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Abstract: Earth Observation (EO) makes it possible to obtain information on key parameters
characterizing interactions among Earth’s system components, such as evaporative fraction (EF) and
surface soil moisture (SSM). Notably, techniques utilizing EO data of land surface temperature (Ts)
and vegetation index (VI) have shown promise in this regard. The present study investigates, for the
first time, the accuracy of one such technique, known as the “simplified triangle”, using Sentinel-3
EO data, acquired for 44 days in 2018 at three savannah FLUXNET sites in Spain. The technique
was found to be able to predict both EF and SSM with reasonable accuracy when compared to
collocated ground measurements. Comparisons performed for all days together showed relatively
low Root Mean square Difference (RMSD) for both EF (0.191) and SSM (0.012 cm3 cm−3) and good
correlation coefficients (R) of 0.721 and 0.577, respectively. Both EF and SSM were also largely in
agreement with land cover and seasonal variability. The present study comprises the first detailed
assessment of the “simplified triangle”, in this case, using Sentinel-3 data and in a Mediterranean
setting. Findings, albeit preliminary, are of significant value regarding the use of the investigated
technique as a tool of environmental management, and towards ongoing, worldwide efforts aiming
at developing operationally relevant products based on the Ts/VI feature space and EO data based on
new satellites such as Sentinel-3.

Keywords: Earth Observation; Sentinel-3; surface soil moisture; evaporative fraction; simplified triangle;
Ts/VI domain; CarboEurope

1. Introduction

Earth’s natural processes and the relationships between soil-vegetation and the atmosphere
components of the Earth system are topics of great importance for numerous disciplines covering a
range of practical applications and research [1–4]. The need for accurate information on parameters
characterizing the environment of the Earth system is even more acute today, in light of increased
pressure due to climate change and global challenges linked to global food and water security [5].
Recent climate projections, for example, suggest that the Mediterranean will be subject to severe climate
change, including increased temperatures and reduced precipitation [6]. In this context, the accurate
monitoring of parameters such as evaporative fraction (i.e., the ratio of instantaneous latent heat
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flux (LE) to net radiation (Rn)) and surface soil moisture (SSM) is of high priority. Both are essential
environmental parameters which play instrumental roles in numerous physical processes, and thereby
affect the climate directly or indirectly [7–9]. Thus, being able to accurately estimate their changes in
both the time and spatial domains is undoubtedly of prime interest for many applications in numerous
disciplines [10,11].

Earth Observation (EO) has experienced rapid growth over recent decades, providing a pathway
towards acquiring both EF and SSM at variable geographical scales with temporally consistent coverage.
A wealth of techniques have been proposed exploiting EO data acquired from across the electromagnetic
spectrum to retrieve these parameters (e.g., see reviews by [8,12]. Thermal Infrared (TIR) remote
sensing, despite its requirement for clear sky conditions, has been the preferred option for both EF
and SSM retrievals to date because of its fine resolution in the spatial and temporal domains [13].
A specific group of TIR-based approaches that rely on the physical relationships implied by EO-derived
scatterplots in which the surface temperature (Ts) is plotted versus the vegetation index (VI) have
shown potential in this respect. Assuming conditions of full variability in vegetation cover in EO-based
imagery, a scatterplot is generated with a triangular (or trapezoidal) shape. The emergence of this
shape results from the reduced sensitivity that Ts has on water content over areas covered by vegetation
in comparison to bare soil areas. A detailed description of the Ts/VI feature space and of the biophysical
properties included within it can be found in [14].

Several researchers have already demonstrated how EF and SSM can be derived from the Ts/VI
feature space utilizing a range of EO data (e.g., [15–23]. The promising potential of Ts/VI techniques is
evidenced in the fact that variants are being, or have been, considered by different Space Agencies in
the development of operational EO-based products [24–26]. A group of these techniques has already
demonstrated its ability to provide operational service SSM maps over Spain at 1 km pixel size based
on data from the SMOS satellite, integrating the SMOS brightness temperature values within a multiple
regression model, together with Ts and VI obtained from the MODIS data [27].

Recently [28] proposed a new technique for estimating both SSM and EF from the Ts/VI domain,
named “simplified triangle”. This approach has a major advantage in comparison to other Ts/VI
techniques, in that it is based on only a few calculations and does not require for its implementation
a mathematical model to simulate physical processes or ancillary data; therefore, it can be easily
implemented almost anywhere in the world. As the technique is easy to use and only depends on EO
data, it is a prime candidate for operational use. Nevertheless, more research is required to evaluate its
performance in different ecosystems and environmental conditions globally, particularly regarding the
use of EO data from new satellites such as those from Sentinel-3.

The authors of [29] demonstrated the use of the “simplified” triangle approach coupled with
crop prediction and climatological water balance models to predict soybean yield using MODIS data.
Yet, to our knowledge, this technique using ESA’s Sentinels-3 has not yet been implemented. Sentinel-3
provides EO data at a range of resolutions in the spatial, temporal and spectral domains. Thus,
such satellite observations may serve in many potential applications [30,31].

On this basis, the present research study aims at exploring the ability of the “simplified triangle”,
used synergistically with Sentinel-3 data, to predict the spatio-temporal variability of both EF and SSM.
To our knowledge, in that respect, this is the first study of its kind. The technique was assessed in two
regions in Spain for which validated collocated ground observations from the FLUXNET global in
situ monitoring network were available. The next section provides a description of the study area;
Section 3 outlines the methods, Section 4 the key results and Section 5 discusses the obtained results.

2. Materials

2.1. Study Sites and In Situ Data

Ground measurements from three Spanish sites that belong to the CarboEurope in situ
measurements network were used in this study. CarboEurope belongs to FLUXNET, which is a
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major ground observational network that acquires land surface parameter data [32,33]. All data
collected from the FLUXNET individual sites were first measured using standardized instrumentation
across the network sites. Then, quality-controls and uniformly applied error correction processing
were applied to them before distribution. In situ data is made available at different processing levels
and at no cost from the European Fluxes Database Cluster (http://gaia.agraria.unitus.it/).

Herein, the “simplified triangle” technique is evaluated at three CarboEurope sites in Spain,
representative of typical savannah ecosystem types for selected cloud-free days in 2018. Table 1
summarizes the main characteristics of the study sites and the location of each site is illustrated in
Figure 1. In total, 44 days from 2018 were chosen to verify the technique. The target criteria for selecting
the specific days included cloud-free skies, the availability of good quality in situ data concurrently
to the satellite observations and a satisfactory energy balance closure (EBC), which was used as an
indication of good quality flux measurements (evaluated as per previous studies such as [34,35]). In our
study, days of Sentinel-3 overpass with poor EBC (EBR < 0.750, slope < 0.85, R2 < 0.930) were excluded
from further analysis, similarly to other studies [36,37].

Table 1. Main characteristics of our study sites.

Site Name Site
Abbreviation

Geographic
Coordinates
(Lat/Long)

Country
Ecosystem
Type/Land

Cover
Elevation (m)

Albuera Es-Abr 38.702–6.786 SPAIN SAV 279
Majadas del
Tietar North Es-LM1 39.942–5.779 SPAIN SAV 266

Majadas del
Tietar South ES-LM2 39.935–5.776 SPAIN SAV 270
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All ground measurements used in this study were obtained from the ICOS (Integrated Carbon
Observation System) database (http://www.europe-fluxdata.eu/icos/home). Detailed information on the
data use policy can be found on the CarboEurope website and data acquisition interface. For consistency
purposes, all ground data acquired in this study were also obtained at Level 2 processing, meaning
that they included the originally acquired measurements from which only incorrect data (e.g., due to
instrumentation error) had been eliminated. No further preprocessing was implemented apart from
the computation of EF (as defined previously, i.e., LE/Rn).
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2.2. Sentinels Data: Acquisition and Preprocessing

Sentinel-3 was launched by the European Space Agency (ESA) as part of the Copernicus Program.
At present, it consists of two satellites (Sentinel-3A and 3B) working in constellation, with two
additional satellites planned for launch in the near future. One of the instruments onboard the
Sentinel-3 platform is a SLSTR (Sea and Land Surface Temperature Radiometer). The launch of the
satellites in constellation allows SLSTR to achieve a temporal resolution at the equator of less than a
day. Spectrally, the instrument acquires data in a total of nine spectral bands, plus two more which
were developed for applications relevant primarily to the monitoring of fires. The first six bands,
located from visible to short-wave infrared (SWIR), acquire spectral data at 500 m. Subsequent bands,
i.e., bands 7 to 9, have a 1-km spatial resolution. More details on the SLSTR instrument are available
elsewhere, for example [38].

Herein, the Sentinel-3 Level 2 operational product, named “SL_2_LST”, is used to implement
the “simplified triangle” technique. Based on the delivery time, two data product types are available
for the SLSTR Sentinel 3 product. These products are “Near Real Time” (NRT), provided in less
than 3 hours after image acquisition, and “Non-Critical Time” (NTC), provided within one month
after image acquisition. The main difference between them is the VIS/SWIR calibration applied to
the NRT products, which makes them suitable for our current study. The spatial resolution the of
LST and VI band is 1 km and the temporal resolution is, at the latitudes of our study area, at least
two times per day (once in the morning and once in the afternoon; precise time varies according
to orbit and is not geosynchronous). This product provides Land Surface Temperature (LST, or Ts,
as defined before) and a series of other parameters to users. The product is organized into packages
composed of one manifest file and several measurements and annotation data files (between 2 and
21 files, depending on the package). The SL_2_LST product, in particular, contains ten annotation files,
providing the same parameters as SL_2_WCT and some additional vegetation parameters. One of
these parameters is the Fractional Vegetation Cover (Fr), which is used to satisfy the objectives of
the present study. In SL_2_LST, the vegetation is specified as a fractional vegetation index ranging
between ‘1’ (corresponding to 100% vegetation) and ‘0’ (corresponding to 0% vegetation). The LST
algorithm used for Sentinel 3 is based on two split-window thermal channels (1100 nm and 1200 nm).
The global estimation of the LST takes into account the effects of the land emissivity, together with those
of atmospheric water vapor and satellite viewing angle. The LST estimation uses a linear regression
with coefficients tailored for day and night, land cover types, various atmospheric conditions, and bare
and vegetated surfaces. More details on the Fr and LST Sentinel-3 products can be found elsewhere
including open-access documents (e.g., in [39]).

The SL_2_LST images used herein were first obtained from CREODIAS (https://creodias.eu/) at no
cost, covering the entire Sentinel-3 image archive initially for the year 2018. Next, specific Sentinel-3
images were selected for inclusion in this study. These included only cloud-free images or images with
less than 20% cloud presence in their field of view. Each image from the archive was intersected to each
image footprint covering the entire study area. For each SL_2_LST image product that was retained for
further analysis, first, spatial and spectral subsets were selected. These covered the studied regions),
where the layers retained included only the Ts (or LST), Fr and the Normalised Difference Vegetation
Index (NDVI). Then, each band was masked for clouds and inland water. Subsequently, all the study
sites were cross-intersected with the images, using an algorithm based on the closest date and time
acquisition for in situ and satellite images. The final set of SLs_2_LST images, for a total of 70 days,
provided the input data for the implementation of the “simplified triangle”. An example of these final
image products for a selected day is given in Figure 2.

https://creodias.eu/
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Figure 2. An example of a final preprocessed Sentinel-3 image used in our study as input for the
implementation of the “simplified triangle” technique, shown here for the image with acquisition
date of 23 June, 2018. The top row shows the LST maps and the bottom the Fr maps. In each row,
the left image shows all three experimental sites used in this study and the remaining two show a
zoomed-in area of the experimental sites location. The inclusion of both the full and zoomed images is
to demonstrate the spatial variability of both LST and Fr.

3. Methods

3.1. “Simplified Triangle”

The “simplified triangle” is a new Ts/VI technique proposed by [28]. The technique makes it
possible to derive spatial estimates of the surface wetness (Mo, which refers to the first few millimeters of
a surface covered by bare soil) and of the evaporative fraction (EF, being the ratio of evapotranspiration
to net radiation (Rn)). The principle on which the method is based is illustrated in Figure 3. Briefly,
the key inputs to the method include the Fr and Ts parameters. The authors of [28] proposed deriving
Fr from the scaling of the NDVI. This approach requires specifying NDVI for bare soil (NDVIo), and for
full vegetation cover (NDVIs) values (see Figure 3), and is based on the following equation [15,40]:

Fr =
{

NDVI−NDVI0

NDVIs−NDVI0

}2

(1)

However, other methods of Fr estimation can also be used. In the present work, since the Fr
layer is included in the Sentinel product, this information was used as the input and no computation
was required.

NDVIs and T[min] define the lower left (wet or cold) peak, i.e., the so-called “wet edge” (or “cold
edge”), which characterizes dense vegetation (refer to Figure 3). Similarly, NDVIo and T[max] describe
the lower right border of the triangle. An additional essential characteristic, the “dry edge” or “warm
edge” (also shown in Figure 3), represents the soil dryness limit (i.e., conditions where Mo = 0).
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The next step in applying the technique is the scaling of Ts to a variable named T*, resulting in
values varying between zero and one. Scaling requires identifying Ts for dry/bare soil, i.e., the maximum
Ts [max] value for pixels over dry/bare soil, and the Ts [min] value which is found over dense vegetation
(see Figure 3). Ts ranges between the Ts [min] and T [max] limits. The scaling of T* is performed based
on the following equation:

T∗ =
{
T − T (min))/(T (max) − T (min)

}
(2)

In our study, T* was derived from the Fr/Ts scatterplot of each Sentinel-3 image (using
Equation (2) above).

In the next step, Mo and EF are computed from Fr and T* as follows:

Mo = 1− T(pixel)/T(warm edge) (3)

EF = EFsoil(1− Fr) + Fr (4)

where EFsoil is the ratio of soil evaporation to net radiation.
As noted in [28], the above mathematical expressions are based on the assumption that for both

Mo and EF, there is linear variation between 0 and 1 within the triangular domain (refer to Figure 3).
Mo is defined as the ratio between the a/d lengths. Both lengths are functions of T* and Fr. For each
Fr and EF value located within the Ts/VI space, and for the pixels consisting of a presentence of both
vegetation and bare soil cover, the canopy EF is estimated as the weighted value of EF for the pixel Fr
(i.e., EFveg = 1.0, by definition). Thus, Equation (4) can be expressed as follows:

EF = Mo(1− Fr) + Fr (5)

In this study, the above steps were applied to each Sentinel-3 image. This resulted in two
final image products for each image processed, namely the EF and Mo maps. Figure 4 shows six
scatterplots of T scaled against Fr. Each scatterplot is for one day each month during the entire study
period (i.e., May–September). As can be observed, these scatterplots are mainly characterized by a
triangular/trapezoidal shape, which further evidences that the research area is heterogeneous enough
to guarantee satisfactory conditions for the implementation of the technique [18,41].
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Figure 4. Examples of the derived final scaled Ts/Fr scatterplots from different dates included in the
study (one scatterplot per month covering the period of analysis considered herein). The red line is the
“warm” edge and the blue the “cold” edge. The scatterplots refer to Sentinel-3 images acquisition dates:
(a) 16 May, (b) 23 June, (c) 25 July, (d) 5 August, (e) 25 August, and (f) 25 September. The use of color is
for visual clarity only.
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3.2. Statistical Analysis

Initial evaluation of the obtained results included a visual inspection of the spatiotemporal
variability of the derived parameters with respect to features including land cover and Fr,
and comparisons of the derived image histograms. Next, comparisons at the point/pixel level between
the predicted and measured parameters were performed. Where necessary, ground measurements
were interpolated (linearly) to match the time of each Sentinel-3 image. Prior to applying the statistical
analysis, from the final images computed upon completion of the “simplified triangle”, all records that
met the following conditions were removed: NaN values, EF > 1.0, and SSM outside the range 0.0–1.0.
Next, the predicted Mo was converted to SSM by multiplying Mo with the soil field capacity. Similarly,
for the in situ data, the acquired volumetric water content (VMC, expressed as %) was converted to
SSM. EF was also computed from the ground measurements as the ratio of the instantaneous LE and
Rn. The statistical metrics computed to quantify the agreement between predictions and observations
are summarized in Table 2. These parameters have been used in analogous studies which have already
been published (e.g., [13,19,42–45]).

Table 2. Statistical metrics adopted in our study to evaluate the correspondence of predictions
with the ground measurements of the parameters compared herein. Subscripts i = 1, . . . N are the
individual observations (i.e., days included in our analysis), P the predictions, and O the observations.
The horizontal bar denotes the mean value.

Name Description Mathematical Definition

Bias/MBE Bias (accuracy) or Mean Average Error bias = MBE = 1
N

N∑
i=1

(Pi −Oi)

Scatter/SD Scatter (precision) or Standard Deviation scatter = 1
N−1

N∑
i=1

√(
Pi −Oi − (Pi −Oi)

)2

RMSE Root Mean Square Error RMSD =
√

bias2 + scatter2

MAE Mean Absolute Error MAD = N−1
N∑

i=1
|Pi −Oi|

R Pearson’s Correlation Coefficient R =

[(
θsat−[θsat]

)(
θin−situ−[θin−situ]

)]
σsatσin−situ

4. Results

4.1. EF Comparisons

4.1.1. Visual Comparisons

The first step of the analysis was a visual inspection of the spatial variability of the derived
parameters. An example of the obtained EF maps (one map per month during the whole period of
analysis from May to September) is given in Figure 5. Generally, as can also be observed from Figure 5,
the predicted EF maps exhibited spatially realistic continuity of EF across the area covered in the satellite
field of view between the different months of the year. In addition, EF spatial variability was largely
in agreement with the changes in the land use/cover and the Fr and Ts maps (compare, for example,
Figures 2 and 5) and the area topographical characteristics (i.e., slope, elevation). These observations,
although they do not provide direct quantitative evidence of the accuracy of the EF product, suggest
reasonable spatial predictive ability of the EF.

4.1.2. Point Comparisons

In this study, three permanent FLUXNET sites located in Spain were chosen to compare the
predicted and observed EFs. A summary of the main statistical results obtained for the EF comparisons
is provided in Table 3. In addition, Figure 6 plots the predicted EF against the EF measured at each site
(the last three plots), but also the cumulative data for all sites (first plot). As can be observed, when all
the sites were considered, the RMSE of EF prediction was 0.191, with a SD of 0.088 and a satisfactory
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R of 0.721. These results showed generally satisfactory prediction accuracy for EF by means of the
studied technique. Among the three experimental sites, RMSE varied from 0.168 to 0.212, SD from
0.086 to 0.095 and R from 0.536 to 0.775. ES_Abr was the site with the lowest RMSE (0.168) and the
lowest R (0.536). The highest RMSE (0.212) was found at ES-LM2, while the site with the highest R was
ES_LM1. In addition, positive correlations were observed in all scatterplots (Figure 6). This comprises
an approximately linear relationship between the retrieved EF and the reference data. In overall,
the mean error and mean relative error values were fairly small, which suggests that the investigated
technique is able to satisfactorily predict EF, at least for most days included in the analysis.
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Table 3. Summary of the EF comparisons.

Country MAE MBE SD
Max

Absolute
Error

Median
Abs
Error

R RMSD N

All sites together 0.174 0.170 0.088 0.298 0.192 0.721 0.191 97
ES_Abr 0.148 0.139 0.095 0.298 0.138 0.536 0.168 34
ES-LM1 0.170 0.167 0.086 0.281 0.167 0.775 0.188 27
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Further spatial evaluation of the differences in EF retrieval using the “simplified triangle” technique
was also conducted. For this purpose, the entire dataset (for all sites and all days) was divided into three
groups based on different Fr value intervals, namely 0–20%, 20–240% and 40–2100%, and statistical
evaluation was performed separately for each interval. Table 4 summarizes the main findings of this
analysis. Generally, as shown in this table, there were only two dates on which Fr was in the range
41–2100%; hence, this subset was disregarded from the Fr analysis. As can also be observed, the lowest
RMSE (0.167) was reported for the subset of data with Fr values in the interval 20–240%; this was due
to lower MBE (0.143), as SD was the same for this group and the group within the range of Fr 0–220%.
The statistical measurements for these two Fr ranges were similar. Slightly better EF prediction could
be obtained in the Fr range between 20–240%, at least for the data in this study.

Table 4. Summary of EF comparisons with Fractional Vegetation Cover (Fr) for all the experimental
sites and all the studied parameters.

Fr
Ranges MAE MBE SD

Max
Absolute

Error

Median
Abs
Error

R RMSE
N

(Number
of Days)

0.00–20.20 0.177 0.173 0.087 0.298 0.193 0.452 0.193 79
0.21–20.40 0.147 0.143 0.087 0.274 0.153 0.671 0.167 16
0.41–21.00 0.260 0.260 0.021 0.281 0.260 NaN 0.261 2

4.2. SSM Comparisons

4.2.1. Visual Comparisons

As with the EF comparisons, the first step in the Mo evaluation consisted of performing a visual
inspection of the derived products in order to assess the Mo spatial variability and general trends.
Figure 7 presents an example of some Mo maps derived from the “simplified triangle” technique.
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As in the case of EF, one Sentinel-3 image per month covering the entire period of analysis from May
to September is plotted. A visual inspection clearly reflects the presence of reasonable spatial and
seasonal variability of Mo across the topography and land use classes, over both the vegetated and
bare soil areas. Furthermore, the spatial variability to the predicted EF exhibited a reasonable range of
values (refer to Figure 5).
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4.2.2. Point Comparisons

Table 5 summarizes the results concerning the relationship between the in situ SSM (i.e., the VMC
before conversion) and that predicted by the “triangle” (i.e., Mo converted to SSM based on the soil
average field capacity for each site). The degree of correlation between the predicted and observed
SSM is also clearly depicted in the associated scatterplots that are included herein (Figure 8). The x-axis
corresponds to the in situ SSM with units m3/m3; the y-axis corresponds to the derived SSM on the
same measurement units.

Table 5. Summarized results of the SSM comparisons. All statistical parameters apart from correlation
coefficient (R) and sample size (N) are expressed in cm3 cm−3.

Country MAE MBE SD
Max

Absolute
Error

Median
Abs
Error

R RMSE N

All sites together 0.009 −0.005 0.010 0.042 0.007 0.577 0.012 97
ES_Abr 0.009 −0.005 0.010 0.031 0.007 0.511 0.011 34
ES-LM1 0.007 −0.001 0.009 0.027 0.006 0.809 0.009 27
ES_LM2 0.011 −0.009 0.010 0.042 0.008 0.584 0.014 36
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As can be observed in Table 5, if all sites are considered together, SSM is predicted with
relatively reasonable RMSE (0.012 cm3 cm−3) and SD (0.10). The correlation coefficient (R) of 0.577 in
combination with Figure 8 suggests a reasonable correspondence of the predicted SSM to the collocated
measurements. With regard to the comparisons of the individual experimental sites, the lowest
RMSE (0.009 cm3 cm−3) was obtained for ES_LM1, followed by ES_Abr (0.011 cm3 cm−3) and ES_LM2
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(0.014 cm3 cm−3). Similarly, the site with the highest R was ES_LM1 (0.809), followed by ES_LM2
(0.584) and ES_Abr (0.511). MAE for the three sites ranged between 0.007–0.11 cm3 cm−3. Similarly,
the scatterplots of the predicted versus measured SSM shown in Figure 8 exhibit a positive correlation
between the compared datasets in all cases (i.e., both for site-specific data and for the combined datasets
from all the sites and dates). This implies satisfactory predictive ability of SSM/Mo by the “simplified
triangle” method, at least for the specific datasets. These results, combined with those shown in Table 5,
imply that the technique can be successfully applied to regional SSM monitoring.

For a more detailed evaluation of the SSM estimates, Table 6 presents the statistical measurements
for SSM predictions that correspond to different Fr ranges. The analysis of the combined dataset led
to a RMSE of 0.011, a SD of 0.009 cm3 cm−3 and an R of 0.011 for the Fr range 0–20%. For the Fr
range 20–40%, similar results were obtained, with RSME and MSE being 0.013 and 0.012 cm3 cm−3

respectively. The subset of Fr values in the range 40–100% included only two data points (days),
and was thus omitted from the statistical analysis.

Table 6. Summary of SSM comparisons per Fractional Vegetation Cover (Fr) for all the experimental
sites and all parameters for the year 2018. All statistical parameters apart from correlation coefficient
(R) and sample size (N) are expressed in cm3 cm−3.

Fr
Ranges MAE MBE SD

Max
Absolute

Error

Median
Abs
Error

R RMSE
N

(Number
of Days)

0.00–0.20 0.008 −0.005 0.009 0.031 0.007 0.473 0.011 79
0.21–0.04 0.010 −0.004 0.012 0.027 0.008 0.656 0.013 16
0.41–1.00 0.027 −0.015 0.027 0.042 0.027 NaN 0.031 2

5. Discussion

The present research comprised a robust investigation of the “simplified triangle” method for
deriving spatially explicit estimates of Evaporative Fraction (EF) and Surface Soil Moisture when the
latter used recent Sentinel-3 EO data. The study focused on selected experimental sites located in Spain,
representative of a typical Mediterranean savannah ecosystem. For example, a comparison of all the
data (including all dates and sites) showed a low RSME for EF (0.191) and SSM (0.012 cm3 cm−3) and
good correlation coefficients (R), i.e., 0.721 and 0.577 respectively. Similar or better results were obtained
in the individual site-specific comparisons. These findings are encouraging and, as a whole, corroborate
the technique’s ability to provide spatial estimates of the parameters it has been developed to predict
over the study area. This was verified using data from heterogeneous and arid/semi-arid experimental
sites during the study period. The results reported herein cannot be directly compared with other those
of studies, since the proposed technique is new. Yet, the reported RMSE and R values are comparable
to those in other studies which retrieved EF and SSM using TIR-based techniques [6,13,16,23,43,46,47].

Deviation between the estimated EF and SSM and the corresponding in situ data could be due to
several influencing factors. One possible such factor might be the accuracy with which Fr and Ts/Tkin
retrievals are derived, since these are the only input parameters required for the implementation of the
technique. Errors introduced in the estimation of those parameters could potentially impact prediction
ability [48]. In this regard, validations of the Sentinels-3 LST product indicate that the accuracy in Ts
retrieval is on the order of 1.5–2.5 K [9]. However, validation studies of the Fr product do not yet exist,
to our knowledge. The error contribution of Ts is not expected to be significant, since this parameter
is scaled [28,40]. Yet, in the present study, Fr was obtained directly from the Sentinel-3 product and
was not computed using the NDVI-based approach, as outlined by [28] in the “simplified triangle”
description. This may influence the retrieval accuracy of the predicted parameters which, to our
knowledge, is yet to be investigated. Figure 9 illustrates the influence of the Fr prediction method
on the scatterplot. This illustrates how different the scatterplot shape will be when Fr is predicted
by three different methods. In addition, the same figure illustrates the difference map between the
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Sentinel-3 and NDVI-scaled derived Fr, together with the corresponding histogram. Evidently, there is
considerable diversity in the scatterplots shown as a result of the differences of the Fr maps given as
inputs. We expect that this will have an impact on the subsequent steps of the implementation of the
“simplified triangle” technique.
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A further factor might be related to the assumption made by the “simplified triangle” of a linear
relationship between Ts/VI and the predicted parameters (both EF and Mo). This assumption perhaps
oversimplifies the relationship linking the variables embedded in the Ts/VI domain [14,49] Furthermore,
uncertainties in the predictions of both EF and Mo may be introduced due to user-dependent subjectivity
in the computation of the theoretical dry edge [50].

In addition, the large scale differences in spatial resolution between the CarboEurope point
measurements (on the order of 5 × 5 m) and the Sentinel-3 pixel (on the order of 1 × 1 km) direct
validation of both EF and SSM is subject to some degree of uncertainty. This spatial variation cannot be
precisely conveyed by means of point data validation [51]. This issue can potentially create a poor
horizontal and vertical mismatch between the EO data and the ground measurements, affecting the
comparisons of EF and SSM [52]. For example, satellite-derived SSM predictions could be responding
to the skin soil layer water content. The latter is significantly shallower than the ground measurement
minimum resolution (which is at a 0–5 cm average surface layer). Effective soil depth estimates for
EO-based predictions of SSM are a highly contested issue [20]. The authors of [53] found that at
a soil depth of 0–5 cm, external conditions such as wind speed have an effect on the soil surface
wetness, which may introduce uncertainties in SM retrievals. The authors of [54] found that fairly
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satisfactory SSM at the bare soil top surface layer can be obtained from EO sensors (i.e., at depths
of 5 cm and 15 cm) or in areas where vegetation cover is low. The authors of [55] stated that SSM
retrievals using optical EO data are effective at 10-cm soil depth. Recently [56] compared Mo derived
from the “simplified triangle” with surface soil water measured at 5-cm and 15-cm depths for a study
site in India. They reported the best agreement on bare soil pixels or pixels with low Fr, and also at soil
depths of 5 cm.

Another factor that could potentially account for the deviations between predictions and
observations for both EF and SSM is the temporal mismatch which exists between these values.
The ground observations which formed our reference dataset were obtained on the same day as the
Sentinel-3 overpass, but they were not measured at the precise satellite overpass time. Nonetheless,
this factor is expected to have a negligible influence on the validation carried out herein, as the ground
measurements were linearly interpolated, an approach which has also been adopted elsewhere [48,57],
in an attempt to address the issue of the exact time mismatch.

A further factor may be related to the accuracy and precision of the instruments. This might be
more prominent in the flux measurements coming from the eddy covariance system, which is used
to compute EF from the instantaneous fluxes of LE and Rn. Various studies have demonstrated that
measurement errors in instantaneous LE flux under certain circumstances (such as terrain features) can
be in the order of as much as 20–30%, whereas for Rn measurements, uncertainty of 10% can often
be assumed [58]. Furthermore, for EF in particular, the passage of clouds can lead to abrupt changes,
since it lowers the levels of shortwave radiation (Rg) and the available energy reaching at the Earth’s
surface, causing EF to increase slightly. For example, [59] suggested that a 20% decrease in available
energy caused by an increase in low-level clouds from 0–50 % coverage might result in a 5% increase
in EF. These are some possible reasons for the systematic overestimations of EF obtained from the
satellite data (refer to Figure 6, Table 4). Other possible reasons may be related to the limitations of the
technique itself.

The implementation of the “simplified “triangle” presents certain limitations, namely:
(1) It requires an image with a sufficiently large number of pixels, and with values covering the
whole spectrum of soil moisture concentration and Fr range. Furthermore, surfaces which are relatively
“wet”, i.e., which evaporate at a given rate, or “dry”, i.e., where nearly no evapotranspiration is
occurring, are necessary; (2) Like other Ts/VI methods, it depends on optical and TIR remote-sensing
observations, and as such, its use is restricted to clear-sky conditions; (3) Implementation of the
technique may be prone to human-induced errors, e.g., due to subjectivity in warm- and cold-edge
selection, which often introduces additional uncertainty. This is an issue that also challenges many
other Ts/VI methods (e.g., refer to the discussion by [9,16,48]).

Nonetheless, the “simplified “triangle” implementation with the Sentinel-3 presents several
advantages. First, it is based on globally available satellite data which are available at no cost.
Second, the technique is simple and robust in its implementation and it does not require significant
computational resources when applied to small scale studies. A further advantage is its reliance
on just a few inputs which are generally easily computed from EO sensors. The method is able to
provide reasonably accurate predictions, even in highly fragmented environments and dynamically
changing landscapes such as the Mediterranean savannah ecosystems included in our experimental
setup. Finally, the implementation steps are robust and adaptable to other locations; additionally,
the method can be adjusted for integration with other available EO data. These characteristics could
potentially make this technique a good candidate for operational development on a global scale.

The technique performed well for our study area and investigated time period. However, further
investigation is required to establish its general applicability. More research is required to assess the
extent to which it can be applied to monitoring EF and SSM on a long-term basis, also other ecosystem
conditions/regions and with different EO data (e.g., Landsat, MODIS, Seviri). In addition, a detailed
sensitivity analysis of the method will allow us to properly assess the effect of Fr and Ts errors on the
accuracy of the predictions. These two steps will help to extend our understanding of the capabilities
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of the “simplified triangle” technique and further establish its robustness and the accuracy of its
predictions [60]. Furthermore, the approach of defining the wet and dry edges, as required to apply
the technique, should be further scrutinized, removing any doubt of user subjectivity (e.g., by fully
automating the process computationally). Last but not least, a method is required to allow estimations
of EF and SSM to be made under all weather conditions; a promising avenue in this regard could be
the synergetic use of microwave data with optical and TIR EO data [48]. This issue in other Ts/VI
approaches also requiring the determination of the cold and warm edges has already been explored in
many studies. Yet, some issues remain (e.g., see [50]. All the above are topics of key importance to be
taken up in future studies.

6. Conclusions

This work aimed at evaluating the ability of the “simplified triangle” inversion technique to
estimate Evaporative fraction and Surface Soil Moisture from ESA’s Sentinel-3 EO data in a typical
savannah ecosystem in the Mediterranean region. For this purpose, the technique was implemented
and validated across three selected experimental sites in Europe that are part of a global ground
measurements network. The validation period covered 70 calendar days in summer and early autumn,
2018. To the best of our knowledge, the present study represents the first detailed investigation of
the accuracy of this technique using Sentinel-3 data in a variety of European ecosystems. The results
obtained based on a series of statistical metrics suggested that the technique is, in most cases, able to
predict the EF and SSM with satisfactory accuracy. Comparisons using the data from all days and all
sites showed for EF an RMSD of 0.191, SD of 0.088 and R of 0.721, whereas for SSM, the results were
slightly better, with an RMSD of 0.012, SD of 0.010 and R of 0.577. The prediction accuracy found
herein for both EF and SSM is comparable to those reported by other Ts//VI methods implemented with
dissimilar EO data. Evidently, the “simplified method” has certain key advantages which make it an
attractive choice, and even potentially a prime candidate for operational use. Undoubtedly, although
its applicability was clearly demonstrated in the present study, further investigation is encouraged
in different directions in order to establish its prediction accuracy. Further such research will be
undertaken by our team in future.
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