UB).

• Read_Weights: Reads weights from Weight Memory into the Weight FIFO as input to the

Matrix Unit.

• MatrixMultiply/Convolve: Orders the Matrix Unit to perform a matrix multiply or a

convolution from the Unified Buffer into the Accumulators. A matrix operation takes a

variable-sized B × 256 input, multiplies it by a 256 × 256 constant weight input, and produces

a B × 256 output, taking B pipelined cycles to complete.

• Activate: Performs the nonlinear function of the artificial neuron, with options for ReLU,

Sigmoid, and so on. Its inputs are the Accumulators, and its output is the Unified Buffer. It

can also perform the pooling operations needed for convolutions using the dedicated hardware

on the die, as it is connected to nonlinear function logic.

• Write_Host_Memory: Writes data from the Unified Buffer into the CPU host memory.

The philosophy of the TPU microarchitecture is to keep the matrix unit busy.

As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic

execution to save energy by reducing reads and writes of the Unified Buffer. It relies on data from

different directions arriving at cells in an array at regular intervals where they are combined. Figure

27 shows that data flows in from the left, and the weights are loaded from the top. A given 256-

element multiply-accumulate operation moves through the matrix as a diagonal wavefront. The

weights are preloaded and take effect with the advancing wave alongside the first data of a new block.

Control and data are pipelined to give the illusion that the 256 inputs are read at once, and that they

instantly update one location of each of 256 accumulators. From a correctness perspective, software

45

is unaware of the systolic nature of the matrix unit, but for performance, it does worry about the

latency of the unit [43].

Figure 27: The Systolic dataflow inside the Matrix Multiply Unit [43]

ASIC accelerators give us a very good performance, which is very close to GPUs, but have a

higher energy efficiency. This thesis will focus on this type of accelerators for the study and creation

of a Near-threshold Approximate framework, which will help in the design of better energy efficient

DNN accelerators. In general, this category uses a systolic array with a 256 × 256 grid of MAC units

as its core and a large on-chip memory. However, with such density per chip in advanced

technologies, soft error rates will escalate as well [9].

3.2 Approximate Computing in DNNs

One of the main problems of DNNs that prevent them from being widely adopted, is that they achieve

superior accuracy at the expense of high computational complexity [44]. The models of state-of-the-

art DNNs are very large as they require hundreds of MBs of data storage. As newer and larger DNN

topologies immerge, the demand for compute is expected to grow. Despite the recent advances in

computing systems that focus in optimizing DNN implementations and the introduction of custom

accelerators for DNNs, for state-of-the-art neural networks on large datasets it takes days to weeks to

train. All the above lead to a great interest in new opportunities to improve compute efficiency of

DNN implementations.

DNNs have an important attribute, which is their resiliency in errors (e.g., the production of

acceptable application-level output despite errors that occur during their constituent computations).

46

This attribute comes also from the fact that DNNs are used in applications where less-than-perfect

results are acceptable. The nature of computations also performed within a neuron enhances this

resilience. More specifically, each neuron in the network evaluates a weighted sum of its inputs,

followed by a saturating (or thresholding) non-linear activation function (e.g., sigmoid, ReLU). Errors

in the positive and negative directions compensate for each other during the weighted summation and

any residual errors are attenuated by the activation function. Hence, approximate computing

techniques can substantially benefit DNN implementations without sacrificing their classification

accuracy.

Shikai Li et al. [45], introduced Sculptor, a flexible approximation with selective dynamic loop

perforation. Sculptor, who is displayed in Figure 28, is based on loop perforation which is one of the

most well-known software techniques in approximate computing. This technique transforms loops to

periodically skip subsets of their iterations. During a thorough analysis, Shikai Li et al., discovered

that this technique only considers the number of instructions to skip, but does not consider the

differences between instructions and loop iterations. Based on their observation, these differences

have considerable influence on performance and accuracy. To improve traditional perforation, they

introduced selective dynamic loop perforation, a general approximation technique that automatically

transforms loops to skip selected instructions in selected iterations. Across evaluated applications,

selective dynamic loop perforation achieves an average speed up of 2.89x and 4.07x with less than

5% and 10% accuracy loss, and finally can be used to replace traditional loop perforation to achieve

better performance improvements under the same error budgets.

Figure 28: Overview of Sculptor [45]

In 2017, Jiecao Yu1 et al. [46], proposed Scalpel, a framework, as displayed in Figure 29, that uses

weight and node pruning, an approximation technique that reduces DNN model size and the

computation by removing redundant weights and nodes. Scalpel customizes DNN pruning to the

underlying hardware by matching the pruned network structure to the data-parallel hardware

47

organization. It consists of two techniques: SIMD-aware weight pruning and node pruning. For low-

parallelism hardware (e.g., microcontroller), SIMD-aware weight pruning maintains weights in

aligned fixed-size groups to fully utilize the SIMD units. For high parallelism hardware (e.g., GPU),

node pruning removes redundant nodes, not redundant weights, thereby reducing computation

without sacrificing the dense matrix format. For hardware with moderate parallelism (e.g., desktop

CPU), SIMD-aware weight pruning, and node pruning are synergistically applied together. Across

the microcontroller, CPU and GPU, Scalpel achieves mean speedups of 3.54x, 2.61x, and 1.25x while

reducing the model sizes by 88%, 82%, and 53%. In comparison, traditional weight pruning achieves

mean speedups of 1.90x, 1.06x, 0.41x across the three platforms.

Figure 29: The Scalpel framework [46]

Chenzhuo Zhu et al. [47], aimed at the quantization technique, an approximation method to reduce

the bit-precision of data used in arithmetic computation of DNN training and inference. Reduction in

bit-precision results in more compact and energy efficient computing units in hardware. Based on this

technique they proposed Trained Ternary Quantization (TTQ), a method, as displayed in Figure 30,

that can reduce the precision of weights in neural networks to ternary values. This method has very

little accuracy degradation and can even improve the accuracy of some models (32, 44, 56-layer

ResNet) on CIFAR-10 and AlexNet on ImageNet. Experiments on CIFAR-10 dataset show that the

ternary models obtained by trained quantization method outperform full-precision models of ResNet-

32,44,56 by 0.04%, 0.16%, 0.36%, respectively. Respectively οn ImageNet dataset, TTQ outperforms

full-precision AlexNet model by 0.3% of Top-1 accuracy and outperforms previous ternary models

by 3%.

48

Figure 30: Overview of TTQ [47]

One promising approach to alleviate the computational challenges is implementing DNNs using

low-precision fixed point (<16 bits) representation. However, the quantization error inherent in any

Fixed Point (FxP) implementation limits the choice of bit-widths to maintain application-level

accuracy. Shubham Jain et al. [48], presented Compensated-DNN, an approximation method that can

dynamically compensate the error introduced due to quantization during execution. Their method

introduces a new fixed-point representation named as Fixed Point with Error Compensation (FPEC).

As seen in Figure 31, the bits in FPEC are split between computation bits vs. compensation bits. The

computation bits use conventional FxP notation to represent the number at low precision. On the other

hand, the compensation bits (1 or 2 bits at most) explicitly capture an estimate (direction and

magnitude) of the quantization error in the representation. For a given word length, since FPEC uses

fewer computation bits compared to FxP representation, a near-quadratic improvement in energy is

achieved in the multiply-and-accumulate (MAC) operations. The compensation bits are

simultaneously used by a low-overhead sparse compensation scheme to estimate the error accrued

during MAC operations, which is then added to the MAC output to minimize the impact of

quantization. During this study, Compensated-DNNs were built for a suite of 7 popular image

recognition benchmarks and the energy evaluation conducted revealed a 2.65x – 4.88x and 1.13x –

1.7x improvement over 16-bit and 8-bit fixed point implementations with <0.5% accuracy difference.

Figure 31: FPEC number format and processing element design [48]

49

3.3 Near Threshold Computing in DNNs

While Moore’s law continues to add more and more transistors, power consumption has become a

great disadvantage for those devices prohibiting them from been used. Near Threshold Computing

(NTC) comes as a solution to this problem, offering voltage scaling techniques as a design space

where the supply voltage is approximately equal to the threshold voltage of the transistors. However,

voltage scaling is limited for a lot of reasons, some of which are the following [5]:

• Process variations (PVs) play an important role in affecting the gains of voltage scaling.

• The sensitivity of circuits in voltage variations can lead to a failure much before supply

voltage reaches the subthreshold voltage.

• Subthreshold leakage power starts to rise becoming a substantial portion of the total power.

• The appearance of soft errors (e.g., timing errors) during calculations in MACs and read/write

operations in memories.

Nevertheless, the NTC design paradigm can serve as a great solution for providing the required

energy efficiency for DNN accelerators that are at the forefront of supporting the immense throughput

required for AI computation [49]. Yet, NTC operation is prone to a very high sensitivity to process

and environmental variations, resulting in excessive increase in delay and delay variation. This leads

to a slowdown in performance and induces high rate of timing errors in the DNN accelerator.

In 2019, Pramesh Pandey et al. [50], proposed GreenTPU, a low-power near-threshold (NTC) TPU

design paradigm. Google Tensor Processing Unit (TPU) has transpired to be the best-in-class DNN

accelerator, offering more than 15 × speedup over the contemporary GPUs. The work of GreenTPU

is to identify the patterns in the error-causing activation sequences in the systolic array and prevent

further timing errors from the same sequence by intermittently boosting the operating voltage of the

specific MAC units in the TPU. Compared to other timing error mitigation techniques, GreenTPU

manages to succeed a 2 × - 3 × higher performance in an NTC TPU, having in parallel a minimal loss

in prediction accuracy.

Figure 32: Block diagram of GreenTPU [50]

50

As we see in Figure 32(a), a Timing Error Control Unit (TECU) is pipelined between the activation

memory and the row of each systolic array of MACs. A TECU has three main components: Error

Log Table (ELT), Sequence Monitor Unit (SeMU), and Boost Control Unit (BCU). The ELT logs

the timing error causing input sequence pattern. Simultaneously, the BCU is alerted to boost the

operating voltage of the subsequent MACs in the row, to prevent any future timing error. The SeMU

monitors the sequence of inputs and tries to find a matching pattern in the ELT in every clock cycle.

If a match is found, SeMU communicates with the BCU to preclude future timing errors in all the

MAC units of a row. Inside each MAC a timing error is detected and tackled using Razor and TE-

Drop techniques. Figure 32(b) displays the interaction between MACs and BCU. BCU houses two

256-bit registers: Boost Control Register (BCR) and Error Sensing Unit (ECU). Each bit of these

registers corresponds to each MAC unit in a row. As we see, every MAC unit has access to two

voltage rails, and , representing a near-threshold and a boost voltage, respectively. The reset

(set) value in any bit of the BCR, indicates the corresponding MAC unit to operate with the

 () voltage. and is set to 0.45V and 0.65V, respectively.

High throughput architectures like General Purpose computing on GPUs (GPGPUs) can also

significantly improve their performance through NTC techniques. GPGPUs provide excellent

computing power for massively parallel applications and, while originally were developed for

accelerating graphics processing, can dramatically speed up computational processes for deep

learning. Nevertheless, NTC is more sensitive to PVs as it complicates power delivery. Rafael Trapani

Possignolo et al. [51], proposed GPU Stacking, a novel method based on voltage stacking, to manage

the effects of PV and improve the power delivery simultaneously. Voltage stacking improves the

efficiency of power delivery. When units are stacked, they are placed in a series fashion, rather than

the conventional parallel scheme. Thus, the current in the power delivery network is reduced by a

factor of in a system. This allows voltage regulators (VRs) with increased efficiency, smaller areas

and fewer package pins dedicated to power. GPU Stacking methodology lets the voltage node

between the stacked elements () float. This floating node is the key to PV compensation. GPU

Stacking alleviates the current delivery challenges, and intrinsically mitigates PV effects without

requiring multiple voltage domains. GPU Stacking automatically creates a voltage domain per level

in the stack without the cost of multiple power rails. This method has a great success in increasing

performance under process variation at near threshold, on average, by 37% compared to the traditional

(not stacked) configuration, delivering 80% of the performance compared to the no variation (ideal)

conditions.

While studying GPUs, Prabal Basu et al. [52], resulted in finding two crucial factors that

significantly undermine their efficacy at NTC: (a) Delays provoked from NTC make the GPU

51

applications severely sensitive to Multi-cycle Latency Datapaths (MLDs) within the GPU pipeline

and (b) PVs at NTC induces a substantial performance variance. To dela with these challenges, they

proposed SwiftGPU, an energy efficient GPU design paradigm at NTC. SwiftGPU dynamically

adjusts the degree of parallelization, and the speed of the MLDs within each stream core of the GPU.

To do this, SwiftGPU employs Self-Adaptive Sprint (SAS), that dynamically sprints the MLDs based

on the dimensions of the GPU kernel, as well as the MLD usage pattern during the kernel execution.

As seen in Figure 33, the SAS Controller dynamically manages the execution speed of the Compute

Unit (CU) (or SM) MLDs. To tackle the impact of PV, several crucial design strategies are adopted,

ranging from the use of tunable voltage rails to a meticulous selection of the MLD speeds. To support

several datapath speeds, the underlying power-delivery network is augmented to allow three different

supply voltage rails: Vdd_H, Vdd_M and Vdd_L, respectively. The SAS controller monitors the

runtime hardware utilization of various CU MLDs, and dynamically adjusts the MLD speed to

improve the energy efficiency of the entire system.

Figure 33: Overview of SAS [52]

52

4 HARDWARE ARCHITECTURES FOR DNN PROCESSING

When talking about efficient processing of DNNs, it is important to consider the key metrics that are

needed to evaluate and compare the strengths and weaknesses of different designs and proposed

techniques. Efficiency is commonly associated with the number of operations per second per Watt

(e.g., FLOPS/W, TOPS/W) but there are many more metrics including accuracy, throughput, latency,

energy consumption, power consumption, cost, flexibility, and scalability. Another important factor

that must be considered is data reuse. Data reuse concerns data movement (e.g., accessing data to

memory) and plays a crucial role in energy consumption of modern compute systems. In this chapter

we present the basic key metrics and their importance, we explain why the case of DNN accelerators

is important for DNN processing and finally we present two methods for exploiting efficiently data

reuse.

4.1 Basic Key Metrics

DNNs became very popular and widely used because of the fact that they can offer state-of-the-art

accuracy [1] on a wide range of tasks. Accuracy is an indicator of the quality of the result for a given

task and is a key metric that must be considered when designing efficient specialized hardware to

process DNNs workload. During training or inference of a DNN model, the units used to measure

accuracy depend on the task. If for example we talk about image classification, accuracy is reported

as the percentage of correctly classified images. There are two factors that affect accuracy: the

difficulty of the task (e.g., object detection) and the dataset (e.g., ImageNet). Therefore, a DNN model

that performs well on MNIST dataset may not necessarily perform well on ImageNet. In conclusion,

when someone is called to evaluate the efficiency of different hardware in processing DNNs, accuracy

must seriously be taken into account as it is a crucial metric for the effectiveness of DNN models.

Throughput and latency [1] are also two important metrics for evaluating hardware efficiency.

Throughput indicates the amount of data that can be processed or the number of executions of a task

that can be completed in a given time period. On the other hand, latency measures the time between

when the input data arrives to a system and when the result is generated. Throughput is often

generically reported as the number of operations per second. When talking about inference,

throughput is reported as inferences per second or in the form of runtime in terms of seconds per

inference. Latency is typically reported in seconds. Throughput and latency are actually quite distinct

even if we often assume that are directly derivable from one another. For example, when we use

batching for input data (e.g., batching multiple images or frames together for processing) this

increases throughput since it amortizes overhead, such as loading the weights. However, batching

53

also increases latency which is not acceptable in real-time applications such as high-speed navigation

where it would reduce the time available for course correction.

High energy efficiency [1] is another important key metric when processing DNNs specially at the

edge in embedded devices with limited battery capacity (e.g., smartphones). This metric is used to

indicate the amount of data that can be processed or the number of executions of a task that can be

completed for a given unit of energy. Energy efficiency is often generically reported as the number

of operations per joule. Power consumption [1], which is linked to energy efficiency, is used to

indicate the amount of energy consumed per unit time. Thermal design power (TDP) is a design

criterion that dictates the maximum power consumption of specialized hardware, which is the power

that the cooling system is designed to dissipate. Power consumption is typically reported in watts or

joules per second. There are various design considerations for the hardware that will affect the energy

per operation (e.g., joules per operation). The energy per operation can be broken down into the

energy required to move the input and output data, and the energy required to perform the MAC

computation as following:

 (7)

Each component performs a joules per operation that is computed as:

 (8)

where is the switching activity, is the total switching capacitance and is the supply voltage.

Figure 34: The energy consumption for various arithmetic operations and memory accesses in

a 45nm process [1]

In Figure 34, the relative energy cost (computed relative to the 8b add) is shown on a log scale. As

we see, the energy consumption of data movement (red) is significantly higher than arithmetic

54

operations (blue), thus energy consumption is dominated by the data movement as the capacitance of

data movement tends to be much higher that the capacitance for arithmetic operations such as a MAC

[1]. Moreover, the switching capacitance increases the further the data needs to travel to reach the PE,

which consists of the distance to get out of the memory where the data is stored and the distance to

cross the network between the memory and the PE. Consequently, larger memories and longer

interconnects (e.g., off-chip) tend to consume more energy than smaller and closer memories due to

the capacitance of the long wires employed. So, in order to reduce the energy consumption of data

movement, we can exploit data reuse where the data is moved once from distant large memory (e.g.,

off-chip DRAM) and reused for multiple operations from a local smaller memory (e.g., on-chip buffer

or scratchpad within the PE). Optimizing data movement is a major consideration in the design of

DNN accelerators.

4.2 The case of DNN accelerators

A typical DNN accelerator has several processing elements (PEs) and various on-chip buffers. As

shown in Figure 35, the arrays of Processing Elements (PE) fetch the pixels (Tn pixels) of the input

feature maps (IFMs) from the input buffer, the weights from the weight buffer, the partial sums

(PSUMs) from the output buffer, and then compute the PSUMs or the pixels (Tm pixels) of the output

feature maps (OFMs), which are stored in the output buffer.

Designing specialized hardware, such as DNN accelerators, is a great challenge specially for the

fact that, with the end of Moore’s law [53], big computational needs coming from DNNs require to

employ domain-specific hardware/software co-design (e.g., domain-specific languages such as

Pytorch) in computing systems to continue to improve performance and energy efficiency. Co-design

of hardware and software refers to the development of new software and languages that improve the

user experience [54]. In addition, the compiler can better map such workloads to domain-specific

hardware to enable improvements in performance and energy efficiency.

DNN accelerators provide a large improvement in key metrics such as performance and power

efficiency over general-purpose processors across a wide range of DNN computations. This is

because when considering hardware organizations for DNN acceleration, design space for specialized

DNN hardware is quite large. As a result, there are no constraints on the execution order of MAC

operations within a DNN layer. This leads the hardware designer to have wide latitude in choosing

the execution order of operations and optimizing the hardware for the targeted metrics given certain

resource constraints (e.g., memory capacity).

A major advantage of DNN accelerators is that they have some degree of fault tolerance due to the

fault tolerance of the DNN algorithms themselves. For example, the ReLU, normalization, and max-

55

pooling layers help mask the effects of errors. But in order to achieve high data reuse, so as to improve

performance, the memory in DNN accelerators is accessed repeatedly, and due to this, a faulty value

may be reused several times.

Figure 35: DNN accelerator architecture [56]

The energy efficiency of DNN accelerators has also attracted much attention when they are used

in many low-power environments such as IoTs [55]. As silicon fabrication technologies become

smaller and smaller, the static power caused by leakage current accounts for a large portion of the

overall chip power. In modern DNN accelerators, a significant portion of the chip (e.g., 75%) is used

for on-chip buffers. These on-chip buffers are usually implemented by static random-access memories

(SRAMs). Therefore, a large part of the current is consumed by the leakage current of the SRAMs.

The situation is worsened by the increasing trend of using compact data representations in DNNs

to improve efficiency, as more chip area is required to use SRAMs [56]. This trend leads to memory

oriented DNN accelerators as the computing units of the accelerators are simplified due to the

compact data representation. However, larger on-chip buffers are used to store more data on chip and

reduce off-chip traffic. Thus, in addition to the reliability of DNN accelerators, the static performance

of on-chip memory is also a non-negligible factor in the development of energy-efficient DNN

accelerators.

4.3 Examining Data Reuse

Data reuse is a perfect way to reduce the cost of moving data. For DNN accelerators, data reuse is a

key behavior that improves both latency and energy via reducing the number of remote buffer

accesses (i.e., global buffer). This section presents two architectural techniques, temporal reuse and

spatial reuse, and describes how they are applied in hardware.

4.3.1 Temporal Reuse

Temporal reuse is an architectural technique thar focuses on the fact that the same data value is used

56

more than once by the same consumer (e.g., a PE). This technique can be applied by adding an

intermediate memory level with a smaller storage capacity than the level that acts as the original

source of the data. Since smaller memories consume less energy to access than larger memories, the

data value is transferred once from the source level (i.e., larger memory) to the intermediate level

(i.e., smaller memory), and used multiple times at the intermediate level, which reduces the overall

energy cost.

We can distinguish two modes: temporal multicast and temporal reduction [57]. Temporal

multicast occurs for input tensors (e.g., filter and input activation) where in this case the reused data

can be multicasted to multiple PEs over time. In the temporal multicast example of Figure 36, the

same data tile 1 appears over time in the same PE (PE1). That is, we send the data to the future for

reuse in the future, that means store the data from the Global Buffer Memory (GBM) to a smaller

memory (e.g., a buffer) and read it in the future. Therefore, temporal multicast, which is reading the

same stored data over time, requires a buffer, as shown in Figure 36. On the other hand, during

temporal reduction, the computed partial sums over time are accumulated within the same location.

This type of reuse requires a buffer since intermediate results need to be stored and read again in the

future, which effectively indicates multiple read-modify-write to a buffer. The example in Figure 36

shows such a reuse pattern, where the output tile 1 appears at the same PE over time.

Figure 36: Overview of data reuse in DNN accelerators [57]

4.3.2 Spatial Reuse

Spatial reuse occurs when the same data value is used by more than one consumer (e.g., a group of

57

PEs) at different spatial locations on the hardware. It can be exploited by reading the data once from

the source memory layer and transmitting it to all consumers via multicast or reduction [57]. Utilizing

spatial reuse has the advantage of:

• reducing the number of accesses to the source storage layer, which lowers the overall energy

cost, and

• reducing the bandwidth required by the source storage layer, which helps keep the PEs busy

and thus improves performance.

In spatial multicast, which occurs for input tensors, data is delivered to multiple PEs at the same

time. In the spatial multicast example of Figure 36, tiles 1 and 2 are delivered to PE1 and PE2 at the

same time leveraging the multicast capability of fanout hardware such as Bus or Tree. Alternatively,

store-and-forward style implementation such as systolic arrays is available with tradeoff of hardware

cost and latency. Now as for spatial reduction, which occurs for output activation tensors, partial

outputs (or partial sums) are accumulated for an output across multiple PEs. Figure 36 shows an

example reuse pattern based on store-and-for- ward hardware. We observe that the output tiles 1 and

2 are moving to the next PE over time, which illustrates pipelined accumulation to the right direction

assuming that PEs are receiving new operands from above (i.e., a row of a systolic array).

Alternatively, fanin hardware such as Reduction Tree can support the spatial reduction.

4.4 Why Dataflows are important

For DNNs, the bottleneck for processing is memory access. As shown in Figure 37, each MAC needs

three actions of read, each one for filter weight, fmap activation, and partial sum and one action of

write for the updated partial sum. In the worst case, all memory accesses must be made via the off-

chip DRAM, which severely compromises both throughput and energy efficiency [58]. For example,

to support the 724 million MACs in AlexNet, nearly 3000 million DRAM accesses are required. In

addition, the DRAM accesses require up to several orders of magnitude more energy than the

computations. To address these challenges, it is of great importance to design a compute scheme

called dataflow, which decides what data get read into which level of the memory hierarchy and when

are they getting processed.

58

Figure 37: The actions of read/write in a MAC [58]

DNN accelerators offer the opportunity to reduce the energy cost of data movement by introducing

multiple levels of local storage hierarchy with different energy costs, as shown in Figure 38. These

include a large global buffer with a size of several hundred kilobytes connected to DRAM, a network

between PE, which can pass data directly between ALUs, and a register file (RF) within each PE with

a size of a few kilobytes or less. The different levels of the memory hierarchy help improve energy

efficiency by providing low-cost data access. Retrieving data from the RF or the neighboring PEs

offers one or two orders of magnitude less energy than from DRAM.

Figure 38: Levels of local storage hierarchy with different energy costs [58]

Since there is no randomness in the processing of DNNs, it is possible to design a fixed data flow

that can adapt to the shapes and sizes of DNNs and optimize them for the best energy efficiency. The

optimized data flow minimizes access from the more energy consuming levels of the storage

hierarchy.

Large storage, which can store a significant amount of data, consumes more energy than smaller

storage. For example, DRAM can store gigabytes of data, but consumes two orders of magnitude

more energy per access than a small on-chip memory of a few kilobytes. Each time a portion of data

is moved from an expensive tier to a tier with a lower energy cost, we want to reuse that portion of

data as often as possible to minimize subsequent accesses to the expensive tiers. The challenge,

however, is that the storage capacity of these low-cost stores is limited. Therefore, we need to explore

different data flows that maximize reuse under these constraints.

For DNNs, we study dataflows that exploit three forms of input data reuse (convolution, fmap, and

filter), as shown in Figure 39. Convolutional data reuse uses the same fmap activations and filter

weights within a given channel, just in different combinations for different weighted sums. In fmap

reuse, multiple filters are applied to the same fmap, so that the input fmap activations are used multiple

59

times for all filters. Finally, in filter reuse, when multiple input fmaps are processed at once (referred

to as a batch), the same filter weights are used multiple times for all input fmaps.

Figure 39: Forms of input data reuse [58]

Overall, we can distinguish the following three types of dataflows:

• Weight stationary (WS): Aims to minimize the energy consumption of reading weights by

maximizing the reuse of weights from the register file (RF) at each PE. As shown in Figure

40(a), each weight is read from the Global Buffer (e.g., DRAM) into the RF of each PE and

stays stationary for further accesses. Processing will run as many MACs using the same

weight as possible, if the weight is present in RF; this maximizes convolutional and filter

reuse of weights. The inputs and partial sums must move through the spatial array and global

buffer. The input fmap activations are broadcast to all PEs and then the partial sums are

spatially accumulated across the PE array. Google’s TPU is a design that features a weight-

stationary dataflow.

60

Figure 40: Types of dataflows [1]

• Output stationary (OS): This type of dataflow is designed to minimize the energy

consumption of reading and writing the partial sums. As shown in Figure 40(b), OS keeps the

accumulation of partial sums for the same initial activation value local in RF. To keep the

accumulation of partial sums stationary in RF, a common implementation is to stream input

activations across the PE array and send the weight to all PEs in the array. We can distinguish

multiple possible variants of output stationary, as shown in Figure 41, since the output

activations that get processed at the same time can come from different dimensions [58]. For

example, the variant OSA targets the processing of CONV layers and therefore focuses on

processing output activations of the same channel at the same time to maximize the

possibilities of reusing convolutional data. The OSC variant targets the processing of FC layers

and focuses on generating output activations from all different channels, since each channel

has only one output activation. The variant OSB lies roughly between OSA and OSC.

Figure 41: Variants of Output Stationary Dataflow [58]

• Input Stationary (IS): Like the other two types of dataflows, this type is designed to minimize

the energy consumption of reading input activations. As seen in Figure 40(c), each input

activation is read from DRAM and put into the RF of each PE and stays stationary for further

access. Then, it runs through as many MACs as possible in the PE to reuse the same input

activation. It maximizes the convolutional and input fmap reuse of input activations. While

each input activation remains stationary in RF, unique filter weights are transferred to the PEs

at each cycle, while the partial sums are spatially accumulated across the PEs to produce the

final output activation.

• Row Stationary (RS): This type of dataflow focuses on maximizing the reuse and

accumulation at the RF level for all types of data (weights, input activations, and partial sums)

61

for the overall energy efficiency. During RS dataflow, processing of a 1-D row convolution

is assigned into each PE for processing. It keeps the series of filter weights stationary in the

RF of the PE and then directs the input activations to the PE. The PE performs the MACs for

each sliding window at once, which uses only one memory location for accumulating the

partial sums. Since there are overlaps of input activations between different sliding windows,

the input activations can be stored and reused in RF. By going through all the sliding windows

in the row, it completes the 1-D convolution and maximizes the reuse of data and local

accumulation of data in that row. The above process can be seen in Figure 42.

Figure 42: An overview of Row Stationary Dataflow [58]

62

5 THE PROPOSED NTV-DNN FRAMEWORK

This chapter focuses on presenting a proposed Near-Threshold Voltage DNN framework (NTV-

DNN) that could serve as an auxiliary tool for designing performance and energy efficient DNN

accelerators. Experiments are conducted for the assessment of this tool, during which we also check

the resilience of DNN models in errors provoked from scaling the supply voltage (Vdd).

5.1 Summary

As DNN accelerators came to the fore, this led to an improvement in the speed of DNN inference by

several orders of magnitude. TPU by Google is considered, among other DNN accelerators, the best

in class offering more than 15 over the contemporary GPUs [50]. Nevertheless, the growth of DNN

workloads causes excessive computation, resulting in increased energy consumption in TPU-based

data centers. To reduce power and energy consumption, while balancing performance and accuracy,

we propose NTV-DNN, a tool for early assessment of energy at various voltage variation levels.

NTV-DNN uses MAESTRO [57] as a DNN Accelerator Architectural Model to produce more than

20 statistics including total latency, energy, power, throughput, etc., as outputs in Super-Threshold

Voltage Computing (STC) regime. These statistics are fed to a Near-Threshold Voltage Computing

(NTC) Analysis framework, to calculate power and energy consumption, performance, and relative

accuracy in NTC regime. During our research, we simulate a 16 x 16 TPU-based accelerator, trying

to find the best operating voltage of the working PEs without causing errors during the computations

of a DNN inference.

5.2 The NTV-DNN architectural model

Figure 43 depicts the design overview of our NTV-DNN framework. There are three crucial elements

that make up the basic function of the framework: the DNN accelerator architectural model

(MAESTRO), the NTC Analysis and the Error Model. MAESTRO is an open-source tool for

modeling and evaluating the performance and energy-efficiency of different dataflows. This tool

takes as input hardware parameters (e.g., total numbers of PEs, size of L1 scratchpad memory, etc.),

the dataflow (e.g., weight stationary) and the DNN model (e.g., AlexNet), makes a thorough tensor,

cluster, reuse, performance, and cost analysis and exports the results in a report in STC regime. This

report is fed to an NTC analysis tool based in a python script. The NTC analysis tool is used to

calculate the power, energy consumption and performance based on a voltage scaling schema.

63

To produce accuracy results we first run inference of the selected DNN model using the CIFAR-

10 dataset. Then, based on PyTorchFI, which is a runtime perturbation tool for DNNs [59], we

produce an Error Model. This model takes as input some Fault Injection (FI) parameters (e.g., NTC

cluster size, positions for FI, etc.), the DNN model and the dataset. The Error Model is tweaked to

perturb the binary output value of a conv2d (neuron) operation before applying nonlinearity. Then a

new inference is run, based on the test dataset of CIFAR-10 and the FI positions produced from the

NTV analysis tool. This FI procedure is based on an NTC frequency scaling schema that aims to

calculate the accuracy of the examined DNN model under relaxed errors. During frequency scaling

and based on the resilience of the DNN model in errors, we calculate a new performance.

Figure 43: An overview of the proposed NTV-DNN framework

The NTC analysis tool shown in Figure 44, is a python-based script which has a main function

that runs all the necessary operations to produce a report for power, energy consumption and

performance of the examined DNN model in NTC regime. The operation of each function is described

in Table 3.

Table 3: List of functions in NTC Analysis tool

Function name Input Parameters Output Operation

power_and_enegy_calc

.csv file

(MAESTRO),

Vdd in NTC

regime

file, Vdd_ntc

Total power in NTC

regime,

Total energy in

NTC regime.

Calculates the total power

and energy consumption in

NTC regime for the given

DNN model and cluster size.

64

performance_calc

.csv file

(MAESTRO),

Vdd in NTC

regime

file, Vdd_ntc
Total performance

in NTC regime.

Calculates the total

performance in NTC regime

for the given DNN model

and cluster size.

fi_injection_pos

FI_step =

int(num_PEs /

ntc_cluster_siz

e)

k_step

fi_injection_list =

[layer, C_out,

X_out, Y_out]

Produces the locations of the

error (layer_num, dim1,

dim2, dim3) that are

necessary for the declaration

of each neuron injection.

plot_graph

Vdd in NTC

regime,

Total

power/energy/

performance in

NTC regime

vdd_ntc,

(total_pwr_ntc,

total_en_ntc,

perf_ntc),

(total_pwr_stc,

total_en_stc,

perf_stc)

The graphs of

power, energy

consumption and

performance in

NTC and STC

regime.

Plots the power, energy

consumption and

performance in NTC and

STC regime for the given

DNN model and cluster size.

The power_and_energy_calc function determines the MAC power and energy leakage for idle PEs

using a power gating mechanism. Power-gating consists in switching-off an NMOS footer (or a

PMOS header) connected in series with the logic in order to cut the leakage current flow. This

function calculates the power and energy consumption of PEs, Network On Chip (NOC) and SRAM

(L1 Scratchpad & L2 Shared Buffer) in NTC regime. The performance_calc function calculates the

total execution time based on runtime per layer and relative frequency in NTC regime.

Fi_injection_pos is used to generate neuron fault injection positions. Finally, the plot_graph function

is responsible for the plotting of the graphs that display power, energy consumption and performance

in NTC regime.

Figure 44: The NTC Analysis tool

65

5.3 Voltage allocation and scaling for NTV-DNN

During recent years, designers are dealing with the problem of the so-called power/utilization wall.

Moore’s law has led to the adoption of manycore architectures as the principal strategy to increase

performance, ignoring the dark silicon problem connected to power usage, which is closely related to

heat dissipation. NTC comes as a promising technique to encounter this problem as it takes advantage

of the quadratic relation between the supply voltage and the consumed power, by lowering

the operating to a region slightly larger than the transistors’ threshold voltage . NTV-

DNN hosts a voltage allocation and scaling technique which is based on the formation of voltage

islands (VIs) for the minimization of the impact of within-die variations, which are more evident at

NTC, in both performance and power. This technique, proposed in 2014 from I. Stamelakos, S. Xydis,

G. Palermo et al. [60], was developed for manycore CPU architectures and proved that when moving

to the NTC regime for a 128-core architecture, average power gains close to 65% are delivered while

sustaining the performance values obtained by a 16-core architecture at STC.

Figure 45: The NTV-DNN TPU based systolic array accelerator with a VI formation

The scope of the NTV-DNN voltage allocation and scaling scheme is to create, as Figure 45

depicts, VIs of PEs in a TPU-based accelerator. Every PE contains a MAC unit and a L1 scratchpad

memory. The frequency of every MAC in NTC regime is calculated as follows:

 (9)

66

where , are the operating voltages of a MAC in STC regime and NTC regime,

 is the threshold voltage of a MAC, is the frequency of every MAC in STC regime and

is technology-dependent constant (≈ 1.5). Given the corresponding allocation per VI, we can

calculate the power of each component in NTC. The dynamic (DP) and leakage (LP) power scaling

factors are:

 (10)

 (11)

 (12)

where is a coefficient modeling the Drain-Induced Barrier Lowering effect, is the

thermal voltage, is the sub-threshold slope coefficient (≈ 1.5), and is a constant connected to

 (≈ 0.16).

The effect is related to the reduction of the threshold voltage as a function of the drain

voltage. When we lower the supply voltage, we cause an exponential reduction in sub-threshold

current because of the effect. As shown in Figure 46, the impact of effect is important

when moving from an STC multicore (16 cores) to an NTC manycore (128 cores) architecture as it

counts for a significant portion of the total power of the system. The thermal voltage represents the

flow of electric current and electrostatic potential across a p-n junction based on the temperature (T)

and is calculated as follows:

 (13)

where is the Boltzmann's constant (= 8.617 * 10-5) and corresponds to the room temperature in

Kelvins (= 297.35K).

Figure 46: The Power breakdown of an STC-16core and an NTC-128core

architecture with and without DIBL effect [60]

67

During the scaling process, we first determine the cluster size that will work in NTC regime. The

cluster size, as shown in Figure 47, is calculated as follows:

 (14)

Scaling is done for a range of between 0.45 to 0.85V during which we compute the

following values:

• The , based on equation (9), of the PEs that belong to the VI of the cluster that works

in NTC regime.

• The DP and LP power scaling factors, based on equations (10) and (11), for every MAC and

SRAM.

• The dynamic and leakage power for every MAC and SRAM in NTC as follows:

 (15)

 (16)

This results to the calculation of the power in NTC regime with the following equation:

 (17)

• The energy consumption of each MAC in NTC as follows:

 (18)

• The leakage power consumption of a MAC in NTC, in case of power gating the idle PEs,

which equals to:

 (19)

68

Figure 47: The NTV-DNN TPU based systolic array architecture with a cluster of VIs working in NTC

Additionally, for each layer of the examined DNN model, and for the range of mentioned

above, we calculate the power consumption in NTC as follows:

• Network On Chip (NOC) (see Figure 45) consists of a structure of routers and links,

implementing a packet-switched communication fabric between the PEs and the L2 shared

buffer memory. The power consumption of NOC per layer in NTC, is calculated as follows:

 (20)

where , are the dynamic and

leakage power in NTC accordingly, while is the remaining

power of NOC for the PEs working in STC which is calculated according to the following

equation:

 (21)

where is the total number of PEs of the 16 x 16 TPU based accelerator and

 is the power of NOC per layer in STC.

• For the L1 SRAMs (scratchpad memory), which is located inside each PE, the power

consumption per layer is calculated as follows:

 (22)

69

where is the power consumption of L1 SRAMs obtained from the

multiplication of the number of active PEs () that were used for MAC

calculations in NTC by the required SRAM size in bytes () and by the L1 power

in NTC per cell (byte), as follows:

 (23)

The addresses to the power consumption of L1 SRAMs

obtained from the calculation of the remaining number of active PEs

 in NTC that rest idle, with

 , by the , which is the required

SRAM size in bytes, and by the L1 leakage power consumption of each cell of SRAM, as

follows:

 (24)

Finally, the remaining power consumption of L1 SRAMs in STC equals to:

 (25)

where is the total number of the idle active PEs that work in

STC and is the L1 leakage power consumption of each cell of SRAM

in STC (). To avoid errors, the supply voltage of L1 is scaled only above a

specific retention supply voltage which assures that the SRAM is error

resilient [61].

• For the L2 shared buffer SRAM memory, to avoid data corruption, the power consumption in

NTC equals STC in case of . That means:

 (26)

 In case that all SoC works in NTC, then the power consumption of L2 equals to:

70

 (27)

with the required L2 SRAM size in bytes and the power

consumption of each cell of L2 SRAM for the same retention voltage

 as for L1.

• For the active PEs (MACs), the power consumption for each layer is calculated as follows:

 (28)

where is the power consumed from the active PEs

 in NTC that were used for MAC calculations multiplied by the

power consumption of each MAC unit working in NTC.

 (29)

The remaining power consumption of the active PEs in NTC that stay idle, equals to the total

number of these PEs by the leakage power consumption of a PE working in NTC, as follows:

 (30)

In addition, the STC power consumption of the active PEs that stay idle is product of the

multiplication of their total number by the leakage power consumption of each one working

in STC.

 (31)

In conclusion, the total power consumption per layer in NTC equals to:

 (32)

The energy consumption of each layer of the DNN model is calculated based on the computation

71

energy, which corresponds to the energy of performing MACs, and the data movement energy, which

is linked to the movement of data (read/write) to and from the SRAMs [72] , that is:

 (33)

According to equation (33) we have the following:

• For the L1 scratchpad memory, the NTC energy consumption is calculated as follows:

 (34)

where is a technology dependent multiplier taken from MAESTRO [57],

 is the total of read/write operations to L1, and ,

which comes from (18), is the MAC energy cost of accessing one bit at that memory level in

NTC [72].

• For the L2 shared buffer, the energy consumption is calculated in the same way as for L1, but,

in order to assure that there will be no errors produced during the data movement in L2 for

NTC regime, we accept the assumption that:

- If , that is not all PEs work in NTC, then:

 (35)

 - Else, if all PEs work in NTC:

 (36)

• Ιn terms of energy consumption carried out by the MAC unit inside each PE, the formula

that calculates the total amount of energy per layer in NTC is the following:

 (37)

This leads to the calculation of total energy consumption of each layer in NTC as follows:

 (38)

72

where is, according to our assumption, the energy consumed because of the power

gating of the PEs that work in frequency and finish the MAC calculations prior of these that

work in .

The performance of each DNN layer in NTC is calculated with the above equation:

 (39)

where is the total number of cycles executed per layer during inference and

 is the working frequency in NTC.

The supply voltage is selected according to the problem each researcher is dealing with. For

example, if we want to find the for which we get the minimum energy consumption, then we

have:

 (40)

with k the total number of layers for the examined DNN model (e.g., k = 8 for AlexNet) and j the

 with a step of 0.5V.

5.4 NTV-DNN error model

When scaling the supply voltage of a PE unit, this can cause erroneous MAC operations which

can lead to a great impact on the accuracy of a DNN model. To measure and assess this impact, we

created an NTV-DNN error model based on PyTorchFI [59]. As displayed in Figure 48, the operation

of this model is based on four functions, whose detailed description can be seen in Table 4. Our main

goal is to produce errors only in the level of MAC calculations, that is to the fmap outputs produced

from the MAC units working in NTC.

73

Figure 48: An overview of the NTV-DNN Error Model

Table 4: List of functions in NTV-DNN Error Model

Function name Input Parameters Output Operation

pfi_core DNN model

DNN_model,

batch_size,

input_shape

A DNN fault

injection model.

Creates an error model to

perform error injections

dynamically (i.e., during an

inference).

declare_neuron_fi FI parameters

batch, layer_num,

dim1, dim2, dim3,

value

A DNN fault

injection model.

Declares a neuron injection

by passing the location of the

error.

new_performance_calc
A .csv file

(MAESTRO)
file, f_ntc

A .txt file with

new performance.

Calculates the new

performance of the examined

DNN Model based on a

frequency scaling schema.

plot_graph

Vdd in NTC,

Frequency in

NTC,

accuracy

vdd_ntc, ntc_freq,

new_ntc_freq,

accuracy_before_FI,

accuracy_after_FI

The graphs of

accuracy in NTC.

Plots the accuracy of the

DNN Model in NTC

according to frequency

scaling.

For each supply voltage in NTC, an is calculated through (9). This frequency is used to

produce our frequency scaling scheme which uses a step of 5MHz. To decide when to produce an

error, we proceeded in a path distribution analysis by designing a 45nm technology node ALU, using

the Synopsys design software [73] and the TSMC cell library. We discovered that, when increasing

74

the frequency of the designed ALU, keeping stable, a delay is produced during calculations of

29th and 31st bit of a 32-bit floating point number leading to an erroneous result. According to the

impact of the delay caused by the increase of frequency, we produce a bit flip (of 29th bit, 31st bit or

both) on the 32-bit floating point number output result of each selected neuron. For the

 operating frequency for each PE of our TPU-based accelerator, the 29th bit and 31st

bit are calculated after 1.39nsec and 1.33nsec respectively, so we have:

 (40)

 (41)

Therefore, for each NTC frequency during scaling, an and is calculated.

If the new selected frequency overpasses one or both of the above 29th bit and 31st bit frequency

values, then each of these bits is flipped in the output locations of neurons fed to our Error Model,

through inference using the CIFAR-10 dataset which contains 10.000 test images.

Figure 49: PyTorchFI output summary of the AlexNet error model

The locations of the neurons, where the perturbation takes effect, are taken through the Fault

Injection (FI) parameters fed from the NTC Analysis Tool. Each location of FI depends on the

mapping of the calculations between filter weights and input activations to each VI of the TPU-based

accelerator. Figure 51 displays for time step 0, an example of mapping of the data to each of the 8

VIs during inference for the 1st conv2d layer of AlexNet DNN model. The dataflow strategy chosen

is the kcp_ws and the dimension of batch N, which is of size 4, equals to 1. The kcp_ws mapping is

using multi-level parallelism via clustering. This is achieved by creating clusters of PEs during the

computation of partial sums. As we see in Figure 50, the kcp_ws mapping divides the total number

of PEs into clusters of size 32, which equals the size of our designated VIs. Table 5 displays an

75

example of the mapping of data for input and weight tensors in each cluster. The numbers are indices

of the data in each tensor. Each tensor is in essence an fmap. Αs we observe for the 1st conv2d layer

of AlexNet, only 3 of the total 32 PEs of the cluster (or VI) are used during the MAC calculations, as

the dimension of the input channel (C) for the input and filter tensors equals to 3.

Figure 50: The kcp_ws NVDLA-like dataflow for the 1st conv2d layer of AlexNet

Table 5: The mapping of data on the 1st cluster for the kcp_ws dataflow

Cluster 1
 Time step = 0

Layer: Conv2d-1

Cluster size: x = 32

PE 1 PE 2 PE 3 PE 4 PE 5 PE x

In
pu

t T
en

so
r

Batch (N) 1 1 1 - - -

Input Channel (C) 1 2 3 - - -

Input Height (Y)
1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11

1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11

1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11
- - -

Input Width (X)
1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11

1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11

1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11
- - -

W
ei

gh
t T

en
so

r

Output Channel (K) 1 1 1 - - -

Input Channel (C) 1 2 3 - - -

Weight Height (R)
1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11

1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11

1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11
- - -

Weight Width (S)
1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11

1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11

1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11
- - -

76

O
ut

pu
t T

en
so

r

Batch (N) 1

Output Channel (K) 1

Output Height (Y’) 1

Output Width (X’) 1

For , which means that two of our VIs (each VI englobes 32 PEs) work in

NTC, the equals to:

As we see in Figure 51, every perturbation takes place with a step of 4, meaning that for every

 (for the 1st layer), an FI takes place till all the elements of the

55 x 55 tensor output, that come the MAC calculations of the PEs working in NTC, are perturbed.

Table 6 displays the part of Python code, which is part of the fi_injection_pos function, that produces

the locations of neurons where the perturbation take effect. This part of code addresses to the 1st

conv2d layer of AlexNet. A different for loop exists for every conv2d layer. Figure 49 displays the

layers and output shapes of the error model produced from PyTorchFI based on AlexNet.

77

Figure 51: The FI procedure in the 1st conv2d layer of AlexNet

Table 6: FI locations for the 1st Conv2d layer of AlexNet

Python Code Description
 for g in range(0, 64, k_step):

for f in range(55):

 for w in range(55):

 layer.append(0)

 C_out.append(g)

 X_out.append(f)

 Y_out.append(w)

This for loop produces the FI locations (see example Figure 50) for the 1st

Conv2d layer of AlexNet and is part of the fi_injection_pos function. The

k_step is equal to the FI_step. The values of every list (layer, C_out, X_out,

Y_out) are fed to the declare_neuron_fi function. The variables g, f, w

represent K=64, X’=55, Y’=55 respectively which are the dimensions of

output tensor of the 1st layer.

It is proved that in general DNN accelerators have a certain degree of fault tolerance due to the

fault tolerance of DNN algorithms themselves [62]. According to S. Hong et al. [63], who studied the

vulnerability of DNN parameters to single bit flips, as for the direction of bit-flip, only 0 → 1 flip

causes large accuracy loss. A 1 → 0 flip can only reduce the parameter value. Due to the normal

distribution of parameters, most parameters are inside [−1, 1] range. Hence, a 1 → 0 flip in exponent

bit can reduce the magnitude of a parameter by no more than one. Along similar lines, both 0 → 1 or

1 → 0 flips in sign bit cannot lead to large accuracy loss since they alter the magnitude by no more

than two. By comparison, a 0 → 1 flip in exponent bits dramatically increases the value of a

parameter. Hence, during inference, unduly high activation produced by the faulty parameter value

overrides the remaining activations. They find that nearly 50% of the parameters of the DNNs are

vulnerable to single bit-flips.

5.5 NTV-DNN assessment tool flow

In this section we present the tools that were used to build out NTV-DNN framework. All our tools

are open source and are carefully selected to implement each functionality.

5.5.1 PyTorch: An open-source machine learning framework

PyTorch is one of the biggest libraries in deep learning research. It is based on the Python

programming language and the Torch library, makes debugging easy and is consistent with other

popular scientific libraries [64]. During computations, this optimized framework uses tensors that are

accelerated by GPUs and CPUs. Tensors are a specialized data structure that are very similar to arrays

and matrices. In PyTorch, tensors are used to encode the inputs and outputs of a model, as well as the

model’s parameters [65]. Figure 52 displays the training of a CNN Model using PyTorch.

78

Efficient interoperability is one of the key aspects of PyTorch, because it allows users to use

Python's vast ecosystem of libraries as part of their own projects. It, for example, provides a

mechanism for converting NumPy arrays to PyTorch tensors using the torch.from_numpy() function

and numpy() tensor method. As a result, those operations are extremely cheap and take constant time

regardless of how large the converted arrays are. Most importantly, users are free to replace any

PyTorch component that does not meet their project's needs or performance requirements. They are

all intended to be completely interchangeable, and PyTorch takes great care not to impose a specific

solution.

Figure 52: Training a CNN Model with PyTorch [67]

PyTorch keeps its control (e.g., program branches, loops) and data flow completely separate (e.g.,

tensors and the operations performed on them). The control flow resolution is handled by Python and

optimized C++ code running on the host CPU, resulting in a linear sequence of operator invocations

on the device. Operators can run on either the CPU or the GPU. PyTorch is designed to run operators

asynchronously on GPUs by using the Nvidia CUDA stream mechanism [66] to queue CUDA kernel

invocations to the GPU's hardware FIFO. This enables the system to run Python code on the CPU

alongside tensor operators on the GPU. Because tensor operations typically take a long time, we can

saturate the GPU and achieve peak performance even in an interpreted language with relatively high

overhead, such as Python. It is worth noting that this mechanism is nearly invisible to the user. Unless

they implement their own multi-stream primitives, the library handles all CPU-GPU synchronization.

5.5.2 MAESTRO cost model

The efficiency of an accelerator is determined by three factors: mapping, deep neural network (DNN)

layers, and hardware, constructing extremely complicated DNN accelerator design space.

MAESTRO, who’s high-level overview is shown in Figure 53, is an analytical cost model tool that

aims in guiding a DNN accelerator design for better efficiency [57]. As inputs, MAESTRO receives

a list of DNN model descriptions and hardware resource information, as well as mapping described

in a data-centric representation we propose. The data-centric representation is made up of three

79

directives that allow for concise mapping descriptions in a compiler-friendly format. MAESTRO

quickly analyzes various forms of data reuse in an accelerator based on inputs and generates more

than 20 statistics as outputs, including total latency, energy and throughput.

Figure 53: (a) An overview of mapping CONV2D to an accelerator (b) High-level Tool

flow of MAESTRO [57]

MAESTRO consists of five preliminary engines: Tensor, cluster, reuse, performance analysis, and

cost analysis. It supports, as seen in Figure 54, a diverse set of accelerators, including global shared

scratchpad (L2 SRAM), local PE scratchpad (L1 scratchpad), NoC, and a PE array organized into

any number of hierarchies or dimensionalities. MAESTRO implements a hardware design space

exploration (DSE) tool that searches four hardware parameters (the number of PEs, L1 buffer size,

L2 buffer size, and NoC bandwidth) optimized for either energy efficiency, throughput, or energy-

delay-product (EDP) within given hardware area and power constraints. The DSE tool takes the same

inputs as MAESTRO, but with hardware area/power constraints and the area/power of building

blocks synthesized with the target technology. A float/fixed point multiplier and adder, bus, bus

arbiter, and global/local scratchpad are implemented in RTL and are all synthesized using 28-nm

technology to reduce the cost of building blocks. Regression is also used to fit the costs of the bus

and arbiter into a linear and quadratic model because the bus cost increases linearly and the arbiter

cost increases quadratically (e.g., matrix arbiter).

Figure 54: An overview of the supported hardware in MAESTRO [68]

80

5.5.3 PyTorchFI runtime fault injector

Searching for an effective and reliable open-source perturbation tool is not easy. During our research,

we found many FI tools but most of them were deprecated as they use a Python version which is

below version 3 (e.g., Ares Fault Injection Framework). PyTorchFI is a very promising DNN runtime

perturbation tool for the popular PyTorch deep learning platform [59]. As seen in Figure 55, users

can implement PyTorchFI to perform runtime perturbations on DNN weights or neurons. It is

designed with the programmer in mind, with a simple and easy-to-use API that can be used with as

few as three lines of code. It also has an extensible interface that allows researchers to choose from

various perturbation models (or design their own custom models), allowing them to study the

propagation of hardware error (or general perturbation) to the software layer of the DNN output.

As a first step, PyTorchFI can be inserted into our project as a python package with pip install

pytorchfi and contains:

• Core.py: This file contains the core functionality for fault injections. We have tweaked this

file to implement our fault injection schema which consists of flipping the 29th and 31st bits

according to the selection of the error policy from our Error Model tool.

• Error_models.py: It provides different error models out-of-the-box for use.

Figure 55: An overview of PyTorchFI [59]

As a second step, initializing takes place during which PyTorchFI selects the model on which the

perturbations will be performed. Other arguments include the height and width of the input image, as

well as optional parameters such as batch size, model data type (e.g., FP32 or FP16), and whether to

run on the CPU or GPU. PyTorchFI then performs a single dummy inference to profile the model and

collects all the network's hyperparameters, such as the number of layers, filter sizes, and feature map

sizes. This information is used to ensure that perturbations are legal and to provide the end user with

detailed debugging messages.

Finally, as a third step, we choose a perturbation model and a location for the perturbation. The

user is provided with a default set of perturbation models (from error_models.py) to choose from,

such as a random value, a single bit flip, or a zero-value. For our project, we used only the tweaked

81

core.py mechanism. The user can also easily create their own perturbation model. Along with the

perturbation model, the user must specify the location of the perturbed weight/neuron. This can be a

single location (specified in the tensor by the layer, feature map, and neuron's coordinate position) or

multiple locations to cause multiple perturbations throughout the network. The user can also choose

whether to apply the same perturbation to all elements in a batch or to apply a different perturbation

to each element.

The actual perturbation happens during runtime by taking the location of the incorrect

neuron/weight and appending it to a list of tensor positions to change. The forward hook will then

iterate through all of the locations on each layer, corrupting the corresponding value based on the

perturbation model chosen.

5.5.4 CIFAR-10 dataset

As a dataset for the training and inference of our DNN Models we chose the Canadian Institute For

Advanced Research - 10 (CIFAR-10). This dataset consists of 60000 32 x 32 color images in 10

classes, with 6000 images per class. There are 50000 training images and 10000 test images [69]. The

dataset is divided into five training batches and one test batch, each of which contains ten thousand

images. The test batch contains exactly 1000 images from each class, chosen at random. The

remaining images are distributed in random order in the training batches, but some training batches

may contain more images from one class than another. The training batches each contain exactly 5000

images from each class.

This collection of images is commonly used to train machine learning and computer vision

algorithms, and CNNs seems to be the best at recognizing the images in CIFAR-10. The archive of

this dataset contains some data batch files as well as a test batch file. Each of the batch files contains

a dictionary with the following elements:

• Data: This is a 10000 x 3072 NumPy array. Each row of the array stores a 32 x 32 color

image. The first 1024 entries contain the red channel values, the next 1024 the green, and

the final 1024 the blue. The image is stored in row-major order, so that the first 32 entries

of the array are the red channel values of the first row of the image.

• Labels: a list of 10000 numbers in the range 0-9. The number at index i indicates the label

of the ith image in the array data.

The file of the dataset called batches.met, is a Python dictionary object and contains the label names

that correspond to a 10-element list which gives meaningful names to the numeric labels in the labels

array described above.

82

5.6 Experimental Setup

We use MAESTRO to simulate a TPUv1 systolic array accelerator of 28nm. To run MAESTRO, we

must first install all the package dependencies (e.g., g++, scons). We then run the scons command in

terminal to compile the code and, we set the parameters of MAESTRO which are displayed in Table

7.
Table 7: List of parameters input to MAESTRO

Parameter type Input Description
HW_file accelerator_1.m The hardware parameters file.

Mapping_file alexnet_pytorch_kcp_ws_64.m The target dataflow and layer
description file.

print_res true MAESTRO prints out detailed cost
information to the screen.

print_res_csv_file true MAESTRO prints out a csv file that
contains various statistics.

print_log_file false
MAESTRO prints out a log file that

contains various information of
detailed computation patterns to

"log.txt".

The hardware parameters file accelerator_1.m contains the values listed in Table 8.

Table 8: List of parameters of accelerator_1.m file

Parameter type Input Description
num_pes 256 Number of PEs.

l1_size_cstr 1024 (bytes) L1 buffer size constraint.

l2_size_cstr 32768 (bytes) L2 buffer size constraint.

noc_bw_cstr 1024 (bytes) NoC bandwidth constraint.

offchip_bw_cstr 2048 (bytes) Off-chip memory bandwidth
constraint.

The parameters of L1 and L2 buffer are optional and if not specified, MAESTRO will assume infinite

resources and compute the required amount of resources, which are reported in the .csv file.

MAESTRO will also check if the constraints are met. If not, it will print out warning message.

Furthermore, we tweaked the API_user-interface-v2.hpp and DSE_csv_writer.hpp of MAESTRO

source code to export in the .csv file of the statistics the cluster size of the dataflow mapping and the

energy consumption of L1, L2 and MAC in STC. In Table 9 we see the values that should be corrected

in each source file considering that the clock speed of our TPU-based accelerator is and

each PEs contains only one ALU.

83

Table 9: List of values altered in MAESTRO source code

File Values altered Description
options.hpp num_simd_lanes = 1 The number of ALUs in each PE.

DSE_cost-database.hpp mac_energy = The energy consumption of an
ALU (MAC unit) in STC.

Next, for each DNN Model we generate a MAESTRO DNN Model file from Pytorch with

frameworks_to_modelfile_maestro.py, as shown in Table 10, with input size 3 x 224 x 224. Since we

Table 10: List of MAESTRO DNN Models

PyTorch Model MAESTRO DNN Model
AlexNet alexnet_pytorch.m

GoogLeNet googlenet_pytorch.m

ResNet-18 resnet18_pytorch.m

SqueezeNet squeezenet1_1_pytorch.m

are going to use CIFAR-10 dataset for the training of our DNN Models, which has 60000 32 x 32

color images in 10 classes, we must alter the K output dimension of the last layer as shown in Table

11. The mapping analysis convention can be seen in Figure 56.

Table 11: The dimensions of the last layer for each MAESTRO DNN Model

MAESTRO DNN Model Layer Dimensions
alexnet_pytorch.m Linear-8 K = 10, C = 1024, R = 1, S = 1, Y = 1, X = 1

googlenet_pytorch.m Linear-64 K = 10, C = 1024, R = 1, S = 1, Y = 1, X = 1

resnet18_pytorch.m Linear-21 K = 10, C = 512, R = 1, S = 1, Y = 1, X = 1

squeezenet1_1_pytorch.m Conv2d-26 K = 10, C = 512, R = 1, S = 1, Y = 13, X = 13

Figure 56: The mapping analysis convention

84

As next step, we create four MAESTRO Mapping files using the MAESTRO DNN Model file

and each specific dataflow, for every DNN Model, as displayed in Table 12. The mappings (dataflow

strategy) used is shown in Table 13.
Table 12: List of MAESTRO Mapping files for each DNN Model

PyTorch Model MAESTRO DNN Model

AlexNet

alexnet_pytorch_kcp_ws.m
alexnet_pytorch_rs.m

alexnet_pytorch_maeri.m
alexnet_pytorch_yxp_os.m
alexnet_pytorch_yrp_rs.m

GoogLeNet

googlenet_pytorch_kcp_ws.m
googlenet_pytorch_rs.m

googlenet_pytorch_maeri.m
googlenet_pytorch_yxp_os.m
googlenet_pytorch_yrp_rs.m

ResNet-18

resnet18_pytorch_kcp_ws.m
resnet18_pytorch_rs.m

resnet18_pytorch_maeri.m
resnet18_pytorch_yxp_os.m
resnet18_pytorch_yrp_rs.m

SqueezeNet

squeezenet1_1_pytorch_kcp_ws.m
squeezene1_1_pytorch_rs.m

squeezenet1_1_pytorch_maeri.m
squeezenet1_1_pytorch_yxp_os.m
squeezenet1_1_pytorch_yrp_rs.m

Table 13: Mappings used to create each MAESTRO Mapping file

Partitioning Strategy Mapping Characteristics

Eyeriss-like

row stationary dataflow [70]

SpatialMap(1, 1) Y'

TemporalMap(1, 1) X'

TemporalMap(1, 1) C

TemporalMap(16, 16) K

TemporalMap(Sz(R), Sz(R)) R

TemporalMap(Sz(S), Sz(S)) S

Cluster(Sz(R), P)

SpatialMap(1,1) Y

SpatialMap(1,1) R

TemporalMap(Sz(S), Sz(S)) S

• Row-stationary

• Reconfigures the computation mapping of

a given shape.

• High temporal reuse of input activation

and filter

MAERI-like

dataflow [71]

TemporalMap(1, 1) C

SpatialMap(1, 1) K

TemporalMap(1, 1) Y'

TemporalMap(1, 1) X'

TemporalMap(Sz(R), Sz(R)) R

TemporalMap(Sz(S), Sz(S)) S

// This is a VN of size Sz(R) x

• Constructs a Virtual Neuron (VN).

• Maps VNs one by one over the PEs.

• Configures the Augmented Reduction

Tree (ART) for the VNs to operate in

parallel.

85

Sz(S)

Cluster(Sz(R), P)

SpatialMap(1,1) Y

SpatialMap(1, 1) R

Cluster(Sz(S), P)

SpatialMap(1, 1) X

SpatialMap(1, 1) S

YX-Partitioned

(YX-P)

TemporalMap(1, 1) K

SpatialMap(Sz(R), 1) Y

TemporalMap(Sz(S), 8) X

TemporalMap(1, 1) C

TemporalMap(Sz(R), Sz(R)) R

TemporalMap(Sz(S), Sz(S)) S

Cluster(8, P)

SpatialMap(Sz(S),1) X

• High temporal reuse of filter.

• Better spatial reuse opportunities.

• 2D activation (X and Y) parallelism.

• Output-stationary.

YR-Partitioned

(YR-P)

TemporalMap(2, 2) C

TemporalMap(2, 2) K

SpatialMap(Sz(R), 1) Y

TemporalMap(Sz(S), 1) X

TemporalMap(Sz(R), Sz(R)) R

TemporalMap(Sz(S), Sz(S)) S

Cluster(Sz(R), P)

SpatialMap(1,1) Y

SpatialMap(1,1) R

• High temporal reuse of input activation

and filter.

• Spatial reduction opportunities.

• Activation row (Y) and filter column (S)

parallelism.

• Row-stationary.

KC-Partitioned

(KC-P)

NVDLA-like dataflow

SpatialMap(1, 1) K

TemporalMap(32, 32) C

TemporalMap(Sz(R), Sz(R)) R

TemporalMap(Sz(S), Sz(S)) S

TemporalMap(Sz(R), 1) Y

TemporalMap(Sz(S), 1) X

Cluster(32, P)

SpatialMap(1, 1) C

TemporalMap(Sz(R), 1) Y

TemporalMap(Sz(S), 1) X

TemporalMap(Sz(R), Sz(R)) R

TemporalMap(Sz(S), Sz(S)) S

• Spatial reuse of input activation.

• High spatial reduction factor (32-way) on

input channel (C).

• Input/Output channel (C and K)

parallelism.

• Weight stationary.

The NTC parameters of the NTC Analysis tool are displayed in Table 14. We consider that our TPU

based accelerator has a total number of 256 PEs, forming 8 VIs (8 x 32 = 256 PEs). For example, if

our ntc_cluster_size equals to 128 (meaning that 128 PEs work in NTC), then we have 4 VIs working

in NTC.

86

Table 14: List of NTC parameters

Parameter type Input Description
power_gating true Simulates power gating of idle PEs.

mac_power_stc 1.2223mW The dynamic power of a MAC (ALU) unit of a PE
in STC regime for TPU v1 (28nm node).

mac_power_leak (1 / 5) * mac_power_stc The leakage power of a MAC (ALU) unit in STC.

mac_power_dynamic mac_power_stc -
mac_power_leak

The dynamic power of a MAC (ALU) unit in STC.

l1_energy_multiplier 1.68
Taken from MAESTRO (BASE_constants.hpp).

It is the constant used for the calculation of energy
consumption of SRAM.

l2_energy_multiplier 18.61
Taken from MAESTRO (BASE_constants.hpp).

It is the constant used for the calculation of energy
consumption of SRAM.

l1_power_stc 0.00345mW Taken from MAESTRO (DSE_cost-database.hpp).
It is the power consumption of an SRAM cell (byte).

l2_power_stc 0.00345mW Taken from MAESTRO (DSE_cost-database.hpp).
It is the power consumption of an SRAM cell (byte).

Vdd_stc 0.9V Supply voltage of a MAC unit in STC.

Vdd_ntc
[0.45, 0.50, 0.55, 0.60, 0.65,

0.70, 0.75, 0.80, 0.85] in Volts Scaling voltage in NTC.

Vth_stc 0.4V The nominal threshold voltage in STC.
Vth 0.4V The threshold voltage of a MAC unit.

Vdd_retention_sram 0.6V
The Vdd retention of SRAM. The minimum

required supply voltage so that
the memory cells retain data while consuming less

leakage power. [61]
f_stc 700MHz The operating frequency of our TPU-based

accelerator in STC.
f_stc_bit_29 719MHz The operating frequency during calculations of the

29th bit of the 32bit IEEE-754 Floating Point result.
f_stc_bit_31 752MHz The operating frequency during calculations of the

31st bit of the 32bit IEEE-754 Floating Point result.
b 1.5 Technology dependent contant.
K 8.617 * 10-5 Boltzman constant (eV)

temp 297.35K Room temperature in Kelvins
Vtherm K * temp The thermal voltage.

n 1.5 The Sub-threshold slope coefficient.

num_PEs 512 The total number of PEs of the TPU-based
accelerator.

num_layers 8 The total number of layers of the examined DNN
Model (e.g., AlexNet).

dataflow kcp_ws The chosen mapping (dataflow).
ntc_cluster_size 128 The total number of PEs working in NTC.

fi_step num_PEs / ntc_cluster_size The FI step that will be used by the fi_injection_pos
function for the calculation of the FI location points.

The FI parameters of the NTV-DNN Error Model are shown in Table 15.

Table 15: List of FI parameters

87

Parameter type Input Description

batch_size1 4 The batch size (N) of the input activations (e.g., 4 images of CIFAR-10
dataset)

batch_size2 [0, 1, 2, 3] The input parameter (batch) for the declare_neuron_fi function.

input_shape [3, 224, 224] The input parameter (input shape of the image) for the declare_neuron_fi
function.

k_step fi_step The FI step.

layer injection_list[0] This list that contains the layer numbers of the examined DNN Model
where the perturbation will occur.

batch_size2 [0, 1, 2, 3] This list contains the batch dimension of each shape [batch, C, H, W] of
the output feature map, where the injection will occur.

C_out injection_list[1] This list contains the C dimensions of each shape [batch, C, H, W] of the
output feature map, where the injection will occur.

X_out injection_list[2] This list contains the X dimensions of each shape [batch, C, H, W] of the
output feature map, where the injection will occur.

Y_out injection_list[3] This list contains the Y dimensions of each shape [batch, C, H, W] of the
output feature map, where the injection will occur.

For the process of inference and training to calculate the accuracy of each DNN Model, we use the

parameters listed in Table 16. Training and inference are run under Window 11 operating system,

CUDA version 11.3 and NVIDIA GeForce GTX 1050 Ti as the specified CUDA device.

Table 16: List of parameters for inference and training

Parameter type Input Description

transform

transforms.Compose([
 transforms.Resize(256),
 transforms.CenterCrop(224),
 transforms.ToTensor(),
 transforms.Normalize(mean=[0.485,
0.456, 0.406], std=[0.229, 0.224, 0.225])
])

We transform every image of the CIFAR-10
dataset to meet the input_shape = [3, 224, 224].

train_data torchvision.datasets.CIFAR10 Downloads the training images of CIFAR-10
dataset.

test_data torchvision.datasets.CIFAR10 Downloads the test images of CIFAR-10 dataset.
trainloader torch.utils.data.DataLoader Loads the training images for training purposes.

testloader torch.utils.data.DataLoader Loads the test images for inference.
device torch.device Instantiating CUDA device.

AlexNet_model models.alexnet(pretrained=True)
Loads the DNN Model from PyTorch (e.g.
AlexNet). This Model is trained with CIFAR-10
dataset.

AlexNet_model torch.load(‘./path’) Loads the pre-trained (with CIFAR-10 dataset)
DNN Model from the specified path.

5.7 Experimental Results

In this section we present the results of our research. We first explore the VI granularity which aims

to present the effect of applying different and to power/energy

consumption and execution time of each layer of our examined CNN Models. We then check how

88

 and affect the power/ energy efficiency and performance of each DNN

Model, keeping the resources () constant. We proceed our experiments in examining if

there is an equivalent TPU-based accelerator in NTC who has the same performance with an

accelerator that works in STC. Our study continues by comparing the efficacy of our NTV-DNN tool

for different operating schemes under relaxed error. Furthermore, we analyze the impact of applying

different dataflow strategies to power/energy consumption and execution time of each CNN Model,

for a specific scheme of , , and . Finally, we explore

how power, energy and performance efficiency of our examined DNN Models can be affected

through variability, keeping , and constant.

5.7.1 Exploring voltage island granularity

During the formation of VIs, we must explore the effects of applying different Vdd supply voltages

during our NTC analysis through scaling. The purpose of this analysis is to explore the effect of

different Vdd supply voltages to power/energy consumption and performance of each layer of the

examined DNN model. The results obtained will guide as to decide if it is better to apply the same

Vdd to all layers or a specific cross-layer policy (e.g., Vdd = 0.6V, cluster_size_ntc = 32). The

numerical values used are shown in Table 17.
Table 17: List of parameters for the voltage island granularity analysis

Parameter Value

num_PEs 256

PEs per VI 32

ntc_cluster_size (VIs) 32 (1), 64 (2), 128 (4), 256 (8)

Dataflow kcp_ws

Vdd_ntc (in Volts)
0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80,

0.85

5.7.1.1 Intra-layer

Figure 58 displays the distribution of power consumption across each layer of the AlexNet DNN

Model in STC through a heatmap. In Figure 57 we see the same distribution in

NTC for different and values. We notice that, for the highest

 (= 256 PEs) and the lowest (= 0.45V), we result in higher gains in power.

For example, in the 1st layer of AlexNet, where we have a total and

89

a total , the gain equals to:

Figure 57: Power consumption per layer in NTC for different Vdd, NTC and cluster_sizeNTC (AlexNet)

90

Figure 58: Power consumption per layer in STC for AlexNet

Similar to power, the gain in energy, as shown in Figures 59 and 60, for

and , equals to:

Each quantity of energy is measured in nJ. We can also see that in NTC, when moving to Vdd supply

voltages below 0.5V, leakage power starts to dominate leading to an increase in energy consumption.

Figure 59: Energy consumption per layer in STC for AlexNet

91

Figure 60: Energy consumption per layer in NTC for for different Vdd, NTC and cluster_sizeNTC (AlexNet)

On the contrary, for low , the performance efficiency of each layer is degraded. For

example, as shown in Figures 61 and 62, the loss in execution time (msec) in NTC, for the highest

 and the lowest , is:

We must also consider that the execution time of each layer is dominated by the PEs working in NTC,

as the remaining PEs that work in STC complete their MAC calculations first. Table 18 displays the

best gains in power and energy consumption for each layer, as well as the worst loss in execution

time during inference of AlexNet CNN Model.

92

Figure 61: Performance per layer in STC for AlexNet

Figure 62: Performance per layer in NTC for different Vdd, NTC and cluster_sizeNTC (AlexNet)

93

Table 18: Best Power/Energy efficiency gains and worst Performance loss of layers for AlexNet

DNN
Model Layer

Best Gain in Power
(Vdd_ntc = 0.45,

Cluster_size_ntc =
256)

Best Gain in Energy
 (Vdd_ntc = 0.6,

Cluster_size_ntc =
256)

Worst Loss in
Performance

(Vdd_ntc = 0.45,
Cluster_size_ntc =

256)

AlexNet

1 97.50% 54.28% 93.70%
2 97.60% 54.32% 93.65%
3 97.40% 54.30% 93.72%
4 97.60% 54.45% 93.64%
5 97.50% 54.48% 93.68%
6 97.70% 54.33% 93.71%
7 97.40% 54.45% 93.67%
8 97.30% 54.38% 93.73%

Average 97.60% 54.36% 93.65%

Studying the behavior of GoogleNet, ResNet18 and SqueezNet DNN Models, we produce the

corresponding heatmaps (see Appendix A.) for power/energy consumption and performance. Similar

to the analysis we made for AlexNet, the best average corresponding gains and worst losses for each

DNN Model, are displayed in Table 19.

Table 19: Power/Energy efficiency gains and Performance loss of 1st layer per DNN Model

DNN
Model Layers

Best average Gain
in Power

(Vdd_ntc = 0.45,
Cluster_size_ntc =

256)

Best average Gain
in Energy

 (Vdd_ntc = 0.6,
Cluster_size_ntc =

256)

Worst average Loss
in Performance
(Vdd_ntc = 0.45,

Cluster_size_ntc =
256)

GoogLeNet 1 to 64 97.62% 54.32% 93.74%
ResNet-18 1 to 21 97.93% 54.25% 93.56%
SqueezeNet 1 to 26 84.51% 54.52% 93.62%

5.7.1.2 Cross-layer policies

As Figures 57 and 60 depict, our NTV-DNN framework during voltage scaling of achieves,

for each layer during inference of Alexnet, high efficiency in energy and power consumption when

 . We conclude to the same result for inference of GoogLeNet, ResNet-18 and

SqueezeNet, through the heatmaps extracted in Appendix A. On the other hand, the execution time

for each layer is not affected from each value of but only from the scaling.

This is because, as we aforementioned above, the execution time of each layer is dominated by the

PEs working in NTC, as the remaining PEs that work in STC complete their MAC calculations prior

than those working in NTC.

94

Figures 63 to 65 display the experimental results during voltage scaling for AlexNet, guarding

. As we can clearly observe in Figure 64, the lowest point in energy graph is

taken for . Below this value of , energy efficiency seems to decline as

leakage power starts to rise.

Figure 63: Power consumption of AlexNet for cluster_sizeNTC = 256

Figure 64: Energy consumption of AlexNet for cluster_sizeNTC = 256

Figure 65: Execution time of AlexNet for cluster_sizeNTC = 256

95

Table 20: Best results for Power/Energy consumption and the related performance

in NTC for all layers of different DNN Models

Cluster_sizeNTC = 256
AlexNet GoogLeNet

NTC NTC
VddNTC (V) 0.60 0.65 VddNTC (V) 0.60 0.65

Power (mW) 4753.39 7064.69 Power (mW) 76122.82 113212.58
Energy (nJ) 5143398.64 5580581.26 Energy (nJ) 9653447.52 10769199.5
Execution

time (msec) 19.16 14.85 Execution
time (msec) 21.65 16.78

STC STC
VddSTC (V) 0.90 VddSTC (V) 0.90

Power (mW) 28589.89 Power (mW) 446136.5
Energy (nJ) 11250693.44 Energy (nJ) 21115987.58
Execution

time (msec) 7.27 Execution
time (msec) 8.22

ResNet-18 SqueezeNet
NTC NTC

VddNTC (V) 0.60 0.65 VddNTC (V) 0.60 0.65
Power (mW) 25172.93 37425.48 Power (mW) 30703.21 45666.42
Energy (nJ) 10052777.95 11269149.04 Energy (nJ) 1720866.42 1913962.61
Execution

time (msec) 20.34 15.77 Execution
time (msec) 4.54 3.52

STC STC
VddSTC (V) 0.90 VddSTC (V) 0.90

Power (mW) 147876.35 Power (mW) 181129.53
Energy (nJ) 21989481.29 Energy (nJ) 3764231.68
Execution

time (msec) 7.72 Execution
time (msec) 1.72

Moreover, from Figures 57 to 60 and Appendix A., we conclude that, for the total of DNN Models,

all layers seem to have the lowest energy consumption for between 0.60 to 0.65V. As

displayed in Table 20, for , all DNN Models present better execution time than for

. The differences for NTC vs. STC in %, are displayed in Table 21. From these

results we conclude that, the better policy for each layer of our examined DNN Models is to choose

a between 0.60 to 0.65V, keeping .

Table 21: Difference (%) between NTC and STC regime for the total of DNN Models

Cluster_sizeNTC = 256
AlexNet GoogLeNet

Difference (%) NTC vs. STC Difference (%) NTC vs. STC
VddNTC (V) 0.60 0.65 VddNTC (V) 0.60 0.65

Power -83.37% -75.29% Power -82.92% -74.59%
Energy -54.28% -50.40% Energy -54.28% -49.39%

Execution time 163.55% 104.26% Execution time 163.48% 104.26%
ResNet-18 SqueezeNet

96

Difference (%) NTC vs. STC Difference (%) NTC vs. STC
VddNTC (V) 0.60 0.65 VddNTC (V) 0.60 0.65

Power -82.98% -74.69% Power -83.05% -74.79%
Energy -54.28% -49.07% Energy -54.28% -49.52%

Execution time 163.54% 104.27% Execution time 163.19% 104.06%

5.7.2 Iso-resource NTC vs. STC DNNs

In Figures 66 to 68, we can see an overview of the experimental results that were obtained from the

study of different DNN Models under scaling of the supply voltage and the

 , keeping the resources () constant. We found that, when moving to a

, meaning that all PEs work in NTC, we have significant gains in total

power and energy consumption that reach 97% and 58% accordingly for all DNN Models. In terms

of performance, as shown in Figure 67, the does not affect the execution time as

the PEs working in NTC dominate during MAC calculations, while the PEs working in STC terminate

first and the stay idle.

On the other hand, lowering the causes big gains in power and energy but leads to great

loss in execution time of about 15 x, working in for all DNN Models. To keep some

gains in power and energy consumption and lower the execution time during inference, we conclude

that a good scheme for our TPU-based accelerator with a total of , is to guard

the to 0.65V with all PEs working in NTC. This leads to 75% and 50% gains in power and

energy consumption and at a loss of about 104% in performance.

Figure 66: Total power NTC vs. STC for different DNN Models and cluster_sizeNTC

97

Figure 67: Total energy NTC vs. STC for different DNN Models and cluster_sizeNTC

Figure 68: Total performance NTC vs. STC for different DNN Models and cluster_sizeNTC

5.7.3 Iso-performance NTC vs. STC DNNs

The purpose of this research is to find if it exists an equivalent TPU-based accelerator in NTC who

has the same performance with an accelerator that works in STC. Figure 71 shows that indeed, for a

TPU-based accelerator with in STC, there

is an equivalent accelerator with in

NTC, with at most 2% performance loss. Speaking for power end energy consumption in NTC and

STC, Figures 69 and 70 depict that we have a gain of about 50% and 52% accordingly, for all the

DNN Models that were examined.

98

Figure 69: Power consumption for different DNN Models in NTC vs. STC

Figure 70: Energy consumption for different DNN Models in NTC vs. STC

Figure 71: Performance for different DNN Models in NTC vs. STC

5.7.4 NTV-DNN under relaxed error

In this section we compare the efficacy of our NTV-DNN framework for different operating schemes

under relaxed error. Each scheme has a different and is tested for various

operating frequencies. The efficacy is measured through the calculation of accuracy for different

DNN Models. Figure 72 depicts the measured accuracy of each examined DNN Model in STC

regime. As we can see, ResNet-18 and GoogLeNet show a better inference accuracy using CIFAR-

10 dataset.

99

Figure 72: The measured accuracy of different DNN Models in STC

Figures 73 through 76, display the measured accuracy of different DNN Models in NTC. We can

observe that, when moving from to , the efficacy in

accuracy of our NTV-DNN framework, for most operating frequencies, is degraded as the resilience

of all DNN Models in errors begins to decline. On the other hand, for every scheme, with the

increasing operating frequency, which leads in parallel to an increase in power consumption, all DNN

Models seem to be more resilient in errors as we get closer to .

Table 22 depicts the results in accuracy of different DNN Models for various

and two states of FI. As we can see, GoogLeNet and ResNet-18 seem to be very sensitive during FI,

specially when the number of working PEs in NTC exceeds 128. For GoogLeNet, this seems to be

quite normal as it contains 57 conv2d layers, each of which is perturbed during the FI procedure. On

the contrary, AlexNet, which has only 5 conv2d layers, seems to show greater tolerance even when

all PEs work in NTC regime. SqueezeNet, which is the smallest DNN Model in size (=54.55 MB),

has 50 times less parameters than AlexNet and counts 26 conv2d layers, displays a remarkable

resilience which is close to AlexNet.

Table 22: The measured accuracy of different DNN Models during bit-flip for various cluster_sizeNTC and FNTC

DNN

Model

Without error
With error

(flipping the 29th bit)

With error

(flipping the 29th & 31st bit)

FNTC

(MHz)
Accuracy

FNTC

(MHz)
Accuracy

FNTC

(MHz)
Accuracy

Cluster_sizeNTC = 32

AlexNet

44

83.75%

118

82.7%

49

77.2%

GoogLeNet 91.5% 86.5% 10%

ResNet-18 90% 67.25% 17%

SqueezeNet 86.75% 85.75% 40.5%

100

Cluster_sizeNTC = 64

AlexNet

44

83.75%

118

82.8%

49

61.8%

GoogLeNet 91.5% 74% 9.5%

ResNet-18 90% 27.5% 9%

SqueezeNet 86.75% 83.5% 10.25%

Cluster_sizeNTC = 128

AlexNet

44

83.75%

118

81.7%

49

20%

GoogLeNet 91.5% 38.25% 9.5%

ResNet-18 90% 7.5% 7.5%

SqueezeNet 86.75% 71% 9.5%

Cluster_sizeNTC = 256

AlexNet

44

83.75%

118

81.25%

49

9.5%

GoogLeNet 91.5% 9.75% 9.5%

ResNet-18 90% 10.5% 10.5%

SqueezeNet 86.75% 45.75% 7.5%

Figure 73: The measured accuracy of different DNN Models for cluster_sizeNTC = 32

101

Figure 74: The measured accuracy of different DNN Models for cluster_sizeNTC = 64

Figure 75: The measured accuracy of different DNN Models for cluster_sizeNTC = 128

Figure 76: The measured accuracy of different DNN Models for cluster_sizeNTC = 256

In STC regime, as seen in Figure 72, AlexNet has an inference accuracy of 83.75% with an execution

time that equals to 7.27msec. Figure 76 displays the new performance obtained during frequency

scaling based on different . Table 23 contains the values of accuracy and performance with

and without FI for various and . As we can observe, from a

between 0.45 to 0.50V, the ability to tweak is very limited, as an increase of at most 5MHz

causes a loss of about 89% in accuracy. However, for a of 0.55V and above, our TPU-based

accelerator seems to be more resilient in errors. Especially for , which gives, as

mentioned above, 75% and 50% gains in power and energy consumption respectively, the accuracy

of AlexNet does not exceed the loss of about 3%. This gives us the opportunity, as seen in Table 23,

to tweak further . For example, we can increase from 343MHz (=14.85msec) to 368MHz

(=13.83msec) with a gain of about 7% in performance.

102

Figure 77: The new performance of AlexNet in NTC for different FNTC

Table 23: The experimental results for AlexNet in NTC with/without Fault Injection

AlexNet (Cluster_sizeNTC = 256)

VddNTC

(Volts)

FNTC with no

errors

 (MHz)

Scaling

FNTC

(MHz)

True: With FI

False: Without FI

Accuracy

(%)

New Performance

(msec)

0.45 44

49 True 9.5 103.85

54 True 9.5 94.24

59 True 9.5 86.26

64 True 9.5 79.51

69 True 9.5 73.75

0.50 113

118 True 81.25 43.12

123 True 9.5 41.37

128 True 9.5 39.76

133 True 9.5 38.26

138 True 9.5 36.87

0.55 188

193 False 83.75 26.37

198 True 81.25 25.70

203 True 81.25 25.07

208 True 9.5 24.46

213 True 9.5 23.89

0.60 266

271 False 83.75 18.78

276 True 81.25 18.44

281 True 81.25 18.11

286 True 9.5 17.79

103

291 True 9.5 17.49

0.65 343

348 False 83.75 14.62

353 True 81.25 14.42

358 True 81.25 14.21

363 True 81.25 14.02

368 True 81.25 13.83

0.70 418

423 False 83.75 12.03

428 False 83.75 11.89

433 True 81.25 11.75

438 True 81.25 11.62

443 True 81.25 11.49

0.75 492

497 False 83.75 10.24

502 False 83.75 10.14

507 True 81.25 10.04

512 True 81.25 9.94

517 True 81.25 9.84

0.80 563

568 False 83.75 8.96

573 False 83.75 8.88

578 False 83.75 8.80

583 True 81.25 8.73

588 True 81.25 8.65

0.85 633

638 False 83.75 7.98

643 False 83.75 7.91

648 False 83.75 7.85

653 True 81.25 7.79

658 True 81.25 7.73

5.7.5 NTV-DNN under different dataflows

The results presented in this section are focused on testing our NTV-DNN Model under different

dataflow strategies. For our research, we adopted the scheme of Table 24, which seems, from our

thorough analysis till now, to be the most efficient for high gains in power, energy consumption and

low losses in performance.

104

Table 24: The scheme of FNTC, VddNTC , num_PEs and cluster_size used for our research

Vdd, NTC (V) FNTC (MHz) Num_PEs Cluster_sizeNTC (PEs)

0.65 343 256 256

Figure 78: The power gain of different DNN Models for various dataflow strategies

Figure 79: The energy gain of different DNN Models for various dataflow strategies

Figure 80: The performance of different DNN Models for various dataflow strategies

105

Figures 78 to 80 display the power , energy gain and

execution time of different CNN Models and various dataflow strategies. Table 25 hosts the

experimental results from inference through our NTV-DNN Error Model. In terms of energy

efficiency and performance, the kcp_ws dataflow outperforms other strategies. On the contrary, the

yxp_os dataflow seems to be more power efficient over the other dataflow strategies.

Table 25: The experimental results NTV-DNN under different dataflows

Dataflow

rs maeri yxp_os yrp_rs kcp_ws

AlexNet

Power (mW) 6742.99 6935.45 6489.55 6581.85 7064.69

Energy (nJ) 6836276.61 6603692.53 9058295.06 6862247.5 5580581.26

Execution time

(msec)
158.65 19.54 295.62 183.54 14.85

GoogLeNet

Power (mW) 52141.96 54158.82 51729.91 51774.2 56407.78

Energy (nJ) 18049825.37 17052791.06 21962953.99 18640785.19
11539679.1

2

Execution time

(msec)
144.23 69.53 144.31 164.85 33.56

ResNet-18

Power (mW) 17612.29 18198.33 16990.78 17323.71 18626.22

Energy (nJ) 14889009.57 13485661.19 20508384.76 16242378.91
11890863.4

1

Execution time

(msec)
97.17 58.66 169.47 104.3 31.54

SqueezeNet

Power (mW) 21397.14 21915.78 21089.53 21208.32 22723.29

Energy (nJ) 6324925.68 5890602.78 8136307.48 6756676.68 4051902.98

Execution time

(msec)
16.63 19.32 18.18 18.75 7.04

106

5.7.6 The effect of Vth variability

Vth variability is another aspect that we had to explore in order to find out if it could affect the power,

energy, and performance efficiency of our NTV-DNN framework. The scheme used in our

experiments is shown in Table 26. Each corresponds to a different .

Table 26: The scheme used when exploring the effect of Vth variability

Vdd, NTC (V) Vth(V) FNTC (MHz) Num_PEs Cluster_sizeNTC (PEs)

0.65 [0.45, 0.50, 0.55] [287, 223, 148] 256 256

Figure 81: Power gain of different DNN Models for various Vth

Figure 82: Energy gain of different DNN Models for various Vth

107

Figure 83: Performance of different DNN Models for various Vth

As we see in Figures 81, 82 and 83 , during scaling of , power gain starts

to increase for all CNN Models examined. On the contrary, energy gain starts

to decrease. In addition, execution time during inference for all CNN Models starts to increase and

most likely causing timing errors during MAC calculations which affects accuracy. Table 27 displays

the exact results obtained for specific values of categorized by DNN Model, keeping

 constant.

Table 27: The experimental results exploring the effect of Vth variability in NTC

Vth (V)

0.45 0.50 0.55

FNTC (MHz)

287 223 148

AlexNet

Power (mW) 6073.42 4919.38 3587.61

Energy (nJ) 5815239.63 6200977.65 7078532.72

Execution time (msec) 17.72 22.86 34.38

GoogLeNet

Power (mW) 48476.52 39242.71 28586.63

Energy (nJ) 12034423.56 12816138.43 14613740.99

108

Execution time (msec) 40.04 51.66 77.68

ResNet-18

Power (mW) 16007.79 12959.42 9441.67

Energy (nJ) 12403620.16 13204175.8 15051191.94

Execution time (msec) 37.63 48.56 73.02

SqueezeNet

Power (mW) 19526.04 15803.76 11508.21

Energy (nJ) 2132946.84 2271869.3 2590887.87

Execution time (msec) 8.4 10.84 16.3

5.8 Conclusions

In this thesis, we have presented and evaluated NTV-DNN, , a tool for early assessment of energy at

various voltage variation levels. NTV-DNN deals with the formation of VIs in NTC through scaling

of the supply voltage, providing reduced power and energy consumption. Further, NTV-

DNN performs a frequency scaling, synergistically with PyTorchFI and CIFAR-10, to further boost

performance by evaluating the accuracy of different DNN Models through inference. Our

experiments demonstrate significant reductions in power and energy consumption of about 80% and

50% respectively, for a range of supply voltage between 0.6V to 0.65V for the total of our

16 x 16 TPU-based accelerator, but with a cost of about 90% reduction in execution time and 3%

reduction in accuracy.

Furthermore, we have proven that for a TPU-based accelerator with a total of 256 PEs that works

in STC, there is an equivalent accelerator with a double size of PEs and with similar performance that

works in NTC which shows gains of about 50% and 52% in power and energy consumption

respectively. We also concluded that, in terms of energy efficiency and performance, the kcp_ws

dataflow seems to outperform other strategies like maeri and yxp_os. Finally, we concluded that,

when tweaking to greater values of 0.4V, energy consumption is increasing.

5.9 Future Work

As future work, we would like to explore the possibility of choosing dynamically the for

each VI of PEs and the , according to the dataflow strategy used during inference.

It is worth noting that it could be very interesting to explore the synergy between NTV-DNN and

other techniques like dynamic DNN pruning, to further reduce energy consumption. We could also

109

use more approximate or reduced precision MAC units, which offer more potential in the accomplish

of designing more energy efficient DNN accelerators. Studying how efficient could be NTV-DNN

during CNN training, is another interesting aspect that we could explore. Furthermore, it would be

very interesting to investigate the gains in energy consumption with the combination of other design

paradigms like GreenTPU.

110

REFERENCES

[1] V. Sze, Y. H. Chen, T. J. Yang, J. S. Emer, Efficient Processing of Deep Neural Networks,

USA, Morgan & Claypool Publishers, 2020.

[2] Alzubaidi, L., Zhang, J., Humaidi, A.J. et al., Review of deep learning: concepts, CNN

architectures, challenges, applications, future directions. J Big Data 8, 53 (2021).

[3] S. Xydis, “Lecture - Diffuse and Embedded Systems”, Dept. of Informatics and Telematics,

Harokopio Univ., Athens, 2020.

[4] S. Reda, M. Shafique, Approximate Circuits: Methodologies and CAD, Springer International

Publishing, Cham, Switzerland, 2019.

[5] M. Hubner, C. Silvano, Near Threshold Computing: Technology, Methods and Applications,

Springer International Publishing, Cham, Switzerland, 2016.

[6] Z. Abbas, M. Olivieri, Impact of technology scaling on leakage power in nano-scale bulk

CMOS digital standard cells, Microelectronics Journal, Vol. 45, Issue 2, (2014) p. 179-195.

[7] Professor John McCarthy, Stanford University, http://jmc.stanford.edu/ (accessed 29/3/2022).

[8] Datacatchup, https://datacatchup.com/artificial-intelligence-machine-learning-and-deep-

learning/ (accessed 29/3/2022).

[9] Y. Ibrahim, H. Wang, Junyang Liu et al., Soft errors in DNN accelerators: A comprehensive

review, Microelectronics Reliability 115 (2020).

[10] A. Rassadin, A. Savchenko, Deep neural networks performance optimization in image

recognition, in: Proc. 3rd Int. Conf. Info. Technol. Nano-Technol. (ITNT), Nizhny Novgorod,

Russia, 2017.

[11] Tech blog, S. Bhattarai, https://saugatbhattarai.com.np/what-is-gradient-descent-in-machine-

learning/ (accessed 2/4/2022).

[12] Data Science Community, https://datascience.stackexchange.com/questions/44703/how-

does-gradient-descent-and-backpropagation-work-together (accessed 2/4/2022).

[13] K. Arulkumaran, M. P. Deisenroth, M. Brundage and A. A. Bharath, “Deep Reinforcement

Learning: A Brief Survey,” in IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26-38,

Nov. 2017.

[14] Nvidia blog, M. Copeland, https://blogs.nvidia.com/blog/2016/08/22/difference-deep-

learning-training-inference-ai/ (accessed 2/4/2022).

[15] Mittal, S. A survey of FPGA-based accelerators for convolutional neural networks. Neural

Comput & Applic 32, 1109–1139 (2020).

[16] C. Pelletier, G. I Web, F. Petitjean, “Temporal Convolutional Neural Network for the

Classification of Satellite Image”, IEEE, Remote Sensing (2019).

http://jmc.stanford.edu/
https://datacatchup.com/artificial-intelligence-machine-learning-and-deep-learning/
https://datacatchup.com/artificial-intelligence-machine-learning-and-deep-learning/
https://saugatbhattarai.com.np/what-is-gradient-descent-in-machine-learning/
https://saugatbhattarai.com.np/what-is-gradient-descent-in-machine-learning/
https://datascience.stackexchange.com/questions/44703/how-does-gradient-descent-and-backpropagation-work-together
https://datascience.stackexchange.com/questions/44703/how-does-gradient-descent-and-backpropagation-work-together
https://blogs.nvidia.com/blog/2016/08/22/difference-deep-learning-training-inference-ai/
https://blogs.nvidia.com/blog/2016/08/22/difference-deep-learning-training-inference-ai/

111

[17] Towards Data Science, https://towardsdatascience.com/understanding-relu-the-most-

popular-activation-function-in-5-minutes-459e3a2124f (accessed 7/4/2022).

[18] X. Zhang, J. Trmal, D. Povey, and S. Khudanpur, Improving deep neural network acoustic

models using generalized maxout networks, in International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), 2014.

[19] Programmathicaly, a Blog on Building Machine Learning Solutions,

https://programmathically.com/what-is-pooling-in-a-convolutional-neural-network-cnn-

pooling-layers-explained/ (accessed 7/4/2022).

[20] L. Huang, J. Qin, Yi Zhou, et al., Normalization Techniques in Training DNNs: Methodology,

Analysis and Application, Cornell University, 2020

[21] Baeldung, https://www.baeldung.com/cs/batch-normalization-cnn (accessed 10/4/2022)

[22] V. Dumoulin, F. Visin, A guide to convolution arithmetic for deep learning, Cornel University,

Jan 12, 2018.

[23] A. Vaswani, N. Shazeer, , et al., Attention Is All You Need, 31st Conf. on Neural Information

Processing Systems (NIPS 2017), Long Beach, CA, USA.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep

convolutional neural networks, in Conf. on Neural Information Processing Systems (NeurIPS),

2012.

[25] Nerohive, https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-

deep-convolutional-neural-networks/ (accessed 10/4/2022).

[26] C. Szegedy, W. Liu,et al., Going deeper with convolutions, Conf. on Computer Vision

and Pattern Recognition (CVPR), 2015.

[27] C. K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition,

in Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[28] A. Zhang, Z. C. Lipton, M. Li, A. J. Smola, Interactive book, Dive into Deep Learning,

https://d2l.ai/chapter_convolutional-modern/resnet.html (accessed 10/4/2022).

[29] F. N. Iandola, S. Han, et al., SqueezeNet: AlexNet-level accuracy with 50x fewer parameters

and <0.5MB model size, International Conf. on Learning Representations (ICLR), 2017.

[30] H. Oh, H. Lee, M. Y. Kim, Comparing Convolutional Neural Network (CNN) models for

machine learning-based drone and bird classification of anti-drone system, 19th International

Conf. on Control, Automation and Systems (ICCAS) (2019): 87-90.

[31] Wikipedia, Central processing unit, https://en.wikipedia.org/wiki/Central_processing_unit

(accessed 16/4/2022)

[32] J. M. P. Cardoso, J. G. F. Coutinho, P. C. Diniz, Embedded Computing for High Performance,

Elsevier, Morgan Kaufmann Publishers, USA, 2017

https://towardsdatascience.com/understanding-relu-the-most-popular-activation-function-in-5-minutes-459e3a2124f
https://towardsdatascience.com/understanding-relu-the-most-popular-activation-function-in-5-minutes-459e3a2124f
https://programmathically.com/what-is-pooling-in-a-convolutional-neural-network-cnn-pooling-layers-explained/
https://programmathically.com/what-is-pooling-in-a-convolutional-neural-network-cnn-pooling-layers-explained/
https://www.baeldung.com/cs/batch-normalization-cnn
https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/
https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/
https://d2l.ai/chapter_convolutional-modern/resnet.html
https://en.wikipedia.org/wiki/Central_processing_unit

112

[33] Intel, Hyper-Threading Technology, https://www.intel.com/content/www/us/en/architecture-

and-technology/hyper-threading/hyper-threading-technology.html (accessed 16/4/2022)

[34] S. Mittal, P. Rajput, S. Subramoney, A Survey of Deep Learning on CPUs: Opportunities and

Co-optimizations, IEEE Transactions on Neural Networks and Learning Systems (2021).

[35] Y. E. Wang et al., “Benchmarking TPU, GPU, and CPU Platforms for Deep Learning”,

arXiv:1907.10701, (2019).

[36] M. Zhang et al., “DeepCPU: Serving RNN-based deep learning models 10x faster”, in

USENIX ATC, 2018, pp. 951–965.

[37] N. D. Lane et al., “DeepX: A software accelerator for low power deep learning inference on

mobile devices”, in IPSN, 2016, p. 23.

[38] P. Blacker et al., “Rapid Prototyping of Deep Learning Models on Radiation Hardened CPUs”,

in AHS, 2019, pp. 25–32.

[39] Y. Ibrahim et al., “Soft errors in DNN accelerators: A comprehensive review”, in

Microelectronics Reliability, 2020, Volume 115.

[40] OpenGenus Foundation, https://iq.opengenus.org/structure-of-field-programmable-gate-

array-fpga/ (accessed 16/4/2022).

[41] S. Mittal, “A Survey of FPGA-based Accelerators for Convolutional Neural Networks”, Neural

computing and applications, 2018.

[42] Z. Li, Y. Wang, T. Zhi, T. Chen, A survey of neural network accelerators, Frontiers of

Computer Science 11 (5) (2017) 746–761.

[43] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, in

Proceedings of ISCA ’17, Toronto, ON, Canada, June 24-28, 2017, 12 pages.

[44] S. Reda, M. Shafique, “Approximate Circuits : Methodologies and CAD”, Springer Nature

Switzerland, 2019.

[45] S. Li et al., “Sculptor: Flexible Approximation with Selective Dynamic Loop Perforation”, in

International Conference on Supercomputing, June 12–15, 2018, Beijing, China.

[46] J. Yu et al., “Scalpel: Customizing DNN Pruning to the Underlying Hardware Parallelism”, in

Proceedings of ISCA ’17, Toronto, Canada, June 24-28, 2017.

[47] C. Zhu et al., “Trained Ternary Quantization”, in Proceedings of ICLR, Toulon, France, 2017.

[48] S. Jain et al., “Compensated-DNN: Energy Efficient Low-Precision Deep Neural Networks by

Compensating Quantization Errors”, in DAC ’18, June 24–29, 2018, San Francisco, CA, USA.

[49] P. Pandey et al., “Challenges and Opportunities in Near-Threshold DNN Accelerators around

Timing Errors”, in Journal of Low Power Electronics and Applications, MDPI, Basel,

Switzerland, 2020.

https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://iq.opengenus.org/structure-of-field-programmable-gate-array-fpga/
https://iq.opengenus.org/structure-of-field-programmable-gate-array-fpga/

113

[50] P. Pandey et al., “GreenTPU: Improving Timing Error Resilience of a Near-Threshold Tensor

Processing Unit”, in Design Automation Conference (DAC), June 2–6, 2019, Las Vegas, NV,

USA.

[51] R. Trapani et al., “GPU NTC Process Variation Compensation with Voltage Stacking”, in

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 9, pp. 1713-

1726, Sept. 2018.

[52] P. Basu et al., “SwiftGPU: Fostering Energy Efficiency in a Near-Threshold GPU Through a

Tactical Performance Boost”, in Design Automation Conference (DAC), June 05-09, 2016,

Austin, TX, USA.

[53] G. E. Moore, “Cramming more components onto integrated circuits”, in Proceedings of the

IEEE, Volume: 86, Issue: 1, Jan. 1998.

[54] C. E. Leiserson et al., “There’s plenty of room at the Top: What will drive computer

performance after Moore’s law?”, in Science, 2020.

[55] N. D. Lane et al., “An early resource characterization of deep learning on wearables,

smartphones and internet-of-things devices,” in International Workshop on Internet of Things

towards Applications. ACM, 2015.

[56] A. Azizimazreah et al., “Tolerating Soft Errors in Deep Learning Accelerators with Reliable

On-Chip Memory Designs”, in IEEE International Conference on Networking, Architecture

and Storage (NAS), 2018.

[57] H. Kwon et al., “MAESTRO: A Data-Centric Approach to Understand Reuse, Performance,

and Hardware Cost of DNN Mappings” in IEEE Micro., 2020.

[58] V. Sze et al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey”, in

Proceedings of the IEEE, 2017.

[59] A. Mahmoud et al., “PyTorchFI: A Runtime Perturbation Tool for DNNs”, in 50th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-

W), 2020.

[60] I. Stamelakos, S. Xydis, G. Palermo et al., “Variation-Aware Voltage Island Formation for

Power Efficient Near-Threshold Manycore Architectures”, in Proceedings of the Asia and

South Pacific Design Automation Conference, ASP-DAC, 2014, p. 304-310.

[61] K. Chen et al., “CACTI-P: Architecture-level modeling for SRAM-based structures with

advanced leakage reduction techniques”, in IEEE/ACM International Conference on Computer-

Aided Design, Digest of Technical Papers, 2011.

[62] S. Mittal, “A survey on modeling and improving reliability of DNN algorithms and

accelerators”, in Journal of Systems Architecture, 2020.

[63] S. Hong et al., “Terminal brain damage: exposing the graceless degradation in deep neural

114

networks under hardware fault attacks”, in USENIX Security Symposium, 2019.

[64] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library”,

in 33rd Conference on Neural Information Processing Systems, Vancouver, Canada, 2019.

[65] Pytorch, https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html (accessed

27/5/2022).

[66] Cuda toolkit, https://developer.nvidia.com/cuda-toolkit (accessed 27/5/2022).

[67] Medium platform, https://medium.com/@nutanbhogendrasharma/pytorch-convolutional-

neural-network-with-mnist-dataset-4e8a4265e118 (accessed 27/5/2022).

[68] MAESTRO cost model, https://maestro.ece.gatech.edu/docs/build/html/hw_supported.html

(accessed 27/5/2022).

[69] The CIFAR-10 Dataset, https://www.cs.toronto.edu/~kriz/cifar.html (accessed 28/5/2022).

[70] Yu-Hsin Chen et al., “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep

Convolutional Neural Networks”, in IEEE Journal of Solid State Circuits, Vol. 52, 2017.

[71] H. Kwon et al., “MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via

Reconfigurable Interconnects”, in Association for Computing Machinery, 2018.

[72] Tien-Ju Yang et al., “A Method to Estimate the Energy Consumption of Deep Neural

Networks”, in 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,

CA, USA, 2017.

[73] Synopsys hardware design software, https://www.synopsys.com/ (accessed 26/06/2022).

https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html
https://developer.nvidia.com/cuda-toolkit
https://medium.com/@nutanbhogendrasharma/pytorch-convolutional-neural-network-with-mnist-dataset-4e8a4265e118
https://medium.com/@nutanbhogendrasharma/pytorch-convolutional-neural-network-with-mnist-dataset-4e8a4265e118
https://maestro.ece.gatech.edu/docs/build/html/hw_supported.html
https://www.cs.toronto.edu/%7Ekriz/cifar.html
https://www.synopsys.com/

115

APPENDIX A.

Heatmaps of different DNN Models for exploring the voltage island granularity in

NTC and STC.

Figure A.1: Power consumption of layers 1 to 16 (GoogLeNet).

Figure A.2: Power consumption of layers 17 to 32 (GoogLeNet).

116

Figure A.3: Power consumption of layers 33 to 48 (GoogLeNet).

Figure A.4: Power consumption of layers 49 to 64 (GoogLeNet)

Figure A.5: Energy consumption of layers 1 to 16 (GoogLeNet)

117

Figure A.6: Energy consumption of layers 17 to 32 (GoogLeNet)

Figure A.7: Energy consumption of layers 33 to 48 (GoogLeNet)

Figure A.8: Energy consumption of layers 49 to 64 (GoogLeNet)

118

Figure A.9: Performance of layers 1 to 16 (GoogLeNet)

Figure A.10: Performance of layers 17 to 32 (GoogLeNet)

Figure A.11: Performance of layers 33 to 48 (GoogLeNet)

119

Figure A.12: Performance of layers 49 to 64 (GoogLeNet)

Figure A.13: Power consumption of layers 1 to 21 (ResNet-18)

120

Figure A.14: Energy consumption of layers 1 to 21 (ResNet-18)

Figure A.15: Performance of layers 1 to 21 (ResNet-18)

121

Figure A.16: Power consumption of layers 1 to 26 (SqueezeNet)

Figure A.17: Energy consumption of layers 1 to 26 (SqueezeNet)

122

Figure A.18: Performance of layers 1 to 21 (SqueezeNet)

Figure A.19: Power consumption of layers 1 to 64 in STC (GoogleNet)

123

Figure A.20: Energy consumption of layers 1 to 64 in STC (GoogLeNet)

Figure A.21: Performance of layers 1 to 64 in STC (GoogLeNet)

124

Figure A.22: Power consumption of layers 1 to 21 in STC (ResNet18)

Figure A.23: Energy consumption of layers 1 to 21 in STC (ResNet18)

125

Figure A.24: Performance of layers 1 to 21 in STC (ResNet18)

Figure A.25: Power consumption of layers 1 to 26 in STC (SqueezeNet)

126

Figure A.26: Energy consumption of layers 1 to 26 in STC (SqueezeNet)

Figure A.27: Performance of layers 1 to 26 in STC (SqueezeNet)

Data and code is available at:
https://github.com/Kronos78-cloud/NTV_DNN_thesis

https://github.com/Kronos78-cloud/NTV_DNN_thesis

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ACRONYMS
	ABSTRACT
	ΠΕΡΙΛΗΨΗ
	1 INTRODUCTION
	1.1 The Deep Neural Network Challenge
	1.2 Motivation
	1.3 Benefits of Approximate Near-Threshold Voltage Computing
	1.4 The scope of the thesis
	2 BACKGROUND ON DEEP NEURAL NETWORKS
	2.1 What is Deep Learning?
	2.2 Training and Inference
	2.3 Types of Layers
	2.3.1 Conv Layer
	2.3.2 FC Layer
	2.3.3 Nonlinearity
	2.3.4 Pooling and Unpooling
	2.3.5 Normalization
	2.3.6 Compound Layers
	2.4 The Convolutional Neural Networks
	3 RELATED WORK ON ENERGY EFFICIENT DNN
	3.1 Architectures for DNN Workloads
	3.1.1 CPUs
	3.1.2 GPUs
	3.1.3 FPGAs
	3.1.4 ASICs
	3.2 Approximate Computing in DNNs
	3.3 Near Threshold Computing in DNNs
	4 HARDWARE ARCHITECTURES FOR DNN PROCESSING
	4.1 Basic Key Metrics
	4.2 The case of DNN accelerators
	4.3 Examining Data Reuse
	4.3.1 Temporal Reuse
	4.3.2 Spatial Reuse
	4.4 Why Dataflows are important
	5 THE PROPOSED NTV-DNN FRAMEWORK
	5.1 Summary
	5.2 The NTV-DNN architectural model
	5.3 Voltage allocation and scaling for NTV-DNN
	5.4 NTV-DNN error model
	5.5 NTV-DNN assessment tool flow
	5.5.1 PyTorch: An open-source machine learning framework
	5.5.2 MAESTRO cost model
	5.5.3 PyTorchFI runtime fault injector
	5.5.4 CIFAR-10 dataset
	5.6 Experimental Setup
	5.7 Experimental Results
	5.7.1 Exploring voltage island granularity
	5.7.1.1 Intra-layer
	5.7.1.2 Cross-layer policies

	5.7.2 Iso-resource NTC vs. STC DNNs
	5.7.3 Iso-performance NTC vs. STC DNNs
	5.7.4 NTV-DNN under relaxed error
	5.7.5 NTV-DNN under different dataflows
	5.7.6 The effect of Vth variability
	5.8 Conclusions
	5.9 Future Work
	REFERENCES
	APPENDIX A.

