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Abstract: Taxol drugs can be extracted from various species of the taxaceae family. It is an alkaloid
(metabolic product) used for the treatment of various types of cancer. Since taxol is a metabolic
product, multiple aspects such as edaphic, biochemical, topographic factors need to be assessed
in determining the variation in Taxol Content (TC). In this study, both sensor-based hyperspectral
reflectance data and absorption-based indices were tested together for the development of an ad-
vanced statistical unfolding approach to understand the influencing factors for TC in high altitude
Himalayan region. Seriation analysis based on permutation matrix was applied with complete
linkage and a multi-fragment heuristic scaling rule along with the common techniques such as
Principal Component Analysis (PCA) and correlation to understand the relationship of TC with
various factors. This study also tested the newly developed taxol indices to rule out the possibility of
overlapping of TC determining bands with the foliar pigment’s wavelengths in the visible region.
The result implies that T. wallichiana with a high TC is found more in its natural habitat of deep forest,
relating it indirectly to elevation in the case of the montane ecosystem. Taxol is the most varying
parameter among the measured variables, followed by hyperspectral Taxol content (TC) indices such
as TC 2, TC 5, and carotenoids, which suggests that the indices are well versed to capture variations
in TC with elevation.

Keywords: taxol; sensor-based indices; biophysical variables; biochemical variables; hyperspectral;
principal component analysis; seriation analysis

1. Introduction

Recent studies have shown that the turnover in tree species composition across edaphic
and elevational gradients can be strongly correlated with the functional traits [1]. These
factors affect plant growth via various means and can be used to characterize differ-
ent ecosystems. The major determining components of vegetation include biochemical
constituents that are central to their physiological form and function, along with water,
chlorophyll, and accessory pigments, nitrogen, cellulose, starch, sugars, lignin, and pro-
tein. These are the mandatory parameters for describing the nutritional status of any
tree of a particular ecosystem [2,3], while the secondary metabolites such as terpenes,
sesquiterpenes, phytosterols, etc., are more useful to humans [4], which makes the plant
economically valuable.

The majority of studies have been carried out to acknowledge and retrieve these
determining variables and the effects on vegetation using various models and remote
sensing techniques, but the relative effects of all these factors have not been addressed
intricately with proper research findings [5]. The spatial and temporal variation of these
properties offers great help in understanding and evaluating physiological conditions such
as photosynthesis, evapotranspiration, secondary metabolites formation, and deriving
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plans for the conservation of the ecosystem [2,6]. Now, researchers are focusing on covaria-
tion trait studies to determine definite functional indicators for ecological and biodiversity
conservation [7,8].

Taxus wallichiana Zucc. is a tree species that belongs to the family Taxaceae and is
popularly known as the Himalayan yew, which is globally distributed in Europe, North
America, North India, Pakistan, China, and Japan. In Asia, its variation and availability
extend from Afghanistan through the great Himalayas to the Philippines, and it is widely
distributed in countries such as Pakistan and India. Recently, it gained widespread attention
on a global scale because its leaves and bark were found to be rich in taxol, which is a
potential anti-cancerous drug [9]. Taxol is known to have first been isolated from the bark
of Taxus brevifolia, and since then, taxol and related bioactive taxoids have been reportedly
found in the various other species of the same genus Taxus. Due to the overexploitation of
this group of species, it is currently endangered as per IUCN and on the verge of extinction.
Moreover, several species are disappearing at an alarming rate mainly at higher altitudes
due to over-harvesting, habitat destruction, and abrupt climate change [10,11]. Altitudinal
variation influences the ecological factors and, thus, the ecosystem. Factors including soil
nutrients, precipitation, and mean temperature directly or indirectly affect the secondary
metabolite amount and biological activities of the plants [7].

The extraction and estimation of secondary metabolites such as TC are always expen-
sive, time-consuming, and tedious. The non-destructive method of taxol estimation for
conservation and planning becomes vital. A few researchers such as Kokaly et al. [1] have
characterized the plant phenolics (another secondary metabolite) [12] to their hyperspectral
signature at a 1660-nanometer wavelength. Phenolics are characterized using continuum
removal, which is a technique used to isolate and analyze the features in reflectance spec-
tra acquired using hyperspectral sensors. Hyperspectral remote sensing (HSR) is a new
dimension of remote sensing with a higher number of band data in a continuous form that
gives fine resolution to obtain detailed information on the object [13]. Many scientists have
characterized different species in the same area using HSR [14]. Keystone species conserva-
tion is the next logical step that can be brought by HSR [15]. ‘Curse of dimensionality’ is
the phrase used for high dimensional hyperspectral data. This problem can be remedied
by indices used for the retrieval of a particular parameter. These indices are easy to use
and require less time and a less sophisticated system to compute [16].

The canopy confounding variables such as foliar nitrogen, chlorophyll, cellulose,
etc., are successfully estimated using vegetation indices when applied to remote sensing
data. The spectral wavelengths region near 550 and 700 nm, as well as the red-edge
region (680–780 nm), have been utilized for assessing chlorophyll by many researchers
in hyperspectral remote sensing [17–19]. Wang et al. [20] estimated nitrogen accurately
in cases of broadleaf, needle leaf, and mixed forests plots using Normalized Difference
Nitrogen Index (NDNI) centered at 1510 nm. However, an indirect relationship occurs
between nitrogen and chlorophyll that generates a correlation between Near InfraRed
(NIR) reflectance (800–850 nm) and canopy foliar mass-based nitrogen concentration [21].
Similarly, reflectance in the visible wavelengths 400–700 nm is dominated by absorptions
from foliar pigments [22]. Among the pigments, chlorophyll a and b have the strongest
effect over absorption in the visible region, followed by carotenoids and anthocyanins [23].
Hence, more extensive research is required to characterize any metabolite apart from foliar
pigments in the visible region.

In this study, an effort has been made to assess the efficiency of different hyperspec-
tral indices developed to understand TC variations. It also included various statistical
unfolding techniques such as covariation, correlation, and the extent of various edaphic,
topographic, biochemical properties, and sensor-based indices values for understanding
TC variations.
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2. Materials and Methodology
2.1. Study Area

Pindari glacier, which is situated in the Central Himalaya of Almora District of Ut-
taranchal state, was used as a study area for this research. Pindari glacier spread around
the length of 5 km within an elevation range of 2400–3000 m. The climate of this region
is categorized into the following three seasons: winters, summers, and monsoon. The
long cold winter range from October to March with temperatures reaching below freezing
point. In contrast, the maximum temperature seen in summers is around 30 ◦C. Mostly
cloudy conditions exist throughout the monsoon months (June to September) because of
the disturbances of western regions. The average annual rainfall is 930 mm, which mainly
occurs during July and August [24]. Broadly, the area is divided into two climatic zones
that could be categorized as (i) Lower montane zone: elevation range of 1800–2400 m
above mean sea level (amsl), and (ii) Upper montane zone: elevation range of 2400–3000 m
amsl. There is more precipitation in the upper zone and is more in terms of snowfall
than showers [25]. The vegetation of the Pindari region comprises Pinus, Acer, Juglans,
Cupressus, Quercus, Taxus, Berberis, and Rhododendron, which can be found around the
region of Phurkia and the Pindari Glacier, as shown in Figure 1. This region is mostly
covered by dense forests with high availability of medicinally important species [26–28].
The survey mainly focused on the collection of medicinally important species, i.e., Taxus
wallichiana.
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Figure 1. Sampling locations of T. wallichiana in Nanda Devi Biosphere Reserve.

2.2. Sample and Radiometer Data Collection

The sample was collected on 26 September 2019 and 29 September 2019 at different
locations along with a Global Positioning System (GPS) coordinate that varied between
altitudes of 3039 and 2292 m in the Nanda Devi Biosphere Reserve (NDBR) in the state of
Uttarakhand, which is located in the Western Himalayan Highland Biogeographic Zone.
The samples were kept in a Ziploc bag for the next few hours. The samples collected were
then crushed and stored in liquid nitrogen until the immediate analysis. Hence, all the
values reported after analysis are represented in terms of fresh weight (FW).

The full range (350–2500 nm) FieldSpec spectroradiometer developed by Analytical
spectral devices (ASD) was used to capture the spectral reflectance of the leaves and pre-
processed using ViewSpecPro software Version 6.2 by Malvern Panalytical, Malvern, United
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Kingdom. ASD uses a fore-optic system to measure the spectral radiance and reflectance of
any object. It distributes the signal via a fiber optic bundle to a fixed diffraction grating
spectrometer. It uses three different types of detectors enabling a spectroradiometer to
record the whole spectra from 350–2500 nm. Spectral reflectance is the part or a fraction of
incident electromagnetic radiation that is reflected from any interface. The reflectance is
plotted with a wavelength known as the reflectance spectrum or spectral reflectance curve,
which is the end product of the device [29,30]. A Spectralon reference panel was used to
optimize and adjust the sensitivity of the instrument.

2.3. Robustness of Indices
2.3.1. Reflectance Based Indices

A study was conducted on the Himalayan region for the development of the best
Taxol indices [31]. Three different filtering techniques were applied, namely, Savitzky and
Golay (S. Golay), Fast Fourier transformation, and Average Mean Filter, prior to feature
selection. S. Golay uses simplified least-square-fit intricacy for smoothing. A mean filter
takes the mean spectral value of nearest points within the considered window as the new
value of the middle point of the window. The Fourier domain digital filter is a simple
trapezoid characterized by four indices (N1, N2, N3, N4). Digital filtering is implemented
simply by multiplying the Fourier domain signal by the appropriate filter function, that is,
the signal points between N1 and N2 multiplied by y (value of the slope). The processed
spectra after each filter application on T. wallichiana spectra were then applied with feature
selection (first derivative). From the transformed spectra, the absorbance region at certain
wavelengths was selected. The reflectance file of T. wallichiana spectra in text format,
measured taxol content along with the wavelength selected were taken as inputs in the
Automated Radiative Transfer Models Operator (ARTMO) model and the two band indices,
suitable for TC estimation, were developed.

The indices developed using Average Mean smoothened wavelength, revealed a
significant correlation with the measured taxol values. The five most appropriate taxol
indices were selected which were developed by Average-Mean filtered wavelengths as
listed in Table 1.

Table 1. Selected Taxol indices from Gupta et al. where R is reflectance band [31].

SI No. Reflectance Based Taxol Indices

1 TC 1 = (R426 − R421)/(R426 + R421)

2 TC 2 = (R415 − R421)/(R415 + R421)

3 TC 3 = (R601 − R608)/(R601 + R608)

4 TC 4 = (R421/R426)

5 TC 5 = (R415/R421)

Since taxol detection using hyperspectral data is not a phenomenon that has been
explored much, all the wavelengths suggested by Gupta et al. [31] obtained from three
different filtering techniques were considered. This was performed to rule out any possibil-
ities of missing out even small absorption peaks that could indicate a taxol presence on
hyperspectral data.

2.3.2. Absorption Based Indices

Continuum removal is referred to as baseline normalization and has been commonly
used in laboratory infrared spectroscopy. This technique is an estimate of the other absorp-
tions present in the spectrum. In that sense, continuum removal is most often performed
on absorption features.

Continuum removal was applied to the selected absorption features. Continuum
removal normalizes reflectance spectra in order to allow for a comparison of individual
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absorption features from a common baseline [32]. The continuum is a convex hull fitted
over the top of a spectrum to connect the local spectrum maxima.

Rc′(λi) =
R(λi)

Rc(λi)
(1)

Here, in Equation (1), the continuum-removed reflectance is Rc′(λi), the reflectance
value is R(λi) for each waveband in the absorption pit, and the reflectance level of the
continuum line (convex hull) is Rc (λi) at the corresponding wavelength. The first and last
spectral data values are on the hull and, therefore, the first and last values of the continuum
removed spectrum is equal to 1. This process enhances the absorption pits’ output, whose
values are between 0 and 1 [33]. Three variables were calculated from the continuum
removed absorption features, viz. Continuum removed derivative reflectance (CRDR),
band depths (BD), and band depth ratio (BDR). Collectively, this has been termed spectral
feature analysis [34].

Processing Routines in IDL for Spectroscopy Measurements (PRISM) have the feature
for automated spectral feature analysis [1]. Using this feature section option, the user
can select the initial and final continuum endpoints on the spectrum to be analyzed. The
PRISM software applies continuum removal to each spectrum separately and derives
the spectral feature parameters (e.g., center, depth, width, area, etc.). PRISM performs
continuum removal twice and gives the feature parameters as follows: (1) selection of
start and endpoints; and (2) an automatically attuned set of continuum endpoints. PRISM
searches for improved continuum endpoints on both sides of the absorption feature, by
searching for nearby channels that have continuum-removed values higher than the initial
endpoints. The new endpoint channels are referred to as the adjusted endpoints, as shown
in Figure 2b. This software is added as an extension to ENVI 5.1 Aliso Viejo, CA, USA. This
software can be downloaded from (https://pubs.usgs.gov/of/2011/1155/ accessed on
12 February 2021). This corresponding wavelength absorption feature area was used to
develop absorption-based indices.

2.4. Soil Moisture and LST

The soil moisture (SM) and soil temperature are better known as Land Surface Tem-
perature (LST). The in-situ measurements during sampling were carried out using Steven’s
HydraGo instrument. HydraGo is a rugged SM sensor that measures the dielectric
spectrum of the soil based on the ‘dielectric impedance’ at a 50 MHz radiofrequency
(https://stevenswater.com/products/hydrago-s/ accessed on 12 February 2021). The re-
flected signals measure the soil dielectric permittivities that correspond to the SM and bulk
soil electrical conductivity (EC). The device communicates wirelessly with the HydraMon
app using Bluetooth. The app displays soil moisture content, temperature, conductivity,
and dielectric permittivity for immediate viewing. The date and time of each measurement
were recorded along with this measurement and the GPS location was measured using a
handheld Garmin GPS receiver.

https://pubs.usgs.gov/of/2011/1155/
https://stevenswater.com/products/hydrago-s/
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2.5. Determination of Chlorophyll (TCC), Total Phenolic Content (TPC), and Taxol Content (TC)

For the estimated total chlorophyll content (TCC), a crushed leaf sample was homoge-
nized with 2 mL of acetone (80%) and then centrifuged for 10,000× rpm for 15 min at 4 ◦C.
An amount of 0.5 mL of supernatant was taken from the main solution and mixed with
4.5 mL of acetone. The solution mixture was analyzed for chl. a, chl. b, and carotenoids
using a spectrophotometer (Thermo scientific UV–Vis Spectrophotometer). The TPC in
various plant samples was estimated using the Folin–Ciocalteu (F–C) colorimetric method.
The plant leaf samples were added with 2 mL of ice-cold 95% (vol/vol) methanol and then
were homogenized. The samples were kept in the dark for 48 hr. The samples were then
centrifuged again (13,000× rpm for 5 min). To the 150 µL supernatant of this plant extract,
900 µL of distilled water was added, followed by 225 µL of F–C reagent, was added to the
solution and it was permitted to stand still for 5 min at room temperature. Then, 1.125 mL
of 2% sodium carbonate was added and mixed thoroughly. Along with the samples, the
blank was also prepared without the supernatant plant extract but with the other entire
constituent. The prepared samples and the blank were set aside in the dark for 15 min
at room temperature. The absorbance of the samples and the blank were noted using a
spectrophotometer @750 nm. The TPC was calculated with a standard curve based on
gallic acid. The TPC results were expressed in milligrams of gallic acid equivalent (GAE)
per gram fresh weight (FW) (mg GAE/g FW) [35,36].

For TC, 1 g of crushed leaves was deflated with hexane using sonication. The hexane
portions were discarded, and aliquots of methanol were concentrated using a rotary
evaporator, extracted in chloroform, then dried under reduced pressure using a rotary
evaporator, and then re-dispersed in methanol (1 mL). Taxoid standard paclitaxel (Sigma,
St. Louis, MI, USA) as used as a standard in HPLC for quantification. The working
solution of paclitaxel was prepared from standard methanol. The UV-DAD scanned
acquisitions of Taxol were performed at 230 nm. The percentage of Taxol was calculated
using Equation (2) [37].

Taxol (%) Content =
Ar.sample × Conc.std.

(mg
mL

)
Ar.std. ∗ 1000 × Conc.sample

( g
mL

) × 100 (2)

where Arstd and Arsample are the areas under the peak associated with the standard or ref-
erence and sample taxoid, respectively, and Conc.sample and Conc.std are the concentrations
of the sample and reference taxoid, respectively [37].

The standard methodology of collecting in-data and samples was followed as de-
scribed earlier in Sections 2.2 and 2.4. The samples of the plants underwent multiple
tests (Section 2.5) for obtaining ex-situ data. The ASD spectroradiometer was used as
an input to extract absorption values from the spectra of the T. wallichiana via PRISM
software [31,32]. The absorption values were then used to develop two-band absorption
indices. The measured taxol content along with selected bands, reflectance-based indices
values, absorption-based indices values were subjected to Pearson correlation in R studio
software Boston, MA, USA. It brings out the most suitable indices for taxol estimation.
The measured TC along with the selected hyperspectral indices and ex-situ data were
subjected to Pearson’s correlation to check their correlations. This step highlighted the
correlation between the variable measured and the indices selected. Bartlett’s sphericity
test was applied to the correlation matrix variables to test the assumption that variances are
equal across groups. The elevation for the samples collected between 3039 and 2292 m was
divided into three groups based on elevation, and One-way Analysis of Variance (ANOVA)
was applied to test the significance of elevation with each set of parameters. ANOVA was
followed by Scheffe’s test, which was applied to identify the significance of this difference
among designated groups. PCA was done on SPSS Version 22 developed by IBM Armonk,
New York, NY, USA. This further was applied to accomplish a significant reduction in
the dimensionality of the original data set and bring the most varying variables to the
foreground. Multivariate analysis was to highlighted the role of elevation and parameters
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for a suitable habitat for T. wallichiana. The flowchart depicting the methodology is shown
in Figure 3.
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3. Results and Discussion
3.1. Comparative Analysis between Indices, Selected Wavelengths, and Measured Taxol Content

The absorption indices were developed using two-band absorption values in different
combinations. More than 84 absorption indices combinations were tested using the two
bands. While these combinations were tried in the preliminary stage, it was observed that
the indices utilizing the bands 415 and 670 nm outperformed any other indices developed
utilizing other wavelengths. The indices with significant correlation are plotted in Figure 4,
in what is known as a correlogram. A correlogram or Auto Correlation function is a visual
way to show the serial correlation in data that change over time.

Figure 4 illustrates the correlation among all the possible absorption band values along
with the absorption and reflectance indices values that showed a significant correlation with
the taxol content. The absorbance wavelengths are represented with ‘x’ as a subscript and
the absorption indices values are represented with ‘i’, while the reflectance-based indices
are represented with TC. Figure 4 shows that the measured taxol content (Ob) showed
the nearest positive correlation with reflectance-based indices TC 2 (r = 0.741) and TC5
(r = 0.742). The Ob values also showed a positive correlation with absorption indices Ni
(r = 0.565) and Mi (r = 0.561), while a significant negative correlation was observed between
Ob and Ri (r = 0.604) and Oi (r = −0.615). The parameters Si, Pi, and Qi also showed a
significant positive correlation but the magnitude values were out of range; hence, they
were discarded. In a general sense, the absorption-based indices showed a significant
correlation, but the indices were more likely to capture the trend of the real values rather
than quantifying near the measured taxol values. In contrast, the reflectance-based indices
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captured trends along with the magnitude of the real values. The reflectance-based indices
(TC 2 and TC 5) showed the highest correlation to the measured taxol content (Ob). The
wavelength absorption values that were found most closely to the Ob values were Bx
and Dx, which are centered at 415 and 670 nm, respectively. The positive correlating
factors to the Ob values were majorly allocated in the center of Figure 4, which implies
that the difference between the modelled and observed values was found the least in terms
of magnitude. The center region of the graph majorly consists of indices values, either
reflectance-based or absorption-based. This highlights the fact that to exploit hyperspectral
data, more techniques need to be explored to process the data. The correlation heat map as
per [4] may indicate the metabolite signature on the spectra, but to make those data useful
information, more techniques need to be implemented.
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The absorption indices that show a significant correlation and a magnitude value
within the range, as compared to the measured TC, are listed in Table 2. Since the reflectance-
based indices outperformed any other indices and wavelengths, they were further consid-
ered for the next set of statistical operations along with other important variables.
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Table 2. Selected Taxol absorption-based indices where R is reflectance band.

SI No. Absorption Based Taxol Indices

1 Ni = (R415 − R670)/(R415 + R670)

2 Mi = (R415 − R2272)/(R415 + 2272)

3 Ri = R670/R1181

4 Oi = R670/R975

3.2. Descriptive Statistics

The land surface temperature (LST) showed a slightly higher temperature at the low
altitude of around 15.8 (◦C) at an elevation of 2992 m. With the varying altitude, the
temperature also changed. The samplings were conducted in the rainy season with the
average LST recorded as 14.171 ± 1.002 (◦C). By following the soil temperature, the soil
moisture values show a mean value of 43.950 ± 5.500 (%). The final values show that the
TC varied between 0 and 0.037 mg/g FW, with an average of 0.011 mg/g FW ± 0.012. The
values of total phenolic content (TPC) ranged from 72.656 to 94.676 mg GAE/g FW, with an
average value of 79.973 ± 6.418. The correlation concerning elevation for TPC was found
to be 0.672, which is significant. This shows that the TPC shows a clear positive change
with elevation (as in Table 3). It clearly shows that medicinal plants also carry phenolic
content in them, which indirectly shows the redox properties that are responsible for their
antioxidant properties. The p-value was 0.006, which is also less than 0.05. This clearly
shows that there is not much of a significant difference among the TPC content values,
but it does increase with the elevation. The total polyphenol content (TPC) has a positive
correlation with elevation, while it shows a negative correlation with the temperature. TPC
is not limited by ecosystem boundaries but limited by human interventions. TPC values
do increase with elevation. The high TPC concentration reported in T. wallichiana suggests
that the medicinal plant contains high antioxidant activity, which makes it more beneficial.

Table 3. Pearson’s correlation matrix among edaphic parameters, topographic parameters, biochemical- and indices-
generated parameters of Taxus wallichiana needles.

Variables Elevation SM Taxol Content TCC Carotenoids TPC LST TC 1 TC 2 TC 3 TC 4 TC 5

Elevation 1.000

SM 0.333 1.000

Taxol content 0.277 −0.478 1.000

TCC −0.238 −0.340 0.186 1.000

Carotenoids 0.435 0.065 0.333 −0.162 1.000

TPC 0.658 0.516 −0.070 −0.438 0.001 1.000

LST −0.445 −0.654 0.478 0.312 −0.080 −0.533 1.000

TC 1 0.789 0.192 0.495 0.087 0.456 0.380 −0.158 1.000

TC 2 0.372 −0.186 0.715 0.310 0.508 −0.116 0.401 0.656 1.000

TC 3 −0.393 −0.296 0.341 0.104 0.168 −0.543 0.536 −0.218 0.304 1.000

TC 4 0.782 0.188 0.497 0.090 0.454 0.379 −0.153 1.000 0.658 −0.219 1.000

TC 5 0.357 −0.191 0.715 0.313 0.504 −0.122 0.410 0.646 1.000 0.311 0.648 1.000

The total chlorophyll content (TCC) values vary from 2.013 to 4.194 mg/g. The av-
erage total chlorophyll concentration was found to be 3.541 ± 0.504. The correlation of
total chlorophyll content with elevation came out to be insignificant. Similarly, the cor-
relation between total chlorophyll and taxol was found to be insignificant. The values
for carotenoids vary between 0.703 to 0.982 mg/g. The average carotenoid value came
out to be 0.836 ± 0.087. This correlation between elevation and carotenoid was found to
be insignificant (Table 3). The correlation between total chlorophyll and carotenoids was
statistically insignificant. This inverse relationship between chlorophyll and carotenoid
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directs toward the inference that carotenoids increase in the senescence stage and chloro-
phyll is reported to be higher than carotenoids in the growing period in the case of many
plants [38].

TPC shows a significant positive correlation with Soil Moisture (SM) of 0.516 and a
significant negative correlation with LST. Soil Moisture shows an inverse relationship with
LST, which is obvious as the temperature is the driving factor for water movement [39].
Here, the TPC relationship clearly indicates that TPC is affected by temperature [40].

The correlation matrix between the parameters of indices from TC 1 to TC 5 with
elevation verifies the fact that the reflectance/albedo varies at different altitudes. This
indicates that the indices developed for biochemical factors have the effect of altitude
within them. Similarly, Mokarram et al. [41] have indicated that the vegetation growth
is highest between the elevations of 1500 to 3000 m, with high values of the Normalized
Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), and the Dif-
ference Vegetation Index (DVI). It can be seen that TC 1 shows a clear relationship with
TC 2 and TC 5 while TC 2 correlates with TC 4, but all these indices are probable indices
for the same parameter, i.e., taxol. Hence, their mutual correlation is expected. Although,
it is noticeable that TC 2 shows a perfect correlation with TC 5, and both TC 2 and TC 5
show the highest correlation with Taxol, which indicates that both the indices are useful
in calculating Taxol content using hyperspectral reflectance data. TC 2 and TC 5 also
show correlation with carotenoids, but the correlation cannot be considered significant.
In the correlation matrix in Table 3, it can be seen that neither TC 2 nor TC 5 showed any
significant correlation with any other foliar characteristic than taxol nor the taxol indices.
This showed that the taxol indices developed using the wavelength of the visible region
(415 and 421 nm) can be uniquely characterized for the same. Taxol did not show any
significant correlation with elevation directly. Similar results were also obtained for taxol by
Priyanka et al. After the application of ANOVA, the null hypothesis was accepted for soil
moisture, total chlorophyll, near-surface temperature, taxol content, and carotenoids. The
null hypothesis was rejected for TPC based on the Fcrit and p-value. The F values of 13.875
exceed the critical value of 3.88, which signifies that there is a difference among groups.
Pairwise Scheffe’s showed that there is no statistical significance among the various classes
for TPC based on elevation.

3.3. Multivariate Analysis

Bartlett’s sphericity test shows a calculated χ2 = 243.932, which is greater than the
critical value χ2 = 22.362 (p = 0.05), thus the null hypothesis of equal variance among
groups was rejected, indicating that PCA can accomplish a significant reduction in the
dimensionality of the original data set [42]. To determine the principal component that
explains the major attributes of T. wallichiana, PCA was applied, as shown in Table 4 and
Figure 5.

PCA was performed on the combined (edaphic, topographic, and biochemical prop-
erties, and indices values) correlation matrix dataset in order to identify a condensed set
of features that could capture and explain most of the variance in the data for T. wallichi-
ana. The Scree plot and Table 4 highlight the factor loadings, eigenvalues, and variance
described by each PC. According to the criteria set by [43], an eigenvalue greater than
one was considered as a principal component. The factor loading of more than 0.650 was
considered a contributing factor since the sample size was less than 100. PCA rendered
three principal components with eigenvalues > 1, explaining almost 80.00% of the total
variance of the data. The parameter PC 1, describing 39.17%, has strong positive factor
loadings (>0.80) on TC 1, TC 2, TC 4, and TC 5. PC 1 also shows moderate loadings for
the measured taxol content (>0.70) and elevation (>0.65), thus highlighting that taxol and
elevation are the most varying variables among the measured parameters. In the case of
T. wallichiana, the TC varies with age and seasons; hence, this variance is expected [44,45].
PC 2 explained 31.11% of the total variance and has moderate negative loading on LST.
PC 2 also shows strong positive loading with TPC and SM. The loadings and scores of the
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first two PCs (PC1 and PC2) are plotted in Figure 5. The loadings plot (Figure 5) shows
the distribution of all the parameters in the first (upper right) and fourth (lower right)
quadrants. The factor loading lines joining the variables along with the length of the line
passing through the origin in the plot of the factor loadings are indicative of the low and
high contribution of the variables to the samples. The closeness of the lines of two variables
signifies the strength of their mutual correlation, which was also adequately shown using
a correlation matrix. The assemblage of TC, Carotenoids, elevation, TPC, and SM in the
loadings plot suggests their significant mutual positive correlation.

Table 4. Loadings of experimental variables on the PCs for the combined data set of Taxus wallichiana
(red indicates the most significant component).

Variables PC 1 PC 2 PC 3

Elevation 0.684 0.630 −0.021

Soil Moisture (SM) −0.036 0.743 0.179

Measured Taxol content (Taxol) 0.727 −0.417 0.009

Total Chlorophyll content (TCC) 0.147 −0.522 −0.697

Carotenoids 0.652 0.035 0.532

Total Polyphenolic Content (TPC) 0.179 0.828 0.036

Land Surface Temperature (LST) 0.122 −0.850 0.001

TC1 0.891 0.321 −0.205

TC2 0.902 −0.337 0.053

TC3 0.066 −0.700 0.512

TC4 0.891 0.317 −0.208

TC5 0.896 −0.347 0.055

Eigen Value 4.700 3.733 1.155

% Variance 39.17% 31.11% 9.63%

Cumulative % Variance 39.17% 70.28% 79.91%
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3.4. Seriation Analysis

Generally, as the amount of medicinal compound is dependent upon numerous fac-
tors, it primarily involves elevation, temperature, and the ecosystem. Here, seriation was
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conducted to bring out the arrangement of various factors related to TC. The relationship
becomes highly subjective but has some principal components that are commonly asso-
ciated with biochemical parameters. The results of this study suggest that a landscape
variable such as altitude is important in influencing other biochemical parameters as well
as the secondary metabolites associated with the selected species. In order to analyze the
data more clearly, the seriation plot and dendrogram were generated and are shown in
Figure 6. The samples at every 50 m were pooled together as one sample. The objective
functions during the iteration for the row and the column were obtained as 0.707 and 0.644,
respectively, while the sum of all the pairwise distances in the neighboring rows (path
length) was found to be 43.484 and the neighboring column (path length) was found to be
31.869. The Complete linkage rule was utilized for both the row and column, while the
multi fragment heuristic (MF) scaling rule was used for tree seriation. The dissimilarity
analysis used in seriation was based on the Euclidean distance measurement.
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The seriation column matrix plot Cluster C4 contains TPC and SM, while cluster C5
contains carotenoids and elevation along with TC 1 (Index 1) and TC 4 (Index 4). This
implies that the elevation, TPC, SM, and Carotenoids values show a relation with TC 1 and
TC 4. This implies that elevation, due to the change in albedo, has a direct relationship
with biochemical and edaphic properties. The C6 cluster contains TC3 (Index 3), LST,
Taxol, TC 2 (Index 2), and TC 5 (Index 5). Carotenoids show a close relationship with both
indices-generated values TC 4 and TC 3. Similarly, the Taxol content was found to be feeble
with LST, but the correlation coefficient was insignificant to consider. The taxol content has
a close correlation with TC 2 and TC 5 with good correlation values and does not relate
to any other variable, even in the hierarchical sense. Hence, it can be said that TC 2 and
TC 5 can only retrieve taxol, not any other common foliar pigment found in the visible
region of electromagnetic spectra. The Total Chlorophyll Content (TCC) behaved as a runt.
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It consistently showed the same range values without being majorly affected by any other
variable. The TCC is supposed to vary with the season, species, age of the plant, and forest
type [46].

The samples S6, S8, S10, S4, S5, S3, and S9 are grouped in one cluster, C1, while cluster
C2 includes samples S7, S12, S11, and S2. Samples S14 and S15 clustered together in C3. In
Figure 6, several samples from cluster C1 were characterized with similar behavior. These
samples were measured in-between altitudes of 2826 and 3003 m, which is also the dense
region of the forest in the sampling area. Therefore, these samples must have a strong
influence on the forest and its ecosystem. The samples clustered under C2 and C3 shared
the same hierarchy, due to their presence either at the high or low altitude of the sampling
elevation, which was marked by human intervention at the lower altitude or ecosystem
change at the higher altitude.

4. Conclusions

The reflectance-based indices are more useful in quantifying taxol content using
hyperspectral data. More techniques such as indices and algorithms need to be applied
for the exploitation of hyperspectral data so that these data can be converted into useful
information, as absorption bands at particular wavelengths are not providing any sufficient
information to make the HSR data more useful. In the case of multispectral satellite data,
absorption-based indices may be used to quantify the taxol content.

The result of statistical analysis suggests that the density of the forest determines the
range of parameters measured, which, in the case of the montane ecosystem, is indirectly
determined by elevation. Therefore, elevation along with aspect and slope in many respects
determines the microclimate, and thus, plays an important role in foliar and edaphic
properties in the case of the montane ecosystem. Chlorophyll does not show any significant
change in a species under the same forest canopy therefore, it might be used as a health
indicator at the canopy scale but cannot be used as an indicator to decide the number of
secondary metabolites in the same species.

The relationship in the case of taxol with elevation suggests that the taxol content
does not vary with elevation but is affected by temperature. It is the most varying variable
among the measured variables, followed by elevation and carotenoids. The frequency
of the plant becoming less near the edge of the ecosystem (ecotone) and the amount of
taxol content in T. wallichiana near these regions was also low. Beyond 3100 m, more of a
grassland ecosystem exists in the NDBR. The samples showing similar behavior in terms of
parameters were found between elevations of 2800 to 3000 m in the NDBR. This region is
characterized by dense forests in the NDBR. The T. wallichiana plant shows low taxol content
near the timberline at Phurkia and near the point of human intervention at Khati (the last
habitable point in the valley). This makes our understanding of this highly medicinal
plant more refined. T. wallichiana with a high taxol content is found more in its natural
habitat in the absence of human intervention and ecosystem change. Taxol indices TC 2
and TC 5, which were developed using visible range wavelengths (415 and 421 nm) of the
hyperspectral data, have been related to the taxol content and not related with other foliar
variables, which might be attempted in the future. This study can be expanded to other
regions for taxol estimation, but the availability of ground hyperspectral data is a challenge.
The canopy chemistry and its relationship with remote sensing hyperspectral data is a
challenge, as there are thousands of compounds in the same species. The implementation
of more sophisticated techniques applied with HSR holds the key to future research in
canopy chemistry.
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