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Abstract: Soil Moisture Deficit (SMD) is a key indicator of soil water content changes and is valuable
to a variety of applications, such as weather and climate, natural disasters, agricultural water
management, etc. Soil Moisture and Ocean Salinity (SMOS) is a dedicated mission focused on soil
moisture retrieval and can be utilized for SMD estimation. In this study, the use of soil moisture
derived from SMOS has been provided for the estimation of SMD at a catchment scale. Several
approaches for the estimation of SMD are implemented herein, using algorithms such as Random
Forests (RF) and Genetic Algorithms coupled with Least Trimmed Squares (GALTS) regression.
The results show that for SMD estimation, the RF algorithm performed best as compared to the
GALTS, with Root Mean Square Errors (RMSEs) of 0.021 and 0.024, respectively. All in all, our study
findings can provide important assistance towards developing the accuracy and applicability of
remote sensing-based products for operational use.

Keywords: SMOS; soil moisture deficit; rainfall-runoff model; random forest; Genetic Algorithm

1. Introduction

Soil moisture is of key importance in numerous fields from weather, climate, agricul-
tural to hydrological sciences [1]. It is also considered as an Essential Climatic Variable
(ECV) in 2010 [2–5]. To cater the needs of hydro-meteorologist and remote sensing commu-
nity one after the other, two dedicated global space satellites have been launched to offer
measurements of the soil moisture in the globe: (a) the Soil Moisture and Ocean Salinity
(SMOS) mission, launched by the European Space Agency in November 2009, and (b)
the Soil Moisture Active Passive (SMAP), launched in 2016 by the National Aeronautics
and Space Administration (NASA) [6]. In agricultural applications, the estimation of soil
moisture from the Earth’s surface is important for a successful management of soil water
content and irrigation scheduling. At first, soil moisture can be assessed by utilizing the
in-situ probes, an approach which is adequate with the local or point based applications.
However, retrieving large scale soil moisture under vegetation conditions is a challenging
task because of large spatial variability and heterogeneity in the crop types [7,8]. Different
crop types are characterized by different moisture contents, which make many practi-
cal applications difficult [9]. Therefore, alternate approaches are needed for an effective
agricultural water management [10].

In hydrology, a common soil moisture indicator is the soil moisture deficit (SMD) or
depletion, which is directly related to the ratio between actual and potential evapotranspi-
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ration (PE) [11–13]. It shows the water required to lift the soil-water content of the crop root
zone to field capacity [14,15]. SMD is a vital indicator of water availability, representing
the constraint variable in crop yields. The moisture deficit impact on agricultural yield has
been examined at multiple scales regarding different soil management practices [16–18]. It
is important for crops monitoring because it has a strong impact in sowing, harvesting and
finally in crop yield. Timely information of SMD is useful in crop insurance practices and to
protect equity against natural disasters such as drought, floods and other socio-economic
factors [19]. When a drought occurs, a high value of SMD is generally evident for a pro-
longed time, while during a flood, SMD is very low [20,21]. There have been a number
of studies on the Probability Distribution Model (PDM) [22,23] and their results could be
used as a suitable option for SMD generation using the minimal datasets, such as rainfall,
evapotranspiration and discharge information. Recently, a few studies by Srivastava et al.,
2013, 2014 [3,10] indicated that the soil moisture is strongly linked with the SMD and could
be used for estimating this variable.

Some recent research has also indicated significant non-linear relationships between
the SMD and soil moisture. In this regard, genetic programming (GP) [24] and RFsregres-
sion [25] can be used as non-linear techniques for modeling SMD by using soil moisture
estimated from SMOS satellite. Among machine learning, the GP and RFs are evolutionary
algorithms that can be used for the estimation of SMD. It is inspired by the biological
evolution to find computer programs that perform a user-defined task, generally based
on chromosome crossing over for getting a better offspring [26]. The RFs algorithm is a
non-parametric technique that is capable of synthesizing regression functions based on
discrete or continuous datasets in the field of remote sensing [27–29]. RFs is a strong model
in regard to the outliers and can be executed efficiently on large datasets for the regression
problems [30]. The RFRmodel’s robustness over Support Vector Regression (SVR) and
Artificial Neural Network Regression (ANNR) has been demonstrated wheat crop biomass
estimation [31]. Soil mapping was performed by utilizing an RFs model in Africa with
relatively accurate results. External parameter orthogonalization, coupled with RFs, SVM,
partial least squares regression and ANN models, was applied on a larger soil database and
satisfactory results were obtained. With the advancement in machine learning models, the
Genetic Algorithm coupled with Least Trimmed Squares (GALTS) [32] has been developed,
which uses a small number of trials to achieve the objective functions; as a result, it reduces
the variance and biases in the datasets.

To our knowledge, a very small number of studies have focused on comparing the
use of RFs and GP for SMD estimation. In viewof the above, in this study, a first-time
comprehensive evaluation of the use of the RFs and GALTS algorithms are explored in
retrieving the SMD using SMOS data for soil moisture information. To validate the model,
the benchmark SMD obtained using the PDM model has been used. Before using the output,
i.e., SMD, a rigorous sensitivity and uncertainty analysis of PDM has been performed using
the state-of-the-art Generalized Likelihood Uncertainty Estimation [33]. The knowledge
gained from this study can potentially assist in evaluating the relation between the rainfall
runoff model and satellite soil moisture. Furthermore, exploring this relationship is an
essential step to help further developing the accuracy and applicability of such products
for operational uses exploiting EO technology.

2. Study area and Datasets
2.1. Study Area

The Brue catchment (total area 135.5 km2) located in the south-west of England is
chosen as the study area (Figure 1). The lowland wet grassland of the catchment forms part
of the unique landscape of the Somerset Levels and Moors and the region is internationally
and nationally designated for its conservation and landscape value. The other minor cover
types found in the catchment are forest and urban areas. The area is characterized by a
non-complex topography area for the most part, with most of the catchment area covered
by agricultural land (95.22%), with a small number of forest patches (3.12%) and urban
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areas (1.66%). In the Brue catchment, the distribution of soil indicates that most of the
area is composed of a clayey type (49%) of soil followed by coarse loam (29%) and silt
(21%). The selected study area has been used previously in many studies and equipped
with maintained meteorological and flow station by British Atmospheric Data Centre and
Environment Agency, respectively [34–37]. The whole terrain comes under topography,
with no steep slopes and with an average altitude of 105 m AMSL.
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2.2. Satellite Data

The SMOS satellite contains the MIRAS instrument—a dual polarized 2D interferom-
eter that operates at a frequency of 1.4 GHz (L-band) [38], launched jointly by the Euro-
pean Space Agency (ESA), the National Centre for Space Studies (CNES-Centre National
d’Etudes Spatiales) and the Industrial Technological Development Centre (CDTI–Centro
para el Desarrollo Technológico Industrial). The radiometric resolution of the instrument
is ~40 km with the soil moisture retrieval unit in m3 m−3 (i.e., volumetric). In the current
study, Level 2 SMOS soil moisture products are used, generated by the SMOS level 2
processor. Acquisition of all the datasets started from February 2011 to January 2012. Soil
moisture or surface salinity consist of Level 2 products swath-based maps computed from
Level 1c products. The conversion from Level 1c brightness temperatures to Level 2 maps
includes a first step to mitigate the impact of Faraday rotation, Sun/Moon/galactic glint,
atmospheric attenuation, etc. SMOS acquires data in Icosahedral Snyder Equal Area projec-
tion (ISEA 4H9 grid) [39]. Each point (or node) of this grid is known as a DGG that has
fixed coordinates and is assigned with an identificator, “DGG Id.” For the development of
the model, the SMOS pixel with its centroid over the catchment is extracted and considered
for the subsequent analysis. The Beam (v 4.9) (developed under ESA Envisat project by
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Brockmann Consult GmBh, Germany) open-source software package with SMOS 2.1.3
plugin was used for the extraction. The ascending SMOS data products are selected in
the catchment area to minimize the variables influencing soil moisture retrieval, such as
vertical soil-vegetation temperature gradients.

3. Probability Distributed Model (PDM)

The PDM model from CEH Wallingford [40] is used as a rainfall runoff simulation
model in this study for SMD estimation, as it can calculate soil moisture in the system with
suitable time step and data inputs required for use in a water resources assessment. In this
study, the lumped rainfall-runoff models called as PDM (Probability Distributed Model) has
been used for benchmarking SMD estimation using ground-based datasets. Daily datasets
from February 2011 to January 2012 has been used for the model calibration and validation.
The PDM model is a fairly general conceptual rainfall-runoff model which transforms
rainfall and evaporation data to flow at the catchment outlet and is well tested [41]. It has
evolved as a toolkit of model functions that together constitute a lumped rainfall-runoff
model capable of representing a variety of catchment-scale hydrological behaviors. The
model formulations are adjusted for automatic parameter assessment. For real-time flow
forecasting applications, the PDM model is complemented by updating methods based on
error prediction and state-correction approaches [36]. The PDM model require three main
inputs—evapotranspiration, rainfall and river flow—and the output products are flow and
SMD [42]. The SMD is produced to describe the effect of drying on the catchment area on
the actual evapotranspiration (ET). The SMD routine in PDM is based on [40]:

E′i
Ei

= 1−
{
(Smax − S(t))

Smax

}be

(1)

where E′i
Ei

is the ratio of actual ET to potential ET; (Smax − S(t)) is the Soil Moisture Deficit;
be is an exponent in the actual evaporation function; Smax is the total available storage; and
S(t) is storage at a particular time t. The Sensitivity analysis (SA) and uncertainty analysis
(UA) of the PDM model over the Brue catchment are given in detail by [33]. From the study,
it can be concluded that PDM can be used for SMD estimation with less uncertainty, and
therefore, it can be used as reference data.

4. Random Forests and Genetic Algorithm Coupled with Least Trimmed
Squares (GALTS)

R programming language is used for all the algorithms implementation, which is
open-source software. The techniques involve RFsand Genetic Algorithm coupled with
Least Trimmed Squares (GALTS) regression for SMD estimation.

4.1. Genetic Algorithm Using Least Trimmed Square (GALTS)

GALTS draws random candidate solutions (or chromosomes) for which search meth-
ods are appropriate for use in nonlinear or non-differentiable optimization problems [32].
Genetic Algorithms (GAs) perform a parallel search to cope with the local optima problem.
Offspring are selected based on their survival in subsequent generations. However, the
minimization of the objective function is a complicated problem in GAs. The authors of one
paper [43] developed a method for regression parameter assessment using a Least Trimmed
Square (LTS) calculation in a broad dataset. It is an appropriate algorithm because it has
been successfully demonstrated in several test beds in the literature, including studies
similar to ours, and references have been provided. The purpose of this study is not to
perform a comparison between algorithms, which could be a very interesting direction to
pursue in a follow-up paper. Some researchers also used least median of squares (LMS)
regression for outlier detection, but its convergence rate is slow [43]. On the contrary, LTS
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has the same breakdown point as LMS, but the convergencerate is quicker than LMS. The
objective function of the LTS regression is defined as:

min
β

h

∑
i=1

r2
i (2)

where r2
i is the ith ordered squared residual and h is a custom integer, which is approxi-

mately n/2.

4.2. Random Forests

RFs, which was proposed by [30], is a machine learning algorithm which adds an
additional layer of randomness to bagging and fits regression trees to random subsets of
the input data [44]. The main advantage with RFs is that it is designed to produce accurate
predictions that do not overfit the data [30], and differs from bootstrap in constructing the
multiple trees. In this study, bagging is used in tandem with random feature selection.
RFs for regression are produced by growing trees depending on a random vector Θ, such
that the tree predictor h(x,Θ) takes on numerical values as opposed to class labels with
assumption that that the training set is independently drawn from the distribution of the
random vector Y, X. The mean-squared generalization error for any numerical predictor
h(x) is given by Equation (3):

EX,Y(Y− h(X))2 (3)

The RFpredictor is formed by taking the average over k of the trees {h(x,Θk)} as:

EX,Y(Y− avkh(X, Θk))
2 → EX,Y(Y− EΘh(X, Θ))2 (4)

The forest trees can be simplified by using the term PE∗(tree), where it can be defined
as Equation (5):

PE∗(tree) = EΘEX,Y(Y− h(X, Θ))2 (5)

It can be used for estimating PE∗( f orest) (Equation (6)):

PE∗( f orest) ≤ ρPE∗(tree) (6)

PE∗( f orest) can be summarized by Equation (7):

PE∗( f orest) = EX,Y[EΘ(Y− h(X, Θ)]2 = EΘEΘ′EX,Y(Y− h(X, Θ))(Y− h(X, Θ′)) (7)

The term on the right in (Equation (7)) is a covariance and can be written as:

EΘEΘ′(ρ(Θ, Θ′)sd(Θ)sd(Θ′))

where sd(Θ) =
√

EX,Y(Y− h(X, Θ))2; the weighted correlation can be defined as (Equation (8)):

ρ = EΘEΘ′(ρ(Θ, Θ′)sd(Θ)sd(Θ′))/EΘsd(Θ))2 (8)

Then, this condition will follow (Equation (9)):

PE∗( f orest) ≤ ρ(EΘsd(Θ))2 ≤ ρPE∗(tree) (9)

The requirements for accurate RFs are a low correlation between residuals and low
error trees. The RFs decreases the average error of the trees employed by the factor ρ.

5. Performance Evaluation

The estimated SMD of the RFs and GALTS models are compared against the locally
estimated SMD through PDM. This is performed in terms of the correlation (r), the Root



ISPRS Int. J. Geo-Inf. 2021, 10, 507 6 of 13

Mean Square Error (RMSE) and the absolute bias (Bias). The bias measures the over- and
underestimation of the model output (Equation (10)). The r can be calculated by using
Equation (11), while the RMSE can be estimated by using Equation (12):

Bias = [(y− x)] (10)

r =
n∑ xy− (∑ x)(∑ y)√

n(∑ x2)− (∑ x)2
√

n(∑ y2)− (∑ y)2
(11)

RMSE =

√√√√( 1
n

n

∑
i=1

[yi − xi]
2

)
(12)

where xi i is the observed flow, yi is is the simulated flow and x is the mean.

6. Results and Discussion
6.1. SMD and Soil Moisture Temporal Variations

The temporal pattern between SMOS soil moisture, PDM SMD, RFs and GALTS
simulated SMD during calibration and validation is represented through Figure 2. The
plots show a high level of temporal variability over the entire monitoring cycle, with a
daily step beginning from the first day of January. The distinctive dry periods can be
demonstrated, when a distinctive rise in the SMD occurred in the plot. During the period,
the trend and pattern in the datasets are very close to the one estimated by the PDM. In
general, soil moisture retrieved by SMOS is highly responsive with significant fluctuations
over the whole period even to the small variations in SMD. During December and January,
a very high value of soil moisture is reported. Over April–May to August–September,
rising temperatures and high evaporation cause the soil to dry out, resulting in a rise in
SMD values. Increasing temperature caused a substantial SMD development prominent
from April to the beginning of August (normally, the driest and warmest months of the
year). Drying out follows an exponential decay and an inverse relation can be seen with
SMOS soil moisture. According to soil moisture analysis, the wettest months are November
and December, while the driest months are March and May. Soil moisture is poor during
the winter and near field capacity by mid-April.

6.2. Optimisation of RFs and GALTSAlgorithms

For reliable results, the RFs and GALTS techniques must be optimized, which ne-
cessitates a preliminary review of parameters before using them for the final prediction
(Figure 3). For RFs, initially, we started with a very small number of trees (around 50)
and measured the performance of the technique with respect to the measured SMD. This
process was repeated up to a total of 1250 number of forest trees. The mean squared sum
of residual is used as an objective function for optimizing the number of trees. For any
artificial intelligence technique, this form of trial-and-error approach is widely used to
select the right parameters [42]. A similar approach is used for optimizing the number of
nodes in RFs. After all the analysis, the optimum values of parameters are obtained as 500
with respect to number of trees and 6 for the number of nodes in the RFs algorithm.
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For optimization of GALTS, two important parameters, i.e., Csteps and population
size, are taken into account. As recommended by [43], the sum of squared residuals is
taken as an objective function for the optimization of parameters. In case of Csteps, initially,
we began with 1 and gradually increase it up to total 40 numbers of Csteps. After a
comparison with the SMD, a total of 10 Csteps were found to be appropriate for GALTS.
After repeating the procedure with the population sizes from 5–100, a population size of 5
is found optimum for SMD prediction.
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6.3. Performances of RFs and GALTS for SMD Prediction

For SMD prediction using the SMOS soil moisture, RFs and GALTS methods are used,
while scatter plots depicting the output of various approaches in terms of correlations are
given in Figure 4. For developing an appropriate algorithm, the calibration and validation
datasets are split into two groups first. Two-thirds of the data from each month is used
for calibration, while the other third is used for validation, ensuring that all calibration
and validation data are indicative of both seasons. After deriving the relationships, the
validation results are used to test the algorithms. The notable things observed in the
validation correlation plot are some lower correlations of RFs-simulated SMD, while the
correlation of GA-simulated SMD indicate a higher value with the PDM SMD. The best
correlation statistics are obtained GALTS with a value of 0.64, followed by a value of 0.49
with RFs-estimated SMD.

The scatter plots produced from all the approaches at the calibration and validation
phases are depicted through Figure 5. Looking at the values of the Bias, the RFs performed
well with the least overestimation and low RMSE, although the value of r is lesser than
GALTS. Higher bias and RMSE values obtained by GALTS indicated that the simulated
results are overestimated as compared with the RFs. The analysis indicates that the outcome
of the RFs can be used for estimation of SMD from SMOS soil moisture. Some binning can
be seen in the plot, which could be due to saturation of the SMD values predicted during
the particular time period. Furthermore, as PDM is a conceptual model based on water
balance, when there are small changes in soil moisture in the region, this will lead to a very
negligible variation in the SMD, which cannot be clearly demarcated in the scatter plots.
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enhance the information quality and, subsequently, they are appropriate for SMD calcu-
lation for hydrological applications. More specifically, the analysis indicated a higher 
suitability of ANN and KF for data fusion than the LWA or MLR technique. These 
methods can be used for the data fusion, giving profitable information on the appropri-
ateness of SMOS and WRF-NOAH LSM for SMD calculation. 

To assess the suitability of WRF for SMD calculation, [45] used three domains with 
spatial resolutions of 81 km, 27 km and 9 km. The best domain (Innermost WRF domain 
of 9 km) was used for estimating the soil moisture deficit (SMD). Two approaches were 
used in this study. The first method is based on a continuous time series analytical rela-
tionship between WRF soil moisture and the SMD, while the second is centered on the 
effect of vegetation cover on SMD retrieval, represented in terms of growing and 
non-growing seasons. The results indicated that both approaches could be useful for soil 
moisture and SMD calculation at the catchment level.  

Figure 5. Performances of RFs and the Genetic algorithm during calibration (a–c) and validation
(b–d).
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6.4. Other Relevant Studies

In another study, to estimate the SMD [3], soil moisture was estimated from certain
algorithms, such as Single channel calculation (SCA). It was found that the inclusion of
a physics-based equation for soil moisture retrieval and the incorporation of linear and
non-linear models improves the SMD prediction. Moreover, better accuracy is produced
with locally calibrated roughness parameters rather than default global values, because
they represent the conditions more precisely.

In other research [10], the SMD was estimated by using soil moisture by SMOS and
WRF-NOAH LSM as well. Four data fusion models were evaluated: Linear Weighted
Algorithm (LWA), Multiple Linear Regression (MLR), Kalman Filter (KF) and Artificial
Neural Network (ANN). The LWA method utilizes combinations between soil moisture
products. The MLR method uses as a dependent variable the SMD produced by the Proba-
bility Distributed Model and as predictors the SMOS and WRF-NOAH LSM. The validation
of the different models against SMD produced by the Probability Distributed Model was
achieved using ground-based observations. All the data fusion algorithms enhance the
information quality and, subsequently, they are appropriate for SMD calculation for hy-
drological applications. More specifically, the analysis indicated a higher suitability of
ANN and KF for data fusion than the LWA or MLR technique. These methods can be used
for the data fusion, giving profitable information on the appropriateness of SMOS and
WRF-NOAH LSM for SMD calculation.

To assess the suitability of WRF for SMD calculation, ref. [45] used three domains with
spatial resolutions of 81 km, 27 km and 9 km. The best domain (Innermost WRF domain of
9 km) was used for estimating the soil moisture deficit (SMD). Two approaches were used
in this study. The first method is based on a continuous time series analytical relationship
between WRF soil moisture and the SMD, while the second is centered on the effect of
vegetation cover on SMD retrieval, represented in terms of growing and non-growing
seasons. The results indicated that both approaches could be useful for soil moisture and
SMD calculation at the catchment level.

Concluding the relevant studies of SMD estimation, ref. [18] used a process-based Soil
and Water Assessment Tool (SWAT) model to simulate the multi-annual fluctuations of soil
moisture anomalies (deficits or excesses). For two potential horizons, i.e.,2021–2050 and
2071–2100, the analysis used an ensemble of nine bias-corrected EURO-CORDEX forecasts
under two Representative Concentration Pathways: RCP4.5 and 8.5. SWAT, which collects
significant SMD and soil moisture excess episodes for various crops, according to the
findings. The severity of soil moisture deficits increased for spring cereals, potato and
maize. Furthermore, soil moisture excesses were more dependent on RCP and potential
horizon selection for potato and maize.

The proposed method could be very useful for ungauged catchments, with as thelimi-
tations that it is developed in an environment that is influenced by a temperate oceanic
climate, and hence, it may not be suitable for tropical climates. New optimization param-
eters and coefficients will be required if the method is implemented in tropical climates
or other types of climates. In this case, catchment is very small, so even three gauges are
sufficient to develop an appropriate model; however, for larger catchments, a dense gauge
networks may be needed for developing some suitable models for SMD prediction.

7. Conclusions

SMD is an integral component for most of the hydrological models and needed for
designing appropriate routing schemes. The results indicate that the SMOS soil moisture
has proven its importance in hydrological sciences and can be used for the prediction of
SMD. The findings of this research show that satellite soil moisture, such as from SMOS,
can be used for SMD estimation using sophisticated techniques, such as RFs and GALTS.
Performance indices indicated that the RFs performed well with a low bias and small RMSE,
although the value of the correlation is lowerthan GALTS. Higher bias and RMSE values
obtained by GALTS indicated that the simulated results are overestimated as compared to
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the RFs. The overall performance of RFs showed that using SMOS soil moisture data, the
RFs can be used to estimate SMD. However, more work is needed in the future to reduce the
biases in the predictions, as some over estimation is evident in the SMD estimation. Thus,
in the future, attempts will be made on the bias correction schemes, so that an operational
forecast can be provided for SMD. Moreover, in the future, SMD estimation will be done in
other geographical areas as well, so that valuable information and insights can be gathered
using other promising satellites such as the Soil Moisture Active Passive satellite (SMAP).
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