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QUOTES 
 
 

“The microprocessor is a miracle.” 
 

Bill Gates 

 

 

 
 

“Everything that civilization has to offer is a product 

of human intelligence; we cannot predict what we might 

achieve when this intelligence is magnified by the tools 

that AI may provide, but the eradication of war, disease, 

and poverty would be high on anyone’s list. Success in 

creating AI would be the biggest event in human history. 

Unfortunately, it might also be the last.” 

Stephen Hawking 
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ABSTRACT 
 
Artificial Intelligence (AI) evolution is accelerating, and Deep Neural Network (DNN) inference is 

at the forefront of computing architectures that are evolving to support the immense throughput 

required for AI computation. However, much more energy efficient design paradigms are inevitable 

to realize the complete potential of AI evolution and curtail energy consumption. The coordination 

of Approximate Computing (AC) together with Near-Threshold Computing (NTC) design 

paradigm can serve as the best candidate for providing the required energy efficiency. The scope 

of this diploma thesis is to explore and analyze the impacts of AC and NTC principles in modern 

multi-/many-core architectures eventually proposing NTV-DNN, a fine-tuned microarchitecture 

paradigm for energy efficient DNN inference. 

 
 
 
Keywords: Artificial Intelligence (AI), Deep Neural Network (DNN), Near-Threshold 

Computing (NTC), Approximate Computing (AC), Tensor Processing Unit (TPU), Energy 

efficiency, Μicroarchitecture, Ιnference 
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ΠΕΡΙΛΗΨΗ 
 
Η εξέλιξη της Τεχνητής Νοημοσύνης (AI) επιταχύνεται και η κανονική λειτουργία των Βαθιών 

Νευρωνικών Δικτύων (DNN), βρίσκεται στην πρώτη γραμμή των υπολογιστικών αρχιτεκτονικών 

που εξελίσσονται, για να υποστηρίξουν τον τεράστιο ρυθμό διαμεταγωγής (throughput) που 

απαιτείται για τους υπολογισμούς AI. Ωστόσο, είναι αναπόφευκτη η απαίτηση εύρεσης πολύ πιο 

ενεργειακά αποδοτικών προτύπων σχεδιασμού, για την αξιοποίηση του πλήρους δυναμικού της 

εξέλιξης της τεχνητής νοημοσύνης και τον περιορισμό της κατανάλωσης ενέργειας. Ο συντονισμός 

του Approximate Computing (AC) μαζί με το μοντέλο σχεδίασης Near-Threshold Computing 

(NTC), μπορεί να χρησιμεύσει ως ο καλύτερος υποψήφιος για την παροχή της απαιτούμενης 

ενεργειακής απόδοσης. Το αντικείμενο αυτής της διπλωματικής εργασίας είναι να διερευνήσει και 

να αναλύσει τον αντίκτυπο των αρχών AC και NTC σε σύγχρονες αρχιτεκτονικές 

πολλαπλών/πολλών πυρήνων προτείνοντας τελικά το NTV-DNN, ένα βελτιωμένο παράδειγμα 

μικροαρχιτεκτονικής για ενεργειακά αποδοτική κανονική λειτουργία DNN. 

 
 
 
Λέξεις Κλειδιά: Τεχνητή Νοημοσύνη (AI), Βαθιά Νευρωνικά Δίκτυα (DNN), Ενεργειακή 

απόδοση, Μικροαρχιτεκτονική, Κανονική λειτουργία DNN (inference), Τάση κατωφλίου 
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1 INTRODUCTION 
 
 
1.1 The Deep Neural Network Challenge 

 
Deep neural networks (DNNs) currently form the basis for many modern artificial intelligence 

(AI) applications and have become extraordinarily popular. Since the breakthrough of DNNs in 

speech and image recognition (see Figure 1), the number of applications using DNNs has exploded. 

These DNNs are used in a wide variety of applications, from self-driving cars to cancer detection 

to playing complex games. In many of these areas, DNNs are now able to outperform human 

accuracy. The superior accuracy of DNNs stems from their ability to extract high-level features 

from raw sensory data by applying statistical learning to a large amount of data to obtain an 

effective representation of an input space. This differs from previous approaches that use hand-

crafted features or rules developed by experts. 

However, DNNs superiority in accuracy comes at the cost of high computational complexity. This 

leads to the design of more specialized hardware which gives rise to the need of improving compute 

performance and energy efficiency [1]. Until today, there has been tremendous interest in enabling 

efficient processing of DNNs. Some of the challenges we face for DNN acceleration are the 

following: 

• The achievement of high performance and efficiency (e.g., energy). 

• To provide sufficient flexibility to cater to a wide and rapidly changing range of 

workloads. 

• To integrate well into existing software frameworks. 
 

 
Figure 1: An example of DNN used to image recognition [2] 
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1.2 Motivation 
 

While AI evolution is accelerating, computing architectures are also evolving to support the immense 

throughput required for AI computation. However, DNN training and inference requires more and 

more energy consumption which leads to the need of much more energy efficient design paradigms to 

realize the complete potential of AI evolution. Till today, vast research has been made in the fields of 

Approximate Computing (AC) and Near-Threshold Computing (NTC) design paradigms that could 

serve as the best candidates for providing the required energy efficiency. Nevertheless, the is not 

enough exploration in the field of combining AC and NTC to gain the best of power and energy relation 

(see Figure 2). 

 
Figure 2: Power and energy relation [3] 

 

1.3 Benefits of Approximate Near-Threshold Voltage Computing 
 

Employing approximations at the hardware level is a very good design paradigm for achieving high 

gains in terms of area, power, energy, and performance efficiency [4]. AC has emerged as a new 

technique which serves to reduce the resources (e.g., design area and power) required to realize digital 

systems at the expense of a negligible or small amount of reduction in quality-of-results or accuracy. 

This trade-off between resources and accuracy is especially relevant for a large class of data-rich 

applications such as machine learning and multimedia processing that offer inherent error resiliency. 

On the other hand, NTC operation has potential to improve energy efficiency by an order of 

magnitude [5]. NTC takes advantage of the quadratic relation between the supply voltage (Vdd) and the 

dynamic power, by lowering the supply voltage of chips to a value only slightly higher than the threshold 

voltage. At nominal operating voltage, the frequency of operation reduces almost linearly with reduction 

in the supply voltage, reducing performance linearly, and reducing active energy per operation 
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quadratically. Leakage power too reduces exponentially, and therefore reducing supply voltage should 

not only reduce power but also improve energy efficiency. This effect is expected to continue through 

subthreshold region, providing extreme energy efficiency. However, it peaks near the threshold voltage 

of the transistor (see Figure 3) and then starts reducing in the subthreshold region. This unexpected 

reduction in the subthreshold region is explained by the following argument. In the subthreshold region 

leakage power dominates, and it reduces with voltage but the reduction in frequency is larger than 

reduction in the leakage power, reducing energy efficiency. Therefore, it is desirable to operate close to 

the threshold voltage of the transistor for maximum energy efficiency, providing an order of magnitude 

increased energy efficiency compared to operating at the nominal supply voltage. Subthreshold 

operation does yield even lower power consumption, but at the expense of reduced energy efficiency, 

which may be desired in some applications. 

 

 

Figure 3: Energy efficiency of NTV operation [5] 
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1.4 The scope of the thesis 
 
As Moore’s law continues to provide designers with more transistors on a chip, power budgets are 

beginning to limit the applicability of these additional transistors in conventional CMOS design. 

Furthermore, as technology node shrinks towards 45 nm and below, gate leakage (i.e., leakage current 

due to direct tunneling) increases owing to the increased electric field (see Figure 4). The scope of this 

thesis is to study, explore and analyze the impacts of AC and NTC principles in modern multi / many-

core architectures and to propose a fine-tuned micro-architecture paradigm for energy efficient DNN 

inference. 

 

 

Figure 4: Trends of major sources of power dissipation in nano-CMOS transistor [6] 

 
During our research, as a first step we had to decide which microarchitecture are we going to use 

during our study. Among CPUs, GPUs and ASICs (e.g. Deep Learning Accelerators-DLAs), we decided 

to focus on DLAs and specifically on the Google’s Tensor Processor Unit (TPU), which is widely used 

on training and inference of DNNs.  

As a second step, we had to choose among different DLA simulators, which is the best to use in our 

research. We understood that the efficiency (performance and energy efficiency) of a DNN accelerator 

depends on three factors: 1) the workload (DNN layers), 2) the amount and type of available hardware 

resources (hardware), and 3) the mapping strategy of a DNN layer on the target hardware (mapping) 

[57]. This led as to choose MAESTRO, an analytical cost model which receives DNN model description 

and hardware resources information as a list, and mapping described in a data-centric representation, and 

generates more than 20 statistics including total latency, energy, throughput, etc., as outputs. 

Then, as a third step we focused on finding, through a thorough study, the appropriate techniques for 

AC and NTC so as to implement our Near-Threshold Voltage DNN framework (NTV-DNN) tool for 

early assessment of energy at various voltage variation levels. For the part of NTC, we adopted a 
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promising technique proposed from I. Stamelakos, S. Xydis, G. Palermo et al. [60] based on the on the 

formation of voltage islands (VIs) for the minimization of the impact of within-die variations, which are 

more evident at NTC, in both performance and power. As for AC, we decided to work with a runtime 

fault injector (PyTorchFI [59]) with the scope to test the resilience of our examined DNN Models in 

errors and how this affects accuracy and performance in an NTC regime. Finding the correct FI tool was 

not easy, as most of them were deprecated (e.g., Ares Fault Injection Framework). Finally, we had to 

choose among a wide range of DNN Models, the ones that will be examined during our research, 

according to different workloads and a dataset (CIFAR-10) for their training and inference. 

Our experiments depicted significant reductions in power and energy consumption of about 80% and 

50% respectively, for a range of  supply voltage between 0.6V to 0.65V for the total of our 

simulated 16 x 16 TPU-based accelerator, but with a cost of about 90% reduction in execution time and 

3% reduction in accuracy. In addition, we have proven that for a TPU-based accelerator with a total of 

256 PEs that works in STC, there is an equivalent accelerator with a double size of PEs and with similar 

performance that works in NTC which shows gains of about 50% and 52% in power and energy 

consumption respectively. We also concluded that, in terms of energy efficiency and performance, 

choosing the right dataflow strategy plays a crucial role for the designing of energy efficient DLAs. 
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2 BACKGROUND ON DEEP NEURAL NETWORKS 
 
 
In this chapter, we present how DNNs are positioned in the context of artificial intelligence (AI) and 

how training and inference works. We also describe the different types of layers of a DNN and finally 

we focus on Convolutional Neural Networks (CNNs) which are placed at the frontend of Deep 

Learning. 

 

2.1 What is Deep Learning? 
 

Deep learning, which is also referred as DNN, is a subset of AI. AI is the science and engineering of 

building intelligent machines that could achieve goals like humans do, according to John McCarthy, 

who is considered the father of AI [7]. The relationship of deep learning to the whole of AI can be seen 

in Figure 5. 

 

 
Figure 5: Deep Learning as a subset of AI [8] 

 

An Artificial Neural Network (ANN) is made of inputs and outputs, which are organized into 

layers. These layers can be distinguished into three types: an input layer, a hidden layer(s), and an 

output layer [9]. Each of these layers is made up of smaller units called neurons, which are the 

fundamental computational units of the network for performing a specific task. A deep neural network 

or deep learning is essentially an ANN with many hidden layers, where the term “deep” refers to extra   
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layers [10]. Thus, a DNN is a network composed of multiple-computational layers. This involves 

numerous simple computations on a weighted sum of the input values. 

Based on the internal structure of the network, there are several architectures for DNNs, including 

Multi-layer Perceptron (MLP) and Convolutional Neural Networks (CNNs). These two types are 

considered as the basis of the DNNs and the most used types. They have also received most of the 

attention, both in research and industry. Consequently, MLP and CNN are currently the backbones of 

deep learning. A DNN should have inputs, neurons, layers, activation functions, multiply-sum 

operations, loss functions, parameters, and a specific topology for being a network [9]. Indeed, DNNs 

are models created with linear algebra at their cores, and then later optimized with calculus (i.e., learning 

process). As a result, DNNs are fundamentally a chain of matrix operations applied to input data and a 

set of parameters required to map the output to the input.  

As we understand, the basic operation in DNNs (e.g., CNN and MLP) is a series of matrix 

multiplications. Specifically, as seen in Figure 6, each neuron receives some inputs and performs a 

convolutional operation between the input and its weights (i.e., multiply-and-sum). Then, it adds the 

biases to the intermediate output to obtain the activation (i.e., g) before passing it to an activation 

function (i.e., F(g)) for non-linearity, which eventually gives the final output of this neuron. The 

mathematical equations that describe neuron’s function are: 

  (1) 

where w is the weight, x is the input and b is the bias. Therefore, a compulsory operation in any DNN 

is a multiply-accumulate (MAC) operation, suitable for all kinds of matrix operations. Although it needs 

a large amount of data to be performed, MAC is the primary and most important operation in DNNs 

[9]. 

 

 
Figure 6: A single neuron in a DNN and its main structure [9] 
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2.2 Training and Inference 
 

Since DNNs are an instance of machine learning algorithms, the basic program does not change as it 

learns to perform its given tasks. In the specific case of DNNs, this learning involves determining the 

value of the weights (and biases) in the network and is referred to as training the network. Thus, the 

goal of training DNNs is to find a set of weights to minimize the average loss over a large training set. 

Once trained, the program can perform its task by computing the output of the network using the 

weights determined during the training process. Running the program with these weights is referred to 

as inference. 

When a neuron is activated, it calculates a function of all data it has, and compares the value of this 

function with a threshold value (activation function) which is characteristic of this neuron. If the value 

of the function is greater than the threshold value, then the neuron calculates the output, which forwards 

as input to the next (or next) neuron (s). During training the only thing that changes is the values of 

weights connections of neurons. When training a network, the weights are usually updated using 

a hill-climbing (hill-descending) optimization process called gradient descent. In gradient descent, a 

weight is updated by a scaled version of the partial derivative of the loss with respect to the weight. 

Note that this gradient indicates how the weights should change to reduce the loss. The process is 

repeated iteratively to reduce the overall loss. An efficient way to compute the partial derivatives of the 

gradient is through a process called backpropagation. Backpropagation (see Figure 7(b)) operates by 

passing values backward through the network to compute how the loss is affected by each weight. 

       

(a)        (b) 
Figure 7: Gradient descent (a) and backpropagation (b) [11][12] 

 

Changes in weight values are not always made with the same way, but it depends a lot on the 

method we use. The three basic methods of training are described below: 
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• Supervised learning (SL): SL occurs when we start with random values for weights, and 

we know the values of the inputs and the targets that the network must learn. During the 

training process, the network changes the values of the weights correcting them depending 

on the error we get (difference from the target). The learning process stops when the 

algorithm achieves an acceptable level of performance. 

• Unsupervised learning (UL): In problems in this category, training data are vectors that 

do not have corresponding labels. Therefore, the goal of UL is to find patterns when there 

are no "correct answers", or when they are impossible to calculate. A large subcategory of 

unsupervised tasks is the problem of clustering. Grouping refers to grouping observations 

in such a way that the members of a common group are similar to each other and differ 

significantly by members of other groups. Another very interesting category of 

unsupervised tasks are genital models. These models mimic the process of creating 

training data. A good genital model should be able to create new data which, although 

artificial, looks like the original. This way of learning is unsupervised because the process 

by which data is created ("born") is not immediately observable - only the data itself is 

observable. 

• Reinforcement learning (RL): The essence is learning through interaction. An RL agent 

interacts with its environment and, upon observing the consequences of its actions, can 

learn to alter its own behavior in response to rewards received. In the RL set-up, an 

autonomous agent, controlled by a machine learning algorithm, observes a state  from 

its environment at timestep t. The agent interacts with the environment by taking an action 

 in state . When the agent takes an action, the environment, and the agent transition to 

a new state  based on the current state and the chosen action. The state is a sufficient 

statistic of the environment and thereby comprises all the necessary information for the 

agent to take the best action, which can include parts of the agent, such as the position of 

its actuators and sensors [13]. 

After training is completed, the networks are deployed into the field for inference (e.g., classifying 

data to “infer” a result). With inference you’ll get almost the same accuracy of the prediction, but 

simplified, compressed, and optimized for runtime performance. What that means is we all use 

inference all the time. Your smartphone’s voice-activated assistant uses inference, as does Google’s 

speech recognition, image search and spam filtering applications. Baidu also uses inference for speech 

recognition, malware detection and spam filtering. Facebook’s image recognition and Amazon’s and 

Netflix’s recommendation engines all rely on inference [14]. 
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2.3 Types of Layers 
 

In this section, we present the various popular layers from which DNNs are formed. We begin by 

describing the Convolution (Conv) and Fully Connected (FC) layers whose main computation is a 

weighted sum, since that tends to dominate the computation cost in terms of both energy consumption 

and throughput. We will speak for various layers that can optionally be included in a DNN and do not 

use weighted sums such as nonlinearity, pooling, and normalization. 

 

2.3.1 Conv Layer 
 
The CONV layer works by sliding many small filters across an image to extract meaningful features. 

Figure 8 displays the data structure of a CONV operation. The inputs to CONV layer are N feature 

maps (fmaps). Every fmap is convolved by a shifting window with a  kernel, which produces 

one pixel in one output fmap. The shifting window has a stride of S which is generally smaller than R. 

The N output fmaps are taken as the input fmaps for the next CONV layer [15]. 

 
 

Figure 8: Illustration of a Conv operation [1] 

 

Table 1 displays the shape parameters of a Conv Layer, the computation of which is defined as: 

 

 (2) 

 
 
where o, i, f, b are the tensors of the output fmaps, input fmaps, filters and biases. U is a given stride 
size. 
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Table 1: Shape parameters of a Conv Layer [1] 

Shape parameter Description 
N Batch size 
M Number of channels of output fmaps (output channels) 
C Number of channels of filter / input fmaps (input channels) 

H/W Input fmap spatial height/width 
R/S Filter spatial height/width 
P/Q Output fmap spatial height/width 

 

2.3.2 FC Layer 
 
Fully Connected (FC) Layers contain neurons that apply a linear transformation to the input vector 

through a weight’s matrix. Every value in the output fmap is the result of a weighted sum of every 

input value in the fmap. FC layers do not support weight sharing thus making each calculation memory 

bounded.  A nonlinear transformation is then applied to the result as shown below: 

 

 

 

where x is the input vector, w is the weight’s vector, b is the bias and f is the non-linear activation 

function. Figure 9 displays an example of a fully connected network in which the green neurons 

represent the input, the blue neurons belong to the hidden layer and the red neurons represent the 

output. 

 
Figure 9: A Fully Connected Network [16] 

 
 

In the above Figure we can understand why we call these kinds of layers Fully Connected or 

sometimes Densely Connected (DC). All possible connections layer to layer are present, meaning 

every input of the input vector influences every output of the output vector. An FC network is very 

useful for the work of Classification in a DNN. As we see in Figure 9 the hidden FC layer serves to 

classify the input data into various classes. 
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2.3.3 Nonlinearity 
 

After a Conv or FC Layer, a nonlinear activation function is applied. There are various nonlinear 

activation functions, some of which are displayed in Figure 10. Among them the Rectified Linear Unit 

(RELU) is considered the most popular due to its simplicity and its ability to enable fast training, while 

achieving comparable accuracy [1]. The other variants of ReLU include Leaky ReLU, ELU, SiLU, 

etc., which are used for better performance in some tasks and show improved accuracy. The ReLU 

activation function is differentiable at all points except at 0. For values greater than 0, we just consider 

the max of the function [17]. This can be described as below: 

      if input > 0: 

          return input; 

      else: 

          return 0; 

 

 
Figure 10: Various nonlinear activation functions [1] 

 

Maxout is also a very promising nonlinearity which takes the maximum value of two intersecting linear 

functions and has shown to be very effective in speech recognition tasks [18]. The following function 

implements maxout: 

 (3) 
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2.3.4 Pooling and Unpooling 
 

Pooling is a method that focuses in getting a DNN to focus on higher-level features. In a convolutional 

neural network, pooling is usually applied on the fmap produced by a preceding convolutional layer 

and a non-linear activation function. During pooling a filter is selected which slides over the output 

fmap of the preceding convolutional layer. The most used filter size is 2×2 and it is slid over the input 

using a stride of 2. Based on the type of pooling operation you’ve selected, the pooling filter calculates 

an output on the receptive field (the part of the feature map under the filter) [19].  The most commonly 

used approaches are the following: 

• Max Pooling: In this approach the filter simply selects the maximum pixel value in the 

receptive field. For example, as in Figure 11, if you have 4 pixels in the field with values 5, 3, 

9 and 28, you select 28. 

 

 
Figure 11: Max Pooling and Average Pooling Methods 

 

• Average Pooling: Average pooling works by calculating the average value of the pixel values 

in the receptive field. Given 4 pixels with the values 2, 9, 1 and 7 the average pooling layer 

would produce an output of 4.75. As seen in Figure 11, rounding to full numbers gives us 5. 

 

Unpooling or more generally upsampling is the method during which the spatial resolution of a fmap 

is increased. A commonly used form of unpooling method is to insert zeros between the activations as 

shown in Figure 12. Another method, also displayed in Figure 12, is interpolation with the use of 

nearest neighbors. Upsampling introduces structured sparsity in the input fmap and is generally used 

before a Conv or FC layer. It is an important tool that can improve energy efficiency and throughput 

[1]. 
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Figure 12: Zero-insertion and Nearest-neighbors Unpooling Methods 

 

2.3.5 Normalization 
 

When talking about normalization, we refer to the operation during which, given a set of data 

 , a normalization function  ensures that the transformed data  has 

certain statistical properties [20]. By this method we can help to significantly speed up training and 

improve accuracy. In general terms normalization is a pre-processing technique used to standardize 

data. In other words, having different sources of data inside the same range [21]. If we do not normalize 

the data before training that can cause problems in our network, making it drastically harder to train 

and decrease its learning speed. We can distinguish two methods to normalize our data: 

• Scale the data set to a range from 0 to 1: 

 (4) 

where  is a data point,  is the mean of the data set,  is the highest value and  is the 

lowest value. This technique is generally used in the inputs of the data.  

• Forcing the data points to have a mean of 0 and a standard deviation of 1: 

  (5) 

where  is a data point,  is the mean of the data set and  is the standard deviation of the data 

set. 
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Batch Normalization (BN) is a wide adopted method in the design of CNNs and is usually 

performed between the Conv or FC layer and the nonlinear function. The normalization formula is the 

following: 

 (6) 

where  is the BN output,  is the neuron’s output (before normalization),  is the mean of the 

neuron’s output and  is the standard deviation of the output of the neurons. Figure 13 displays how 

normalization works. As we see, while the DNN model learns the parameters  and , BN is added 

just before the activation function . 

 
Figure 13: Batch Normalization method 

2.3.6 Compound Layers 
 

Compound layers are the result of the combination of all the primitive layers described above. An 

example of a compound layer is the up-convolution layer that combines upsampling (before applying 

convolution) and transposed convolution [22]. Attention layer is also another form of compound layer 

that is composed of matrix multiplications and feed-forward, fully connected layers [23]. This 

compound layer is commonly used in a type of DNNs called Transformers and can be useful in 

processing a wide range of data such as language and images. 
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2.4 The Convolutional Neural Networks 
 

Convolutional Neural Networks (CNNs) are composed of multiple Conv layers. The function of a 

CNN is based in the generation of successively higher-level abstracted input data (called feature maps) 

through each layer as shown in Figure 14 [1]. Each feature map preserves essential yet unique 

information. During time, there have been developed many CNN models, some of which are displayed 

in Table 2. 

 
Figure 14: The architecture of a modern deep CNN [1] 

 

Table 2: Different CNN models and their cost [30] 

Model Layer Parameter [M] Network size [MB] 
AlexNet 8 61 227 

GoogLeNet 22 7 27 

ResNet-18 18 25.6 96 

SqueezeNet 18 1.24 5 

 

AlexNet [24] is considered to be the first CNN that won the ImageNet Challenge in 2012. Its 

architecture consists of five convolutional layers with a combination of max pooling followed by three 

FC layers. The ReLU nonlinear activation function is used in each of these layers. The max pooling 

operation is applied to the outputs of the first, second and fifth Conv layers as displayed in Figure 15. 

The network has 62.3 million parameters and needs 1.1 billion computation units in a forward pass.  
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Figure 15: The architecture of AlexNet DNN model [25] 

 

GoogLeNet [26] is a deeper CNN which has 22 layers. The 22 layers consist of three CONV layers, 

followed by nine inceptions modules (each of which are two CONV layers deep), and one FC layer. 

An inception module, as displayed in Figure 16, has an input which is distributed through multiple 

feed-forward connections to several parallel layers. GoogLeNet uses a stack of a total of 9 inception 

modules and global average pooling to generate its estimates. Max pooling between inception modules 

reduces the dimensionality. 

 
Figure 16: Inception module from GoogLeNet [1] 

 

ResNet [27] is the idea that every additional layer should more easily contain the identity function 

(see Figure 17) as one of its elements. These considerations are rather profound, but they led to a 

surprisingly simple solution, a residual block. With it, ResNet won the ImageNet Large Scale Visual 

Recognition Challenge in 2015. The design had a profound influence on how to build deep neural  
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Figure 17: Residual learning: a building block [27] 

 

networks. Figure 18 illustrates the residual block of ResNet, where the solid line carrying the layer 

input to the addition operator is called a residual connection (or shortcut connection). With residual 

blocks, inputs can forward propagate faster through the residual connections across layers. ResNet 

combines 4 convolutional layers in each block together with the first 7×7 convolutional layer and the 

final FC layer, 18 layers in total. Therefore, this model is commonly known as ResNet-18 [28]. 

 
(a)      (b) 

 

Figure 18: (a) Residual learning: a building block (b) ResNet block [28] 

 

SqueezeNet [29] begins with a standalone Conv layer, followed by 8 fire modules, ending with a final 

Conv layer. We gradually increase the number of filters per fire module from the beginning to the end 

of the network. The fire module (illustrated in Figure 19) is comprised of: a squeeze Conv layer (which 

has only 1x1 filters), feeding into an expand layer that has a mix of 1x1 and 3x3 convolution filters. 

ReLU is applied to activations from squeeze and expand layers. With SqueezeNet, we achieve a 50 × 

reduction in model size and obtain better accuracy results compared to AlexNet model. 
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Figure 19: Fire module: SqueezeNet’s building block [29]
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3 RELATED WORK ON ENERGY EFFICIENT DNN 
 
 

This chapter is dedicated in presenting the various workloads used for training and inference of DNN 

workloads. A description of the study that has been done in the domains of Approximate and Near-

Threshold Computing in DNNs is also given. 

 

3.1 Architectures for DNN Workloads 
 

When talking for both Conv and FC Layers, the fundamental computation are multiple-and-

accumulate (MAC) operations. These operations have negligible dependencies and can be considered 

as commutative. This fact gives to MAC operations the characteristic of flexibility on how can be 

scheduled and easily parallelized. Therefore, high parallel computing paradigms are used frequently 

to achieve high performance for DNNs. We can categorize these architectural paradigms in either 

temporal or spatial, as we see in Figure 20. 

 

 
Figure 20: High parallel architectural paradigms [1] 

 

In a temporal architecture, arithmetic logic units (ALUs) fetch data from the memory hierarchy 

and cannot communicate directly with each other. Central Processing Units (CPUs) and Graphics 

Processing Units (GPUs) employ such architectures and use a variety of technics to improve 

parallelism such as vector instructions or parallel threads. On the contrary when we talk about spatial 

architecture, communication between ALUs is allowed, and the use of dataflow processing is 

implemented. There are cases that an ALU can have its own control logic and local memory which 
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is called scratchpad. In this case one or more ALUs form a Processing Element (PE). Special designs 

of Application-Specific Integrated Circuits (ASICs) and Field-Programmable Gate Arrays (FPGAs) 

used for the process of DNNs are commonly based on spatial architectures. 

 

3.1.1 CPUs 
 

CPU has been for years the most essential component in computers of any era. It is sometimes simply 

called a processor and is considered as the brain of a computer. Figure 21 displays a simple block 

diagram of a uniprocessor-CPU and its building blocks: a Control Unit (CU) that directs the operation 

of the processor, a Combinational Logic Known such as ALUs and Floating Point Units (FPUs) thar 

 

 
Figure 21: Block diagram of a uniprocessor-CPU [31] 

 

 perform the mathematical and logic operations and Registers which provide a quickly accessible 

location for fast storage.  CPU cores have been enhanced to further support parallelism and specific 

type of computations. Some of these are listed below [32]: 

• Single Instruction, Multiple Data (SIMD) units: These are hardware components that perform 

the same operation on multiple data operands concurrently. Typically, a SIMD unit, as seen 

in Figure 22(a), receives as input two vectors (each one with a set of operands), performs the 

same operation on both sets of operands (one operand from each vector), and outputs a vector 

with the results. SIMD operations include arithmetic operations (such as addition, subtraction, 

multiplication, negation) and other operations such as absolute (abs) and square root (sqrt). 

The increased performance of SIMD units is based on the fact that multiple data items can be 



  

40  

simultaneously loaded/stored from/to memory exploiting the full width of the memory data 

bus. 

• Fused Multiply-Add (FMA) units: As Figure 22(b) depicts, these units perform fused 

operations such as multiply-add and multiply-subtract. The main idea is to provide a CPU 

instruction that can perform operations with three input operands and an output result. It is 

common for an FMA unit to support single, double precision floating-point and integer 

operations, and depending on the data types, to include a rounding stage following the last 

operation. Depending on the processor architecture, the input/output of the FMA units might 

be associated with four distinct registers or three distinct registers, with one register shared 

between the result and one of the input operands of the FMA unit. 

 

 
(a)            (b) 

Figure 22: (a) A SIMD unit (b) An FMA unit [32] 

 

• Simultaneous Multithreading (SMT): It is a basic characteristic of modern microprocessors 

that aims to provide multiple cores and to allow native support of parallel thread execution by 

duplicating hardware in a single core. The execution of multiple threads within the same core 

is realized by time multiplexing its hardware resources and by fast context switching. An 

example of such a technology is Intel-Hyper Threading that succeeds to increase processor 

throughput, improving overall performance on threaded software. 

 

There are various factors for which CPUs are considered to play a crucial role in accelerating 

DNNs. First of all, they offer a high memory capacity. Since CPU-managed hosts in cloud and 

datacenter scenarios have much larger memory capacities, running memory hungry operations such 

as 3D Conv on CPUs is not merely attractive, but often imperative [34, 35]. CPUs are also very useful 

for medium-parallelism and sparse DNNs as in some workloads such as Recurrent Neural Networks 

(RNN), the number of computations increases with rising sequence length. However, the 
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parallelization of RNN is challenging because of the dependencies between the steps and the use of 

small batch size. Similarly, DNNs such as InceptionNet variants have filter shapes of 1x1, 3x3, 1x3, 

3x1, etc., which lead to irregular memory accesses and variable amount of parallelism across the 

layers. Such applications with limited parallelism fit more naturally to CPUs, which have few fast 

cores than to GPUs, which have many slow cores [36]. Another advantage is that CPUs are used 

widely in mobile systems where sometimes can provide similar or higher performance than GPUs. 

Also, for applications requiring frequent or continuous inference, GPUs may not be most suitable as 

they can quickly dissipate the battery [37]. Additionally, CPUs remain the processing system of 

choice for executing DNNs in extreme environments [38]. 

 

3.1.2 GPUs 
 

GPUs are considered to be the most prominent DNN accelerators. Its massive parallel architecture 

and computational power is a big advantage that serves the requirements of DNNs. They have been 

used for more than a decade in the acceleration of AI algorithms for training and inference [39]. 

NVIDIA, Intel, and AMD are some of the leading manufacturers that have succeeded in this domain. 

The internal structure of GPUs is hugely complex. Streaming Multiprocessors (SMs) are the 

fundamental idea of the parallelism in GPUs. Each SM may have hundreds to thousands of cores, 

which are the fundamental processing units. Also, the GPUs’ memory hierarchy is highly parallelized 

and shared among various resources. However, this degree of parallelism in GPUs makes them extra 

vulnerable to faults. Figure 23 displays the block diagram of a high-end GPU-based accelerator where 

LDST identifies a load/store unit, SFU identifies a special function unit, and Tex identifies a Texture 

mapping unit [32]. 

 

 
Figure 23: A high-end GPU-based accelerator (NVIDIA Fermi GPU) [32] 
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GPUs have their limitations, such as high-power consumption, and that is where innovation in 

other accelerators is emerging. Due to the wide adoption of edge devices that provide mobility 

features produced by IoT, the power consumption and response time are two substantial reasons that 

make GPUs unsuitable accelerators in some scenarios. However, GPUs are very useful in high-end 

scientific and engineering computing where the focus is on high computation throughput. 

 

3.1.3 FPGAs 
 

FPGA technology has become over time a wise choice to accelerate DNN algorithms in certain 

scenarios. Its main advantages are reconfigurability, versatility, and low-power consumption. An 

FPGA, as seen in Figure 24, is an array of carefully designed and interconnected digital subcircuits 

that efficiently implement common functions while also offering very high levels of flexibility. The 

digital subcircuits are called configurable logic blocks (CLBs), and they form the core of the FPGA’s 

programmable-logic capabilities. Each CLB includes look-up tables (LUTs), storage elements (flip-

flops or registers), and multiplexers that allow the CLB to perform Boolean, data-storage, and 

arithmetic operations. FPGAs also use SRAM or Block RAM (BRAM). BRAMs are small and very 

fast memories and are more efficient than using LUTs. A big FPGA has nearly 100Mb of BRAM, 

chained together as needed. 

 

 
Figure 24: Basic structure of an FPGA [40] 

 

Deep learning algorithms, such as CNNs and Multilayer Perceptrons (MLPs), are executed in 

FPGAs through specialized analog blocks. CLBs and Digital Signal Processing (DSPs) slices are the 

basic blocks for the implementation of MAC operations. However, both of these elements are prone 

to soft errors that can eventually lead to a failure in the DNN model’s output, making FPGAs 

unreliable in processing of DNNs. Another problem is that FGPAs run at low clock frequencies and 



  

43  

are often difficult to deploy and maintain [41]. 

3.1.4 ASICs 
 

ASIC accelerators can be considered as the most promising and reliable components for accelerating 

AI algorithms. These processors are explicitly customized to serve one task which cannot be changed 

over time. The biggest purpose to utilize ASICs for DNN processing is to solve the power constraints 

imposed by GPUs [42]. Memory accesses is recognized as the key bottleneck in DNN computations 

and ASICs can use with great success a data reuse pattern to reduce off-chip memory access which 

makes them superfast. 

 

 
Figure 25: Block diagram of a TPU [43] 

 

Google’s Tensor Processing Unit (TPU) is an example of an ASIC accelerator that is used for 

training and inference of DNN models in Google’s cloud platform and data centers. Figure 25 displays 

the block diagram of a TPU, where the yellow component is the Matrix Multiply Unit. This unit is 

responsible for the main computation. Figure 26 displays its printed circuit card, which can be inserted 

into the slot of a SATA disk in a server. Its inputs are the blue Weight FIFO and the blue Unified 

Buffer, and its output is the blue Accumulators. The nonlinear functions are performed by the yellow 

Activation Unit on the Accumulators and the results go to the Unified Buffer. 
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Figure 26: The Printed Circuit Board of a TPU [43] 

The heart of the TPU, which is the 65,536 8-bit MAC matrix multiply unit, offers a peak 

throughput of 92 TeraOps/second (TOPS) and a large (28 MiB) software-managed on-chip memory 

[43]. It contains 256x256 MACs that can perform 8-bit multiply and adds on signed or unsigned 

integers. The 16-bit products are collected in the 4 MiB of 32-bit Accumulators below the matrix unit. 

The 4 MiB holds 4096, 256-element, 32-bit accumulators. TPU instructions follow the CISC 

computer architecture and its average clock cycles per instruction (CPI) is typically 10 to 20. It has 

in total about a dozen of instructions overall, but the most important ones are the following: 

• Read_Host_Memory: Reads data from the CPU host memory into the Unified Buffer (UB). 

• Read_Weights: Reads weights from Weight Memory into the Weight FIFO as input to the 

Matrix Unit. 

• MatrixMultiply/Convolve: Orders the Matrix Unit to perform a matrix multiply or a 

convolution from the Unified Buffer into the Accumulators. A matrix operation takes a 

variable-sized B × 256 input, multiplies it by a 256 × 256 constant weight input, and produces 

a B × 256 output, taking B pipelined cycles to complete. 

• Activate: Performs the nonlinear function of the artificial neuron, with options for ReLU, 

Sigmoid, and so on. Its inputs are the Accumulators, and its output is the Unified Buffer. It 

can also perform the pooling operations needed for convolutions using the dedicated hardware 

on the die, as it is connected to nonlinear function logic. 

• Write_Host_Memory: Writes data from the Unified Buffer into the CPU host memory. 

The philosophy of the TPU microarchitecture is to keep the matrix unit busy.  

As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic 

execution to save energy by reducing reads and writes of the Unified Buffer. It relies on data from 

different directions arriving at cells in an array at regular intervals where they are combined. Figure 

27 shows that data flows in from the left, and the weights are loaded from the top. A given 256-

element multiply-accumulate operation moves through the matrix as a diagonal wavefront. The 

weights are preloaded and take effect with the advancing wave alongside the first data of a new block. 

Control and data are pipelined to give the illusion that the 256 inputs are read at once, and that they 

instantly update one location of each of 256 accumulators. From a correctness perspective, software 
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is unaware of the systolic nature of the matrix unit, but for performance, it does worry about the 

latency of the unit [43]. 

 

 
Figure 27: The Systolic dataflow inside the Matrix Multiply Unit [43] 

 

ASIC accelerators give us a very good performance, which is very close to GPUs, but have a 

higher energy efficiency. This thesis will focus on this type of accelerators for the study and creation 

of a Near-threshold Approximate framework, which will help in the design of better energy efficient 

DNN accelerators. In general, this category uses a systolic array with a 256 × 256 grid of MAC units 

as its core and a large on-chip memory. However, with such density per chip in advanced 

technologies, soft error rates will escalate as well [9]. 

 

3.2 Approximate Computing in DNNs 
 

One of the main problems of DNNs that prevent them from being widely adopted, is that they achieve 

superior accuracy at the expense of high computational complexity [44]. The models of state-of-the-

art DNNs are very large as they require hundreds of MBs of data storage. As newer and larger DNN 

topologies immerge, the demand for compute is expected to grow. Despite the recent advances in 

computing systems that focus in optimizing DNN implementations and the introduction of custom 

accelerators for DNNs, for state-of-the-art neural networks on large datasets it takes days to weeks to 

train. All the above lead to a great interest in new opportunities to improve compute efficiency of 

DNN implementations. 

DNNs have an important attribute, which is their resiliency in errors (e.g., the production of 

acceptable application-level output despite errors that occur during their constituent computations). 



  

46  

This attribute comes also from the fact that DNNs are used in applications where less-than-perfect 

results are acceptable. The nature of computations also performed within a neuron enhances this 

resilience. More specifically, each neuron in the network evaluates a weighted sum of its inputs, 

followed by a saturating (or thresholding) non-linear activation function (e.g., sigmoid, ReLU). Errors 

in the positive and negative directions compensate for each other during the weighted summation and 

any residual errors are attenuated by the activation function. Hence, approximate computing 

techniques can substantially benefit DNN implementations without sacrificing their classification 

accuracy. 

Shikai Li et al. [45], introduced Sculptor, a flexible approximation with selective dynamic loop 

perforation. Sculptor, who is displayed in Figure 28, is based on loop perforation which is one of the 

most well-known software techniques in approximate computing. This technique transforms loops to 

periodically skip subsets of their iterations. During a thorough analysis, Shikai Li et al., discovered 

that this technique only considers the number of instructions to skip, but does not consider the 

differences between instructions and loop iterations. Based on their observation, these differences 

have considerable influence on performance and accuracy. To improve traditional perforation, they 

introduced selective dynamic loop perforation, a general approximation technique that automatically 

transforms loops to skip selected instructions in selected iterations. Across evaluated applications, 

selective dynamic loop perforation achieves an average speed up of 2.89x and 4.07x with less than 

5% and 10% accuracy loss, and finally can be used to replace traditional loop perforation to achieve 

better performance improvements under the same error budgets. 

 
Figure 28: Overview of Sculptor [45] 

 

In 2017, Jiecao Yu1 et al. [46], proposed Scalpel, a framework, as displayed in Figure 29, that uses 

weight and node pruning, an approximation technique that reduces DNN model size and the 

computation by removing redundant weights and nodes. Scalpel customizes DNN pruning to the 

underlying hardware by matching the pruned network structure to the data-parallel hardware 
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organization. It consists of two techniques: SIMD-aware weight pruning and node pruning. For low-

parallelism hardware (e.g., microcontroller), SIMD-aware weight pruning maintains weights in 

aligned fixed-size groups to fully utilize the SIMD units. For high parallelism hardware (e.g., GPU), 

node pruning removes redundant nodes, not redundant weights, thereby reducing computation 

without sacrificing the dense matrix format. For hardware with moderate parallelism (e.g., desktop 

CPU), SIMD-aware weight pruning, and node pruning are synergistically applied together. Across 

the microcontroller, CPU and GPU, Scalpel achieves mean speedups of 3.54x, 2.61x, and 1.25x while 

reducing the model sizes by 88%, 82%, and 53%. In comparison, traditional weight pruning achieves 

mean speedups of 1.90x, 1.06x, 0.41x across the three platforms. 

 

 
Figure 29: The Scalpel framework [46] 

 

Chenzhuo Zhu et al. [47], aimed at the quantization technique, an approximation method to reduce 

the bit-precision of data used in arithmetic computation of DNN training and inference. Reduction in 

bit-precision results in more compact and energy efficient computing units in hardware. Based on this 

technique they proposed Trained Ternary Quantization (TTQ), a method, as displayed in Figure 30, 

that can reduce the precision of weights in neural networks to ternary values. This method has very 

little accuracy degradation and can even improve the accuracy of some models (32, 44, 56-layer 

ResNet) on CIFAR-10 and AlexNet on ImageNet. Experiments on CIFAR-10 dataset show that the 

ternary models obtained by trained quantization method outperform full-precision models of ResNet-

32,44,56 by 0.04%, 0.16%, 0.36%, respectively. Respectively οn ImageNet dataset, TTQ outperforms 

full-precision AlexNet model by 0.3% of Top-1 accuracy and outperforms previous ternary models 

by 3%. 
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Figure 30: Overview of TTQ [47] 

 

One promising approach to alleviate the computational challenges is implementing DNNs using 

low-precision fixed point (<16 bits) representation. However, the quantization error inherent in any 

Fixed Point (FxP) implementation limits the choice of bit-widths to maintain application-level 

accuracy. Shubham Jain et al. [48], presented Compensated-DNN, an approximation method that can 

dynamically compensate the error introduced due to quantization during execution. Their method 

introduces a new fixed-point representation named as Fixed Point with Error Compensation (FPEC). 

As seen in Figure 31, the bits in FPEC are split between computation bits vs. compensation bits. The 

computation bits use conventional FxP notation to represent the number at low precision. On the other 

hand, the compensation bits (1 or 2 bits at most) explicitly capture an estimate (direction and 

magnitude) of the quantization error in the representation. For a given word length, since FPEC uses 

fewer computation bits compared to FxP representation, a near-quadratic improvement in energy is 

achieved in the multiply-and-accumulate (MAC) operations. The compensation bits are 

simultaneously used by a low-overhead sparse compensation scheme to estimate the error accrued 

during MAC operations, which is then added to the MAC output to minimize the impact of 

quantization. During this study, Compensated-DNNs were built for a suite of 7 popular image 

recognition benchmarks and the energy evaluation conducted revealed a 2.65x – 4.88x and 1.13x – 

1.7x improvement over 16-bit and 8-bit fixed point implementations with <0.5% accuracy difference. 

 
Figure 31: FPEC number format and processing element design [48] 
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3.3 Near Threshold Computing in DNNs 
 

While Moore’s law continues to add more and more transistors, power consumption has become a 

great disadvantage for those devices prohibiting them from been used. Near Threshold Computing 

(NTC) comes as a solution to this problem, offering voltage scaling techniques as a design space 

where the supply voltage is approximately equal to the threshold voltage of the transistors. However, 

voltage scaling is limited for a lot of reasons, some of which are the following [5]: 

• Process variations (PVs) play an important role in affecting the gains of voltage scaling. 

• The sensitivity of circuits in voltage variations can lead to a failure much before supply 

voltage reaches the subthreshold voltage. 

• Subthreshold leakage power starts to rise becoming a substantial portion of the total power. 

• The appearance of soft errors (e.g., timing errors) during calculations in MACs and read/write 

operations in memories. 

Nevertheless, the NTC design paradigm can serve as a great solution for providing the required 

energy efficiency for DNN accelerators that are at the forefront of supporting the immense throughput 

required for AI computation [49]. Yet, NTC operation is prone to a very high sensitivity to process 

and environmental variations, resulting in excessive increase in delay and delay variation. This leads 

to a slowdown in performance and induces high rate of timing errors in the DNN accelerator. 

In 2019, Pramesh Pandey et al. [50], proposed GreenTPU, a low-power near-threshold (NTC) TPU 

design paradigm. Google Tensor Processing Unit (TPU) has transpired to be the best-in-class DNN 

accelerator, offering more than 15 × speedup over the contemporary GPUs. The work of GreenTPU 

is to identify the patterns in the error-causing activation sequences in the systolic array and prevent 

further timing errors from the same sequence by intermittently boosting the operating voltage of the 

specific MAC units in the TPU. Compared to other timing error mitigation techniques, GreenTPU 

manages to succeed a 2 × - 3 × higher performance in an NTC TPU, having in parallel a minimal loss 

in prediction accuracy. 

 

 
Figure 32: Block diagram of GreenTPU [50] 
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As we see in Figure 32(a), a Timing Error Control Unit (TECU) is pipelined between the activation 

memory and the row of each systolic array of MACs. A TECU has three main components: Error 

Log Table (ELT), Sequence Monitor Unit (SeMU), and Boost Control Unit (BCU). The ELT logs 

the timing error causing input sequence pattern. Simultaneously, the BCU is alerted to boost the 

operating voltage of the subsequent MACs in the row, to prevent any future timing error. The SeMU 

monitors the sequence of inputs and tries to find a matching pattern in the ELT in every clock cycle. 

If a match is found, SeMU communicates with the BCU to preclude future timing errors in all the 

MAC units of a row. Inside each MAC a timing error is detected and tackled using Razor and TE-

Drop techniques. Figure 32(b) displays the interaction between MACs and BCU. BCU houses two 

256-bit registers: Boost Control Register (BCR) and Error Sensing Unit (ECU). Each bit of these 

registers corresponds to each MAC unit in a row. As we see, every MAC unit has access to two 

voltage rails,  and , representing a near-threshold and a boost voltage, respectively. The reset 

(set) value in any bit of the BCR, indicates the corresponding MAC unit to operate with the               

 ( ) voltage.  and  is set to 0.45V and 0.65V, respectively. 

High throughput architectures like General Purpose computing on GPUs (GPGPUs) can also 

significantly improve their performance through NTC techniques. GPGPUs provide excellent 

computing power for massively parallel applications and, while originally were developed for 

accelerating graphics processing, can dramatically speed up computational processes for deep 

learning. Nevertheless, NTC is more sensitive to PVs as it complicates power delivery. Rafael Trapani 

Possignolo et al. [51], proposed GPU Stacking, a novel method based on voltage stacking, to manage 

the effects of PV and improve the power delivery simultaneously. Voltage stacking improves the 

efficiency of power delivery. When  units are stacked, they are placed in a series fashion, rather than 

the conventional parallel scheme. Thus, the current in the power delivery network is reduced by a 

factor of  in a system. This allows voltage regulators (VRs) with increased efficiency, smaller areas 

and fewer package pins dedicated to power. GPU Stacking methodology lets the voltage node 

between the stacked elements ( ) float. This floating node is the key to PV compensation. GPU 

Stacking alleviates the current delivery challenges, and intrinsically mitigates PV effects without 

requiring multiple voltage domains. GPU Stacking automatically creates a voltage domain per level 

in the stack without the cost of multiple power rails. This method has a great success in increasing 

performance under process variation at near threshold, on average, by 37% compared to the traditional 

(not stacked) configuration, delivering 80% of the performance compared to the no variation (ideal) 

conditions. 

While studying GPUs, Prabal Basu et al. [52], resulted in finding two crucial factors that 

significantly undermine their efficacy at NTC: (a) Delays provoked from NTC make the GPU 
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applications severely sensitive to Multi-cycle Latency Datapaths (MLDs) within the GPU pipeline 

and (b) PVs at NTC induces a substantial performance variance. To dela with these challenges, they 

proposed SwiftGPU, an energy efficient GPU design paradigm at NTC. SwiftGPU dynamically 

adjusts the degree of parallelization, and the speed of the MLDs within each stream core of the GPU. 

To do this, SwiftGPU employs Self-Adaptive Sprint (SAS), that dynamically sprints the MLDs based 

on the dimensions of the GPU kernel, as well as the MLD usage pattern during the kernel execution. 

As seen in Figure 33, the SAS Controller dynamically manages the execution speed of the Compute 

Unit (CU) (or SM) MLDs. To tackle the impact of PV, several crucial design strategies are adopted, 

ranging from the use of tunable voltage rails to a meticulous selection of the MLD speeds. To support 

several datapath speeds, the underlying power-delivery network is augmented to allow three different 

supply voltage rails: Vdd_H, Vdd_M and Vdd_L, respectively. The SAS controller monitors the 

runtime hardware utilization of various CU MLDs, and dynamically adjusts the MLD speed to 

improve the energy efficiency of the entire system. 

 
Figure 33: Overview of SAS [52] 
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4 HARDWARE ARCHITECTURES FOR DNN PROCESSING 
 

When talking about efficient processing of DNNs, it is important to consider the key metrics that are 

needed to evaluate and compare the strengths and weaknesses of different designs and proposed 

techniques. Efficiency is commonly associated with the number of operations per second per Watt 

(e.g., FLOPS/W, TOPS/W) but there are many more metrics including accuracy, throughput, latency, 

energy consumption, power consumption, cost, flexibility, and scalability. Another important factor 

that must be considered is data reuse. Data reuse concerns data movement (e.g., accessing data to 

memory) and plays a crucial role in energy consumption of modern compute systems. In this chapter 

we present the basic key metrics and their importance, we explain why the case of DNN accelerators 

is important for DNN processing and finally we present two methods for exploiting efficiently data 

reuse. 

 

4.1 Basic Key Metrics 
 

DNNs became very popular and widely used because of the fact that they can offer state-of-the-art 

accuracy [1] on a wide range of tasks. Accuracy is an indicator of the quality of the result for a given 

task and is a key metric that must be considered when designing efficient specialized hardware to 

process DNNs workload. During training or inference of a DNN model, the units used to measure 

accuracy depend on the task. If for example we talk about image classification, accuracy is reported 

as the percentage of correctly classified images. There are two factors that affect accuracy: the 

difficulty of the task (e.g., object detection) and the dataset (e.g., ImageNet). Therefore, a DNN model 

that performs well on MNIST dataset may not necessarily perform well on ImageNet. In conclusion, 

when someone is called to evaluate the efficiency of different hardware in processing DNNs, accuracy 

must seriously be taken into account as it is a crucial metric for the effectiveness of DNN models. 

Throughput and latency [1] are also two important metrics for evaluating hardware efficiency. 

Throughput indicates the amount of data that can be processed or the number of executions of a task 

that can be completed in a given time period. On the other hand, latency measures the time between 

when the input data arrives to a system and when the result is generated. Throughput is often 

generically reported as the number of operations per second. When talking about inference, 

throughput is reported as inferences per second or in the form of runtime in terms of seconds per 

inference. Latency is typically reported in seconds. Throughput and latency are actually quite distinct 

even if we often assume that are directly derivable from one another. For example, when we use 

batching for input data (e.g., batching multiple images or frames together for processing) this 

increases throughput since it amortizes overhead, such as loading the weights. However, batching 
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also increases latency which is not acceptable in real-time applications such as high-speed navigation 

where it would reduce the time available for course correction. 

High energy efficiency [1] is another important key metric when processing DNNs specially at the 

edge in embedded devices with limited battery capacity (e.g., smartphones). This metric is used to 

indicate the amount of data that can be processed or the number of executions of a task that can be 

completed for a given unit of energy. Energy efficiency is often generically reported as the number 

of operations per joule. Power consumption [1], which is linked to energy efficiency, is used to 

indicate the amount of energy consumed per unit time. Thermal design power (TDP) is a design 

criterion that dictates the maximum power consumption of specialized hardware, which is the power 

that the cooling system is designed to dissipate. Power consumption is typically reported in watts or 

joules per second. There are various design considerations for the hardware that will affect the energy 

per operation (e.g., joules per operation). The energy per operation can be broken down into the 

energy required to move the input and output data, and the energy required to perform the MAC 

computation as following: 

 (7) 

Each component performs a joules per operation that is computed as: 

  (8) 

where  is the switching activity,  is the total switching capacitance and  is the supply voltage.  

 
Figure 34: The energy consumption for various arithmetic operations and memory accesses in  

a 45nm process [1] 

 

In Figure 34, the relative energy cost (computed relative to the 8b add) is shown on a log scale. As 

we see, the energy consumption of data movement (red) is significantly higher than arithmetic 
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operations (blue), thus energy consumption is dominated by the data movement as the capacitance of 

data movement tends to be much higher that the capacitance for arithmetic operations such as a MAC 

[1]. Moreover, the switching capacitance increases the further the data needs to travel to reach the PE, 

which consists of the distance to get out of the memory where the data is stored and the distance to 

cross the network between the memory and the PE. Consequently, larger memories and longer 

interconnects (e.g., off-chip) tend to consume more energy than smaller and closer memories due to 

the capacitance of the long wires employed. So, in order to reduce the energy consumption of data 

movement, we can exploit data reuse where the data is moved once from distant large memory (e.g., 

off-chip DRAM) and reused for multiple operations from a local smaller memory (e.g., on-chip buffer 

or scratchpad within the PE). Optimizing data movement is a major consideration in the design of 

DNN accelerators. 

 

4.2 The case of DNN accelerators 
 

A typical DNN accelerator has several processing elements (PEs) and various on-chip buffers. As 

shown in Figure 35, the arrays of Processing Elements (PE) fetch the pixels (Tn pixels) of the input 

feature maps (IFMs) from the input buffer, the weights from the weight buffer, the partial sums 

(PSUMs) from the output buffer, and then compute the PSUMs or the pixels (Tm pixels) of the output 

feature maps (OFMs), which are stored in the output buffer. 

Designing specialized hardware, such as DNN accelerators, is a great challenge specially for the 

fact that, with the end of Moore’s law [53], big computational needs coming from DNNs require to 

employ domain-specific hardware/software co-design (e.g., domain-specific languages such as 

Pytorch) in computing systems to continue to improve performance and energy efficiency. Co-design 

of hardware and software refers to the development of new software and languages that improve the 

user experience [54]. In addition, the compiler can better map such workloads to domain-specific 

hardware to enable improvements in performance and energy efficiency. 

DNN accelerators provide a large improvement in key metrics such as performance and power 

efficiency over general-purpose processors across a wide range of DNN computations. This is 

because when considering hardware organizations for DNN acceleration, design space for specialized 

DNN hardware is quite large. As a result, there are no constraints on the execution order of MAC 

operations within a DNN layer. This leads the hardware designer to have wide latitude in choosing 

the execution order of operations and optimizing the hardware for the targeted metrics given certain 

resource constraints (e.g., memory capacity). 

A major advantage of DNN accelerators is that they have some degree of fault tolerance due to the 

fault tolerance of the DNN algorithms themselves. For example, the ReLU, normalization, and max-
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pooling layers help mask the effects of errors. But in order to achieve high data reuse, so as to improve 

performance, the memory in DNN accelerators is accessed repeatedly, and due to this, a faulty value 

may be reused several times. 

 
Figure 35: DNN accelerator architecture [56] 

 

The energy efficiency of DNN accelerators has also attracted much attention when they are used 

in many low-power environments such as IoTs [55]. As silicon fabrication technologies become 

smaller and smaller, the static power caused by leakage current accounts for a large portion of the 

overall chip power. In modern DNN accelerators, a significant portion of the chip (e.g., 75%) is used 

for on-chip buffers. These on-chip buffers are usually implemented by static random-access memories 

(SRAMs). Therefore, a large part of the current is consumed by the leakage current of the SRAMs. 

The situation is worsened by the increasing trend of using compact data representations in DNNs 

to improve efficiency, as more chip area is required to use SRAMs [56]. This trend leads to memory 

oriented DNN accelerators as the computing units of the accelerators are simplified due to the 

compact data representation. However, larger on-chip buffers are used to store more data on chip and 

reduce off-chip traffic. Thus, in addition to the reliability of DNN accelerators, the static performance 

of on-chip memory is also a non-negligible factor in the development of energy-efficient DNN 

accelerators. 

 

4.3 Examining Data Reuse 
 

Data reuse is a perfect way to reduce the cost of moving data. For DNN accelerators, data reuse is a 

key behavior that improves both latency and energy via reducing the number of remote buffer 

accesses (i.e., global buffer). This section presents two architectural techniques, temporal reuse and 

spatial reuse, and describes how they are applied in hardware. 

4.3.1 Temporal Reuse 
 

Temporal reuse is an architectural technique thar focuses on the fact that the same data value is used 
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more than once by the same consumer (e.g., a PE). This technique can be applied by adding an 

intermediate memory level with a smaller storage capacity than the level that acts as the original 

source of the data. Since smaller memories consume less energy to access than larger memories, the 

data value is transferred once from the source level (i.e., larger memory) to the intermediate level 

(i.e., smaller memory), and used multiple times at the intermediate level, which reduces the overall 

energy cost. 

We can distinguish two modes: temporal multicast and temporal reduction [57]. Temporal 

multicast occurs for input tensors (e.g., filter and input activation) where in this case the reused data 

can be multicasted to multiple PEs over time. In the temporal multicast example of Figure 36, the 

same data tile 1 appears over time in the same PE (PE1). That is, we send the data to the future for 

reuse in the future, that means store the data from the Global Buffer Memory (GBM) to a smaller 

memory (e.g., a buffer) and read it in the future. Therefore, temporal multicast, which is reading the 

same stored data over time, requires a buffer, as shown in Figure 36. On the other hand, during 

temporal reduction, the computed partial sums over time are accumulated within the same location. 

This type of reuse requires a buffer since intermediate results need to be stored and read again in the 

future, which effectively indicates multiple read-modify-write to a buffer. The example in Figure 36 

shows such a reuse pattern, where the output tile 1 appears at the same PE over time. 

 
Figure 36: Overview of data reuse in DNN accelerators [57] 

 

4.3.2 Spatial Reuse 
 

Spatial reuse occurs when the same data value is used by more than one consumer (e.g., a group of 
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PEs) at different spatial locations on the hardware. It can be exploited by reading the data once from 

the source memory layer and transmitting it to all consumers via multicast or reduction [57]. Utilizing 

spatial reuse has the advantage of: 

• reducing the number of accesses to the source storage layer, which lowers the overall energy 

cost, and 

• reducing the bandwidth required by the source storage layer, which helps keep the PEs busy 

and thus improves performance. 

In spatial multicast, which occurs for input tensors, data is delivered to multiple PEs at the same 

time. In the spatial multicast example of Figure 36, tiles 1 and 2 are delivered to PE1 and PE2 at the 

same time leveraging the multicast capability of fanout hardware such as Bus or Tree. Alternatively, 

store-and-forward style implementation such as systolic arrays is available with tradeoff of hardware 

cost and latency. Now as for spatial reduction, which occurs for output activation tensors, partial 

outputs (or partial sums) are accumulated for an output across multiple PEs. Figure 36 shows an 

example reuse pattern based on store-and-for- ward hardware. We observe that the output tiles 1 and 

2 are moving to the next PE over time, which illustrates pipelined accumulation to the right direction 

assuming that PEs are receiving new operands from above (i.e., a row of a systolic array). 

Alternatively, fanin hardware such as Reduction Tree can support the spatial reduction. 

 

4.4 Why Dataflows are important 
 

For DNNs, the bottleneck for processing is memory access. As shown in Figure 37, each MAC needs 

three actions of read, each one for filter weight, fmap activation, and partial sum and one action of 

write for the updated partial sum. In the worst case, all memory accesses must be made via the off-

chip DRAM, which severely compromises both throughput and energy efficiency [58]. For example, 

to support the 724 million MACs in AlexNet, nearly 3000 million DRAM accesses are required. In 

addition, the DRAM accesses require up to several orders of magnitude more energy than the 

computations. To address these challenges, it is of great importance to design a compute scheme 

called dataflow, which decides what data get read into which level of the memory hierarchy and when 

are they getting processed. 
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Figure 37: The actions of read/write in a MAC [58] 

 

DNN accelerators offer the opportunity to reduce the energy cost of data movement by introducing 

multiple levels of local storage hierarchy with different energy costs, as shown in Figure 38. These 

include a large global buffer with a size of several hundred kilobytes connected to DRAM, a network 

between PE, which can pass data directly between ALUs, and a register file (RF) within each PE with 

a size of a few kilobytes or less. The different levels of the memory hierarchy help improve energy 

efficiency by providing low-cost data access. Retrieving data from the RF or the neighboring PEs 

offers one or two orders of magnitude less energy than from DRAM. 

 

 
Figure 38: Levels of local storage hierarchy with different energy costs [58] 

 

Since there is no randomness in the processing of DNNs, it is possible to design a fixed data flow 

that can adapt to the shapes and sizes of DNNs and optimize them for the best energy efficiency. The 

optimized data flow minimizes access from the more energy consuming levels of the storage 

hierarchy. 

Large storage, which can store a significant amount of data, consumes more energy than smaller 

storage. For example, DRAM can store gigabytes of data, but consumes two orders of magnitude 

more energy per access than a small on-chip memory of a few kilobytes. Each time a portion of data 

is moved from an expensive tier to a tier with a lower energy cost, we want to reuse that portion of 

data as often as possible to minimize subsequent accesses to the expensive tiers. The challenge, 

however, is that the storage capacity of these low-cost stores is limited. Therefore, we need to explore 

different data flows that maximize reuse under these constraints. 

For DNNs, we study dataflows that exploit three forms of input data reuse (convolution, fmap, and 

filter), as shown in Figure 39. Convolutional data reuse uses the same fmap activations and filter 

weights within a given channel, just in different combinations for different weighted sums. In fmap 

reuse, multiple filters are applied to the same fmap, so that the input fmap activations are used multiple 
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times for all filters. Finally, in filter reuse, when multiple input fmaps are processed at once (referred 

to as a batch), the same filter weights are used multiple times for all input fmaps. 

 
Figure 39: Forms of input data reuse [58] 

 

Overall, we can distinguish the following three types of dataflows: 

• Weight stationary (WS): Aims to minimize the energy consumption of reading weights by 

maximizing the reuse of weights from the register file (RF) at each PE. As shown in Figure 

40(a), each weight is read from the Global Buffer (e.g., DRAM) into the RF of each PE and 

stays stationary for further accesses. Processing will run as many MACs using the same 

weight as possible, if the weight is present in RF; this maximizes convolutional and filter 

reuse of weights. The inputs and partial sums must move through the spatial array and global 

buffer. The input fmap activations are broadcast to all PEs and then the partial sums are 

spatially accumulated across the PE array. Google’s TPU is a design that features a weight-

stationary dataflow. 
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Figure 40: Types of dataflows [1] 

 

• Output stationary (OS): This type of dataflow is designed to minimize the energy 

consumption of reading and writing the partial sums. As shown in Figure 40(b), OS keeps the 

accumulation of partial sums for the same initial activation value local in RF. To keep the 

accumulation of partial sums stationary in RF, a common implementation is to stream input 

activations across the PE array and send the weight to all PEs in the array. We can distinguish 

multiple possible variants of output stationary, as shown in Figure 41, since the output 

activations that get processed at the same time can come from different dimensions [58]. For 

example, the variant OSA targets the processing of CONV layers and therefore focuses on 

processing output activations of the same channel at the same time to maximize the 

possibilities of reusing convolutional data. The OSC variant targets the processing of FC layers 

and focuses on generating output activations from all different channels, since each channel 

has only one output activation. The variant OSB lies roughly between OSA and OSC. 

 

 
Figure 41: Variants of Output Stationary Dataflow [58] 

 

• Input Stationary (IS): Like the other two types of dataflows, this type is designed to minimize 

the energy consumption of reading input activations. As seen in Figure 40(c), each input 

activation is read from DRAM and put into the RF of each PE and stays stationary for further 

access. Then, it runs through as many MACs as possible in the PE to reuse the same input 

activation. It maximizes the convolutional and input fmap reuse of input activations. While 

each input activation remains stationary in RF, unique filter weights are transferred to the PEs 

at each cycle, while the partial sums are spatially accumulated across the PEs to produce the 

final output activation. 

• Row Stationary (RS): This type of dataflow focuses on maximizing the reuse and 

accumulation at the RF level for all types of data (weights, input activations, and partial sums) 
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for the overall energy efficiency. During RS dataflow, processing of a 1-D row convolution 

is assigned into each PE for processing. It keeps the series of filter weights stationary in the 

RF of the PE and then directs the input activations to the PE. The PE performs the MACs for 

each sliding window at once, which uses only one memory location for accumulating the 

partial sums. Since there are overlaps of input activations between different sliding windows, 

the input activations can be stored and reused in RF. By going through all the sliding windows 

in the row, it completes the 1-D convolution and maximizes the reuse of data and local 

accumulation of data in that row. The above process can be seen in Figure 42. 

 

 
Figure 42: An overview of Row Stationary Dataflow [58]
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5 THE PROPOSED NTV-DNN FRAMEWORK 
 

This chapter focuses on presenting a proposed Near-Threshold Voltage DNN framework (NTV-

DNN) that could serve as an auxiliary tool for designing performance and energy efficient DNN 

accelerators. Experiments are conducted for the assessment of this tool, during which we also check 

the resilience of DNN models in errors provoked from scaling the supply voltage (Vdd). 

 

5.1 Summary 
 

As DNN accelerators came to the fore, this led to an improvement in the speed of DNN inference by 

several orders of magnitude. TPU by Google is considered, among other DNN accelerators, the best 

in class offering more than 15 over the contemporary GPUs [50]. Nevertheless, the growth of DNN 

workloads causes excessive computation, resulting in increased energy consumption in TPU-based 

data centers. To reduce power and energy consumption, while balancing performance and accuracy, 

we propose NTV-DNN, a tool for early assessment of energy at various voltage variation levels. 

NTV-DNN uses MAESTRO [57] as a DNN Accelerator Architectural Model to produce more than 

20 statistics including total latency, energy, power, throughput, etc., as outputs in Super-Threshold 

Voltage Computing (STC) regime. These statistics are fed to a Near-Threshold Voltage Computing 

(NTC) Analysis framework, to calculate power and energy consumption, performance, and relative 

accuracy in NTC regime. During our research, we simulate a 16 x 16 TPU-based accelerator, trying 

to find the best operating voltage of the working PEs without causing errors during the computations 

of a DNN inference. 

 

5.2 The NTV-DNN architectural model 
 

Figure 43 depicts the design overview of our NTV-DNN framework. There are three crucial elements 

that make up the basic function of the framework: the DNN accelerator architectural model 

(MAESTRO), the NTC Analysis and the Error Model. MAESTRO is an open-source tool for 

modeling and evaluating the performance and energy-efficiency of different dataflows. This tool 

takes as input hardware parameters (e.g., total numbers of PEs, size of L1 scratchpad memory, etc.), 

the dataflow (e.g., weight stationary) and the DNN model (e.g., AlexNet), makes a thorough tensor, 

cluster, reuse, performance, and cost analysis and exports the results in a report in STC regime. This 

report is fed to an NTC analysis tool based in a python script. The NTC analysis tool is used to 

calculate the power, energy consumption and performance based on a voltage scaling schema.  
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To produce accuracy results we first run inference of the selected DNN model using the CIFAR-

10 dataset. Then, based on PyTorchFI, which is a runtime perturbation tool for DNNs [59], we 

produce an Error Model. This model takes as input some Fault Injection (FI) parameters (e.g., NTC 

cluster size, positions for FI, etc.), the DNN model and the dataset. The Error Model is tweaked to 

perturb the binary output value of a conv2d (neuron) operation before applying nonlinearity. Then a 

new inference is run, based on the test dataset of CIFAR-10 and the FI positions produced from the 

NTV analysis tool. This FI procedure is based on an NTC frequency scaling schema that aims to 

calculate the accuracy of the examined DNN model under relaxed errors. During frequency scaling 

and based on the resilience of the DNN model in errors, we calculate a new performance. 

 

 
Figure 43: An overview of the proposed NTV-DNN framework 

 

The NTC analysis tool shown in Figure 44, is a python-based script which has a main function 

that runs all the necessary operations to produce a report for power, energy consumption and 

performance of the examined DNN model in NTC regime. The operation of each function is described 

in Table 3.  

 
Table 3: List of functions in NTC Analysis tool 

Function name Input Parameters Output Operation 

power_and_enegy_calc 

.csv file 

(MAESTRO), 

Vdd in NTC 

regime 

file, Vdd_ntc 

Total power in NTC 

regime, 

Total energy in 

NTC regime. 

Calculates the total power 

and energy consumption in 

NTC regime for the given 

DNN model and cluster size. 
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performance_calc 

.csv file 

(MAESTRO), 

Vdd in NTC 

regime 

file, Vdd_ntc 
Total performance 

in NTC regime. 

Calculates the total 

performance in NTC regime 

for the given DNN model 

and cluster size. 

fi_injection_pos 

FI_step = 

int(num_PEs / 

ntc_cluster_siz

e) 

k_step 

fi_injection_list = 

[layer, C_out, 

X_out, Y_out] 

Produces the locations of the 

error (layer_num, dim1, 

dim2, dim3) that are 

necessary for the declaration 

of each neuron injection. 

plot_graph 

Vdd in NTC 

regime, 

Total 

power/energy/

performance in 

NTC regime 

vdd_ntc, 

(total_pwr_ntc, 

total_en_ntc, 

perf_ntc), 

(total_pwr_stc, 

total_en_stc, 

perf_stc) 

The graphs of 

power, energy 

consumption and 

performance in 

NTC and STC 

regime. 

Plots the power, energy 

consumption and 

performance in NTC and 

STC regime for the given 

DNN model and cluster size. 

 

The power_and_energy_calc function determines the MAC power and energy leakage for idle PEs 

using a power gating mechanism. Power-gating consists in switching-off an NMOS footer (or a 

PMOS header) connected in series with the logic in order to cut the leakage current flow. This 

function calculates the power and energy consumption of PEs, Network On Chip (NOC) and SRAM 

(L1 Scratchpad & L2 Shared Buffer) in NTC regime. The performance_calc function calculates the 

total execution time based on runtime per layer and relative frequency in NTC regime. 

Fi_injection_pos is used to generate neuron fault injection positions. Finally, the plot_graph function 

is responsible for the plotting of the graphs that display power, energy consumption and performance 

in NTC regime. 

 

 
Figure 44: The NTC Analysis tool 
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5.3 Voltage allocation and scaling for NTV-DNN 
 

During recent years, designers are dealing with the problem of the so-called power/utilization wall. 

Moore’s law has led to the adoption of manycore architectures as the principal strategy to increase 

performance, ignoring the dark silicon problem connected to power usage, which is closely related to 

heat dissipation. NTC comes as a promising technique to encounter this problem as it takes advantage 

of the quadratic relation between the supply voltage  and the consumed power, by lowering 

the operating  to a region slightly larger than the transistors’ threshold voltage . NTV-

DNN hosts a voltage allocation and scaling technique which is based on the formation of voltage 

islands (VIs) for the minimization of the impact of within-die variations, which are more evident at 

NTC, in both performance and power. This technique, proposed in 2014 from I. Stamelakos, S. Xydis, 

G. Palermo et al. [60], was developed for manycore CPU architectures and proved that when moving 

to the NTC regime for a 128-core architecture, average power gains close to 65% are delivered while 

sustaining the performance values obtained by a 16-core architecture at STC. 

 

 
Figure 45: The NTV-DNN TPU based systolic array accelerator with a VI formation 

 

The scope of the NTV-DNN voltage allocation and scaling scheme is to create, as Figure 45 

depicts, VIs of PEs in a TPU-based accelerator. Every PE contains a MAC unit and a L1 scratchpad 

memory. The frequency of every MAC in NTC regime is calculated as follows: 

 (9) 
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where  ,   are the operating voltages of a MAC in STC regime and NTC regime, 

 is the threshold voltage of a MAC,  is the frequency of every MAC in STC regime and  

is technology-dependent constant (≈ 1.5). Given the corresponding   allocation per VI, we can 

calculate the power of each component in NTC. The dynamic (DP) and leakage (LP) power scaling 

factors are: 

     (10) 

  (11) 

     (12) 

where  is a coefficient modeling the Drain-Induced Barrier Lowering effect,  is the 

thermal voltage,  is the sub-threshold slope coefficient (≈ 1.5), and  is a constant connected to 

 (≈ 0.16). 

The  effect is related to the reduction of the threshold voltage as a function of the drain 

voltage. When we lower the supply voltage, we cause an exponential reduction in sub-threshold 

current because of the  effect. As shown in Figure 46, the impact of  effect is important 

when moving from an STC multicore (16 cores) to an NTC manycore (128 cores) architecture as it 

counts for a significant portion of the total power of the system. The thermal voltage represents the 

flow of electric current and electrostatic potential across a p-n junction based on the temperature (T) 

and is calculated as follows: 

 (13) 

where  is the Boltzmann's constant (= 8.617 * 10-5) and  corresponds to the room temperature in 

Kelvins (= 297.35K). 

 
Figure 46: The Power breakdown of an STC-16core and an NTC-128core  

architecture with and without DIBL effect [60] 
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During the scaling process, we first determine the cluster size that will work in NTC regime. The 

cluster size, as shown in Figure 47, is calculated as follows: 

 

      (14) 

 

Scaling is done for a range of   between 0.45 to 0.85V during which we compute the 

following values: 

• The  , based on equation (9), of the PEs that belong to the VI of the cluster that works 

in NTC regime. 

• The DP and LP power scaling factors, based on equations (10) and (11), for every MAC and 

SRAM. 

• The dynamic and leakage power for every MAC and SRAM in NTC as follows: 

 

     (15) 

     (16) 

 

This results to the calculation of the power in NTC regime with the following equation: 

 

     (17) 

 

• The energy consumption of each MAC in NTC as follows: 

 

      (18) 

 

• The leakage power consumption of a MAC in NTC, in case of power gating the idle PEs, 

which equals to: 

 

     (19) 
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Figure 47: The NTV-DNN TPU based systolic array architecture with a cluster of VIs working in NTC 

 

Additionally, for each layer of the examined DNN model, and for the range of  mentioned 

above, we calculate the power consumption in NTC as follows: 

• Network On Chip (NOC) (see Figure 45) consists of a structure of routers and links, 

implementing a packet-switched communication fabric between the PEs and the L2 shared 

buffer memory. The power consumption of NOC per layer in NTC, is calculated as follows: 

 

    (20) 

 

where  ,  are the dynamic and 

leakage power in NTC accordingly, while  is the remaining 

power of NOC for the PEs working in STC which is calculated according to the following 

equation: 

 

  (21) 

 

where  is the total number of PEs of the 16 x 16 TPU based accelerator and 

 is the power of NOC per layer in STC. 

• For the L1 SRAMs (scratchpad memory), which is located inside each PE, the power 

consumption per layer is calculated as follows: 

 

  (22) 
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where   is the power consumption of L1 SRAMs obtained from the 

multiplication of the number of active PEs ( ) that were used for MAC 

calculations in NTC by the required SRAM size in bytes ( ) and by the L1 power 

in NTC per  cell (byte), as follows: 

 

   (23) 

 

The  addresses to the power consumption of L1 SRAMs 

obtained from the calculation of the remaining number of active PEs 

 in NTC that rest idle, with 

 , by the , which is the required 

SRAM size in bytes, and by the L1 leakage power consumption of each cell of SRAM, as 

follows: 

 

  (24) 

 

Finally, the remaining power consumption of L1 SRAMs in STC equals to: 

 

   (25) 

 

where is the total number of the idle active PEs that work in 

STC and  is the L1 leakage power consumption of each cell of SRAM 

in STC ( ). To avoid errors, the  supply voltage of L1 is scaled only above a 

specific retention supply voltage which assures that the SRAM is error 

resilient [61]. 

• For the L2 shared buffer SRAM memory, to avoid data corruption, the power consumption in 

NTC equals STC in case of . That means: 

 

    (26) 

 

 In case that all SoC works in NTC, then the power consumption of L2 equals to: 
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    (27) 

 

with  the required L2 SRAM size in bytes and  the power 

consumption of each cell of L2 SRAM for the same retention voltage  

 as for L1. 

• For the active PEs (MACs), the power consumption for each layer is calculated as follows: 

 

    (28) 

 

where  is the power consumed from the active PEs 

 in NTC that were used for MAC calculations multiplied by the 

power consumption of each MAC unit working in NTC. 

 

    (29) 

 

The remaining power consumption of the active PEs in NTC that stay idle, equals to the total 

number of these PEs by the leakage power consumption of a PE working in NTC, as follows: 

 

    (30) 

 

In addition, the STC power consumption of the active PEs that stay idle is product of the 

multiplication of their total number by the leakage power consumption of each one working 

in STC. 

 

    (31) 

 

In conclusion, the total power consumption per layer in NTC equals to: 

 

 (32) 

 

The energy consumption of each layer of the DNN model is calculated based on the computation 
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energy, which corresponds to the energy of performing MACs, and the data movement energy, which 

is linked to the movement of data (read/write) to and from the SRAMs [72] , that is: 

 

     (33)  

 

According to equation (33) we have the following: 

• For the L1 scratchpad memory, the NTC energy consumption is calculated as follows: 

 

  (34) 

 

where  is a technology dependent multiplier taken from MAESTRO [57], 

 is the total of read/write operations to L1, and , 

which comes from (18), is the MAC energy cost of accessing one bit at that memory level in 

NTC [72]. 

• For the L2 shared buffer, the energy consumption is calculated in the same way as for L1, but, 

in order to assure that there will be no errors produced during the data movement in L2 for 

NTC regime, we accept the assumption that: 

- If  , that is not all PEs work in NTC, then: 

 

   (35) 

 

          - Else, if all PEs work in NTC: 

 

   (36) 

 

• Ιn terms of energy consumption carried out by the MAC unit inside each PE, the formula 

that calculates the total amount of energy per layer in NTC is the following: 

 

     (37) 

 

This leads to the calculation of total energy consumption of each layer in NTC as follows: 

 

   (38) 
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where  is, according to our assumption, the energy consumed because of the power 

gating of the PEs that work in  frequency and finish the MAC calculations prior of these that 

work in  .  

The performance of each DNN layer in NTC is calculated with the above equation: 

 

      (39) 

 

where  is the total number of cycles executed per layer during inference and 

 is the working frequency in NTC. 

The  supply voltage is selected according to the problem each researcher is dealing with. For 

example,  if we want to find the  for which we get the minimum energy consumption, then we 

have: 

 

       (40) 

 

with k the total number of layers for the examined DNN model (e.g., k = 8 for AlexNet) and j the 

 with a step of 0.5V. 

 

5.4 NTV-DNN error model 
 

When scaling the  supply voltage of a PE unit, this can cause erroneous MAC operations which 

can lead to a great impact on the accuracy of a DNN model. To measure and assess this impact, we 

created an NTV-DNN error model based on PyTorchFI [59]. As displayed in Figure 48, the operation 

of this model is based on four functions, whose detailed description can be seen in Table 4. Our main 

goal is to produce errors only in the level of MAC calculations, that is to the fmap outputs produced 

from the MAC units working in NTC. 
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Figure 48: An overview of the NTV-DNN Error Model 

 
Table 4: List of functions in NTV-DNN Error Model 

Function name Input Parameters Output Operation 

pfi_core DNN model 

DNN_model, 

batch_size, 

input_shape 

A DNN fault 

injection model. 

Creates an error model to 

perform error injections 

dynamically (i.e., during an 

inference). 

declare_neuron_fi FI parameters 

batch, layer_num, 

dim1, dim2, dim3, 

value 

A DNN fault 

injection model. 

Declares a neuron injection 

by passing the location of the 

error. 

new_performance_calc 
A .csv file 

(MAESTRO) 
file, f_ntc 

A .txt file with 

new performance. 

Calculates the new 

performance of the examined 

DNN Model based on a 

frequency scaling schema. 

plot_graph 

Vdd in NTC, 

Frequency in 

NTC, 

accuracy 

vdd_ntc, ntc_freq, 

new_ntc_freq, 

accuracy_before_FI, 

accuracy_after_FI 

The graphs of 

accuracy in NTC. 

Plots the accuracy of the 

DNN Model in NTC 

according to frequency 

scaling. 

 

For each  supply voltage in NTC, an  is calculated through (9). This frequency is used to 

produce our frequency scaling scheme which uses a step of 5MHz. To decide when to produce an 

error, we proceeded in a path distribution analysis by designing a 45nm technology node ALU, using 

the Synopsys design software [73] and the TSMC cell library. We discovered that, when increasing 
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the frequency of the designed ALU, keeping  stable, a delay is produced during calculations of 

29th and 31st bit of a 32-bit floating point number leading to an erroneous result. According to the 

impact of the delay caused by the increase of frequency, we produce a bit flip (of 29th bit, 31st bit or 

both) on the 32-bit floating point number output result of each selected neuron. For the 

 operating frequency for each PE of our TPU-based accelerator, the 29th bit and 31st 

bit are calculated after 1.39nsec and 1.33nsec respectively, so we have: 

  (40) 

  (41) 

Therefore, for each NTC frequency during scaling, an  and  is calculated. 

If the new selected frequency overpasses one or both of the above 29th bit and 31st bit frequency 

values, then each of these bits is flipped in the output locations of neurons fed to our Error Model, 

through inference using the CIFAR-10 dataset which contains 10.000 test images.  

 

 
Figure 49: PyTorchFI output summary of the AlexNet error model 

 

The locations of the neurons, where the perturbation takes effect, are taken through the Fault 

Injection (FI) parameters fed from the NTC Analysis Tool. Each location of FI depends on the 

mapping of the calculations between filter weights and input activations to each VI of the TPU-based 

accelerator. Figure 51 displays for time step 0, an example of mapping of the data to each of the 8 

VIs during inference for the 1st conv2d layer of AlexNet DNN model. The dataflow strategy chosen 

is the kcp_ws and the dimension of batch N, which is of size 4, equals to 1. The kcp_ws mapping is 

using multi-level parallelism via clustering. This is achieved by creating clusters of PEs during the 

computation of partial sums. As we see in Figure 50, the kcp_ws mapping divides the total number 

of PEs into clusters of size 32, which equals the size of our designated VIs. Table 5 displays an 
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example of the mapping of data for input and weight tensors in each cluster. The numbers are indices 

of the data in each tensor. Each tensor is in essence an fmap. Αs we observe for the 1st conv2d layer 

of AlexNet, only 3 of the total 32 PEs of the cluster (or VI) are used during the MAC calculations, as 

the dimension of the input channel (C) for the input and filter tensors equals to 3. 

 

 

 
Figure 50: The kcp_ws NVDLA-like dataflow for the 1st conv2d layer of AlexNet 

 
Table 5: The mapping of data on the 1st cluster for the kcp_ws dataflow 

Cluster 1 
 Time step = 0 

Layer: Conv2d-1 

Cluster size: x = 32 

PE 1 PE 2 PE 3 PE 4 PE 5 PE x 

In
pu

t T
en

so
r 

Batch (N) 1 1 1 - - - 

Input Channel (C) 1 2 3 - - - 

Input Height (Y) 
1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11 

1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11 

1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11 
- - - 

Input Width (X) 
1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11 

1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11 

1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11 
- - - 

W
ei

gh
t T

en
so

r 

Output Channel (K) 1 1 1 - - - 

Input Channel (C) 1 2 3 - - - 

Weight Height (R) 
1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11 

1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11 

1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11 
- - - 

Weight Width (S) 
1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11 

1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11 

1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11 
- - - 
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O
ut

pu
t T

en
so

r 

Batch (N) 1 

Output Channel (K) 1 

Output Height (Y’) 1 

Output Width (X’) 1 

 

For , which means that two of our VIs (each VI englobes 32 PEs) work in 

NTC, the  equals to: 

 

As we see in Figure 51, every perturbation takes place with a step of 4, meaning that for every 

 (for the 1st layer), an FI takes place till all the elements of the 

55 x 55 tensor output, that come the MAC calculations of the PEs working in NTC, are perturbed. 

Table 6 displays the part of Python code, which is part of the fi_injection_pos function, that produces 

the locations of neurons where the perturbation take effect. This part of code addresses to the 1st 

conv2d layer of AlexNet. A different for loop exists for every conv2d layer. Figure 49 displays the 

layers and output shapes of the error model produced from PyTorchFI based on AlexNet. 
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Figure 51: The FI procedure in the 1st conv2d layer of AlexNet 

Table 6: FI locations for the 1st Conv2d layer of AlexNet 

Python Code Description 
          for g in range(0, 64, k_step): 

for f in range(55): 

            for w in range(55): 

                layer.append(0) 

                C_out.append(g) 

                X_out.append(f) 

                Y_out.append(w) 

This for loop produces the FI locations (see example Figure 50) for the 1st 

Conv2d layer of AlexNet and is part of the fi_injection_pos function. The 

k_step is equal to the FI_step. The values of every list (layer, C_out, X_out, 

Y_out) are fed to the declare_neuron_fi function. The variables g, f, w 

represent K=64, X’=55, Y’=55 respectively which are the dimensions of 

output tensor of the 1st layer. 

 

It is proved that in general DNN accelerators have a certain degree of fault tolerance due to the 

fault tolerance of DNN algorithms themselves [62]. According to S. Hong et al. [63], who studied the 

vulnerability of DNN parameters to single bit flips, as for the direction of bit-flip, only 0 → 1 flip 

causes large accuracy loss. A 1 → 0 flip can only reduce the parameter value. Due to the normal 

distribution of parameters, most parameters are inside [−1, 1] range. Hence, a 1 → 0 flip in exponent 

bit can reduce the magnitude of a parameter by no more than one. Along similar lines, both 0 → 1 or 

1 → 0 flips in sign bit cannot lead to large accuracy loss since they alter the magnitude by no more 

than two. By comparison, a 0 → 1 flip in exponent bits dramatically increases the value of a 

parameter. Hence, during inference, unduly high activation produced by the faulty parameter value 

overrides the remaining activations. They find that nearly 50% of the parameters of the DNNs are 

vulnerable to single bit-flips. 

 

5.5 NTV-DNN assessment tool flow 
 

In this section we present the tools that were used to build out NTV-DNN framework. All our tools 

are open source and are carefully selected to implement each functionality. 

 

5.5.1 PyTorch: An open-source machine learning framework 
 

PyTorch is one of the biggest libraries in deep learning research. It is based on the Python 

programming language and the Torch library, makes debugging easy and is consistent with other 

popular scientific libraries [64]. During computations, this optimized framework uses tensors that are 

accelerated by GPUs and CPUs. Tensors are a specialized data structure that are very similar to arrays 

and matrices. In PyTorch, tensors are used to encode the inputs and outputs of a model, as well as the 

model’s parameters [65]. Figure 52 displays the training of a CNN Model using PyTorch. 
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Efficient interoperability is one of the key aspects of PyTorch, because it allows users to use 

Python's vast ecosystem of libraries as part of their own projects. It, for example, provides a 

mechanism for converting NumPy arrays to PyTorch tensors using the torch.from_numpy() function 

and numpy() tensor method. As a result, those operations are extremely cheap and take constant time 

regardless of how large the converted arrays are. Most importantly, users are free to replace any 

PyTorch component that does not meet their project's needs or performance requirements. They are 

all intended to be completely interchangeable, and PyTorch takes great care not to impose a specific 

solution. 

 
Figure 52: Training a CNN Model with PyTorch [67] 

PyTorch keeps its control (e.g., program branches, loops) and data flow completely separate (e.g., 

tensors and the operations performed on them). The control flow resolution is handled by Python and 

optimized C++ code running on the host CPU, resulting in a linear sequence of operator invocations 

on the device. Operators can run on either the CPU or the GPU. PyTorch is designed to run operators 

asynchronously on GPUs by using the Nvidia CUDA stream mechanism [66] to queue CUDA kernel 

invocations to the GPU's hardware FIFO. This enables the system to run Python code on the CPU 

alongside tensor operators on the GPU. Because tensor operations typically take a long time, we can 

saturate the GPU and achieve peak performance even in an interpreted language with relatively high 

overhead, such as Python. It is worth noting that this mechanism is nearly invisible to the user. Unless 

they implement their own multi-stream primitives, the library handles all CPU-GPU synchronization. 

 

5.5.2 MAESTRO cost model 
 

The efficiency of an accelerator is determined by three factors: mapping, deep neural network (DNN) 

layers, and hardware, constructing extremely complicated DNN accelerator design space. 

MAESTRO, who’s high-level overview is shown in Figure 53, is an analytical cost model tool that 

aims in guiding a DNN accelerator design for better efficiency [57]. As inputs, MAESTRO receives 

a list of DNN model descriptions and hardware resource information, as well as mapping described 

in a data-centric representation we propose. The data-centric representation is made up of three 
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directives that allow for concise mapping descriptions in a compiler-friendly format. MAESTRO 

quickly analyzes various forms of data reuse in an accelerator based on inputs and generates more 

than 20 statistics as outputs, including total latency, energy and throughput. 

 

 
Figure 53: (a) An overview of mapping CONV2D to an accelerator (b) High-level Tool  

flow of MAESTRO [57] 

 

MAESTRO consists of five preliminary engines: Tensor, cluster, reuse, performance analysis, and 

cost analysis. It supports, as seen in Figure 54, a diverse set of accelerators, including global shared 

scratchpad (L2 SRAM), local PE scratchpad (L1 scratchpad), NoC, and a PE array organized into 

any number of hierarchies or dimensionalities. MAESTRO implements a hardware design space 

exploration (DSE) tool that searches four hardware parameters (the number of PEs, L1 buffer size, 

L2 buffer size, and NoC bandwidth) optimized for either energy efficiency, throughput, or energy-

delay-product (EDP) within given hardware area and power constraints. The DSE tool takes the same 

inputs as MAESTRO, but with hardware area/power constraints and the area/power of building 

blocks synthesized with the target technology. A float/fixed point multiplier and adder, bus, bus 

arbiter, and global/local scratchpad are implemented in RTL and are all synthesized using 28-nm 

technology to reduce the cost of building blocks. Regression is also used to fit the costs of the bus 

and arbiter into a linear and quadratic model because the bus cost increases linearly and the arbiter 

cost increases quadratically (e.g., matrix arbiter). 

 
Figure 54: An overview of the supported hardware in MAESTRO [68] 
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5.5.3 PyTorchFI runtime fault injector 
 

Searching for an effective and reliable open-source perturbation tool is not easy. During our research, 

we found many FI tools but most of them were deprecated as they use a Python version which is 

below version 3 (e.g., Ares Fault Injection Framework). PyTorchFI is a very promising DNN runtime 

perturbation tool for the popular PyTorch deep learning platform [59]. As seen in Figure 55, users 

can implement PyTorchFI to perform runtime perturbations on DNN weights or neurons. It is 

designed with the programmer in mind, with a simple and easy-to-use API that can be used with as 

few as three lines of code. It also has an extensible interface that allows researchers to choose from 

various perturbation models (or design their own custom models), allowing them to study the 

propagation of hardware error (or general perturbation) to the software layer of the DNN output. 

As a first step, PyTorchFI can be inserted into our project as a python package with pip install 

pytorchfi and contains: 

• Core.py: This file contains the core functionality for fault injections. We have tweaked this 

file to implement our fault injection schema which consists of flipping the 29th and 31st bits 

according to the selection of the error policy from our Error Model tool. 

• Error_models.py: It provides different error models out-of-the-box for use. 

 

  
Figure 55: An overview of PyTorchFI [59] 

 

As a second step, initializing takes place during which PyTorchFI selects the model on which the 

perturbations will be performed. Other arguments include the height and width of the input image, as 

well as optional parameters such as batch size, model data type (e.g., FP32 or FP16), and whether to 

run on the CPU or GPU. PyTorchFI then performs a single dummy inference to profile the model and 

collects all the network's hyperparameters, such as the number of layers, filter sizes, and feature map 

sizes. This information is used to ensure that perturbations are legal and to provide the end user with 

detailed debugging messages. 

Finally, as a third step, we choose a perturbation model and a location for the perturbation. The 

user is provided with a default set of perturbation models (from error_models.py) to choose from, 

such as a random value, a single bit flip, or a zero-value. For our project, we used only the tweaked 
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core.py mechanism. The user can also easily create their own perturbation model. Along with the 

perturbation model, the user must specify the location of the perturbed weight/neuron. This can be a 

single location (specified in the tensor by the layer, feature map, and neuron's coordinate position) or 

multiple locations to cause multiple perturbations throughout the network. The user can also choose 

whether to apply the same perturbation to all elements in a batch or to apply a different perturbation 

to each element. 

The actual perturbation happens during runtime by taking the location of the incorrect 

neuron/weight and appending it to a list of tensor positions to change. The forward hook will then 

iterate through all of the locations on each layer, corrupting the corresponding value based on the 

perturbation model chosen. 

 

5.5.4 CIFAR-10 dataset 
 

As a dataset for the training and inference of our DNN Models we chose the Canadian Institute For 

Advanced Research - 10 (CIFAR-10). This dataset consists of 60000 32 x 32 color images in 10 

classes, with 6000 images per class. There are 50000 training images and 10000 test images [69]. The 

dataset is divided into five training batches and one test batch, each of which contains ten thousand 

images. The test batch contains exactly 1000 images from each class, chosen at random. The 

remaining images are distributed in random order in the training batches, but some training batches 

may contain more images from one class than another. The training batches each contain exactly 5000 

images from each class. 

This collection of images is commonly used to train machine learning and computer vision 

algorithms, and CNNs seems to be the best at recognizing the images in CIFAR-10. The archive of 

this dataset contains some data batch files as well as a test batch file. Each of the batch files contains 

a dictionary with the following elements: 

• Data: This is a 10000 x 3072 NumPy array. Each row of the array stores a 32 x 32 color 

image. The first 1024 entries contain the red channel values, the next 1024 the green, and 

the final 1024 the blue. The image is stored in row-major order, so that the first 32 entries 

of the array are the red channel values of the first row of the image. 

• Labels: a list of 10000 numbers in the range 0-9. The number at index i indicates the label 

of the  ith  image in the array data. 

The file of the dataset called batches.met, is a Python dictionary object and contains the label names 

that correspond to a 10-element list which gives meaningful names to the numeric labels in the labels 

array described above. 
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5.6 Experimental Setup 
 

We use MAESTRO to simulate a TPUv1 systolic array accelerator of 28nm. To run MAESTRO, we 

must first install all the package dependencies (e.g., g++, scons). We then run the scons command in 

terminal to compile the code and, we set the parameters of MAESTRO which are displayed in Table 

7. 
Table 7: List of parameters input to MAESTRO 

Parameter type Input Description 
HW_file accelerator_1.m The hardware parameters file. 

Mapping_file alexnet_pytorch_kcp_ws_64.m The target dataflow and layer 
description file. 

print_res true MAESTRO prints out detailed cost 
information to the screen. 

print_res_csv_file true MAESTRO prints out a csv file that 
contains various statistics. 

print_log_file false 
MAESTRO prints out a log file that 

contains various information of 
detailed computation patterns to 

"log.txt". 
 

The hardware parameters file accelerator_1.m contains the values listed in Table 8. 

 
Table 8: List of parameters of accelerator_1.m file 

Parameter type Input Description 
num_pes 256 Number of PEs. 

l1_size_cstr 1024 (bytes) L1 buffer size constraint. 

l2_size_cstr 32768 (bytes) L2 buffer size constraint. 

noc_bw_cstr 1024 (bytes) NoC bandwidth constraint. 

offchip_bw_cstr 2048 (bytes) Off-chip memory bandwidth 
constraint. 

 

The parameters of L1 and L2 buffer are optional and if not specified, MAESTRO will assume infinite 

resources and compute the required amount of resources, which are reported in the .csv file. 

MAESTRO will also check if the constraints are met. If not, it will print out warning message. 

Furthermore, we tweaked the API_user-interface-v2.hpp and DSE_csv_writer.hpp of MAESTRO 

source code to export in the .csv file of the statistics the cluster size of the dataflow mapping and the 

energy consumption of L1, L2 and MAC in STC. In Table 9 we see the values that should be corrected 

in each source file considering that the clock speed of our TPU-based accelerator is  and 

each PEs contains only one ALU. 
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Table 9: List of values altered in MAESTRO source code 

File Values altered Description 
options.hpp num_simd_lanes = 1 The number of ALUs in each PE. 

DSE_cost-database.hpp mac_energy =  The energy consumption of an 
ALU (MAC unit) in STC. 

 

Next, for each DNN Model we generate a MAESTRO DNN Model file from Pytorch with 

frameworks_to_modelfile_maestro.py, as shown in Table 10, with input size 3 x 224 x 224. Since we 

 
Table 10: List of MAESTRO DNN Models 

PyTorch Model MAESTRO DNN Model 
AlexNet alexnet_pytorch.m 

GoogLeNet googlenet_pytorch.m 

ResNet-18 resnet18_pytorch.m 

SqueezeNet squeezenet1_1_pytorch.m 

 

are going to use CIFAR-10 dataset for the training of our DNN Models, which has 60000 32 x 32 

color images in 10 classes, we must alter the K output dimension of the last layer as shown in Table 

11. The mapping analysis convention can be seen in Figure 56. 

 
Table 11: The dimensions of the last layer for each MAESTRO DNN Model 

MAESTRO DNN Model Layer Dimensions 
alexnet_pytorch.m Linear-8 K = 10, C = 1024, R = 1, S = 1, Y = 1, X = 1 

googlenet_pytorch.m Linear-64 K = 10, C = 1024, R = 1, S = 1, Y = 1, X = 1 

resnet18_pytorch.m Linear-21 K = 10, C = 512, R = 1, S = 1, Y = 1, X = 1 

squeezenet1_1_pytorch.m Conv2d-26 K = 10, C = 512, R = 1, S = 1, Y = 13, X = 13 

 

 
Figure 56: The mapping analysis convention 

 



  

84  

As next step, we create four MAESTRO Mapping files using the MAESTRO DNN Model file 

and each specific dataflow, for every DNN Model, as displayed in Table 12. The mappings (dataflow 

strategy) used is shown in Table 13. 
Table 12: List of MAESTRO Mapping files for each DNN Model 

PyTorch Model MAESTRO DNN Model 

AlexNet 

alexnet_pytorch_kcp_ws.m 
alexnet_pytorch_rs.m 

alexnet_pytorch_maeri.m 
alexnet_pytorch_yxp_os.m 
alexnet_pytorch_yrp_rs.m 

GoogLeNet 

googlenet_pytorch_kcp_ws.m 
googlenet_pytorch_rs.m 

googlenet_pytorch_maeri.m 
googlenet_pytorch_yxp_os.m 
googlenet_pytorch_yrp_rs.m 

ResNet-18 

resnet18_pytorch_kcp_ws.m 
resnet18_pytorch_rs.m 

resnet18_pytorch_maeri.m 
resnet18_pytorch_yxp_os.m 
resnet18_pytorch_yrp_rs.m 

SqueezeNet 

squeezenet1_1_pytorch_kcp_ws.m 
squeezene1_1_pytorch_rs.m 

squeezenet1_1_pytorch_maeri.m 
squeezenet1_1_pytorch_yxp_os.m 
squeezenet1_1_pytorch_yrp_rs.m 

 
Table 13: Mappings used to create each MAESTRO Mapping file 

Partitioning Strategy Mapping Characteristics 

Eyeriss-like  

row stationary dataflow [70] 

SpatialMap(1, 1) Y' 

TemporalMap(1, 1) X' 

TemporalMap(1, 1) C 

TemporalMap(16, 16) K 

TemporalMap(Sz(R), Sz(R)) R 

TemporalMap(Sz(S), Sz(S)) S 

Cluster(Sz(R), P) 

SpatialMap(1,1) Y 

SpatialMap(1,1) R 

TemporalMap(Sz(S), Sz(S)) S 

• Row-stationary 

• Reconfigures the computation mapping of 

a given shape. 

• High temporal reuse of input activation 

and filter 

MAERI-like  

dataflow [71] 

TemporalMap(1, 1) C     

SpatialMap(1, 1) K        

TemporalMap(1, 1) Y' 

TemporalMap(1, 1) X'    

TemporalMap(Sz(R), Sz(R)) R  

TemporalMap(Sz(S), Sz(S)) S 

// This is a VN of size Sz(R) x 

• Constructs a Virtual Neuron (VN). 

• Maps VNs one by one over the PEs. 

• Configures the Augmented Reduction 

Tree (ART) for the VNs to operate in 

parallel. 
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Sz(S) 

Cluster(Sz(R), P) 

SpatialMap(1,1) Y 

SpatialMap(1, 1) R 

Cluster(Sz(S), P) 

SpatialMap(1, 1) X 

SpatialMap(1, 1) S 

YX-Partitioned 

(YX-P) 

TemporalMap(1, 1) K 

SpatialMap(Sz(R), 1) Y 

TemporalMap(Sz(S), 8) X 

TemporalMap(1, 1) C 

TemporalMap(Sz(R), Sz(R)) R 

TemporalMap(Sz(S), Sz(S)) S 

Cluster(8, P) 

SpatialMap(Sz(S),1) X 

• High temporal reuse of filter. 

• Better spatial reuse opportunities. 

• 2D activation (X and Y) parallelism. 

• Output-stationary. 

YR-Partitioned 

(YR-P) 

TemporalMap(2, 2) C 

TemporalMap(2, 2) K 

SpatialMap(Sz(R), 1) Y 

TemporalMap(Sz(S), 1) X 

TemporalMap(Sz(R), Sz(R)) R 

TemporalMap(Sz(S), Sz(S)) S 

Cluster(Sz(R), P) 

SpatialMap(1,1) Y 

SpatialMap(1,1) R 

• High temporal reuse of input activation 

and filter. 

• Spatial reduction opportunities. 

• Activation row (Y) and filter column (S) 

parallelism. 

• Row-stationary. 

KC-Partitioned 

(KC-P) 

NVDLA-like dataflow 

SpatialMap(1, 1) K 

TemporalMap(32, 32) C 

TemporalMap(Sz(R), Sz(R)) R 

TemporalMap(Sz(S), Sz(S)) S 

TemporalMap(Sz(R), 1) Y 

TemporalMap(Sz(S), 1) X 

Cluster(32, P) 

SpatialMap(1, 1) C 

TemporalMap(Sz(R), 1) Y 

TemporalMap(Sz(S), 1) X 

TemporalMap(Sz(R), Sz(R)) R 

TemporalMap(Sz(S), Sz(S)) S 

• Spatial reuse of input activation. 

• High spatial reduction factor (32-way) on 

input channel (C). 

• Input/Output channel (C and K) 

parallelism. 

• Weight stationary. 

 

The NTC parameters of the NTC Analysis tool are displayed in Table 14. We consider that our TPU 

based accelerator has a total number of 256 PEs, forming 8 VIs (8 x 32 = 256 PEs). For example, if 

our ntc_cluster_size equals to 128 (meaning that 128 PEs work in NTC), then we have 4 VIs working 

in NTC. 
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Table 14: List of NTC parameters 

Parameter type Input Description 
power_gating true Simulates power gating of idle PEs. 

mac_power_stc 1.2223mW The dynamic power of a MAC (ALU) unit of a PE 
in STC regime for TPU v1 (28nm node). 

mac_power_leak (1 / 5) * mac_power_stc The leakage power of a MAC (ALU) unit in STC. 

mac_power_dynamic mac_power_stc - 
mac_power_leak 

The dynamic power of a MAC (ALU) unit in STC. 

l1_energy_multiplier 1.68 
Taken from MAESTRO (BASE_constants.hpp).  

It is the constant used for the calculation of energy 
consumption of SRAM. 

l2_energy_multiplier 18.61 
Taken from MAESTRO (BASE_constants.hpp).  

It is the constant used for the calculation of energy 
consumption of SRAM. 

l1_power_stc 0.00345mW Taken from MAESTRO (DSE_cost-database.hpp).  
It is the power consumption of an SRAM cell (byte). 

l2_power_stc 0.00345mW Taken from MAESTRO (DSE_cost-database.hpp).  
It is the power consumption of an SRAM cell (byte). 

Vdd_stc 0.9V Supply voltage of a MAC unit in STC. 

Vdd_ntc 
[0.45, 0.50, 0.55, 0.60, 0.65, 

0.70, 0.75, 0.80, 0.85] in Volts Scaling voltage in NTC. 

Vth_stc 0.4V The nominal threshold voltage in STC. 
Vth 0.4V The threshold voltage of a MAC unit. 

Vdd_retention_sram 0.6V 
The Vdd retention of SRAM.  The minimum 

required supply voltage so that 
the memory cells retain data while consuming less 

leakage power. [61] 
f_stc 700MHz The operating frequency of our TPU-based 

accelerator in STC. 
f_stc_bit_29 719MHz The operating frequency during calculations of the 

29th bit of the 32bit IEEE-754 Floating Point result. 
f_stc_bit_31 752MHz The operating frequency during calculations of the 

31st bit of the 32bit IEEE-754 Floating Point result. 
b 1.5 Technology dependent contant. 
K 8.617 * 10-5 Boltzman constant (eV) 

temp 297.35K Room temperature in Kelvins 
Vtherm K * temp The thermal voltage. 

n 1.5 The Sub-threshold slope coefficient. 

num_PEs 512 The total number of PEs of the TPU-based 
accelerator. 

num_layers 8 The total number of layers of the examined DNN 
Model (e.g., AlexNet). 

dataflow kcp_ws The chosen mapping (dataflow). 
ntc_cluster_size 128 The total number of PEs working in NTC. 

fi_step num_PEs / ntc_cluster_size The FI step that will be used by the fi_injection_pos 
function for the calculation of the FI location points. 

 

The FI parameters of the NTV-DNN Error Model are shown in Table 15. 

 
Table 15: List of FI parameters 
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Parameter type Input Description 

batch_size1 4 The batch size (N) of the input activations (e.g., 4 images of CIFAR-10 
dataset) 

batch_size2 [0, 1, 2, 3] The input parameter (batch) for the declare_neuron_fi function. 

input_shape [3, 224, 224] The input parameter (input shape of the image) for the declare_neuron_fi 
function. 

k_step fi_step The FI step. 

layer injection_list[0] This list that contains the layer numbers of the examined DNN Model 
where the perturbation will occur. 

batch_size2 [0, 1, 2, 3] This list contains the batch dimension of each shape [batch, C, H, W] of 
the output feature map, where the injection will occur. 

C_out injection_list[1] This list contains the C dimensions of each shape [batch, C, H, W] of the 
output feature map, where the injection will occur. 

X_out injection_list[2] This list contains the X dimensions of each shape [batch, C, H, W] of the 
output feature map, where the injection will occur. 

Y_out injection_list[3] This list contains the Y dimensions of each shape [batch, C, H, W] of the 
output feature map, where the injection will occur. 

 

For the process of inference and training to calculate the accuracy of each DNN Model, we use the 

parameters listed in Table 16. Training and inference are run under Window 11 operating system, 

CUDA version 11.3 and NVIDIA GeForce GTX 1050 Ti as the specified CUDA device. 

 
Table 16: List of parameters for inference and training 

Parameter type Input Description 

transform 

transforms.Compose([ 
    transforms.Resize(256), 
    transforms.CenterCrop(224), 
    transforms.ToTensor(), 
   transforms.Normalize(mean=[0.485, 
0.456, 0.406], std=[0.229, 0.224, 0.225]) 
]) 

We transform every image of the CIFAR-10 
dataset to meet the input_shape = [3, 224, 224]. 

train_data torchvision.datasets.CIFAR10 Downloads the training images of CIFAR-10 
dataset. 

test_data torchvision.datasets.CIFAR10 Downloads the test images of CIFAR-10 dataset. 
trainloader torch.utils.data.DataLoader Loads the training images for training purposes. 

testloader torch.utils.data.DataLoader Loads the test images for inference. 
device torch.device Instantiating CUDA device. 

AlexNet_model models.alexnet(pretrained=True) 
Loads the DNN Model from PyTorch (e.g. 
AlexNet). This Model is trained with CIFAR-10 
dataset. 

AlexNet_model torch.load(‘./path’) Loads the pre-trained (with CIFAR-10 dataset) 
DNN Model from the specified path. 

 

5.7 Experimental Results 
 

In this section we present the results of our research. We first explore the VI granularity which aims 

to present the effect of applying different  and  to power/energy 

consumption and execution time of each layer of our examined CNN Models. We then check how 
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 and  affect the power/ energy efficiency and performance of each DNN 

Model, keeping the resources ( ) constant. We proceed our experiments in examining if 

there is an equivalent TPU-based accelerator in NTC who has the same performance with an 

accelerator that works in STC. Our study continues by comparing the efficacy of our NTV-DNN tool 

for different operating schemes under relaxed error. Furthermore, we analyze the impact of applying 

different dataflow strategies to power/energy consumption and execution time of each CNN Model, 

for a specific scheme of  ,  ,  and . Finally, we explore 

how power, energy and performance efficiency of our examined DNN Models can be affected 

through  variability, keeping  ,  and  constant. 

 

5.7.1 Exploring voltage island granularity 
 

During the formation of VIs, we must explore the effects of applying different Vdd supply voltages 

during our NTC analysis through scaling. The purpose of this analysis is to explore the effect of 

different Vdd supply voltages to power/energy consumption and performance of each layer of the 

examined DNN model. The results obtained will guide as to decide if it is better to apply the same 

Vdd to all layers or a specific cross-layer policy (e.g., Vdd = 0.6V, cluster_size_ntc = 32). The 

numerical values used are shown in Table 17. 
Table 17: List of parameters for the voltage island granularity analysis 

Parameter Value 

num_PEs 256 

PEs per VI 32 

ntc_cluster_size (VIs) 32 (1), 64 (2), 128 (4), 256 (8) 

Dataflow kcp_ws 

Vdd_ntc (in Volts) 
0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 

0.85 

 

5.7.1.1 Intra-layer 
 

Figure 58 displays the distribution of power consumption across each layer of the AlexNet DNN 

Model in STC  through a heatmap. In Figure 57 we see the same distribution in 

NTC for different  and  values. We notice that, for the highest 

 (= 256 PEs) and the lowest  (= 0.45V), we result in higher gains in power. 

For example, in the 1st layer of AlexNet, where we have a total  and 
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a total , the gain equals to: 

 

 

 
Figure 57: Power consumption per layer in NTC for different Vdd, NTC and cluster_sizeNTC (AlexNet) 
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Figure 58: Power consumption per layer in STC for AlexNet 

Similar to power, the gain in energy, as shown in Figures 59 and 60, for  

and , equals to: 

 

Each quantity of energy is measured in nJ. We can also see that in NTC, when moving to Vdd supply 

voltages below 0.5V, leakage power starts to dominate leading to an increase in energy consumption. 

 

 
Figure 59: Energy consumption per layer in STC for AlexNet 
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Figure 60: Energy consumption per layer in NTC for for different Vdd, NTC and cluster_sizeNTC (AlexNet) 

 

On the contrary, for low , the performance efficiency of each layer is degraded. For 

example, as shown in Figures 61 and 62, the loss in execution time (msec) in NTC, for the highest 

 and the lowest  , is: 

 

We must also consider that the execution time of each layer is dominated by the PEs working in NTC, 

as the remaining PEs that work in STC complete their MAC calculations first. Table 18 displays the 

best gains in power and energy consumption for each layer, as well as the worst loss in execution 

time during inference of AlexNet CNN Model. 
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Figure 61: Performance per layer in STC for AlexNet 

 

 
Figure 62: Performance per layer in NTC for different Vdd, NTC and cluster_sizeNTC (AlexNet) 
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Table 18: Best Power/Energy efficiency gains and worst Performance loss of layers for AlexNet 

DNN 
Model Layer 

Best Gain in Power 
(Vdd_ntc = 0.45, 

Cluster_size_ntc = 
256) 

Best Gain in Energy 
 (Vdd_ntc = 0.6, 

Cluster_size_ntc = 
256) 

Worst Loss in 
Performance 

(Vdd_ntc = 0.45, 
Cluster_size_ntc = 

256) 

AlexNet 

1 97.50% 54.28% 93.70% 
2 97.60% 54.32% 93.65% 
3 97.40% 54.30% 93.72% 
4 97.60% 54.45% 93.64% 
5 97.50% 54.48% 93.68% 
6 97.70% 54.33% 93.71% 
7 97.40% 54.45% 93.67% 
8 97.30% 54.38% 93.73% 

Average 97.60% 54.36% 93.65% 
 

Studying the behavior of GoogleNet, ResNet18 and SqueezNet DNN Models, we produce the 

corresponding heatmaps (see Appendix A.) for power/energy consumption and performance. Similar 

to the analysis we made for AlexNet, the best average corresponding gains and worst losses for each 

DNN Model, are displayed in Table 19. 

 
Table 19: Power/Energy efficiency gains and Performance loss of 1st layer per DNN Model 

DNN 
Model Layers 

Best average Gain 
in Power 

(Vdd_ntc = 0.45, 
Cluster_size_ntc = 

256) 

Best average Gain 
in Energy 

 (Vdd_ntc = 0.6, 
Cluster_size_ntc = 

256) 

Worst average Loss 
in Performance 
(Vdd_ntc = 0.45, 

Cluster_size_ntc = 
256) 

GoogLeNet 1 to 64 97.62% 54.32% 93.74% 
ResNet-18 1 to 21 97.93% 54.25% 93.56% 
SqueezeNet 1 to 26 84.51% 54.52% 93.62% 

 

5.7.1.2 Cross-layer policies 
 

As Figures 57 and 60 depict, our NTV-DNN framework during voltage scaling of  achieves, 

for each layer during inference of Alexnet, high efficiency in energy and power consumption when 

 . We conclude to the same result for inference of GoogLeNet, ResNet-18 and 

SqueezeNet, through the heatmaps extracted in Appendix A. On the other hand, the execution time 

for each layer is not affected from each value of  but only from the  scaling. 

This is because, as we aforementioned above, the execution time of each layer is dominated by the 

PEs working in NTC, as the remaining PEs that work in STC complete their MAC calculations prior 

than those working in NTC.  
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Figures 63 to 65 display the experimental results during voltage scaling for AlexNet, guarding 

. As we can clearly observe in Figure 64, the lowest point in energy graph is 

taken for . Below this value of  , energy efficiency seems to decline as 

leakage power starts to rise. 

 
Figure 63: Power consumption of AlexNet for cluster_sizeNTC = 256 

 

 
Figure 64: Energy consumption of AlexNet for cluster_sizeNTC = 256 

 

 
Figure 65: Execution time of AlexNet for cluster_sizeNTC = 256 
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Table 20: Best results for Power/Energy consumption and the related performance  

in NTC for all layers of different DNN Models 

Cluster_sizeNTC = 256 
AlexNet GoogLeNet 

NTC NTC 
VddNTC (V) 0.60 0.65 VddNTC (V) 0.60 0.65 

Power (mW) 4753.39 7064.69 Power (mW) 76122.82 113212.58 
Energy (nJ) 5143398.64 5580581.26 Energy (nJ) 9653447.52 10769199.5 
Execution 

time (msec) 19.16 14.85 Execution 
time (msec) 21.65 16.78 

STC STC 
VddSTC (V) 0.90 VddSTC (V) 0.90 

Power (mW) 28589.89 Power (mW) 446136.5 
Energy (nJ) 11250693.44 Energy (nJ) 21115987.58 
Execution 

time (msec) 7.27 Execution 
time (msec) 8.22 

ResNet-18 SqueezeNet 
NTC NTC 

VddNTC (V) 0.60 0.65 VddNTC (V) 0.60 0.65 
Power (mW) 25172.93 37425.48 Power (mW) 30703.21 45666.42 
Energy (nJ) 10052777.95 11269149.04 Energy (nJ) 1720866.42 1913962.61 
Execution 

time (msec) 20.34 15.77 Execution 
time (msec) 4.54 3.52 

STC STC 
VddSTC (V) 0.90 VddSTC (V) 0.90 

Power (mW) 147876.35 Power (mW) 181129.53 
Energy (nJ) 21989481.29 Energy (nJ) 3764231.68 
Execution 

time (msec) 7.72 Execution 
time (msec) 1.72 

 
Moreover, from Figures 57 to 60 and Appendix A., we conclude that, for the total of DNN Models, 

all layers seem to have the lowest energy consumption for  between 0.60 to 0.65V. As 

displayed in Table 20, for , all DNN Models present better execution time than for 

. The differences for NTC vs. STC in %, are displayed in Table 21. From these 

results we conclude that, the better policy for each layer of our examined DNN Models is to choose 

a  between 0.60 to 0.65V, keeping  . 

 
Table 21: Difference (%) between NTC and STC regime for the total of DNN Models 

Cluster_sizeNTC = 256 
AlexNet GoogLeNet 

Difference (%) NTC vs. STC Difference (%) NTC vs. STC 
VddNTC (V) 0.60 0.65 VddNTC (V) 0.60 0.65 

Power -83.37% -75.29% Power -82.92% -74.59% 
Energy -54.28% -50.40% Energy -54.28% -49.39% 

Execution time 163.55% 104.26% Execution time 163.48% 104.26% 
ResNet-18 SqueezeNet 
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Difference (%) NTC vs. STC Difference (%) NTC vs. STC 
VddNTC (V) 0.60 0.65 VddNTC (V) 0.60 0.65 

Power -82.98% -74.69% Power -83.05% -74.79% 
Energy -54.28% -49.07% Energy -54.28% -49.52% 

Execution time 163.54% 104.27% Execution time  163.19% 104.06% 
 
 

5.7.2 Iso-resource NTC vs. STC DNNs 
 

In Figures 66 to 68, we can see an overview of the experimental results that were obtained from the 

study of different DNN Models under scaling of the supply voltage  and the 

 , keeping the resources ( ) constant. We found that, when moving to a 

, meaning that all PEs work in NTC, we have significant gains in total 

power and energy consumption that reach 97% and 58% accordingly for all DNN Models. In terms 

of performance, as shown in Figure 67, the  does not affect the execution time as 

the PEs working in NTC dominate during MAC calculations, while the PEs working in STC terminate 

first and the stay idle. 

On the other hand, lowering the  causes big gains in power and energy but leads to great 

loss in execution time of about 15 x, working in  for all DNN Models. To keep some 

gains in power and energy consumption and lower the execution time during inference, we conclude 

that a good scheme for our TPU-based accelerator with a total of  , is to guard 

the  to 0.65V with all PEs working in NTC. This leads to 75% and 50% gains in power and 

energy consumption and at a loss of about 104% in performance. 

 

 
Figure 66: Total power NTC vs. STC for different DNN Models and cluster_sizeNTC 
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Figure 67: Total energy NTC vs. STC for different DNN Models and cluster_sizeNTC 

 

 
Figure 68: Total performance NTC vs. STC for different DNN Models and cluster_sizeNTC 

 

5.7.3 Iso-performance NTC vs. STC DNNs 
 

The purpose of this research is to find if it exists an equivalent TPU-based accelerator in NTC who 

has the same performance with an accelerator that works in STC. Figure 71 shows that indeed, for a 

TPU-based accelerator with  in STC, there 

is an equivalent accelerator with  in 

NTC, with at most 2% performance loss. Speaking for power end energy consumption in NTC and 

STC, Figures 69 and 70 depict that we have a gain of about 50% and 52% accordingly, for all the 

DNN Models that were examined. 
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Figure 69: Power consumption for different DNN Models in NTC vs. STC 

 

 
Figure 70: Energy consumption for different DNN Models in NTC vs. STC 

 

 
Figure 71: Performance for different DNN Models in NTC vs. STC 

 

5.7.4 NTV-DNN under relaxed error 
 

In this section we compare the efficacy of our NTV-DNN framework for different operating schemes 

under relaxed error. Each scheme has a different  and is tested for various 

operating frequencies. The efficacy is measured through the calculation of accuracy for different 

DNN Models. Figure 72 depicts the measured accuracy of each examined DNN Model in STC 

regime. As we can see, ResNet-18 and GoogLeNet show a better inference accuracy using CIFAR-

10 dataset. 
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Figure 72: The measured accuracy of different DNN Models in STC 

 

Figures 73 through 76, display the measured accuracy of different DNN Models in NTC. We can 

observe that, when moving from  to  , the efficacy in 

accuracy of our NTV-DNN framework, for most operating frequencies, is degraded as the resilience 

of all DNN Models in errors begins to decline. On the other hand, for every scheme, with the 

increasing operating frequency, which leads in parallel to an increase in power consumption, all DNN 

Models seem to be more resilient in errors as we get closer to . 

Table 22 depicts the results in accuracy of different DNN Models for various  

and two states of FI. As we can see, GoogLeNet and ResNet-18 seem to be very sensitive during FI, 

specially when the number of working PEs in NTC exceeds 128. For GoogLeNet, this seems to be 

quite normal as it contains 57 conv2d layers, each of which is perturbed during the FI procedure. On 

the contrary, AlexNet, which has only 5 conv2d layers, seems to show greater tolerance even when 

all PEs work in NTC regime. SqueezeNet, which is the smallest DNN Model in size (=54.55 MB), 

has 50 times less parameters than AlexNet and counts 26 conv2d layers, displays a remarkable 

resilience which is close to AlexNet. 

 
Table 22: The measured accuracy of different DNN Models during bit-flip for various cluster_sizeNTC and FNTC 

DNN 

Model 

Without error 
With error 

(flipping the 29th bit) 

With error 

(flipping the 29th & 31st bit) 

FNTC 

(MHz) 
Accuracy 

FNTC 

(MHz) 
Accuracy 

FNTC 

(MHz) 
Accuracy 

Cluster_sizeNTC = 32 

AlexNet 

44 

83.75% 

118 

82.7% 

49 

77.2% 

GoogLeNet 91.5% 86.5% 10% 

ResNet-18 90% 67.25% 17% 

SqueezeNet 86.75% 85.75% 40.5% 
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Cluster_sizeNTC = 64 

AlexNet 

44 

83.75% 

118 

82.8% 

49 

61.8% 

GoogLeNet 91.5% 74% 9.5% 

ResNet-18 90% 27.5% 9% 

SqueezeNet 86.75% 83.5% 10.25% 

Cluster_sizeNTC = 128 

AlexNet 

44 

83.75% 

118 

81.7% 

49 

20% 

GoogLeNet 91.5% 38.25% 9.5% 

ResNet-18 90% 7.5% 7.5% 

SqueezeNet 86.75% 71% 9.5% 

Cluster_sizeNTC = 256 

AlexNet 

44 

83.75% 

118 

81.25% 

49 

9.5% 

GoogLeNet 91.5% 9.75% 9.5% 

ResNet-18 90% 10.5% 10.5% 

SqueezeNet 86.75% 45.75% 7.5% 

 

 
Figure 73: The measured accuracy of different DNN Models for cluster_sizeNTC = 32 
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Figure 74: The measured accuracy of different DNN Models for cluster_sizeNTC = 64 

 
Figure 75: The measured accuracy of different DNN Models for cluster_sizeNTC = 128 

 

 
Figure 76: The measured accuracy of different DNN Models for cluster_sizeNTC = 256 

 

In STC regime, as seen in Figure 72, AlexNet has an inference accuracy of 83.75% with an execution 

time that equals to 7.27msec. Figure 76 displays the new performance obtained during frequency 

scaling based on different . Table 23 contains the values of accuracy and performance with 

and without FI for various  and . As we can observe, from a  

between 0.45 to 0.50V, the ability to tweak  is very limited, as an increase of at most 5MHz 

causes a loss of about 89% in accuracy. However, for a  of 0.55V and above, our TPU-based 

accelerator seems to be more resilient in errors. Especially for , which gives, as 

mentioned above, 75% and 50% gains in power and energy consumption respectively, the accuracy 

of AlexNet does not exceed the loss of about 3%. This gives us the opportunity, as seen in Table 23, 

to tweak further . For example, we can increase  from 343MHz (=14.85msec) to 368MHz 

(=13.83msec) with a gain of about 7% in performance. 
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Figure 77: The new performance of AlexNet in NTC for different FNTC 

 
Table 23: The experimental results for AlexNet in NTC with/without Fault Injection 

AlexNet (Cluster_sizeNTC = 256) 

VddNTC 

(Volts) 

FNTC with no 

errors 

 (MHz) 

Scaling 

FNTC 

(MHz) 

True: With FI 

False: Without FI 

Accuracy 

(%) 

New Performance 

(msec) 

0.45 44 

49 True 9.5 103.85 

54 True 9.5 94.24 

59 True 9.5 86.26 

64 True 9.5 79.51 

69 True 9.5 73.75 

0.50 113 

118 True 81.25 43.12 

123 True 9.5 41.37 

128 True 9.5 39.76 

133 True 9.5 38.26 

138 True 9.5 36.87 

0.55 188 

193 False 83.75 26.37 

198 True 81.25 25.70 

203 True 81.25 25.07 

208 True 9.5 24.46 

213 True 9.5 23.89 

0.60 266 

271 False 83.75 18.78 

276 True 81.25 18.44 

281 True 81.25 18.11 

286 True 9.5 17.79 
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291 True 9.5 17.49 

0.65 343 

348 False 83.75 14.62 

353 True 81.25 14.42 

358 True 81.25 14.21 

363 True 81.25 14.02 

368 True 81.25 13.83 

0.70 418 

423 False 83.75 12.03 

428 False 83.75 11.89 

433 True 81.25 11.75 

438 True 81.25 11.62 

443 True 81.25 11.49 

0.75 492 

497 False 83.75 10.24 

502 False 83.75 10.14 

507 True 81.25 10.04 

512 True 81.25 9.94 

517 True 81.25 9.84 

0.80 563 

568 False 83.75 8.96 

573 False 83.75 8.88 

578 False 83.75 8.80 

583 True 81.25 8.73 

588 True 81.25 8.65 

0.85 633 

638 False 83.75 7.98 

643 False 83.75 7.91 

648 False 83.75 7.85 

653 True 81.25 7.79 

658 True 81.25 7.73 

 

5.7.5 NTV-DNN under different dataflows 
 

The results presented in this section are focused on testing our NTV-DNN Model under different 

dataflow strategies. For our research, we adopted the scheme of Table 24, which seems, from our 

thorough analysis till now, to be the most efficient for high gains in power, energy consumption and 

low losses in performance. 
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Table 24: The scheme of FNTC, VddNTC , num_PEs and cluster_size used for our research 

Vdd, NTC (V) FNTC (MHz) Num_PEs Cluster_sizeNTC (PEs) 

0.65 343 256 256 

 

 
Figure 78: The power gain of different DNN Models for various dataflow strategies 

 

 
Figure 79: The energy gain of different DNN Models for various dataflow strategies 

 

 
Figure 80: The performance of different DNN Models for various dataflow strategies 
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Figures 78 to 80 display the power , energy  gain and 

execution time of different CNN Models and various dataflow strategies. Table 25 hosts the 

experimental results from inference through our NTV-DNN Error Model. In terms of energy 

efficiency and performance, the kcp_ws dataflow outperforms other strategies. On the contrary, the 

yxp_os dataflow seems to be more power efficient over the other dataflow strategies. 

 
Table 25: The experimental results NTV-DNN under different dataflows 

 
Dataflow 

rs maeri yxp_os yrp_rs kcp_ws 

AlexNet 

Power (mW) 6742.99 6935.45 6489.55 6581.85 7064.69 

Energy (nJ) 6836276.61 6603692.53 9058295.06 6862247.5 5580581.26 

Execution time 

(msec) 
158.65 19.54 295.62 183.54 14.85 

GoogLeNet 

Power (mW) 52141.96 54158.82 51729.91 51774.2 56407.78 

Energy (nJ) 18049825.37 17052791.06 21962953.99 18640785.19 
11539679.1

2 

Execution time 

(msec) 
144.23 69.53 144.31 164.85 33.56 

ResNet-18 

Power (mW) 17612.29 18198.33 16990.78 17323.71 18626.22 

Energy (nJ) 14889009.57 13485661.19 20508384.76 16242378.91 
11890863.4

1 

Execution time 

(msec) 
97.17 58.66 169.47 104.3 31.54 

SqueezeNet 

Power (mW) 21397.14 21915.78 21089.53 21208.32 22723.29 

Energy (nJ) 6324925.68 5890602.78 8136307.48 6756676.68 4051902.98 

Execution time 

(msec) 
16.63 19.32 18.18 18.75 7.04 
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5.7.6 The effect of Vth variability 
 

Vth variability is another aspect that we had to explore in order to find out if it could affect the power, 

energy, and performance efficiency of our NTV-DNN framework. The scheme used in our 

experiments is shown in Table 26. Each  corresponds to a different  . 

 
Table 26: The scheme used when exploring the effect of Vth variability 

Vdd, NTC (V) Vth(V) FNTC (MHz) Num_PEs Cluster_sizeNTC (PEs) 

0.65 [0.45, 0.50, 0.55] [287, 223, 148] 256 256 

 

 
Figure 81: Power gain of different DNN Models for various Vth 

 

 
Figure 82: Energy gain of different DNN Models for various Vth 
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Figure 83: Performance of different DNN Models for various Vth 

 

As we see in Figures 81, 82 and 83 , during scaling of , power gain   starts 

to increase for all CNN Models examined. On the contrary, energy gain  starts 

to decrease. In addition, execution time during inference for all CNN Models starts to increase and 

most likely causing timing errors during MAC calculations which affects accuracy. Table 27 displays 

the exact results obtained for specific values of  categorized by DNN Model, keeping 

 constant. 

 
Table 27: The experimental results exploring the effect of Vth variability in NTC 

 

Vth (V) 

0.45 0.50 0.55 

FNTC (MHz) 

287 223 148 

AlexNet 

Power (mW) 6073.42 4919.38 3587.61 

Energy (nJ) 5815239.63 6200977.65 7078532.72 

Execution time (msec) 17.72 22.86 34.38 

GoogLeNet 

Power (mW) 48476.52 39242.71 28586.63 

Energy (nJ) 12034423.56 12816138.43 14613740.99 
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Execution time (msec) 40.04 51.66 77.68 

ResNet-18 

Power (mW) 16007.79 12959.42 9441.67 

Energy (nJ) 12403620.16 13204175.8 15051191.94 

Execution time (msec) 37.63 48.56 73.02 

SqueezeNet 

Power (mW) 19526.04 15803.76 11508.21 

Energy (nJ) 2132946.84 2271869.3 2590887.87 

Execution time (msec) 8.4 10.84 16.3 

 

5.8 Conclusions 
 

In this thesis, we have presented and evaluated NTV-DNN, , a tool for early assessment of energy at 

various voltage variation levels. NTV-DNN deals with the formation of VIs in NTC through scaling 

of the  supply voltage, providing reduced power and energy consumption. Further, NTV-

DNN performs a frequency scaling, synergistically with PyTorchFI and CIFAR-10, to further boost 

performance by evaluating the accuracy of different DNN Models through inference. Our 

experiments demonstrate significant reductions in power and energy consumption of about 80% and 

50% respectively, for a range of  supply voltage between 0.6V to 0.65V for the total of our 

16 x 16 TPU-based accelerator, but with a cost of about 90% reduction in execution time and 3% 

reduction in accuracy.  

Furthermore, we have proven that for a TPU-based accelerator with a total of 256 PEs that works 

in STC, there is an equivalent accelerator with a double size of PEs and with similar performance that 

works in NTC which shows gains of about 50% and 52% in power and energy consumption 

respectively. We also concluded that, in terms of energy efficiency and performance, the kcp_ws 

dataflow seems to outperform other strategies like maeri and yxp_os. Finally, we concluded that, 

when tweaking  to greater values of 0.4V, energy consumption is increasing. 

5.9 Future Work 
 

As future work, we would like to explore the possibility of choosing dynamically the  for 

each VI of PEs and the  , according to the dataflow strategy used during inference. 

It is worth noting that it could be very interesting to explore the synergy between NTV-DNN and 

other techniques like dynamic DNN pruning, to further reduce energy consumption. We could also 
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use more approximate or reduced precision MAC units, which offer more potential in the accomplish 

of designing more energy efficient DNN accelerators. Studying how efficient could be NTV-DNN 

during CNN training, is another interesting aspect that we could explore. Furthermore, it would be 

very interesting to investigate the gains in energy consumption with the combination of other design 

paradigms like GreenTPU. 
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APPENDIX A. 
 

Heatmaps of different DNN Models for exploring the voltage island granularity in 

NTC and STC. 

 

 
Figure A.1: Power consumption of layers 1 to 16 (GoogLeNet). 

 

 
Figure A.2: Power consumption of layers 17 to 32 (GoogLeNet). 
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Figure A.3: Power consumption of layers 33 to 48 (GoogLeNet). 

 

 
Figure A.4: Power consumption of layers 49 to 64 (GoogLeNet) 

 

 
Figure A.5: Energy consumption of layers 1 to 16 (GoogLeNet) 

 



  

117  

 

Figure A.6: Energy consumption of layers 17 to 32 (GoogLeNet) 

 

 
Figure A.7: Energy consumption of layers 33 to 48 (GoogLeNet) 

 

 
Figure A.8: Energy consumption of layers 49 to 64 (GoogLeNet) 
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Figure A.9: Performance of layers 1 to 16 (GoogLeNet) 

 

 
Figure A.10: Performance of layers 17 to 32 (GoogLeNet) 

 

 
Figure A.11: Performance of layers 33 to 48 (GoogLeNet) 
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Figure A.12: Performance of layers 49 to 64 (GoogLeNet) 

 

 
Figure A.13: Power consumption of layers 1 to 21 (ResNet-18) 
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Figure A.14: Energy consumption of layers 1 to 21 (ResNet-18) 

 

 
Figure A.15: Performance of layers 1 to 21 (ResNet-18) 
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Figure A.16: Power consumption of layers 1 to 26 (SqueezeNet) 

 
Figure A.17: Energy consumption of layers 1 to 26 (SqueezeNet) 
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Figure A.18: Performance of layers 1 to 21 (SqueezeNet) 

 

 
Figure A.19: Power consumption of layers 1 to 64 in STC (GoogleNet) 
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Figure A.20: Energy consumption of layers 1 to 64 in STC (GoogLeNet) 

 

 
Figure A.21: Performance of layers 1 to 64 in STC (GoogLeNet) 
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Figure A.22: Power consumption of layers 1 to 21 in STC (ResNet18) 

 

 
Figure A.23: Energy consumption of layers 1 to 21 in STC (ResNet18) 
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Figure A.24: Performance of layers 1 to 21 in STC (ResNet18) 

 

 
Figure A.25: Power consumption of layers 1 to 26 in STC (SqueezeNet) 
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Figure A.26: Energy consumption of layers 1 to 26 in STC (SqueezeNet) 

 

 
Figure A.27: Performance of layers 1 to 26 in STC (SqueezeNet) 

 

Data and code is available at: 
https://github.com/Kronos78-cloud/NTV_DNN_thesis  

https://github.com/Kronos78-cloud/NTV_DNN_thesis
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