
HAROKOPIO UNIVERSITY
SCHOOL OF DIGITAL TECHNOLOGY
DEPARTMENT OF INFORMATICS AND TELEMATICS
POSTGRADUATE PROGRAMME STUDIES “INFORMATICS AND TELEM‐

ATICS”

COURSE ”COMPUTATIONAL AND INTERNET TECHNOLOGIES AND APPLI‐

CATIONS ‐ WEB ENGINEERING”

Development of microservices based toolkit (platform) for automated analytic

applications perceived as directed acyclic graphs that are deployes to k8s

Master Thesis

Georgia Chatzimarkaki

Athens, September 2021

HAROKOPIO UNIVERSITY
SCHOOL OF DIGITAL TECHNOLOGY
DEPARTMENT OF INFORMATICS AND TELEMATICS
POSTGRADUATE PROGRAMME STUDIES “INFORMATICS AND TELEM‐

ATICS”

COURSE ”COMPUTATIONAL AND INTERNET TECHNOLOGIES AND APPLI‐

CATIONS ‐ WEB ENGINEERING”

Examining Committee

Varlamis Iraklis (Supervisor)

Associate Professor, Department of Informacs and Telemacs, Harokopio

University of Athens

Tserpes, Konstantinos (Co‐Supervisor)

Associate Professor, Department of Informacs and Telemacs, Harokopio

University of Athens

Kousiouris, Georgios (Co‐Supervisor)

Assistant Professor, Department of Informacs and Telemacs, Harokopio

University of Athens

ML Lab / Georgia Chatzimarkaki 2

Ethics and Copyright Statement

I, Georgia Chatzimarkaki, hereby declare that:

1) I am the owner of the intellectual rights of this original work and to the best of my knowl‐

edge, my work does not insult persons, nor does it offend the intellectual rights of third

parties.

2) I accept that Library and Information Centre of Harokopio University may, without changing

the content of my work, make it available in electronic form through its Digital Library, copy

it in any medium and / or any format and hold more than one copy for maintenance and

safety purposes.

ML Lab / Georgia Chatzimarkaki 3

Dedication page

Having completed my Master thesis, I complete my study cycle at the Department of Informat‐

ics and Telematics of Harokopio University. On this occasion, I would like to express my sincere

gratitude to all those who played an important role during my studies at the Foundation and to all

those who helped me complete this thesis.

I would especially like to thank my supervising professor, Mr. Iraklis Varlamis, who was a helper of

my effort with his scientific knowledge and the moral support he provided. Without his valuable

guidance I could not have completed this task successfully.

I would also like to thank the members of the examination committee, Mr. Konstantinos Tserpe

and Mr. Georgios Kousiouris, for the help, support and advice they offered me during the writing,

as well as for their understanding.

I would also like to thank all my teachers at all levels of education, whose teaching has opened up

horizons in my life, and to whom I am grateful.

Finally, I could not omit to thank my family for the supplies they have provided and their support

throughout my studies.

ML Lab / Georgia Chatzimarkaki 4

Quote page

ML Lab / Georgia Chatzimarkaki 5

TABLE OF CONTENTS

Abstract in Greek . 10

Abstract in English . 12

List of Figures . 14

List of Tables . 16

List of Source Codes . 17

Abbreviations . 19

Glossary . 21

Chapter 1. Introduction . 26

1.1 Research Inspiration . 26

1.2 Contribution . 27

1.3 Organization of this Thesis . 28

Chapter 2. Background . 29

2.1 Serialization . 29

2.1.1 Parsing . 30

ML Lab / Georgia Chatzimarkaki 6

2.1.2 JSON . 31

2.1.3 YAML . 33

2.2 Docker . 39

2.2.1 Containers . 39

2.2.2 Docker Registry . 40

2.2.3 Docker Hub . 40

2.2.4 Docker Images . 40

2.2.5 Docker Layers . 41

2.2.6 Dockerfile file . 41

2.2.7 .dockerignore file . 42

2.2.8 Docker engine . 43

2.2.9 Commands . 43

2.3 Kubernetes . 46

2.3.1 Kubernetes Features . 48

2.4 User Authentication . 49

2.4.1 Authorization . 49

2.4.2 Authentication . 50

2.4.3 OAuth 2.0 . 50

2.4.4 OpenID Connect . 51

2.4.5 SAML . 51

2.4.6 Differences between OAuth 2 and OpenID Connect 52

2.4.7 Keycloak . 55

2.5 Spring cloud dataflow . 63

ML Lab / Georgia Chatzimarkaki 7

2.5.1 Features of Spring Cloud Data Flow . 64

2.5.2 Components . 65

2.5.3 Applications . 66

2.5.4 Message Broker . 67

2.5.5 Storage . 68

2.6 Differences . 68

2.7 Apache Zeppelin . 71

2.8 Virtual Assistant Chatbot . 74

Chapter 3. Prerequisites . 76

3.1 Prototype . 76

3.2 Technologies and Languages . 78

3.3 Kubernetes Configuration . 79

Chapter 4. Implementation . 88

4.1 ML LAb ‐ Spring Cloud Dataflow extension . 88

4.1.1 Export YAML file . 88

4.1.2 GPU property configuration . 93

4.1.3 Securing ML Lab with Keyclaok . 94

4.1.4 Streaming Object Detection Pipeline . 106

4.2 Notebook Implementation . 113

4.2.1 Securing Apache Zeppelin . 115

4.3 Chatbot Widget Creation . 118

ML Lab / Georgia Chatzimarkaki 8

Chapter 5. Conclusions . 125

Chapter 6. Future Implementations . 127

ML Lab / Georgia Chatzimarkaki 9

Abstract in Greek

Μετην έλευση του cloud computing, τοαρχιτεκτονικόστυλ τωνμικροϋπηρεσιών έχει προσελκύσει

μεγάλο ενδιαφέρον στην κοινότητα του Software Enginneering. Σε αντίθεση με τη μονολιθική

αρχιτεκτονική, η αρχιτεκτονική που βασίζεται σε μικροϋπηρεσίες αντιμετωπίζει τις προκλήσεις

της δημιουργίας εφαρμογών εγγενών στο σύννεφο που αξιοποιούν τις ευκαιρίες που δίνει η

υποδομή του νέφους για να διευκολύνουν τη δημιουργία εφαρμογών μεγάλης κλίμακας. Εδώ to

Docker και Kubernetes αυτοματοποιούν την ανάπτυξη και τη διαχείριση αυτών των εφαρμογών.

Οστόχοςαυτής τηςΜεταπτυχιακής Εργασίας είναι νααναπτύxθεί μια συνδυασμένη εργαλειοθήκη

(πλατφόρμα) βασισμένησεmicroservices μέσωκατευθυνόμενωνάκυκλων γραφημάτωνπουαναπτύσσονται

στο Kubernetes. Βασισμένηστηνυλοποίηση του Spring CloudDataflow (SCDF) με το ενσωματωμένο

επίπεδο ενορχήστρωσης, παρέχουμε μια εξαιρετικά παραγωγική εμπειρία για την ανάπτυξη και

τη διαχείριση εξελιγμένων data‐pipilines που αποτελούνται από αυτόνομα microservices. Το

περιβάλλον επιτρέπει στους χρήστες να ενορχηστρώσουν τον κύκλο ζωής της ανάπτυξης stream‐

ing, batch data pipelines για ναδημιουργήσουνμιαμικροϋπηρεσία. Διευκολύνουμε τησυνεργασία

των χρηστών μέσω της εξαγωγής και τον διαμοιρασμό των ανεπτυγμένων pipeline σε JSON ή

YAML αρχεία. Το διαμορφωμένο περιβάλλον επιτρέπει στους χρήστες να βελτιστοποιούν την

ML Lab / Georgia Chatzimarkaki 10

ανάπτυξη artificial intelligence anddeep learning pipelines επιτρέποντας τη χρήση τηςGPU. Καθώς

Big data analytic pipelines γίνονται όλο και πιο δημοφιλείς για την επεξεργασίαδεδομένωνμεγάλου

όγκου, επεκτείνουμε τη λειτουργία του SCDF με την υποστήριξη δημιουργίας εγγράφων και note‐

books γραμμένων σε διαφορετικές γλώσσες προγραμματισμού και επιτρέπουμε την εξαγωγή του

σε διαφορετικές μορφές ανάλογα με τις ανάγκες. Ενσωματώσαμε με τη δημιουργία ενός widget

που συνδέει τον virtual assistant που ονομάζεται Mycroft με τους χρήστες, επιτρέποντάς τους

να ορίσουν υπενθυμίσεις για τις εργασίες τους και να αναζητήσουν πληροφορίες που μπορούν

να τους βοηθήσουν κατά τη διάρκεια της ανάπτυξης. Για την διαχείριση της ταυτότητας και της

πρόσβασης των χρηστών σε όλη την εφορμογή και τις υπηρεσίες αξιοποιήσαμε το μηχανισμό

ασφαλείας που ονομάζεται Keycloak για την σύδεση του χρήστη και την παροχή ενός token που

θα διαμοιράζετε με τις άλλες υπηρεσίες για να επιβαιώσει την αυθεντικότητα του χρήστη.

Keywords: εργαλειοθήκη, streams, tasks, keycloak, notebooks, μικρουπηρεσίες, ροήπληροφορίας

ML Lab / Georgia Chatzimarkaki 11

Abstract in English

With the advent of cloud computing, the microservices architectural style has drawn a substan‐

tial amount of attention in the software engineering community. As opposed to monolithic ar‐

chitecture, the microservice based architecture tackles the challenges of building cloud‐native

applications that leverage the opportunities given by the cloud infrastructure to facilitate the cre‐

ation of large‐scale applications. Here Docker and Kubernetes, are automating the deployment

and management of these applications. The goal of this Master Thesis is to develop a combined

micro‐services based toolkit (platform) for automated analytic applications perceived as directed

acyclic graphs that are deployed to Kubernetes. By using the Spring Cloud dataflow (SCDF) with

the integrated orchestration layer, we provide a highly productive experience for deploying and

managing sophisticated data pipelines consisting of standalone microservices. The working envi‐

ronment allowing users to orchestrate the deployment lifecycle of streaming, batch data pipelines

to create amicroservice. We enable users collaboration through exporting and sharing the created

pipelines manifests as JSON or YAML files. We configure the environment to allow users to opti‐

mize the deployment of artificial intelligence and deep learning pipelines by enabling the use of

GPU for the deployment of the pipelines. As Big data analytic pipelines become popular for large

ML Lab / Georgia Chatzimarkaki 12

volume data processing we extend the SCDF functionality to support document and notebook cre‐

ation written in different programming languages and exporting them to different formats based

on the need. An Angular widget that connects the virtual assistant called Mycroft with users by

enabling them to set reminders for their tasks and search for information that can assist them dur‐

ing the development has been created for this project. Finally, to manage the identity and access

of users throughout the application and services, we used a security mechanism called Keycloak

to connect the user and provide a token that you will be shared with other services to verify the

authenticity of the user.

Keywords: toolkit, streams, tasks, keycloak, notebooks, microservices, pipelines

ML Lab / Georgia Chatzimarkaki 13

LIST OF FIGURES

2.1 Docker Ecosystem . 42

2.2 Apache Zeppelin Evolution . 72

2.3 Apache Zeppelin Interpreters . 73

3.1 ML Lab Prototype . 77

4.1 Export YAML under Tools Menu Item . 89

4.2 Export YAML of Stream Configuration Page . 90

4.3 Keycloak Admin Page . 95

4.4 Create Realm mllab . 96

4.5 Keycloak master realm (default) Login Page . 96

4.6 Configure Valid Redirect URLs of Keyclock . 97

4.7 Generate Secret for dataflow Client . 97

4.8 Create scopes for dataflow Client . 98

4.9 Keycloak mllab realm custom Login Page . 104

4.10 Keycloak mllab realm custom Registration Page 104

4.11 Export Keycloak Realm . 105

4.12 Register Application from URI . 111

4.13 Object Detection Pipeline . 112

ML Lab / Georgia Chatzimarkaki 14

4.14 ML Lab Notebooks View . 115

4.15 Custom Reminder Skill File Structure . 122

4.16 Mycroft Custom Reminder Skill . 122

4.17 Mycroft Core (server) Pairing . 123

4.18 ML Lab integrated Bot Pairing . 124

4.19 Bot Home Pairing . 124

ML Lab / Georgia Chatzimarkaki 15

LIST OF TABLES

2.1 Syntax comparison between JSON and YAML . 38

2.2 Protocols for OAuth, SAML and OIDC . 53

2.3 Actors and roles for OAuth, SAML and OIDC . 53

2.4 Tokes of OAuth, SAML and OIDC . 55

ML Lab / Georgia Chatzimarkaki 16

List of source Codes

2.1 JSON Example . 32

2.2 YAML Example . 36

3.1 RabbitMQ deployment files . 80

3.2 Keycloak deployment file . 82

4.1 exported YAML Example . 90

4.2 Keycloak base Dockerfile . 94

4.3 Keycloak Skipper command (Dockerfile) . 99

4.4 Keycloak Skipper command (Dockerfile) . 99

4.5 Keycloak Skipper Dockerfile . 99

4.6 Final Keycloak Dockerfile . 105

4.7 Object Detection Output JSON Example . 109

4.8 ML‐Lab receiving Apache Zeppelin version . 113

4.9 Pac4j COnfiguration for Apache Zeppelin authentication with Keycloak 116

4.10 Pac4jRealm and SecurityFilter for Apache Zeppelin authentication with Keycloak 116

4.11 Callback Filter for Apache Zeppelin authentication with Keycloak 117

4.12 Callback Filter for Apache Zeppelin authentication with Keycloak 117

4.13 Keycloak Configuration in Mycroft Core . 118

ML Lab / Georgia Chatzimarkaki 17

4.14 Secure Messaging between Mycroft Core and ML Lab 119

ML Lab / Georgia Chatzimarkaki 18

Abbreviations

SPI Serial Peripheral Interface. 25, 58

ANSI American National Standards Institute. 24

API Application Programming Interface. 22

CLI command‐line interface. 42

CORS Cross‐Origin Resource Sharing. 21

DB database. 23

HMAC Hash‐based message authentication code. 19

HOTP HMAC‐based one‐time password (HOTP). 58

HTTP Hypertext Transfer Protocol. 22

ID Identity Document. 34, 35

IDP Identity Provide. 62, 63

ML Lab / Georgia Chatzimarkaki 19

JSON JavaScript Object Notation. 31–34, 38–40, 105, 109, 111

LDAP Lightweight Directory Access Protocol. 56, 57, 62

OIDC OpenID Connect. 55–57, 61, 62

OS Operating System. 24

PAS Platformm as a Service. 56

REST Representational state transfer. 57, 59, 62

SAML Security Assertion Markup Language. 56, 57, 61, 62

SAML 2.0 Security Assertion Markup Language 2.0. 62

TOTP Time‐based One‐time Password. 58

UI User Interface. 21

VM virtual machine. 21

YAML Yet Another UML front end. 33, 34, 37, 39

ML Lab / Georgia Chatzimarkaki 20

Glossary

(VM) An emulation of a computer system. Virtual machines are based on computer architectures

and attempt to provide the same functionality as a physical computer. Their implementa‐

tions may involve specialized hardware, software, or a combination of both.. 23, 39, 40

User Interface (UI) The space where interactions between humans andmachines occur. The goal

of this interaction is to allow effective operation and control of the machine from the hu‐

man end, whilst themachine simultaneously feeds back information that aids the operators’

decision‐making process. Examples of this broad concept of user interfaces include the in‐

teractive aspects of computer operating systems, hand tools, heavy machinery operator

controls, and process controls. The design considerations applicable when creating user in‐

terfaces are related to or involve such disciplines as ergonomics and psychology.. 56, 102,

103

CORS Cross‐origin resource sharing is amechanism that allows restricted resources on awebpage

to be requested from another domain outside the domain fromwhich the first resourcewas

served. Aweb pagemay freely embed cross‐origin images, stylesheets, scripts, iframes, and

videos.. 58

ML Lab / Georgia Chatzimarkaki 21

HTTP The Hypertext Transfer Protocol (HTTP) is a stateless application‐level protocol for data ex‐

change. It is in use since 1990 and is the foundation of the World‐Wide Web.. 61, 72, 102

access the ability, right, or permission to approach, enter, speak with, or use; admittance: They

have access to the files.. 55

API API is a set of subroutine definitions, communication protocols, and tools for building soft‐

ware. In general terms, it is a set of clearly defined methods of communication among

various components. A good API makes it easier to develop a computer program by provid‐

ing all the building blocks, which are then put together by the programmer.. 56, 57, 70–72,

94

authentication Authentication (fromGreek: αὐθεντικός authentikos, ”real, genuine”, fromαὐθέντης

authentes, ”author”) is the act of proving an assertion, such as the identity of a computer

system user. In contrast with identification, the act of indicating a person or thing’s identity,

authentication is the process of verifying that identity.. 55, 56

browser AWeb browser or browser is a program that retrieves and displays pages from theWeb,

and lets users access further pages through hyperlinks. A browser is the most familiar type

of user agent.. 57

client A piece of computer hardware or software that accesses a service made available by a

server. The server is often (but not always) on another computer system, in which case

the client accesses the service by way of a network.[44] The term applies to the role that

programs or devices play in the client–server model.. 58

ML Lab / Georgia Chatzimarkaki 22

cloud computing Shared pools of configurable computer system resources and higher‐level ser‐

vices that can be rapidly provisioned with minimal management effort, often over the Inter‐

net. Cloud computing relies on sharing of resources to achieve coherence and economies

of scale, similar to a public utility.. 55

data ndividual facts, statistics, or items of information. Data are measured, collected, reported,

and analyzed, and used to create data visualizations such as graphs, tables or images. In

computing, data is information that has been translated into a form that is efficient for

movement or processing.. 29

database An organized collection of data, generally stored and accessed electronically from a

computer system. Where databases are more complex, they are often developed using

formal design and modeling techniques.. 56, 73

execution In computer and software engineering is the process bywhich a computer or (VM) exe‐

cutes the instructions of a computer program. Each instruction of a program is a description

of a particular action which to be carried out in order for a specific problem to be solved; as

instructions of a program and therefore the actions they describe are being carried out by

an executing machine, specific effects are produced in accordance to the semantics of the

instructions being executed.. 56

file (1) (ISO) A set of related records treated as a unit; e.g., in stock control, a file could consists of

a set of invoices. (2) The largest unit of storage structure that consists of a named collection

of all occurrences in a DB of records of a particular record type.. 105

ML Lab / Georgia Chatzimarkaki 23

gateway An intermediate system (interface, relay) that attaches to two (or more) computer net‐

works that have similar functions but dissimilar implementations and that enables either

one‐way or two‐way communication between the networks.. 55–57

interpreter A computer program that directly executes instructions written in a programming or

scripting language, without requiring them to have been previously compiled into amachine

language program.. 72, 73

operating system (OS) System software that manages computer hardware, software resources,

and provides common services for computer programs.. 39

reCAPTCHA is a CAPTCHA system that enables web hosts to distinguish between human and

automated access to websites. The original version asked users to decipher hard to read

text or match images.. 24, 63

SAML 2.0 Security AssertionMarkup Language 2.0 is a version of the SAML standard for exchang‐

ing authentication and authorization identities between security.SAML is an open standard

that enables single sign‐on (SSO). 58, 59

server A server is a computer or system that provides resources, data, services, or programs to

other computers, known as clients, over a network. In theory, whenever computers share

resources with client machines they are considered servers.. 56

software (ANSI) Programs, procedures, rules, and any associated documentation pertaining to

the operation of a system. Contrast with hardware. See: application software, operating

system, system software, utility software.. 22, 44

ML Lab / Georgia Chatzimarkaki 24

SPI The Serial Peripheral Interfaceis a synchronous serial communication interface specification

used for short‐distance communication, primarily in embedded systems. The interface was

developed by Motorola in the mid‐1980s and has become a de facto standard.. 19, 58

storage Computer data storage is a technology consisting of computer components and recording

media that are used to retain digital data. It is a core function and fundamental component

of computers.[1]. 23, 56

token Tokens are created through an initial coin offering, which represents the cryptocurrency

version of an initial public offering (IPO).. 58–63, 94

user Is a person who utilizes a computer or network service. Users of computer systems and soft‐

ware products generally lack the technical expertise required to fully understand how they

work.[2] Power users use advanced features of programs, though they are not necessarily

capable of computer programming and system administration.. 55, 56

ML Lab / Georgia Chatzimarkaki 25

CHAPTER1
Introduction

1.1 Research Inspiration

Inspiration andMotivation for thisMaster thesis were adapted by a European Commission project

called H2020 CYBELE, where I was a member of the team that was working on this project. Al‐

most a year ago at some phase where future steps of the development were discussed, an idea to

include an editor to enable the user to create new nodes for the pipeline were presented. Later

in the same week as I was studying for a Big‐Data project in University, where I have to present

Apache Zeppelin (Web‐based notebook), I saw some features that remind me of this discussion.

This arouse my curiosity and inspired on how to include this functionality. The different approach

of the usage of the Apache Zeppelin notebooks feature is one of the key factors that differentiates

this Master thesis fromH2020 CYBELE project. InMl Lab the goal will be to provide extra function‐

ality for data scientist and students to have a combined environment that can create stream/task

pipelines or notebooks for deep learning application’s. The H2020 CYBELE project final goal is

to include notebooks Workflows to provide a convenient way to prepare data‐driven, interactive

data analytics and collaborative scripts concerning spark execution properties.

ML Lab / Georgia Chatzimarkaki 26

https://www.cybele-project.eu/

1.2 Contribution

The aim of this Master thesis is to create, develop and design an application, which can be used

by students and data scientists by extending the Spring Cloud Dataflow functionality to provide

more features. I wanted to provide a combined solution that a user can:

(1) export the YAML manifest of the deployed pipeline that can be re‐used for deployment to

another environment, that can enhance collaboration between users.

(2) modify the configuration for the generic deployer properties to define the amount of GPU

cores to be used to deploy/launch artificial intelligent or big data pipelines.

(3) create and share collaborative notebooks written in different programming languages that

can be exported to different formats based on the need.

(4) prepare new stream and task application(nodes) like an editor by using Java interpreter by

following the providing guide.

(5) use the chatbot (widget) (personal assistant) to get information about the toolkit by asking

a question like ”what is a stream;” or even ”how can I write my first stream;”, where in the

second the answer will include links on basic node creation steps.

(6) use the chatbot to set custom reminders to finish a task or even to find information. For

example ask aboutweather conditions to validate the results of aweather predictionmodel.

(7) be authenticated with the application and other services though Keycloak (the identity and

access management solution).

ML Lab / Georgia Chatzimarkaki 27

1.3 Organization of this Thesis

A brief introduction to the topic is given in the first chapter to describe where the inspiration of

this project come and describe the organization of the following chapters.

The second chapter focuses on the foundations needed for this master’s thesis, including theo‐

retical and technical background regarding JSON and YAML, Docker, Kubernetes, Authentication

mechanism.

The third chapter introduces the prototype that I will be used to develop and provide the ML Lab

toolkit secured with Keycloak, notebooks integration and a chatbot to set up reminders and ask

questions. The implementation of this prototype will be presented in the fourth chapter. Finally,

in the fifth and sixth chapter, a conclusion on this master’s thesis is drawn and future work is

proposed.

ML Lab / Georgia Chatzimarkaki 28

CHAPTER2
Background

2.1 Serialization

Serialization is a process for converting a data structure or object into a format that can be trans‐

mitted through a wire, or stored somewhere for later use. In terms of serialization there are a

legion of different ways and formats that can be used. Which method and format to choose de‐

pends on the requirements set up on the object or data, and the use for the serialization (sending

or storing). The choice may also affect the size of the serialized data as well as serialization/dese‐

rialization performance in terms of processing time and memory usage.

All serialization methods reading data as a series, once started the whole object will usually be

serialized/deserialized. This enables the use of simple I/O interfaces to hold and pass on the state

of an object, although difficulties arise in applicationswhich require higher performance by having

a nonlinear storage organization, or when the object contains large amounts of data.

Serialization is supported by many of the popular object‐oriented programming languages like

Java, PHP, Ruby, Smalltalk and Python along with the .NET Framework. All of these languages

provide serialization methods either as implementable interface or as syntactic sugar.

ML Lab / Georgia Chatzimarkaki 29

A serialization strategy can be defined in cases when you want to restrict the serialization process

(all instance variables are serialized by default) or handle data in specific ways. Most of the stan‐

dard serialization implementations converts the data into a binary string, which means that the

data will not easily be inspected by a human in its serialized form.

Serialization is preferable to use when transmitting data, as has been mentioned above. Some

example of such cases are when storing user preferences in an object or for maintaining security

information across pages and applications. In general,when transferring objects in applications,

domains, or through firewalls, serialization can be very helpful.

2.1.1 Parsing

The term parsing in computer science means in general to analyze written text, determining its

grammatical structure from a known formal grammar. In linguistic terms, parse means analyzing

and describe the grammar of a sentence. The parser splits up an expression into tokens which are

then inserted into some kind of data structure. This data is the evaluated to interpret themeaning

of each expression by the rules from given grammar, followed by execution of the appropriate

action.

Serialization is mainly a method to maintain easy ways of storing, in the sense of converting data

and then restore it into a semantically equivalent clone. Unless the serialization method used

serializes the data in a coherent order, where the data never changing, and expects the data to

be read in the same order when deserializing, parsing will have to be done when the data is to

be deserialized. When deserializing, parsing is done to identify the data identifiers like attribute

ML Lab / Georgia Chatzimarkaki 30

names or the like and their corresponding values, while at the same time often having to discern

the type of data.

2.1.2 JSON

The (JavaScript Object Notation (JSON)) is a serialization format for data. JSONwas originally spec‐

ified and introduced by Douglas Crockford in 2001[3], who used it within his company State Soft‐

ware, but he was not the first person to invent the object notation, but he was the first one to give

it a complete specification, based on parts of the JavaScript standard. Following that he launched

the JSON.org website in 2002, which still exists and currently provides a listing of JSON libraries

for different programming languages. It was initially developed for ECMAScript standartd(third

edition, 1999) but was later derived and standardized as an independent standard in RFC4627 as

away to parse human‐readable (in plain text format) representations of data into valid ECMAScript

objects[4, 5]. It is completely language independent and uses notations similar to common pro‐

gramming languages such as C, C++, Java, etc.

It quickly grew in popularity partly due to its simplicity, which made it much more light weight

‐faster load times over the Internet‐ compared to XML, a format frequently used on the web. Also

the growth in usage is a result of the increased use of JavaScript on the web.

As per RFC8259, “JSON can represent four primitive types (strings, numbers, booleans, and null)

and two structured types (objects and arrays)”. A JSON object consists of key‐value pairs. Among

these zero or more pairs, the key is a string and the value is either “string, number, boolean, null,

object, or array” [6]. General syntax must meet the following rules:

ML Lab / Georgia Chatzimarkaki 31

JSON.org

• Comments are not allowed.

• Objects (unordered collection of name/value pairs) are denoted with braces ().

• Identifiersmust be enclosed in quotes (as a string) and are followed by a colon and value.

• Objects (associative arrays / objects with key‐value pairs)

• Multiple key‐value pairs are separated with a comma

• Arrays (ordered set of values) are placed within brackets ([]) and separated by commas.

• The root node of a JSON document must be an object or an array.

A non‐normative example of a JSON object including possible value types is shown below:

1 {

2 ”a” :”b”,

3 ”c” : 1,

4 ”d” : null ,

5 ”e” : {

6 ”f” : ”g”

7 },

8 ”h” : [1, 2, 3] ,

9 ”i” : true

10 }

Code 2.1: JSON Example

ML Lab / Georgia Chatzimarkaki 32

2.1.3 YAML

Yet Another UML front end (YAML) is a digestible data serialization language that is often utilized

to create configuration files and works in concurrence with any programming language and de‐

signed for human interaction. YAMLwas first proposed by Clark Evans in 2001, who then designed

it together with Ingy döt Net and Oren Ben Kiki. The format was developed from experience and

discussions among sml‐dev members on the Internet, and is still updated based on user input

from the YAML‐core mailing list. This answers the concern for it to be easy to understand and use,

which is one of the primary goals for the format.

It’s a strict superset of JSON, another (light‐weight) data serialization language. But because it’s a

strict superset, it can do everything that JSON can and more. One major difference is that new‐

lines and indentation actually mean something in YAML, as opposed to JSON, which uses brackets

and braces. [7] By adding a simple typing system and aliasing mechanism upon the three most

common data structures used when serializing (hashes, arrays and strings) it forms a language

which is comparably very easy to use, while still including more complex features.

As it is mainly integrated and built upon concepts described by C, Java, Perl, Python, so to be easily

extensible and readable by humans it is the mainly goal. JSON files are often valid YAML files be‐

cause of the fact that JSON files are often valid YAML files because of the fact that JSON’s semantic

structure is equivalent to YAML’s in line writing style (which was added in the new v1.2 specifica‐

tion of YAML). This means that YAML parsers adhering to the new specification also should be able

to parse most JSON files.’s semantic structure is equivalent to YAML’s in line writing style (which

was added in the v1.2 specification of YAML). This means that YAML parsers adhering to the new

ML Lab / Georgia Chatzimarkaki 33

specification also should be able to parse most JSON files. In addition to the basic data types avail‐

able in JSON, YAML also supports relational trees. Relational trees are a language construct with

which references to other nodes in the YAML document can be made[5]. A node in the YAML doc‐

ument tree can be defined as an anchor, and later references to that anchor will then include the

data of the anchored node into the node. Smart use of this feature can lead to increased read‐

ability, compactness and clarity along with less chance of data entry errors.

The YAML specification also allows user‐defined data types to be declared, as well as explicit data

typing. This is especially useful for serialization purposes, allowing a parser to automatically con‐

struct an object of the correct class when deserializing, instead of an generic collection. YAML

structures includes nodes and tags. A node represents a single native data structure, which can

be a scalar, sequence or mapping. Each node can be marked with a tag, which restricts the set of

possible values upon that node ID for data structures. YAML implements globally unique (means

that the tag is unique through the whole process) local and URI tags. Local tags always starts with

an exclamation mark and are specific for the current application. They are primary used to as‐

sociate meta data to each node, but can also be used to specify additional information, such as

allowed content or resolution.

The value is either “string, number, boolean, null, date, map, sequence” [6]. General syntax must

meet the following rules: [7, 8]

• Comments ts begin with a hash/number sign (#) and continues to the end of the current

line.

• Document data hierarchy is determined by indentation using double space characters (tab

characters are not allowed as indentation).

ML Lab / Georgia Chatzimarkaki 34

• Comments are not allowed.

Sequences (arrays) syntax must meet the following rules:

• One item per line, marked with a dash and space.

• An alternative inline syntax exists, where the list is enclosed in brackets and items are sep‐

arated by a comma followed by space.

Structures syntax must meet the following rules:

• Three repeated dashes denote the start of a document, and is also used to separatemultiple

documents in a single transmission.

• The root node of a document can be any valid data type

• Ending a transmission along with the current document is done with three repeated dots.

• Repeating nodes are defined with an ampersand and later referenced with an asterisk,

where character is followed by an ID.

• A question mark and space in the beginning of a line denotes sets which are un‐ordered.

• Values of user‐defined data types can be denoted by prefixing themwith a exclamationmark

followed by the data type name, a space and finally the value.

• Explicit data type casting is done by prefixing the value in the sameway as with user defined

types but with an additional exclamation mark.

ML Lab / Georgia Chatzimarkaki 35

Strings syntax must meet the following rules:

• Quoting is often not required but can be, using either single or double quotes.

• The single quoted style is useful when no escaping is needed, while the double quoted style

allows for escape sequences. It can spanmultiple lines and newlines are folded and included

by a newline escape character (\n)

• Strings can be written using either the standard inline style (with or without quotes) or with

block notation where a initial symbol determines how newlines in the document should be

handled.

• Strings can be written using either the standard inline style (with or without quotes) or with

block notation where a initial symbol determines how newlines in the document should be

handled.

• Strings in block notation denominated with a pipe (|) will have their newlines preserved,

while the greater than sign (>) will tell the YAML parser to convert newlines to spaces.

An example of a arbitrary YAML document including possible value types is shown below:

1 ‐‐‐ # The Smiths

2 ‐ {name: John Smith, age: 33}

3 ‐ name: Mary Smith

4 age: 27

5 ‐ [name, age]: [Rae Smith, 4] # sequences as keys are supported

ML Lab / Georgia Chatzimarkaki 36

6 ‐‐‐ # People, by gender

7 men: [John Smith, Bill Jones]

8 women:

9 ‐ Mary Smith

10 ‐ Susan Williams

Code 2.2: YAML Example

The YAML specification outlines four stages of data when loading and dumping to and from the

format. Native data is seen as the first stage. The serialized YAML document (string) is the last

stage of data. The two stages in between can be seen as working stages, where the data has been

transformed into a node graph or event tree to be further processed. Serialization, or dumping as

it is referred to, is done in three distinct stageswhich converts the data froma native data structure

into series of bytes (strings). First, a directed graph is generated containing the structure ‐ with

nodes, sequences, mappings and scalars. The graph is then serialized, where sequential access

mediums must be represented as ordered trees. In YAML they are created by ordered mappings,

also called serialization trees. General mapping keys are unordered. Finally, the serialized tree is

converted into a Unicode string. The load (deserialization) process is also compromised of three

stages, which together does the opposite. The input (a string) is parsed to create a serialization

tree in which the node hierarchy, keys, values and ordering is defined. This tree is then traversed

node‐to‐node, where the data types of values are determined and converted to, as well as con‐

structing relations and sequences. The final step converts the representation graph in to native

data structures.

ML Lab / Georgia Chatzimarkaki 37

Type JSON YAML

Comments Not allowed in the current specification,
previously possible

Denoted with a hash/number sign, continues
for the rest of the line.

Hierarchy Objects and arrays can be nested, and are
denoted by braces and brackets, respec‐
tively.

Mappings and sequences can be nested. Hi‐
erarchy is determined by indentation level.

Arrays [”first”, ”second”, 3] ‐ first

‐ second

‐ 3

Alt. [first, second, 3]

Objects ”object”:

”a”: one,

”b”: 2

mapping:

a: one

b: 2

Alt. a: one, b: 2

Documents Root node must be an array or object.
Does not support multiple documents
within a transmission.

Root note can be any valid data type. New
documents in a transmission is denoted by
three dashes. Repeated nodes are defined
with ampersand, then referenced to with an
asterisk.

Strings Must be double quoted. Allows character
(tabs, newlines, etc.) escaping with back‐
slash as the escape character.

Does not require quoting but supports both
single and double quotes (same functional‐
ity as JSON). Also provides two different block
notations.

Numbers Floating point numbers in scientific nota‐
tion. Infinity is not permitted.

Built‐in support for integers, floating‐point,
octal and hexadecimal numbers.

Table 2.1: Syntax comparison between JSON and YAML

ML Lab / Georgia Chatzimarkaki 38

In table 2.1 a summarization for the syntax comparison between JSON and YAML is pro‐

vided.

2.2 Docker

2.2.1 Containers

The container abstraction has become a popular technique for running multiple application ser‐

vices on a single host. Containers are a way to bundle software in a format that can be run in

an isolated manner on a shared operating system (OS). Containers should not be confused with

virtual machines (VMs). However, in contrast to system virtualization, containerized applications

do not contain an Operating system (OS) installation, but they share the host operating system

kernel and services on he same host. So, they only wrap system libraries, files, and code that are

required to make the target application run as expected – regardless of where the application is

deployed. As stated in [9] the number of package changes varies across different types of appli‐

cations and often the changing packages are utility packages. Container images can be supported

across different OS platforms as they are available for both Linux and Windows‐based apps and

“containerized” software will always run the same, regardless of the environment. One feature

Containers have, is that isolate software from its surroundings, for example, differences between

development and staging environments and help reduce conflicts between teams running differ‐

ent software on the same infrastructure. [10]

ML Lab / Georgia Chatzimarkaki 39

2.2.2 Docker Registry

The Docker Registry is a platform for storing and sharing container images. It stores images in

repositories, each containing different versions of the same image. Image layers are stored as

compressed archival files and image manifests as JSON based files.

2.2.3 Docker Hub

Among all container solutions, Docker containers a complete packaging and software delivery

tool, have recently become a prominent solution to provision multiple applications over shared

physical hosts in a more lightweight fashion than traditional (VM) and provide near‐native per‐

formance. This popularity has led to the creation of the Docker Hub public registry support‐

ing both public and private repositories, which distributes at least half a million public images.

[11, 12] It is important to state that millions of images have been downloaded from Docker Hub

billions of times. In Docker Hub, the user repositories are name‐spaced by user name, i.e., <user‐

name>/<repository_name>, while the official repositories which are directly provided by Docker

Inc. and partners, are called <repository_name>.

2.2.4 Docker Images

At the center of Docker is the concept of container images for packaging, distributing and running

applications. An Image is the “template” which contains the application and any associated bina‐

ries or libraries that are needed to build a Container.

ML Lab / Georgia Chatzimarkaki 40

An image is a lightweight, stand‐alone, executable package that includes everything needed to run

a piece of software, including the code, a run‐time, libraries, environment variables, and config

files.

Every package that gets added to the Image gets added as a new layer and the container is basically

the running instance of the Image. In simply words, Docker is a series of individual layers.

2.2.5 Docker Layers

A layer contains a subset of files in thee image and often represents a specific component/de‐

pendency of the image e.g. a library. This design allows layer to be shared between two images

depend on the same component.

Image layers are read‐only. When a user start a container, Docker instantly creates a newwritable

layer on top of the underlying read‐only layers as shown in Figure 2.1. As you can see the writable

layer are discarded when the container is deleted.

An image is represented by a manifest file, which contains a list of layer identifiers (digests) for all

layers required by the image. Also it describes the various parameters of a Docker image, such as

the target hardware platform and environment settings.

2.2.6 Dockerfile file

Docker can build images automatically by reading the instructions fromaDockerfile. ADockerfile is

a text document that contains all the commands a user could call on the command line to assemble

an image. Using docker build users can create an automated build that executes several command‐

ML Lab / Georgia Chatzimarkaki 41

Figure 2.1: Docker Ecosystem

line instructions in succession. The advantage of a Dockerfile over just storing the binary image

(or a snapshot/template in other virtualization systems) is that the automatic builds will ensure

you have the latest version available. This is a good thing from a security perspective, as you want

to ensure you’re not installing any vulnerable software.

2.2.7 .dockerignore file

Before the docker CLI sends the context to the docker daemon, it looks for a file named .dockerig‐

nore in the root directory of the context. If this file exists, the CLI modifies the context to exclude

files and directories that match patterns in it. This helps to avoid unnecessarily sending large or

sensitive files and directories to the daemon and potentially adding them to images using ADD or

COPY.

ML Lab / Georgia Chatzimarkaki 42

The cli interprets the .dockerignore file as a newline‐separated list of patterns similar to the file

globs of Unix shells. For the purposes of matching, the root of the context is considered to be both

the working and the root directory.

2.2.8 Docker engine

A docker engine acts as a heart of any docker system. A host system that is installed with a docker

application is technically termed as a docker engine.

• A long type of running process in docker termed is defined as a daemon process.

• The actual meaning of a client (CLI) is a command‐line interface.

• For a virtual communication between CLI client and Docker daemon, a REST API is used.

2.2.9 Commands

Now that we have a basic understanding of what Docker is about and some of the key components

and concepts are. It ‘s time to discuss Docker commands like RUN, CMD and ENTRYPOINT. [13]

• FROM command, which tells us what image to base this off of. This is the multi‐layered

approach that makes Docker so efficient and powerful. This is the multi‐layered approach

that makes Docker so efficient and powerful. In this instance, it’s using the base Docker

image, which again references a Dockerfile to automate the build process.

ML Lab / Georgia Chatzimarkaki 43

• RUN executes command(s) in a new layer and creates a new image. E.g., it is often used

for installing software packages. With this, we can execute commands. We need to specify

an image to derive the container from. This command is mainly used for installing a new

package.

• VOLUME command allows it to be externally mounted via the host itself or a Docker data

container. If it is not defined, then it’s not possible to access outside of the container.

• ENV command sets the environment variables, which can be used in the Dockerfile and any

scripts that it calls. These are persistent with the container too, so they can be referenced

at any time.

• COPY command is simply as it sounds. It can copy a file (in the same directory as the

Dockerfile) to the container. You can do this for things like custom configuration files or like

in this instance, a file to run commands after the container has been set up.

• CMD sets default command and/or parameters, which can be overwritten from command

line when docker container runs. The CMD command specifies the instruction that is to be

executed when a Docker container starts. This CMD command is not really necessary for

the container to work, as the echo command can be called in a RUN statement as well. The

main purpose of the CMD command is to launch the software required in a container. For

example, the user may need to run an executable “.exe” file or a bash terminal as soon as

the container starts – the CMD command can be used to handle such requests.

The syntax of the CMD command have to follow the Shell syntax:

1 CMD executable parameter1 parameter2 (shell form)

ML Lab / Georgia Chatzimarkaki 44

However, it is better practice to use the JSON array format:

1 CMD [”executable”, ”parameter1”, ”parameter2”] (exec form)

In principle, there should only be one CMD command in our Dockerfile. When CMD is used

multiple times, only the last instance is executed. Many developers confuse CMD with EN‐

TRYPOINT. However, ENTRYPOINT cannot be overridden by docker run. Instead, whatever

is specified in docker run will be appended to ENTRYPOINT – this is not the case with CMD.

• ENTRYPOINT configures a container that will run as an executable. This command ulti‐

mately allows us to identify which executable should be run when a container is started

from your image. It looks similar to CMD, because it also allows us to specify a command

with parameters. The difference is ENTRYPOINT command and parameters are not ignored

when Docker container runs with command line parameters. ENTRYPOINT has two forms

The ENTRYPOINT command have to follow the Shell syntax:

1 ENTRYPOINT command param1 param2 (shell form)

However, it is better practice to use the JSON array format:

1 ENTRYPOINT [”executable”, ”param1”, ”param2”] (exec form)

Note that ENTRYPOINT and CMD cannot both be string values. They can both be array

values, and ENTRYPOINT can be an array value and CMD can be a string value; but if EN‐

TRYPOINT is a string value, CMD will be ignored. This is an unfortunate but unavoidable

consequence of the way argument strings are converted to arrays. This is among the rea‐

sons I always recommend specifying arrays whenever possible.

ML Lab / Georgia Chatzimarkaki 45

• Other Usefull Commands By pushing the application image to a registry like Docker Hub,

we make it available for subsequent use as you build and scale the containers. We will use

this commands to push our custom containers to Docker Hub. The first step to pushing the

image is to login to the Docker Hub account :

1 docker login -u ”dockerhub_username”

We can then push the application images to Docker Hub using the tag we created:

1 docker push ”dockerhub_username/image-demo”

To view the running containers the following command is the most appropriate:

1 docker ps

To stop a running application container the only requirement is to know its ID

1 docker stop CONTAINER_ID

To list all the images with the name of the image, dockerhub_username/image‐demo, along

with the node image and the other images from the build:

1 docker images -a

To remove the stopped container and all of the images, including unused or dangling images,

with the following command:

2.3 Kubernetes

Kubernetes (also known as k8s or “kube”) is an open source container orchestration platform

that automates many of the manual processes involved in deploying, managing, and scaling con‐

ML Lab / Georgia Chatzimarkaki 46

tainerized applications. You can cluster together groups of hosts running Linux containers, and

Kubernetes helps to easily and efficiently manage those clusters. [14]

The platformwas first developed by a team at Google, and later donated to the Cloud Native Com‐

puting Foundation (CNCF). It is not the only option for container management, but has gain great

popularity over the years. As Opensource.com notes, ”Today, Kubernetes is a true open source

community, with engineers’ works fromGoogle, Red Hat, andmany other companies actively con‐

tributing to the project.”

Kubernetes clusters can span hosts across on‐premise, public, private, or hybrid clouds. For this

reason, Kubernetes is an ideal platform for hosting cloud‐native applications that require rapid

scaling, like real‐time data streaming through Apache Kafka.[?]

The primary advantage of using Kubernetes in your environment, especially if you are optimizing

development for the cloud, is that it gives you the platform to schedule and run containers on

clusters of physical or virtual machines. [15]

More broadly, it helps you fully implement and rely on a container‐based infrastructure in produc‐

tion environments. And because Kubernetes is all about automation of operational tasks, you can

do many of the same things other application platforms or management systems let you do—but

for your containers.

Kubernetes eases the burdenof configuring, deploying,managing, andmonitoring even the largest‐

scale containerized applications. It also helps application lifecycles, and issues including high avail‐

ability and load balancing.

Kubernetes is not a traditional, all‐inclusive PaaS (Platform as a Service) system. Since Kuber‐

netes operates at the container level rather than at the hardware level, it provides some gener‐

ally applicable features common to PaaS offerings, such as deployment, scaling, load balancing,

ML Lab / Georgia Chatzimarkaki 47

Opensource.com

and lets users integrate their logging, monitoring, and alerting solutions. However, Kubernetes is

not monolithic, and these default solutions are optional and pluggable. Kubernetes provides the

building blocks for building developer platforms, but preserves user choice and flexibility where it

is important.

2.3.1 Kubernetes Features

Kubernetes provides you with: [16]

• Kubernetes allows to automatically mount a storage system of your choice, such as local

storages, public cloud providers, and more.

• Kubernetes can expose a container using the DNS name or using their own IP address. If

traffic to a container is high, Kubernetes is able to load balance and distribute the network

traffic so that the deployment is stable.

• Allow to describe the desired state for the deployed containers using Kubernetes, and it can

change the actual state to the desired state at a controlled rate. For example, you can auto‐

mate Kubernetes to create new containers for the deployment, remove existing containers

and adopt all their resources to the new container.

• Kubernetes can fit containers onto nodes to make the best use of your resources.

• If a container fails, Kubernetes restarts it. Kubernetes also replaces containers, kills con‐

tainers that don’t respond to the user‐defined health check, and doesn’t advertise them to

clients until they are ready to serve.

ML Lab / Georgia Chatzimarkaki 48

2.4 User Authentication

Authentication is about validating your credentials like username and password to verify your

identity. The system determines whether you are who you say you are using your credentials.

In public and private networks, the system authenticates the user identity via login passwords.

Authentication is usually done by a username and password, and sometimes in conjunction with

factors of authentication, which refers to the various ways to be authenticated.

2.4.1 Authorization

Authorization is a function of the Identity Provider. This function is not based on a protocol. Au‐

thorization happens in the same way: the Identity Provider will first identify the user, then ask the

user to authorize what the Identity Provider shares with the Application. The Identity Provider can

ask for authorization to control what identity information and content is shared with the Applica‐

tion. For example, the IDP can ask if the userwants to share his email addresswith the Application.

An Identity Provider can also ask for authorization to control the scope of an Access Token that is

handed to an Application for API protection use cases. For example, the IDP can ask if the user

wants to allow an Application access to some other service on their behalf. Access Token scope

only exists for OAuth / OIDC.

ML Lab / Georgia Chatzimarkaki 49

2.4.2 Authentication

An application that wants to authenticate a user needs to receive identity information, i.e. claims

identifying the user. Originally, claims were only defined for OIDC and SAML. However, with the

introduction of the OAuth introspection service, an application can use OAuth only to receive

identity claims implementing authentication use cases.

2.4.3 OAuth 2.0

OAuth 2.0 is an authorization framework that delegates user authentication to the service provider

that hosts the user account, and authorizes third‐party applications to access the user account.

OAuth 2.0 provides authorization flows for web applications, desktop applications and mobile de‐

vices.

By introducing an authorization layer, OAuth 2.0 separates the role of the client from the resource

owner, or end user. If the client requests access to resources controlled by the end user and hosted

by the resource server, instead of using the end user’s credentials to access protected resources,

the client gets an access token. With the approval of the end user, the authorization server will

issue access tokens to the requesting client.

OAuth 2.0 is explicitly designed to support a variety of different client types that access REST APIs.

This includes applications running on enterprise web servers conversing with the cloud as well as

applications running on employee or customer mobile devices. The OAuth framework supports

a variety of client types by defining multiple mechanisms for getting a token where the different

mechanisms acknowledge the client type constraints.

ML Lab / Georgia Chatzimarkaki 50

2.4.4 OpenID Connect

OpenID Connect (OIDC) is an identity layer built on top of the OAuth 2.0 framework. It allows

third‐party applications to verify the identity of the end‐user and to obtain basic user profile in‐

formation. OIDC uses JSON web tokens (JWTs), which you can obtain using flows conforming to

the OAuth 2.0 specifications. OpenID Connect (OIDC) verifies a user’s identity when they try to

access a protected HTTPS endpoint. It uses straightforward REST/JSON message flows with a de‐

sign goal of “making simple things simple and complicated things possible”. It’s uniquely easy for

developers to integrate, compared to any preceding Identity protocol. OIDC was developed to

work together with open authorization (OAuth) by providing an authentication layer to support

the authorisation layer provided by OAuth. OpenID Connect lets developers authenticate their

users across websites and apps without having to own and manage password files. For the app

builder, it provides a secure verifiable answer to the question: “What is the identity of the person

currently using the browser or native app that is connected to me?

2.4.5 SAML

One of the most important proposals in this area is the Security Assertion Markup Language

(SAML) [17, 18]. SAML is a very extensible, open standard, which makes it attractive as a basis

for further development. SAML is used for exchanging authentication and authorization data be‐

tween parties, in particular, between an identity provider and a service provider. SAML is an

ML Lab / Georgia Chatzimarkaki 51

XML‐based markup language for security assertions (statements that service providers use to

make access‐control decisions).[19] SAML allows so‐called protocol bindings that embed SAML

constructs in other structures for transport. SAML, for instance, builds on the Simple Object Ac‐

cess Protocol (SOAP) with its SOAP over HTTP binding. In addition, the SAML standard includes

descriptions of the use of SAML assertions in communication protocols and frameworks. These

so‐called profiles contain protocol flows and security constraints for applications of SAML. An im‐

portant use case that SAML addresses is web‐browser single sign‐on (SSO). Single sign‐on is rela‐

tively easy to accomplish within a security domain (using cookies, for example) but extending SSO

across security domains is more difficult and resulted in the proliferation of non‐interoperable

proprietary technologies. The SAML Web Browser SSO profile was specified and standardized to

promote interoperability.

2.4.6 Differences between OAuth 2 and OpenID Connect

The main difference between OpenID and OAuth 2 is that OpenID is an authentication protocol

while OAuth 2 is an authorization framework. OpenID and OAuth are both open standards that

complement each other, but OpenID allows users to be authenticated by relying parties. An OIDC

relying party is an OAuth 2.0 Client application that requires user authentication and claims from

an OIDC provider. OAuth 2 allows access tokens to be issued to third‐party clients by an authoriza‐

tion server. OpenID Connect is built on a profile of OAuth 2 and provides additional capabilities

in conveying the identity of the user using the application. Clients use OAuth 2 to request access

to an API on a user’s behalf, but nothing in the OAuth 2 protocol tells the client user information.

OpenID Connect enables a client to access additional information about a user, such as the user’s

ML Lab / Georgia Chatzimarkaki 52

real name, email address, birthdate or other profile information.

2.4.6.1 Protocols

The protocols being compared in this article are listed in the Table 2.2 below.

SAML 2.0 Security Assertion Markup Language

OAuth 2.0 Web Authorization Protocol

OpenID Connect 1.0 (OIDC) Simple identity layer on top of OAuth 2.0

Table 2.2: Protocols for OAuth, SAML and OIDC

2.4.6.2 Actors and Roles

Role OAuth OIDC SAML

End User Resource Owner End User End User

Application Client Relying Party (RP) Service Provider (SP)

Identity Provider Authorization Server (AS) OpenID Provider (OP) Identity Provider (IDP)

Web Browser User‐Agent User‐Agent User Agent

Table 2.3: Actors and roles for OAuth, SAML and OIDC

ML Lab / Georgia Chatzimarkaki 53

For the sake of simplicity I’m using a common terminology for various actors and roles in Table

2.3.

2.4.6.3 Comparison of Tokens

The underlying format for most tokens is either SAML Assertion or JWT. Both token formats are

used to represent claims to be transferred between two parties.

JWT is a generic token formatwhere claims are represented as JSON. JWT integrity is implemented

by JSON Web Signature (JWS). The JWT specification by itself does not define any specific use

cases. The JWT token format is, however, widely used. OpenID Connect specifies the ID Token as

JWT – many vendors have selected JWT as a format for Access Token and there exist numerous

API protection use cases, un‐related to OAuth / OIDC, where JWT formatted tokens are used.

The format for Access Tokens is surprisingly not defined by the OAuth specification. Instead, an

interoperable application is expected to treat Access Tokens as opaque strings and use the OAuth

Introspection service for validating tokens. Because representing Access Tokens as JWT is quite

popular, there is, however, work going on to define an interoperability profile for JWT formatted

Access Tokens.

SAML Assertion is based on XML. SAML Assertion integrity is implemented by XML Digital Signa‐

ture. A SAML Identity Provider uses SAML Assertion token to transfer claims to an Application.

The Web Services Security profile defines how to implement protection of SOAP APIs with SAML

Assertion tokens.

The table 2.4 lists tokens present in OAuth / OIDC and SAML protocols.

ML Lab / Georgia Chatzimarkaki 54

Token Format API protection use case Validation

JWT JSON REST and Bearer token JSON Web Signature

Access Token Not defined, often JWT REST and Bearer token OAuth Introspection

ID Token JWT REST and Bearer token Json Web Signature

SAML Assertion XML SOAP and Web Services Security XML Signature

Table 2.4: Tokes of OAuth, SAML and OIDC

2.4.7 Keycloak

Managing user identity is a critical feature for science gateways [20, 21], which must provide se‐

cure and auditable access to restricted resources such as supercomputers, data sets, licensed sci‐

entific applications, and for‐fee cloud computing. Science gateways must authenticate users, de‐

cide if they are authorized to access specific resources, manage expired accounts, and disable

compromised accounts. The basic approach is for a gateway to provide its own user management

and authentication system that is an integral part of the gatewayś implementation.

Gateway developers today have several additional options, building on larger trends. First is the

emergence of well‐supported authentication services, such as the In Common Federation [22]

that is used by many academic institutions. Facebook, Google, GitHub and other Web‐based

companies also provide free authentication services that can be integrated into online applica‐

tions. OpenID Connect (OIDC) has become a popular protocol for Authentication; it builds over

ML Lab / Georgia Chatzimarkaki 55

the OAuth2 authorization protocol.[23]

CILogon [24] provides a unifying authentication layer over these different providers where the

gateways may outsource user authentication to various services. Although, the gateway may still

choose to manage its users internally through a user store (such as an attached database or an

LDAP server), or it might outsource this as well. The second important trend has been the emer‐

gence of science gateway platform‐as‐a‐service (PAS) offerings. These are hosted services that can

serve multiple gateway tenants simultaneously. Science gateway platforms provide general pur‐

pose services such as user management, data management, and job execution, while the gateway

tenant provides specific access to computational and storage re‐sources, data and applications and

user interfaces geared towards a specific user community. Gateway tenants access the gateway

platform middleware through secure, network accessible APIs.

I will use Keycloak [25], an open source identity management system, to implement the Identity

and Access Management system. Keycloak can authenticate users through a number of different

mechanisms. With KeyCloak, the user management and authentication functions may be inte‐

grated with an externally managed system, such as LDAP or active directory. KeyCloak provides

single sign‐on infrastructure for authentication and session management.

Keycloak offers a feature set very similar to WSO2 IS. For example, Keycloak provides a user store

and administrative functions for administering users, including user roles. Keycloak also provides

some interesting new features. For example, Keycloak also supports identity federation for iden‐

tity providers that support OpenID Connect or SAML.

Once the user is authenticated during the signin process, Keycloak redirects back to theweb portal

with an authorization code. The web portal can then use the authorization code to get an access

token and retrieve the user’s profile from Keycloak. This user profile (first name, last name, email

ML Lab / Georgia Chatzimarkaki 56

address) will match the details that Keycloak itself retrieves from ML Lab.

Users are assigned to one or more roles to grant them access to different subsets of ML LAb.

Keycloak exposes a REST that allows a gateway administrator to manage a user’s roles. This func‐

tionality is exposed in the web portal to users with the admin role. Admins are able to manage

the roles assigned to a user. Typically new users are assigned to a role which has no API access

and a decision must be made by an admin user as to which role(s) to assign the user.

2.4.7.1 Basic Features

Some of the basic features coming from Keycloak build‐in are:

• Single‐Sign On and Single‐Sign Out for browser applications.

• OpenID Connect support.

• OAuth 2.0 support.

• SAML support.

• Identity Brokering authenticate with external OpenID Connect or SAML Identity Providers.

• Social Login Enable login with Google, GitHub, Facebook, Twitter, and other social net‐

works.

• User Federation that sync users from LDAP and Active Directory servers.

• Kerberos bridge which automatically authenticate users that are logged‐in to a Kerberos

server.

ML Lab / Georgia Chatzimarkaki 57

• Admin Console for central management of users, roles, role mappings, clients and config‐

uration.

• Account Management Console that allows users to centrally manage their account.

• Theme support Customize all user facing pages to integrate with your applications and

branding.

• Two‐factor Authentication Support for TOTP/HOTP via Google Authenticator or FreeOTP.

• Login flows optional user self‐registration, recover password, verify email, require pass‐

word update, etc.

• Session management Admins and users themselves can view and manage user sessions.

• Token mappersMap user attributes, roles, etc. how you want into tokens and statements.

• Not‐before revocation policies per realm, application and user.

• CORS support Client adapters have built‐in support for CORS.

• Service Provider Interfaces (SPI A number of SPIs to enable customizing various aspects

of the server. Authentication flows, user federation providers, protocol mappers and many

more.

• Client adapters for JavaScript applications, WildFly, JBoss EAP, Fuse, Tomcat, Jetty, Spring,

etc.

• Supports any platform/language that has an OpenID Connect Resource Provider library or

Service Provider library.

ML Lab / Georgia Chatzimarkaki 58

2.4.7.2 Security Flow

Applications are configured to point to and be secured by a Keycloak separate manageable server.

Keycloak uses open protocol standards like Open ID Connect or SAML 2.0 to secure your applica‐

tions. Browser or Mobile applications redirect a user’s browser from the application to the Key‐

cloak authentication server where they are prompt to enter their credentials. Keep in mind that

users are completely isolated from applications and applications never see users credentials. Ap‐

plications instead are given an identity token or assertion that is cryptographically signed. These

tokens can have identity information like username, address, email, and other profile data. These

tokens can also hold permission data so that applications can make authorization decisions and

can also be used to make secure invocations on REST‐based services.

2.4.7.3 Core Components and Terms

There are some key Components and Terms important when attempting to secure your web ap‐

plications and REST services.

• authentication The process of identifying and validating a user.

• authorization The process of granting access to a user.

• credentials Credentials are pieces of data that Keycloak uses to verify the identity of a user,

like passwords, one‐time‐passwords, digital certificates, or even fingerprints.

• roles Roles identify a type or category of user. Applications often assign access and per‐

ML Lab / Georgia Chatzimarkaki 59

missions to specific roles rather than individual users as dealing with users can be too fine

grained and hard to manage.

• user role mapping A user role mapping defines a mapping between a role and a user. A

user can be associated with zero or more roles. This role mapping information can be en‐

capsulated into tokens and assertions so that applications can decide access permissions on

various resources they manage.

• composite roles A composite role is a role that can be associated with other roles.

• groupsGroupsmanage groups of users. Attributes can be defined for a group. You canmap

roles to a group as well. Users that become members of a group inherit the attributes and

role mappings that group defines.

• realms A realm manages a set of users, credentials, roles, and groups. A user belongs to

and logs into a realm. Realms are isolated from one another and can only manage and

authenticate the users that they control.

• clients Clients are entities that can request Keycloak to authenticate a user. Most often,

clients are applications and services that want to use Keycloak to secure themselves and

provide a single sign‐on solution. Clients can also be entities that just want to request iden‐

tity information or an access token so that they can securely invoke other services on the

network that are secured by Keycloak.

• client adapters Client adapters are plugins that can be install into the application environ‐

ment to be able to communicate and be secured by Keycloak. Keycloak has a number of

ML Lab / Georgia Chatzimarkaki 60

adapters for different platforms that you can download. There are also third‐party adapters

you can get for environments that we don’t cover.

• client templates When a client is registered you need to enter configuration information

about that client. It is often useful to store a template to make create new clients easier.

Keycloak provides the concept of a client template for this.

• client role Clients can define roles that are specific to them. This is basically a role names‐

pace dedicated to the client.

• users Users are entities that are able to log into the system. They can have attributes asso‐

ciated with themselves like email, username, address, phone number, and birth day. They

can be assigned group membership and have specific roles assigned to them.

• consent Consent is when you as an admin want a user to give permission to a client before

that client can participate in the authentication process. After a user provides their creden‐

tials, Keycloakwill pop up a screen identifying the client requesting a login andwhat identity

information is requested of the user. User can decide whether or not to grant the request.

• identity token A token that provides identity information about the user. Part of the OIDC

specification.

• access token A token that can be provided as part of an request that grants access to the

service being invoked on. This is part of the OIDC and OAuth 2.0 specification.

• assertion Information about a user. This usually pertains to an XML blob that is included

in a SAML authentication response that provided identity metadata about an authenticated

user.

ML Lab / Georgia Chatzimarkaki 61

• service account Each client has a built‐in service account which allows it to obtain an access

token.

• direct grant A way for a client to obtain an access token on behalf of a user via a REST

invocation.

• protocolmappers For each client you can tailor what claims and assertions are stored in the

OIDC token or SAML assertion. You do this per client by creating and configuring protocol

mappers.

• session When a user logs in, a session is created to manage the login session. A session

contains information like when the user logged in and what applications have participated

within single‐sign on during that session. Both admins and users can view session informa‐

tion.

• user federation provider Keycloak can store and manage users. Often, companies already

have LDAP or Active Directory services that store user and credential information. Just point

Keycloak to validate credentials from those external stores and pull in identity information.

• identity provider An Identity Provide (IDP) is a service that can authenticate a user. Keycloak

is an IDP.

• identity provider federation Keycloak can be configured to delegate authentication to one

or more IDPs. Social login via Facebook or Google+ is an example of identity provider feder‐

ation. You can also hook Keycloak to delegate authentication to any other Open ID Connect

or SAML 2.0 IDP.

ML Lab / Georgia Chatzimarkaki 62

• identity provider mappers When doing IDP federation you can map incoming tokens and

assertions to user and session attributes. This helps you propagate identity information

from the external IDP to your client requesting authentication.

• required actions Required actions are actions a user must perform during the authenti‐

cation process. A user will not be able to complete the authentication process until these

actions are complete. For example, an admin may schedule users to reset their passwords

every month. An update password required action would be set for all these users.

• authentication flows Authentication flows are work flows a user must perform when in‐

teracting with certain aspects of the system. A login flow can define what credential types

are required. A registration flow defines what profile information a user must enter and

whether something like reCAPTCHA must be used to filter out bots. Credential reset flow

defines what actions a user must do before they can reset their password.

• events Events are audit streams that admins can view and hook into.

• themes Each screen of Keycloak is backed by a theme. Themes define HTML templates and

stylesheets which you can override as needed.

2.5 Spring cloud dataflow

Spring Cloud Data Flow is the cloud native redesign of Spring XD ‐ a project that aimed to simplify

Big Data application development. This redesign allows running stream and batch applications as

data microservices and they can independently evolve in isolation. Spring Cloud Data Flow (SCDF)

ML Lab / Georgia Chatzimarkaki 63

is an open‐source Java‐based cloud‐native toolkit developed by Pivotal (VMWare) to orchestrate

data integration, real‐time data streaming, and batch data processing pipelines by stitching to‐

gether spring boot microservices that can be deployed on top of different modern runtimes like

Cloud Foundry, Kubenetes, YARN, Mesos, etc. in addition to a local runtime. Data pipelines de‐

ployed using Spring Cloud Data Flow consist of Spring Boot apps built using Spring Cloud Stream or

Spring Cloud Task microservice frameworks. e. It’s a single toolkit that developers can employ to

create, orchestrate, and refactor data pipelines through one programming model to address com‐

mon use cases such as data ingestion, real‐time analytics, and data export/import across popular

source and destination systems. SCDF allows developers to interact to define and deploy data

pipelines through multiple endpoints like:

• Dashboard GUI (that allows defining pipeline through a fluid drag and drop palette)

• Command‐Line Shell

• Stream Java DSL

• RESTful APIs

2.5.1 Features of Spring Cloud Data Flow

• Orchestrate applications across a variety of distributed runtime platforms, including Cloud

Foundry, Apache YARN, Apache Mesos, and Kubernetes.

• Design, deploy, and manage data pipelines using: Java DSL, Shell, REST‐APIs, and Admin‐UI.

• The programming model offers runtime and message broker abstractions.

ML Lab / Georgia Chatzimarkaki 64

• Building streaming and batch applications using popular configuration driven Spring Boot

backed Spring Cloud Stream and Spring Cloud Task projects.

• Pluggable messaging broker binders let developers use the same application code and bind

to any popular messaging services.

• Take advantage of metrics, health checks, and remote management of data‐microservices.

• Standard security semantics in the form of OAuth2 and OpenID Connect backed authenti‐

cation and authorization.

• Scale stream and data pipelines with almost zero downtime without interrupting the data

flow.

• UI dashboards to design, deploy, andmanage large‐scale and compute‐intensive batch data

pipeline through Spring Batch jobs.

2.5.2 Components

• Data Flow Server The core of the SCDF ecosystem is the Data Flow Server, a Spring Boot

based microservice application that provides the main entry point to define data pipelines

in SCDF through RESTful APIs and a web dashboard. This server is responsible for parsing

the stream and batch job definitions based on a Domain Specific Language (DSL). The server

requires a relational database to persist the metadata related to stream, task, or job def‐

initions and register artifacts such as additional library jar files or docker images used in

the pipeline definitions. The data flow server can deploy the Batch Jobs to one or more

ML Lab / Georgia Chatzimarkaki 65

supported runtime platforms.

• Skipper Server The skipper server in the SCDF ecosystem is responsible for deploying the

streaming data pipeline definitions to one or more supported runtime platforms using the

Spring Cloud Deployer family of libraries. It is a Spring Boot basedmicroservice that behaves

as a package manager that installs, upgrades, and rolls back applications to one or more

runtime platforms using a blue‐green deployment strategy. Just like the Data Flow server, it

also exposes RESTful APIs to access the functionalities it offers for stream deployment and

application management.

2.5.3 Applications

There are two types of applications can be packaged as Docker App Images or as spring boot jar

hosted in maven repository, file or httpthat are supported by Spring Cloud Data Flow.

• Short‐Lived Applications: that finite period of time (minutes or hours) and then terminate.

The executions are triggered on a recurring schedule (such as every day at midnight) or as

a response to some external event (such as a file being copied into a landing zone). These

applications are developed using the Spring Cloud Task framework sthat records lifecycle

events (such as the start time, end time, and the exit code) of the application into the rela‐

tional database attached to the Data Flow Server. These applications can also be developed

as Spring Batch jobs since Spring Cloud Task is well‐integrated with it. A short‐lived appli‐

cation is registered with Data Flow using the category name task to describe the type of

application.

ML Lab / Georgia Chatzimarkaki 66

• Long‐Lived Applications: These run continuously as part of the data‐streaming pipeline. A

typical data‐streaming pipeline operation involves consuming events fromexternal systems,

processing or transforming the data from the events, and writing to persistent storage. In

SCDF, these event‐streaming pipelines are generally composed of Spring Cloud Stream ap‐

plications which are broadly categorized as Source, Processor and Sink applications:

1. A source represents the first step in the data pipeline. It is a producer that consumes

data from external systems like databases, filesystem, FTP servers, IoT devices, etc.

2. A processor represents an application that can consume from an upstream producer

(a source or another processor), perform the business operation on the consumed

data and emit the processed data for downstream consumption.

3. A sink represents the final stage in the data pipeline, which can persist the consumed

data to external systems like HDFS,Cassandra, PostgreSQL, Amazon S3, etc.

Sources, sinks, and processors all have a single output, a single input, or both. This is whatmakes it

possible for Data Flow to set application properties that pair an output destination to an input des‐

tination. However, a message processing application could have more than one input or output

destination. Spring Cloud Stream supports this by letting you define a custom binding interface.

2.5.4 Message Broker

A messaging middleware service is required to facilitate communication between applications in

a SCDF pipeline. The framework provides a programmingmodel that allows support for pluggable

ML Lab / Georgia Chatzimarkaki 67

message binder libraries. The currently available binders support following messaging broker ser‐

vices are:

• RabbitMQ

• Kafka

• Amazon Kinesis

• Google Pub/Sub

• Azure Event Hubs

2.5.5 Storage

TheML Lab Server and Skipper Server need to have an RDBMS installed. By default, the servers use

an embedded H2 database.The supported databases are H2, HSQLDB, MySQL, Oracle, Postgresql,

DB2, and SqlServer and the schemas are automatically created when each server starts.

2.6 Differences

In this section, I am going to state the most used alternatives of the Spring Cloud dataflow and

describe the cons and pros of each. Spring Cloud dataflow’s architectural style is different than

other Stream and Batch processing platforms.

As we discovered during the evolution of Spring XD, the rise of multiple container frameworks

in 2015 made creating our own runtime a duplication of effort. There is no reason to build your

ML Lab / Georgia Chatzimarkaki 68

own resource management mechanics when there are multiple runtime platforms that offer this

functionality already. Taking these considerations into account is what made to think about what

extensions can I provide to provide more feature like the export of the manifest as YAML file and

the GPU deployer property configuration. Let’s discuss about the other platforms.

(1) Cloud Dataflow is a Google‐powered processing platform designed to execute data process‐

ing pipelines. The platform, allow us to develop simple streaming data pipelines with lower data

latency. Google Cloud Dataflow has a serverless approach that allow developers’ focus to pro‐

gramming instead of managing countless server clusters. It offers an infinite capacity to manage

your workloads. And with that, you don’t have to worry about high ownership costs. By using

Apache Beam SDK for MapReduce operations and accuracy control for batch and streaming data,

it reduces complexities and makes stream analytics very accessible to both data analysts and data

engineers. The framework can be used to develop anomaly detection applications or a real‐time

website analytics dashboard or a pipeline that processes log entries from various sources. Some

of the advantages that Google cloud Dataflow offers is that it is fully managed, by removing op‐

erational complexities, minimize pipeline latency and providing access native integrations with

AI Platform enable to develop Unified stream and data processing analysis. But It is restricted

to only Cloud Datastore service and streaming mode can be expensive. One other thing is that

Google Content Delivery Network does not work with custom sources, something that I wanted

for my toolkit to provide.

(2) Apache Pulsar is a cloud‐native, distributed messaging and streaming platform. Originally de‐

ployed inside Yahoo, Pulsar that a high‐performance solution for server‐to‐server messaging and

geo‐replication of messages across clusters. Additionally, it can scale to over a million topics and

expand to hundreds of nodes. It’s lightweight, easy to deploy, and doesn’t need an external stream

ML Lab / Georgia Chatzimarkaki 69

processing engine. The processing platform has a multi‐layer architecture. Each of these layers

is scalable and can be distributed and decoupled from the other. Not only that, it has granular

resource management that prevents producers, consumers, and topics from overwhelming the

cluster. It is also easily managed by user and supports high‐level ”APIs” for Java, Go, Python, C++,

and C# and data replication across data centers in different geographical locationswith end‐to‐end

encryption from the client to the storage nodes. But since it is a newer solution the community

is still small and online instructions and guides are hard to find. It also not allow consumers to

acknowledge message from a different thread.

(3) Apache Spark is an engine for data processing, it is being highly used for data intensive pro‐

cessing and data science. It has libraries such asML (Machine Learning), Graph (graph processing),

integration with Apache Kafka (Spark Streaming), among others.

(4) Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink

supports batch and streaming analytics, in one system. Analytical programs can be written in con‐

cise and elegant ”APIs” in Java and Scala. Apache Flink is a tool in the Big Data Tools category of a

tech stack. Apache Flink is an open source tool with 17.2K GitHub stars and 9.6K GitHub forks.

Some interesting conclutions is that in Apache Spark, Apache Flink, and Google Cloud Dataflow,

applications run on a dedicated compute engine cluster. The nature of the compute engine gives

these platforms a richer environment for performing complex calculations on the data as com‐

pared to Spring Cloud Data Flow, but it introduces the complexity of another execution environ‐

ment that is often not needed when creating data‐centric applications. That does not mean you

cannot do real‐time data computations when using Spring Cloud Data Flow. Refer to the sec‐

tion Analytics, which describes the integration of Redis to handle common counting‐based use

cases. Spring Cloud Stream also supports using Reactive ”APIs” such as Project Reactor and RxJava

ML Lab / Georgia Chatzimarkaki 70

which can be useful for creating functional style applications that contain time‐sliding‐window and

moving‐average functionality. Similarly, Spring Cloud Stream also supports the development of

applications in that use the Kafka Streams API.

2.7 Apache Zeppelin

Data scientists use different applications like R, Python or Scala (with notebook tool like Apache

Zeppelin) to develop data science models. For example, some prefer R to create their models,

others like to write code for their models in languages like Python or Scala using notebook tools

like Apache Zeppelin and so on. ML Lab, a real‐time streaming analytics platform, allows users to

build and deploy data models by using different tools like Scala, pyspark. This streaming analytics

platform supports multiple languages and formats, enabling users to create the code in their pre‐

ferred technology. Once the model is prepared, it can be deployed on ML Lab to run and perform

scoring over the data in a distributed fashion.

Apache Zeppelin is a web‐based notebook that enables interactive data analytics. Zeppelin sup‐

ports many interpreters such as Scala, Python, Spark SQL, JDBC, Markdown and Shell.

Computer science that facilitates extraction of knowledge or insights from large amounts of struc‐

tured or unstructured data. This process of data discovery can be divided into multiple steps.

Thus, this is an iterative process of data collection, cleaning, analysis, visualization and decision

making. Apache Zeppelin is an open source project for simplifying big data analytics with web‐

based notebooks that enable interactive data analytics. It has multiple language backends and

Apache Spark [26] integration, thus allowing to address various analytic tasks inside notebooks.

Moreover it allows interactive visualization [27] and collaboration with ready insights into data.

ML Lab / Georgia Chatzimarkaki 71

Thus, Apache Zeppelin can cover whole data discovery flow inside a single Zeppelin notebook.

Apache Zeppelin is currently an incubating project under Apache Software Foundation (ASF) [28]

with all the following copyright, development process, and community decision making implica‐

tions. It has more than 70 contributors and its first release of 0.10.0 version happened in August

of 2021. The evolution of the different version of Apache Zeppelin is shown in Figure 2.2.

Figure 2.2: Apache Zeppelin Evolution

Apache Zeppelin has pluggable backend architecture in terms of its interpreters. New in‐

terpreters can be implemented and plugged in via its Interpreter interface. Figure 2.3 showcases

some of the existing interpreters supported by Zeppelin. Thus all of the backend frameworks im‐

plemented by interpreters can be used inside Zeppelin. Moreover, one Zeppelin notebook may

contain different paragraphs each using its own language/interpreter. Since Zeppelin notebooks

are web‐based, Zeppelin has its web‐app front‐end (client) and back‐end server. Zeppelin client

communicates with back‐end server using HTTP REST and websocket ”APIs”. Further, server com‐

municates with the interpreter processes. For example, Spark interpreter is just one of the inter‐

preter processes running. According to clients query, server calls corresponding interpreter with

ML Lab / Georgia Chatzimarkaki 72

a query to interpret the code. Note that interpreter initialization is lazy and is not started unless

client submitted query for it.

Figure 2.3: Apache Zeppelin Interpreters

In Zeppelin we can download data using simple shell script as if typing in terminal. This

is realized by the means of shell interpreter. Or even load data from different databases. Some

basic charts are already included in Apache Zeppelin. Any output from any language backend can

be recognized and visualized. Apache Zeppelin aggregates values and displays them in pivot chart

with simple drag and drop. You can easily create chart with multiple aggregated values including

sum, count, average, min, max. But can also create some input forms in the notebooks, which can

be very useful when want to visualize result or get user input.

ML Lab / Georgia Chatzimarkaki 73

2.8 Virtual Assistant Chatbot

Smart Personal Assistants (SPAs; such as Amazon’s Alexa or Google’s Assistant) let users interact

with computers in a more natural and sophisticated way that was not possible before. Although

there exists an increasing amount of research of SPA technology in education, empirical evidence

of its ability to offer dynamic scaffolding to enhance students problem‐solving skills is still scarce. A

virtual assistant chatbot is amash up of two separate programs – a chatbot, and a virtual assistant.

The only similarity between these two programs is that they are both built to make the lives of

humans easier through conversations. Let’s understand the basic differences between chatbots

and virtual assistants. Chatbots are programs that are designed with the purpose of engaging

with customers in human‐like conversations. Thus, chatbots are deployed by businesses to inter‐

act with customers (or prospects) and offer assistance around the clock. Chatbots are intelligent

enough to sense the context of the conversation and execute the right bot flow. However, chat‐

bots cannot find answers or perform a set of activities on their own. On the other hand, a virtual

assistant can crawl through existing resources and offer assistance for a wide range of requests.

There are two main types of chatbots:

• Rule‐based chatbots These are decision‐tree chatbots coded with specific rules aimed at

addressing particular inquiries. The systemmapsout potential conversations like a flowchart

and provides answers to all possible questions. It uses simple or highly complex rules which

don’t answer random or unrelated questions. They only answer already programmed ques‐

tions.

ML Lab / Georgia Chatzimarkaki 74

• AI‐powered chatbots Unlike their rule‐based counterparts, AI‐powered virtual assistants

can understand context and intent through machine learning. With time, AI‐powered bots

can learn from mistakes and feedback to provide more accurate responses.

Virtual assistants (also popularly known as intelligent virtual assistants or intelligent personal as‐

sistants) are online personal assistants that help people with their day‐to‐day activities such as

managing their email, scheduling meetings, etc. Popular virtual assistants include Amazon Alexa,

Apple’s Siri, Google Assistant, and Microsoft’s Cortana. While these virtual assistants can assist

you with many everyday tasks. Now that we have a basic understanding of what chatbots and

virtual assistance are, let’s dive deeper into the key differences.

ML Lab / Georgia Chatzimarkaki 75

CHAPTER3
Prerequisites

3.1 Prototype

As shown in Figure 3.1 I am going to provide a combine solution that can not be found in the lit‐

erature at the moment.

ML Lab comes with collection of best practices and best collection of microservices based dis‐

tributed streaming, task and batch applications. The key parts of the ML Lab are Ml Lab‐server

and Skipper, which comprise the actual DataFlow experience and app deployment. Grafana and

Prometheus, which are used formetric gathering and visualization, RabbitMQ/Kafkaand Zookeeper

which is our messaging platform and the coordination server.

I customise and extend the functionality of the Spring Cloud dataflow to enable more features.

I have also take advantage of the Apache Zeppelins notebooks functionality by enable the note‐

books functionality inside the ML Lab using the Apache Zeppelin Server and replicating all the

Apache Zeppelin Web Client functionality to meet with the Spring Cloud Dataflow dependencies

and coding style requirements. I also connected the Mycroft Core (server) to the ML Lab by cre‐

ating a web widget written in Angular that enables the exchange of the intent and the answers

ML Lab / Georgia Chatzimarkaki 76

Figure 3.1: ML Lab Prototype

between the user and the Mycroft Core to provide user with capabilities to ask for information

and receive an answer. But also to provide them with them with the answers that might have

about how to use the environment or set reminders or timers to complete their tasks. For the

authentication mechanism Spring Cloud dataflow Server use the Oauth2, Apache Zeppelin uses

Apache Shiro andMycroft comeswithout any securitymechanism. A selected to use Keycloak pro‐

vide user authentication for the ML Lab and secure the REST API and the websockets to provide

a secure environment. It is important to state that during the development of this prototype this

mechanism has not been used before to secure this applications. ML Lab Server, Skipper Server

and Keyclock need to have an RDBMS installed. I configured a database for each inside container

where a different database created for each.

ML Lab / Georgia Chatzimarkaki 77

3.2 Technologies and Languages

To implement this Master thesis I have to use the Docker and Kubernetes to containerised the

combined application to make sure that all provided service could scale based on the user need.

I take advantage of the Spring clouf Dataflow to provide the strea/batch processing of data and

extend its functionality to enable user to create and write notebooks. That they can in future

version of this Toolkit, insert the prepared code as an application to enable future to support deep

learning project preparation with Spark. The main programming languages that was required for

this deployment are:

• Angular is a JavaScript framework for building web applications and apps in JavaScript,

HTML, and TypeScript, which is a superset of JavaScript. Angular provides built‐in features

for animation, HTTP service, and materials which in turn has features. The code is written

in TypeScript, which compiles to JavaScript and displays the same in the browser. Angular,

Google’s TypeScript based web application framework is currently at version 12.1.4 (stable).

• Python Python is an interpreted high‐level general‐purpose programming language. Its de‐

sign philosophy emphasizes code readability with its use of significant indentation. Its lan‐

guage constructs as well as its object‐oriented approach aim to help programmers write

clear, logical code for small and large‐scale projects. Python is currently at version 3.9.7

(stable).

• Java is a high‐level, class‐based, object‐oriented programming language that is designed to

have as few implementation dependencies as possible. Java is is currently at version JDK 17

ML Lab / Georgia Chatzimarkaki 78

(stable).

3.3 Kubernetes Configuration

Containers are a good way to bundle and run your applications. In a production environment,

you need to manage the containers that run the applications and ensure that there is no down‐

time. For example, if one of the containers in our prototype goes down, another container needs

to start. Kubernetes provides a framework to run distributed systems resiliently. It takes care of

scaling and failover for your application, provides deployment patterns, and more. For example,

Kubernetes can easily manage a canary deployment for your system. Our prototype consiting of

many elements that provide services to the user, if one goes down we want Kubernetes to start

a new one. Also as when deploying a stream or a task pipeline each node of the pipeline triggers

the creation of a container.

TheComponents described in Figure 3.1 are deployed at the implementationphase usingMinikube

is local Kubernetes, focusing on making it easy to develop for Kubernetes. We configured our Ku‐

bernetes cluster to have enough recourses to develop our vision. Afterwards to start the cluster by

using the minikube start command. We use the version 1.21.2 for be compatible with the Spring

Cloud Dataflow Kubernetes Integration.

1 minikube config set driver hyperv

2 minikube config set cpus 2

3 minikube config set memory 12G

4 minikube config set disk- size 10G

5 minikube config set EmbedCerts true

ML Lab / Georgia Chatzimarkaki 79

6 minikube config set insecure- registry true

7 minikube config set kubernetes-version 1.21.2

8 minikube config set profile minikube-testing

I configure the deployments of the Spring Cloud dataflow template files. And change the

images for the server to use our custom imagewith the functionality I created. I start by deploying

the message brokers, the RabitMQ and Kafka.

1 apiVersion: v1

2 kind: Service

3 metadata:

4 name: rabbitmq

5 labels :

6 app: rabbitmq

7 spec:

8 type: ClusterIP

9 ports:

10 ‐ port: 5672

11 targetPort : 5672

12 selector :

13 app: rabbitmq

14

15 ‐‐‐

16 apiVersion: apps/v1

ML Lab / Georgia Chatzimarkaki 80

17 kind: Deployment

18 metadata:

19 name: rabbitmq

20 labels :

21 app: rabbitmq

22 spec:

23 replicas : 1

24 selector :

25 matchLabels:

26 app: rabbitmq

27 template:

28 metadata:

29 labels :

30 app: rabbitmq

31 spec:

32 containers :

33 ‐ image: rabbitmq:3.6.10

34 name: rabbitmq

35 resources:

36 limits :

37 cpu: ”500m”

38 memory: ”800Mi”

ML Lab / Georgia Chatzimarkaki 81

39 requests:

40 cpu: ”100m”

41 memory: ”100Mi”

42 ports:

43 ‐ containerPort: 5672

Code 3.1: RabbitMQ deployment files

Then I have to set‐up the MySql container based on the mysql:5.7.25 image, and including

a persistent volume claim and a secret that holds the sensitive admin credentials. I enable mon‐

itoring using the Prometheus and the Grafana. Deploy the keycloak container with my custom

docker image that provides the custom UI and the pre‐created realm. and then deploy the the

ML Lab server. Before deploying Skipper we need to create the RoleBindings and ServiceAccount

used by the Spring Cloud Dataflow Server. To enable the stream management features we must

deploy Skipper. First apply the appropriate Skipper ConfigMap, according to the message broker

(RabbitMQ or Kafka) I wanted to use in my pipelines. After all the previous pods deployed Deploy

the ML Lab server (that I change the UI on the building of the Docker image to include the custom

UI as amaven dependency. Tomake requests betweenML lab and other components likeMycroft

Server, Zeppelin server and Keycloak I had

1 apiVersion: v1

2 kind: Service

3 metadata:

4 name: keycloak

ML Lab / Georgia Chatzimarkaki 82

5 labels :

6 app: keycloak

7 spec:

8 ports:

9 ‐ name: http

10 port: 8083

11 targetPort : 8080

12 selector :

13 app: keycloak

14 type: ClusterIP

15 ‐‐‐

16 apiVersion: apps/v1

17 kind: Deployment

18 metadata:

19 name: keycloak

20 namespace: default

21 labels :

22 app: keycloak

23 spec:

24 replicas : 1

25 selector :

26 matchLabels:

ML Lab / Georgia Chatzimarkaki 83

27 app: keycloak

28 template:

29 metadata:

30 labels :

31 app: keycloak

32 spec:

33 containers :

34 ‐ name: keycloak

35 image: ginadock/mllab−keycloak:1.0.0

36 resources:

37 limits :

38 cpu: ’1000m’

39 memory: ’1.5Gi’

40 ephemeral−storage: ’1Gi’

41 requests:

42 cpu: ’1000m’

43 memory: ’1.5Gi’

44 ephemeral−storage: ’1Gi’

45 env:

46 ‐ name: KEYCLOAK_USER

47 valueFrom:

48 secretKeyRef:

ML Lab / Georgia Chatzimarkaki 84

49 name: keycloak

50 key: keycloak−user

51 ‐ name: KEYCLOAK_PASSWORD

52 valueFrom:

53 secretKeyRef:

54 name: keycloak

55 key: keycloak−password

56 ‐ name: KEYCLOAK_LOGLEVEL

57 value: ”INFO”

58 ‐ name: ROOT_LOGLEVEL

59 value: ”INFO”

60 ‐ name: JDBC_PARAMS

61 value: ’useSSL=false’

62 ‐ name: PROXY_ADDRESS_FORWARDING

63 value: ”true”

64 ‐ name: DB_VENDOR

65 value: ’mysql’

66 ‐ name: DB_ADDR

67 value: ’mysql’

68 ‐ name: DB_PORT

69 value: ’3306’

70 ‐ name: DB_USER

ML Lab / Georgia Chatzimarkaki 85

71 valueFrom:

72 secretKeyRef:

73 name: mysql

74 key: mysql−root−username

75 ‐ name: DB_PASSWORD

76 valueFrom:

77 secretKeyRef:

78 name: mysql

79 key: mysql−root−password

80 ports:

81 ‐ name: http

82 containerPort: 8080

83 ‐ name: https

84 containerPort: 8443

85 readinessProbe:

86 initialDelaySeconds : 120

87 failureThreshold : 3

88 periodSeconds: 15

89 httpGet:

90 path: /auth/realms/mllab

91 port: 8080

92 ‐‐‐

ML Lab / Georgia Chatzimarkaki 86

93 apiVersion: v1

94 kind: Secret

95 metadata:

96 name: keycloak

97 type: Opaque

98 stringData :

99 keycloak−user: <USER_NAME>

100 keycloak−password: <USER_PASSWORD>

Code 3.2: Keycloak deployment file

ML Lab / Georgia Chatzimarkaki 87

CHAPTER4
Implementation

4.1 ML LAb ‐ Spring Cloud Dataflow extension

Many source, processor, and sink applications for common use‐cases (e.g. s3, jdbc, hdfs, http,

router) are already developed and provided as publicly consumable pre‐built applications by the

Spring Cloud Data Flow. A user of the ML Lab can directly use or extend any out‐of‐the‐box utility

applications to cover common use cases or write a custom applications. The aim is to simplify the

writing of message‐driven microservice applications connected to a common messaging system.

This enables the developers to develop model with the use of specific messaging middleware.

4.1.1 Export YAML file

My integration on the Spring Cloud Dataflow base code was to provide two extra functionalities.

One was to include the export as YAML file that that takes the streams/tasks pipeline definition.

This functionality enable users to deploy a task or a stream and get the deployed manifest of the

ML Lab / Georgia Chatzimarkaki 88

pipeline they created that can be deployed. This file can be later used to share a created pipeline.

As for the manifest to be deployed the pipeline must be deployed successfully, If the stream/‐

task has not been deployed before, then first an deploy action is triggered before the exportYaml

action. This steps makes sure that the manifest has been generated successfully and can be ex‐

ported without errors. This feature is located on the streams/tasks list pages and redirects users

to the Export‐YAML configuration page to configure the pipeline arguments and commands be‐

fore exports action takes place. To enable this feature I have to create 2 new REST endpoints and

configure the Spring Cloud Dataflow Server to provide me with the full details of the deployed

pipeline, at the bottom of the deploy(streams)/launch(tasks) configuration page and at the tools

menu item. as shown in Figures 4.1 and 4.2.

Figure 4.1: Export YAML under Tools Menu Item

ML Lab / Georgia Chatzimarkaki 89

Figure 4.2: Export YAML of Stream Configuration Page

an example output of a batch exported YAML is:

1 apiVersion: skipper . spring . io/v1

2 kind: SpringCloudDeployerApplication

3 metadata:

4 name: log

ML Lab / Georgia Chatzimarkaki 90

5 spec:

6 resource: maven://org.springframework.cloud.stream.app:log−sink−kafka: jar

7 resourceMetadata: maven://org.springframework.cloud.stream.app:log−sink−kafka: jar

: jar :metadata:2.1.3.RELEASE

8 version: 2.1.3. RELEASE

9 applicationProperties :

10 spring .metrics .export. triggers . application . includes : integration **
11 spring .cloud.dataflow.stream.app.label : log

12 spring .cloud.stream.metrics .key: test −gina−12121.log.${ spring .cloud. application

.guid}

13 spring .cloud.stream.bindings . input .group: test −gina−12121

14 spring .cloud.stream.kafka.streams.binder.zkNodes: zookeeper:2181

15 spring .cloud.stream.metrics . properties : spring . application .name,spring.

application . index , spring .cloud. application .*, spring .cloud.dataflow.*
16 spring .cloud.dataflow.stream.name: test−gina−12121

17 spring .cloud.stream.kafka.binder.zkNodes: zookeeper:2181

18 spring .cloud.dataflow.stream.app.type: sink

19 spring .cloud.stream.bindings . input . destination : test −gina−12121.time

20 spring .cloud.stream.kafka.streams.binder.brokers: PLAINTEXT://kafka−broker:9092

21 spring .cloud.stream.kafka.binder.brokers: PLAINTEXT://kafka−broker:9092

22 deploymentProperties:

23 spring .cloud.deployer.group: test −gina−12121

ML Lab / Georgia Chatzimarkaki 91

24 ‐‐‐

25 apiVersion: skipper . spring . io/v1

26 kind: SpringCloudDeployerApplication

27 metadata:

28 name: time

29 spec:

30 resource: maven://org.springframework.cloud.stream.app:time−source−kafka:jar

31 resourceMetadata: maven://org.springframework.cloud.stream.app:time−source−kafka

:jar: jar :metadata:2.1.2.RELEASE

32 version: 2.1.2. RELEASE

33 applicationProperties :

34 spring .metrics .export. triggers . application . includes : integration **
35 spring .cloud.dataflow.stream.app.label : time

36 spring .cloud.stream.metrics .key: test −gina−12121.time.${ spring .cloud.

application .guid}

37 spring .cloud.stream.kafka.streams.binder.zkNodes: zookeeper:2181

38 spring .cloud.stream.metrics . properties : spring . application .name,spring.

application . index , spring .cloud. application .*, spring .cloud.dataflow.*
39 spring .cloud.stream.bindings .output.producer.requiredGroups: test−gina−12121

40 spring .cloud.dataflow.stream.name: test−gina−12121

41 spring .cloud.stream.bindings .output. destination : test −gina−12121.time

42 spring .cloud.stream.kafka.binder.zkNodes: zookeeper:2181

ML Lab / Georgia Chatzimarkaki 92

43 spring .cloud.dataflow.stream.app.type: source

44 spring .cloud.stream.kafka.streams.binder.brokers: PLAINTEXT://kafka−broker:9092

45 spring .cloud.stream.kafka.binder.brokers: PLAINTEXT://kafka−broker:9092

46 deploymentProperties:

47 spring .cloud.deployer.group: test −gina−12121

Code 4.1: exported YAML Example

4.1.2 GPU property configuration

I also enabled user to select to deploy the pipeline with GPU as shown in Figure 4.1. This will

assist users that want in the future to run complex deep learning pipelines. This enables the Con‐

figuration of a pipeline at deployment/launch to take the GPU usage that user wants to have. The

inspiration of this feature was that any data scientist ormachine learning enthusiast who has been

trying to elicit performance of training models at scale will at some point hit a cap and start to ex‐

perience various degrees of processing lag. Deep Learning requires a lot of hardware. Tasks that

takeminutes with smaller training sets may now takemore hours— in some cases weeks—when

datasets get larger. GPUs are optimized for training artificial intelligence and deep learning mod‐

els as they can process multiple computations simultaneously. They have a large number of cores,

which allows for better computation of multiple parallel processes. Additionally, computations in

deep learning need to handle huge amounts of data — this makes a GPU’s memory bandwidth

most suitable.

ML Lab / Georgia Chatzimarkaki 93

4.1.3 Securing ML Lab with Keyclaok

User authorization occurs in the ML Lab server, which securely brokers requests to other services.

When the gateway tenant calls an API servermethod, it passes the user’s access token. The server

first makes a call to Keycloak to verify the access token is valid. If the access token is valid a second

call is made to Keycloak to get a list of roles that are assigned to the user. The server has a list of

methods that are accessible to each role. The request is authorized if the user has a role that can

access the given method.

When a user is doing a standard username‐password login, this is accomplished by using a Re‐

source Owner Password Credentials grant flow by which the web portal directly submits the user‐

name and password to Keycloak and gets a code that can be exchanged for an access token. When

a user is logging in, the web portal redirects to Keycloak with a special query parameter indicating

to Keycloak which identity provider to redirect to for the userś authentication.

4.1.3.1 Keycloak Configuration for ML Lab

I began by creating a simple Dockerfile for the Keycloak server [29] as shown here:

1 FROM quay.io/keycloak/keycloak:15.0.2

2 ENV KEYCLOAK_USER <username>

3 ENV KEYCLOAK_PASSWORD <password>

4 EXPOSE 8080

Code 4.2: Keycloak base Dockerfile

ML Lab / Georgia Chatzimarkaki 94

After the image is build and run, the keycloak home page is shown, see Figure 4.3where the Admin

page can be found. When booting Keycloak for the first time a pre‐defined realm will be created

called master realm and is the king of all realms. Admins in this realm have permissions to view

and manage any other realm created on the server instance. It is recommended that we do not

use the master realm to manage the users and applications, so I kept the master realm as a place

for super admins to create and manage the realms in the system. This will keep things clean and

organized. It is also possible to disable the master realm and define admin accounts at each indi‐

vidual new realm we create.

Figure 4.3: Keycloak Admin Page

The creation of a different realm 4.4 for security reasons as stated before is required. This

realm is a key aspect for connecting the Keycloak authenticationmechanismwith the applications.

As stated before, A realm manages a set of users, credentials, roles, and groups. A user belongs

to and logs into a specific realm.

ML Lab / Georgia Chatzimarkaki 95

Figure 4.4: Create Realm mllab

Realms are isolated from one another and can only manage and authenticate the users

that they control. Creating the new mllab realm is very simple. Mouse over the top left corner

drop down menu that is titled with Master and select from this drop down menu the created

realm. The last entry of this drop down menu is always Add Realm. Figure 4.5

Figure 4.5: Keycloak master realm (default) Login Page

ML Lab / Georgia Chatzimarkaki 96

(Step 1) Create client dataflow and Configure to Use Access Type confidential and enable

Service Accounts. I have to provide the Valid Redirect URIs ofML Lab, Apache Zepelin andMycroft‐

core. And then generate a secret as shown in Figures 4.6 and 4.7.

Figure 4.6: Configure Valid Redirect URLs of Keyclock

Figure 4.7: Generate Secret for dataflow Client

ML Lab / Georgia Chatzimarkaki 97

The rest of the steps I have followed to enable the Keycloak functionality was:

(Step 2) Create Role ADMINwhich is basically a namespace dedicated to the dataflow client. Each

client gets its own namespace. Client roles aremanaged under the Roles tab under each individual

client.

(Step 3)Create ProtocolMapper tomapexpecteduser_name create newmapperwithNameUser‐

name, Mapper Type User Property, Property username, Token Claim NAME user_name and Claim

JSON Type String. Create user admin, and set its password and disable requirement to change it

by setting Temporary to OFF.

(Step 4) Spring Cloud Dataflow comes with some roles (auth guard) for creating, viewing, deploy,

destroy, mange, modification and schedule of pipelines. To integrate the keycloak mechanism I

had to create the scopes for each auth guard, dataflow.view, dataflow.create, dataflow.manage,

dataflow.deploy, dataflow.destroy, dataflow.modify and dataflow.schedule. 4.8

Figure 4.8: Create scopes for dataflow Client

ML Lab / Georgia Chatzimarkaki 98

(Step 5) User role mappings that can be assigned individually to each user through the

Role Mappings tab for that single user. I map Role to User admin. and then assign all scopes

as Optional Client Scopes. 4.8 After configuring all this steps about keycloak realm, we move on

with the configuration of ML Lab and Skipper to support keycloak authenticationmechanism. The

ML Lab and Skipper Server executable jars use OAuth 2.0 authentication to secure the relevant

REST endpoints. They will be accessible the Keycloak access tokens to provide user authentication

to user by modifying the configuration of dataflow‐keycloak.yml and skipper‐keycloak.yml files to

provide the url, realm, client_id, scopes and client_secret. Inside the Dockerfiles of theMLLab and

Skipper we have to configure the command that runs them and provide the additional locations

for the skipper and the mllab keycloak deployment files.

1 java - jar spring-cloud-skipper-server -2.6.2. BUILD-SNAPSHOT.jar --spring.config.additional-

location=skipper-keycloak.yml

Code 4.3: Keycloak Skipper command (Dockerfile)

Dataflow:

1 java - jar mllab-2.9.0-SNAPSHOT.jar --spring.config.additional-location=dataflow-keycloak.yml

Code 4.4: Keycloak Skipper command (Dockerfile)

1 spring:

2 cloud:

3 dataflow:

4 security :

ML Lab / Georgia Chatzimarkaki 99

5 authorization :

6 provider−role−mappings:

7 keycloak:

8 map−oauth−scopes: true

9 role−mappings:

10 ROLE_VIEW: dataflow.view

11 ROLE_CREATE: dataflow.create

12 ROLE_MANAGE: dataflow.manage

13 ROLE_DEPLOY: dataflow.deploy

14 ROLE_DESTROY: dataflow.destroy

15 ROLE_MODIFY: dataflow.mocdify

16 ROLE_SCHEDULE: dataflow.schedule

17 security :

18 oauth2:

19 client :

20 registration :

21 keycloak:

22 redirect −uri : ’{baseUrl}/login/oauth2/code/{registrationId}’

23 authorization−grant−type: authorization_code

24 client −id: dataflow

25 client −secret: < keycloak_secret>

26 scope:

ML Lab / Georgia Chatzimarkaki 100

27 ‐ openid

28 ‐ dataflow.view

29 ‐ dataflow.deploy

30 ‐ dataflow.destroy

31 ‐ dataflow.manage

32 ‐ dataflow.modify

33 ‐ dataflow.schedule

34 ‐ dataflow.create

35 provider:

36 keycloak:

37 jwk−set−uri: https:// keycloak−mllab.cloud/auth/realms/dataflow/protocol

/openid−connect/certs

38 token−uri: https:// keycloak−mllab.cloud/auth/realms/dataflow/protocol /

openid−connect/token

39 user−info−uri : https:// keycloak−mllab.cloud/auth/realms/dataflow/

protocol /openid−connect/userinfo

40 user−name−attribute: user_name

41 authorization−uri : https:// keycloak−mllab.cloud/auth/realms/dataflow/

protocol /openid−connect/auth

42 resourceserver:

43 opaquetoken:

44 introspection −uri : https:// keycloak−mllab.cloud/auth/realms/dataflow/

ML Lab / Georgia Chatzimarkaki 101

protocol /openid−connect/token/introspect

45 client −id: dataflow

46 client −secret: < keycloak_secret>

47 authorization :

48 check−token−access: isAuthenticated ()

Code 4.5: Keycloak Skipper Dockerfile

When running Keycloak in localhost, it does not enforce the s protocol. But when we deployed

to Kubernetes (remote server), s is required for running Keycloak on remote servers as shown in

Figure ??. The problem is shown when domain name is not yet registered. To resolve it, we create

an self‐signed certificate. This allowed us to perform request to Keycloak from theML Lab and the

Mycroft Bot.

4.1.3.2 Keycloak Custom Theme

As mentioned before Keycloak provides theme support. This allows customizing the look and feel

of end‐user facing pages so they can be integrated with the ML Lab applications.[30] I wanted to

provide the Login Page customized for ML Lab. There where two approached that could be used

to achieve this. The first and the one we preferred was to customize the user interfaces of the

Keycloak [31, 32, 33]. The other approach was to use Keycloak as a backend service so that the

user is never exposed to the Keycloak user interfaces. The reason for not to expose the user to

the Keycloak User Interface (UI) is simply to avoid needing to build user trust in this additional

authentication service and thus avoid user confusion.

ML Lab / Georgia Chatzimarkaki 102

A theme can provide one or more types to customize different aspects of Keycloak. The types

available are:

• Account ‐ Account management

• Admin ‐ Admin console

• Email ‐ Emails

• Login ‐ Login forms

• Welcome ‐ Welcome page

Keycloak comes bundled with default themes in the server’s root themes directory. To avoid edit‐

ing the bundled themes directly, I create a new custom theme that extends one of the bundle ones

as I was not planning to replace every single page. As I wanted to change significantly the look and

feel of the pages, I preferred to extend the base theme by overriding the individual resources.

All theme types, except the welcome one, can be configured through the Admin Console. To

change the theme used for a realm the user must open the Admin Console, select the realm from

the drop‐down box in the top left corner and Under Realm Settings click Themes and then define

the the theme for each page.

Every User Interface (UI) screen is internationalized in Keycloak. The default language is English,

but by turning on the Internationalization switch on the Theme tab, I was prompted to select the

locales I wanted to support and what the default locale will be. By enabling this option, users are

able to choose the language on the login page for the selected language to be presented see in

ML Lab / Georgia Chatzimarkaki 103

Figures 4.9 and 4.10, User Account Management UI, and Admin Console.

Figure 4.9: Keycloak mllab realm custom Login Page

Figure 4.10: Keycloak mllab realm custom Registration Page

After configuring all the changes for our custom theme and the realm settings required for

ML Lab / Georgia Chatzimarkaki 104

the ML‐Lab Keycloak authorization integration, the exported realm as a JSON file will be used in

the final Dockerfile to provide the changes on the run of the image, see Figure 4.11. As a result,

the realm‐export.json file will be saved on our machine. We have to keep in mind that all the

users information are not provided in this exported JSON file and that must be inserted by hand

on top of the file inside the global object as stated in [34].

Figure 4.11: Export Keycloak Realm

1 FROM quay.io/keycloak/keycloak:15.0.2

2 COPY ./mllab/ /opt/jboss/keycloak/themes/mllab

3

4 ENV KEYCLOAK_DEFAULT_THEME mllab

5 ENV KEYCLOAK_WELCOME_THEME mllab

6 ENV KEYCLOAK_LOGIN_THEME mllab

7 ENV KEYCLOAK_ADMIN_THEME mllab

8 ENV KEYCLOAK_USER ”user”

9 ENV KEYCLOAK_PASSWORD ”password”

10

11 ...

12

13 COPY mllab-realm.json ./mllab-realm.json

ML Lab / Georgia Chatzimarkaki 105

14 ENV KEYCLOAK_IMPORT ./mllab-realm.json

15 EXPOSE 8080

Code 4.6: Final Keycloak Dockerfile

The KEYCLOAK_IMPORT environment variable to specify the realm file mounted to the

local directory. To view that our realm holds all the information we configured, we can check with

the following the command :

1 docker run -e KEYCLOAK_USER=<USERNAME> -e KEYCLOAK_PASSWORD=<

PASSWORD> -e KEYCLOAK_IMPORT=./example-realm.json

4.1.4 Streaming Object Detection Pipeline

Machine Learning (ML) and Deep Learning (DL) have brought unprecedented abilities to the soft‐

ware engineering field. ML/DL allowsus to reason about and to solve otherwiseun‐programmable

tasks, such as computer‐vision and language‐processing. But how can we leverage ML/DL to de‐

liver richer business solutions to the end‐user? My goal here is to show how Spring Cloud Stream

and Spring Cloud Dataflow can make this much easier.

The ML/DL paradigm works by making observations, running experiments, and using statistics to

analyze the results from the experiments. Usually the process is divided in two phases:

• model training on historical datasets

• using the pre‐trained models for predictive analytics at run‐time (called ML inference).

ML Lab / Georgia Chatzimarkaki 106

While mostML tools will help through the tasks of data exploration, preparation, andmodel train‐

ing you are left on your own to figure out how to integrate and use those tools. Model inference

for predictive analytics is the most common use of ML/DL in Java applications, where you take a

pre‐trained (out‐of‐the‐box) model and use it in your applications to do real‐time predictions (e.g.

fraud detection or vehicle predictive maintenance). The ML inference requires a portable format

for exchanging models between the training and the inference phases. Several initiatives such as

PMML, PFA, MLeap and ONNX aim to a portable format.

Here we will focus on TensorFlow, an emerging DL framework that has gained a lot of momen‐

tum. This success is partly due to the model serialization capabilities it provides. TensorFlow’s

pre‐trained models can be serialized and reused across multiple programming languages, CPU &

GPU processors and platform architectures. Spring Cloud Stream and Spring Cloud Data Flow sig‐

nificantly simplify the tasks of deploying and operationalizing pre‐trained Tensorflow models, to

add ML/DL capabilities for your own business solutions.

An out‐of‐the‐box TensorFlowProcessor is available to perform real‐timepredictive analytics using

pre‐trained TensorFlowmodels. The newObject Detection processor provides out‐of‐the‐box sup‐

port for the TensorflowObject Detection API. It allows for real‐time, localization and identification

of multiple objects in a single image or image stream. The object‐detection processor uses one

of the pre‐trained object detectionmodels and corresponding object labels. The object‐detection

processor has the following options:

• tensorflow.expression: How to obtain the input data from the input message. If empty

it defaults to the input message payload. The headers[myHeaderName] expression to get

input data from message’s header using myHeaderName as a key. (Expression, default:

ML Lab / Georgia Chatzimarkaki 107

<none>)

• tensorflow.mode: The outbound message can store the inference result either in the pay‐

load or in a header with name outputName. The payload mode (default) stores the in‐

ference result in the outbound message payload. The inbound payload is discarded. The

header mode stores the inference result in outbound message’s header defined by the out‐

putName property. The the inbound message payload is passed through to the outbound

such. (OutputMode, default: <none>, possible values: payload,header)

• tensorflow.model: The location of the pre‐trained TensorFlowmodel file. The file, http and

classpath schemas are supported. For archive locations takes the first file with .pb exten‐

sion. Use the URI fragment parameter to specify an exact model name

(e.g. https://foo/bar/model.tar.gz#frozen_inference_graph.pb) (Resource, default: <none>)

• tensorflow.model‐fetch: The TensorFlow graphmodel outputs. Comma separate list of Ten‐

sorFlow operation names to fetch the output Tensors from. (List<String>, default: <none>)

• tensorflow.object.detection.color‐agnostic: If disabled (default) the bounding box colors

are selected as a function of the object class id. If enabled all bounding boxes are visualized

with a single color. (Boolean, default: false)

• tensorflow.object.detection.confidence: Probability threshold. Only objects detected with

probability higher then the confidence threshold are accepted. Value is between 0 and 1.

(Float, default: 0.4)

• tensorflow.object.detection.draw‐bounding‐box: When set to true, the output image will

be annotated with the detected object boxes (Boolean, default: true)

ML Lab / Georgia Chatzimarkaki 108

• tensorflow.object.detection.draw‐mask: For models with mask support enable drawing

the mask of the detected objects (Boolean, default: true)

• tensorflow.object.detection.labels: The text file containing the category names (e.g. la‐

bels) of all categories that this model is trained to recognize. Every category is on a separate

line. (Resource, default: <none>)

• tensorflow.output‐name: The output data key used for the Header modes. (String, default:

result)

If the pre‐trained model is not set explicitly, then the following defaults are used:

• tensorflow.modelFetch : detection_scores, detection_classes, detection_boxes, num_detections

• tensorflow.model:

dl.bintray.com/big‐data/generic/faster_rcnn_resnet101_coco_2018_01_28_frozen_inference_graph.pb

• tensorflow.object.detection.labels:

dl.bintray.com/big‐data/generic/mscoco_label_map.pbtxt

Processor’s input is an image byte array and the output is a JSON message in this format:

1 {

2 ” labels ” : [

3 {”name”:”person”, ”confidence”:0.9996774,”x1”:0.0,”y1”:0.3940161,”x2”:0.9

465165,”y2”:0.5592592,”cid”:1},

ML Lab / Georgia Chatzimarkaki 109

4 {”name”:”person”, ”confidence”:0.9996604,”x1”:0.047891676,”y1”:0.03169123

,”x2”:0.941098,”y2”:0.2085562,”cid”:1},

5 {”name”:”backpack”, ”confidence”:0.96534747,”x1”:0.15588468,”y1”:0.859577

95,”x2”:0.5091308,”y2”:0.9908878,”cid”:23},

6 {”name”:”backpack”, ”confidence”:0.963343,”x1”:0.1273736,”y1”:0.57658505,

”x2”:0.47765,”y2”:0.6986431,”cid”:23}

7]

8 }

Code 4.7: Object Detection Output JSON Example

The output format is:

• object‐name:confidence ‐ human readable name of the detected object (e.g. label) with its

confidence as a float between [0‐1]

• x1, y1, x2, y2 ‐ Response also provides the bounding box of the detectedobjects represented

as (x1, y1, x2, y2). The coordinates are relative to the size of the image size.

• cid ‐ Classification identifier as defined in the provided labels configuration file.

Tensor Flow package, has a specific processor called object detection processor, where it can de‐

tect various objects available in an image. [35] So what I can do, I can provide any image as a

input and it can detect what are all the objects that are available and the probable type of object

what it is, it can predict and it can give the output. I can route the output into a log file and it can

ML Lab / Georgia Chatzimarkaki 110

log the output as a JSON output or even can generate the output as a image file and preview the

result, Or even store it to a database. I used skipper server and ML Lab’s server for this particular

demo. I register the new apps by bulk import application and the URI as shown in Figure 4.12. All

the applications are imported. Within this I do have a processor of type object detection, which

is the processor that I am going to use to detect what are all the objects are available within that

specific image see Figure 4.13.

The following diagram illustrates a Spring Cloud Data Flow streaming pipeline that predicts object

types from the images in real‐time.

Figure 4.12: Register Application from URI

ML Lab / Georgia Chatzimarkaki 111

Figure 4.13: Object Detection Pipeline

Start with a file source node, which is going to use this specific directory as the source and

that’s going to pipe the output to object detection processor, which will use a tensor flow model,

which is already built and it’s available in this specific URL and the information that it is going to

capture are the score what class it is detected and what is the box that is the boundary of that

detected object. It will be made as a box or the coordinate of the box will also be identified and

that will be made as a output an image‐viewer to present the image based on the pipeline. So

basically I am going to have a file source object detection processor an image‐viewer sync. The

test image can be in flickr.

ML Lab / Georgia Chatzimarkaki 112

https://www.flickr.com/photos/mike_miley/4678754542/in/photolist-88rQHL-88oBVp-88oC2B-88rS6J-88rSqm-88oBLv-88oBC4

4.2 Notebook Implementation

To integrate the notebook logic to the ML‐Lab application two where the major issues that I face.

The first is the out‐dated code of the Apache Zeppelin Web Angular App that created incompat‐

ibility problems with the dependencies of the Spring Cloud Dataflow core Application. Both are

develop using the same programming language, Angular, both have awebsocket and a RESTmech‐

anism to communicate with their servers. But some of their dependencies were conflicted. Es‐

pecially the ones that created the UI. The Spring cloud datflow was using the Angular NgModule

library whereas the Apache Zeppelin was using the NG‐ZORRO component library. So to integrate

Notebooks into ML‐Lab, I re‐created the look and feel of the Apache Zeppelin using the one the

Spring Cloud dataflow has deployed.

I modified the Menu items on ML Lab to insert the functionality of the Apache Zeppelin. I have

to create REST endpoints based on the Apache Zeppelin Web Angular App to meet the code style

and the http communication of the Spring Cloud dataflow. For example the REST call to get the

Apache Zeppelin version transformed:

1 //Service

2 getZeppelinVersion(): Observable<string | unknown> {

3 const headers = HttpUtils.getDefaultHttpHeaders();

4 return this .httpClient

5 .get<IZeppelinVersion>(‘${this.baseUrlService.getRestApiBase()}/version‘, {headers}).pipe(

6 map(data => data.version),

7 catchError(ErrorUtils.catchError)

ML Lab / Georgia Chatzimarkaki 113

8) ;

9 }

10 // on AboutZeppelinComponent

11 getZepellinVersion () : void {

12 this . ticketService .getZeppelinVersion().subscribe(data => {

13 console. log(”data.toString() :”,data)

14 this . version = data.toString();

15 })

16 }

Code 4.8: ML‐Lab receiving Apache Zeppelin version

I also integrate the Apache Zeppelin web app inside the ML‐Lab to enable users to create their

notebooks in different programming languages and collaborate with colleagues to share results

and use the environment as an build‐in editor.

To have an overlook on the Notebooks menu item, the ML Labs have:

• a page to view the created notebooks and create or select an existing one to view, edit or

run it as shown in Figure 4.14

• a page to view the credentials and configure new ones for the different interpeters

• a page to view the existed interpreters and enable new ones

• a page that zeppelin configuration is provided

• a page where user can monitor the status of the notebooks

ML Lab / Georgia Chatzimarkaki 114

Figure 4.14: ML Lab Notebooks View

4.2.1 Securing Apache Zeppelin

I wanted to allow the users to do a single‐sign‐on fromML Lab but also secure REST calls (using the

access token from keycloak) that configure the communication between ML Lab notebooks and

the Apache Zeppelin Server. Users will be already logged in on ML Lab with Keycloak. Therefore,

I needed Keycloak to share the existing user credentials with the Apache Zeppelin.

Zeppelin usesApache Shiro [36] as its security framework, which, itself, is an open source software

framework for authentication, authorisation, cryptography and sessionmanagement. As from the

time that thisMaster thesis is being written, there is no Keycloak OIDC client directly implemented

on Shiro, but I found a solution to bypass this problem by using Pac4j [37], a “security engine for

Java to authenticate users. Pac4j provide the user profiles and manage authorisations in order

ML Lab / Georgia Chatzimarkaki 115

to secure web applications and web services. It provides a comprehensive set of concepts and

components from which we will use: client, authenticator, user profile, security filter, callback

and logout endpoints. This integration with Shiro, Pac4j will allow Zeppelin user credentials to be

shared from ML Lab with the Keycloak without promted user to re‐enter credentials to login to

the notebooks.

The steps to Follow was:

(a) The modification of the [$ZEPPELIN_HOME]/conf/shiro.ini by adding the OIDC Pac4j Config

and the Pac4j client.

1 # OIDC Pac4j Conf

2 oidcConfig = org.pac4j.oidc. config .OidcConfiguratio

3 oidcConfig.withState = false

4 oidcConfig.discoveryURI = https://<KEYCLOAK_URL>/auth/realms/mllab/.well-known/openid-

configuration

5 oidcConfig. clientId = dataflow

6 oidcConfig. secret = ******************

7 oidcConfig.clientAuthenticationMethodAsString = client_secret_basic

8 oidcClient = org.pac4j.oidc. client .OidcClient

9 oidcClient . configuration = $oidcConfig

10 # Pac4j Client

11 clients = org.pac4j.core. client .Client

12 clients .callbackUrl = https://<ZEPPELIN_URL>/api/callback

13 clients . clients = $oidcClient

Code 4.9: Pac4j COnfiguration for Apache Zeppelin authentication with Keycloak

(b) Afterward I configure the Pac4jRealm and SecurityFilter using the following line:

ML Lab / Georgia Chatzimarkaki 116

1 pac4jRealm = io.buji.pac4j.realm.Pac4jReal

2 pac4jRealm.principalNameAttribute = preferred_username

3 pac4jSubjectFactory = io.buji.pac4j.subject.Pac4jSubjectFactory

4 securityManager.subjectFactory = $pac4jSubjectFactory

5 oidcSecurityFilter = io.buji .pac4j. filter . SecurityFilter

Code 4.10: Pac4jRealm and SecurityFilter for Apache Zeppelin authentication with Keycloak

(c) Create a custom Pac4j CallbackLogic that will take the callback default URL instead of

the Zeppelin standard URL.

1 customCallbackLogic = bio.ferlab.pac4j.ForceDefaultURLCallbackLogi

2 callbackFilter = io.buji .pac4j. filter .CallbackFilter

3 callbackFilter .defaultUrl = https://zeppelin.mllab.cloud

4 callbackFilter .callbackLogic = $customCallbackLogic

Code 4.11: Callback Filter for Apache Zeppelin authentication with Keycloak

(d) Lastly, I enabled the protected Urls.

1 [urls]

2 /api/version = anon

3 /api/callback = callbackFilter

4 /api/notebook/** = anon

5 /api/notebook/**/permissions = oidcSecurityFilter

6 /** = oidcSecurityFilter

Code 4.12: Callback Filter for Apache Zeppelin authentication with Keycloak

ML Lab / Georgia Chatzimarkaki 117

4.3 Chatbot Widget Creation

To create the chatbot widget I extended the functionality (skills) provided by an open source voice

assistance called Mycroft which is the world’s leading open source voice assistant. It is private by

default and completely customizable, where you give him intents and he gives you answers.

Mycroft AI, Inc. maintains a device and account management system known asMycroft Home. As

I wanted to take advantage of the Mycroft Home service that provides access to a range of APIs

keys for specific services, I created an account on the Mycroft Home. The alternative was to use

Mycroft without Home. The Mycroft backend provides access to a range of API keys for specific

services. And without pairing with the Mycroft backend, to keep access to the functionality I have

to add our own API keys, install a different Skill or Plugin to perform that function. But at this

phase the extension of the functionality is the goal.

At thismomentMycroft does not comewith any securitymechanism for thewebsocket. I worked

on securing the websocket (messaging service) with Keycloak, as was the authentication protocol

I selected for ML Lab. Mycroft‐core is written n Python using tornado framework. To include

the security mechanism, I edit the test Dockerfile to provide the requirements to enable the

keycloak mechanism using the Python Keycloak library, where I included the installation of tor‐

nado_http_auth, redis, pymongo, sqlalchemy, pyjwt, cryptography,python‐keycloak before the

mycroft core vm installation. On the mycroft core message bus message file i inserted the com‐

mand to secure the websocket with the keycloak.

1 from keycloak import KeycloakOpenID

2 keycloak_openid = KeycloakOpenID(server_url=os.getenv(’KEYCLOAK_URL’, ’https:keycloak.mllab.

cloud/auth/’), #TODO

ML Lab / Georgia Chatzimarkaki 118

3 client_id=os.getenv(’KEYCLOAK_CLIENT_ID’, ’mllab’),

4 realm_name=os.getenv(’KEYCLOAK_REALM_NAME’, ’mllab’))

5 ...

Code 4.13: Keycloak Configuration in Mycroft Core

And then, I modify the deserialize message method to include the token, where the intent from

the user includes the token of the user. If the token validated the response‐answer will be send

back.

1 @staticmethod

2 def deserialize (value) :

3 obj = json.loads(value)

4 # if request send from mllab

5 if obj.get(’token’) :

6 # if contains the message and token from mllab

7 if obj.get(’type’) == ’recognizer_loop:utterance’:

8 input_token = obj.get(’token’) [0]. replace(”\n”, ””)

9 # verify user authentication

10 userinfo = keycloak_openid.userinfo(input_token)

11 ...

12 return Message(obj.get(’type’) or ’ ’ ,

13 obj.get(’data’) or {},

14 obj.get(’context’) or {})

Code 4.14: Secure Messaging between Mycroft Core and ML Lab

This widget idea came from a recent H2020 project, I am working on creating a virtual personal

assistant for manufacturing purposes, called COALA https://www.coala-h2020.eu/. When work‐

ML Lab / Georgia Chatzimarkaki 119

https://www.coala-h2020.eu/

ing on Machine Learning models I caught myself being in a position that I was trying to validate

my results and see how well my models predict. For example, on a weather prediction model for

the following week, that I wanted to validate my result. The only thing I have to do, was to check

about the actual weather conditions that days. To found out these information I have to leave the

project window or browser tab and search on different weather services and compare the results.

On a recent project where I wanted to predict the rate of the deaths due to Covid‐19 each day,

I also have to search online for the answer each day. The time that I was spending on searching

mademy think that it will be a great addition when developing to having a service where all I have

to do was to ask for something and get an instant response. To provide this functionality I use the

some of the default skills and provide extra functionality with the addition of three new skills. For

example the default skills I enabled was:

• skill‐stock that provide current stock prices and can be used on a stock price prediction

model, as it uses the Financial Modeling Prep API, to provide you the current price of the

stocks.

• skill‐weather that returns weather conditions, forecasts, expected precipitation and more.

• skill‐date‐and‐time that returns the local time or time for major cities around the world.

• skill‐npr‐news that returns the latest news report from your favorite broadcast

• skill‐query that negotiates the best answer to a question. This is done by sending a ques‐

tion:query message with the utterance to give the skills the posibility to report back if they

can answer the question and at which confidence.

ML Lab / Georgia Chatzimarkaki 120

I also created a skill called gina‐reminder based on Mycrofts skill reminder where I ex‐

tended the functionality set reminders for a specific task a user want to remember. To use this

skill I have to disable the default skill‐reminder and install using mycroft bash command the new

created skill. For example 4.15. Inside the folder dialog the responses of the Mycroft are existing

based on user intent, for exmaple if the user writes just “Set reminder” then the response will be

“About what?” or Sure, What should I remind you about?. Inside the vocab folder the user sen‐

tence to set the reminder must be placed. For example (could you |)remind me (about|of|to)

reminder. Inside the __init__.py all thelogic of the skills are existing. From receiving the intent,

setting the reminder and triggering the response based on the time frame user defined (same day,

tomorrow).

ML Lab / Georgia Chatzimarkaki 121

Figure 4.15: Custom Reminder Skill File

Structure

Figure 4.16: Mycroft Custom Reminder

Skill

To serve all this functionality, I created an Angular widget using Angular Elements to serve

the chatbot at the right bottom of the screen. Angular Elements is a new package in Angular that

helps on publishing Angular components as custom elements. It does this by taking the Angular

component and compiling it into a web component. The library that enabled my to configure the

websocket communication between ML‐Lab chatbot and Mycroft core was ngx‐socket‐io. Also

angular animations were created to perform the fade in and fade out of the chatbot modal. To

integrate the chatbot widget to ML‐Lab Dashboard I have to modify the AppModule.

ML Lab / Georgia Chatzimarkaki 122

To deploy the Mycroft core after the configuration for the additional skills and the security mech‐

anism(Keycloak) the Dockerfile created for custommycroft‐core must be build and run. To run the

Docker image the following commands can b used:

1 docker build -t mllab-bot:1.1.0 .

2 docker run --name=mllab-bot -p 8181:8181 -it --rm mllab-bot:1.1.0

By running the ./start‐mycroft.sh debug command inside the bash we start the Mycroft core. The

services and the skills take a little time to be configured. After the configuration is finish, the

pairing code is presented.

By saying ”Hey Mycroft, pair my device”, user will be informed that the device needs to be paired.

Mycroft will provide a 6‐digit code as shown in Figure 4.17 which I enter into the pairing page

within the Mycroft Home site that containing the core services (server) as shown in Figures 4.18.

I created a device on the Mycroft Home based on the pairing key I received and that enabled me

to start asking questions, Figure 4.19.

Figure 4.17: Mycroft Core (server) Pairing

ML Lab / Georgia Chatzimarkaki 123

Figure 4.18: ML Lab integrated Bot Pairing

Figure 4.19: Bot Home Pairing

ML Lab / Georgia Chatzimarkaki 124

CHAPTER5
Conclusions

The purpose of this Master thesis was to develop a micro‐service application for automated ana‐

lytic applications deployed to k8s. This thesis started with an introduction to the theoretical and

technical background of the key technologies and components and took a dive into the different

approach of platforms providing this functionality to develop micro‐services as directed acyclic

graphs. The rest of this thesis is divided into 2 parts.

In the first part, the key technologies and programming languages required for this implementa‐

tion are presented and provide the prototype of the application. In the second part, the develop‐

ment of the presented prototype is shown. Followed by the description of the steps required to

extend the functionality, to provide user with the exported YAML manifest of a deployed pipeline

that can be used to share their data pipelines with others, where they can be run and out‐side this

toolkit. An explanation of the problem occurring with the dependencies incompatibility of the

Spring Cloud Dataflow and the Apache Zeppelin that force me to create a new interface for the

notebooks functionality inside the ML Lab toolkit and create new services to get the functionality

from Apache Zeppelin Server using new REST endpoints. I also stated how the inclusion of a wid‐

get written in Angular that handles the communication between the Mycroft core and the user

ML Lab / Georgia Chatzimarkaki 125

can assist the user to set reminders to finish tasks, or ask for guidance for creating a new stream or

task, or simply ask for information, using the default skills of Mycroft and two custom skills devel‐

oped for this purpose. To manage the identity and access of users throughout the application and

services, a security mechanism called Keycloak is used to connect the user and provide a token

that you will be shared with other services to verify the authenticity of the user. It is important to

state that the combined solution presented can not be found in literature or the open source.

ML Lab / Georgia Chatzimarkaki 126

CHAPTER6
Future Implementations

To answer this question I asked myself “What should be the next steps or features this toolkit you

want to provide to end‐user?”. Search is so easy for users to use, and they almost expect it in

every application. On the other hand, it can be so difficult to build; that simple text box in your

application can mean so much work if you have to do it all by yourself. At this moment, user can

search for elements or find information about this toolkit using the search box, or the chatbot or

inside the pop modal of the info icons by the side of key elements, like the different status of a

stream pipeline, what is notebooks?, streams, task, and how to use or start create your first node,

and inside the manual that is linked in the info section of the application. A feature that I have

imagine this application to have related to that is a cognitive searchmechanism by creating skill for

the chatbot with AI capabilities that enrich all types of information to identify and explore relevant

content inside ML‐Lab. This can significantly increase productivity through personalization and by

predicting the user’s actual search intends(question). User for example can ask “what is the fist

pipeline app I used in stream Name_OF_Stream” and the chatbot will reply with the answer. Or

the chatbot can inform the user a long running task finished its deployment. In this Master thesis

the integration of the notebooks logic aimed to enable users to create and run different machine

ML Lab / Georgia Chatzimarkaki 127

learning tasks, by using the notebooks as an editor. Although to support the docker container

registration to the application as stated in the Spring Cloud Dataflow, Polyglot Data Storage is

necessary to register Python Applications and deploy Dockerized apps inside this toolkit. As a

future step I would like this tool to enable users to have their custom python applications inside

their pipelines by using the notebooks environment.

ML Lab / Georgia Chatzimarkaki 128

Bibliography

[1] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The Hardware Soft‐

ware Interface ARM Edition, 1st ed. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 2016.

[2] Jargon file entry for ”user”. Available at http://catb.org/jargon/html/U/user.html.

[3] Json. Available at https://en.wikipedia.org/wiki/JSON.

[4] R. Crockford. (2006, 7) The applicationjson media type for javascript object notation (json).

Available at https://datatracker.ietf.org/doc/html/rfc4627.

[5] Introducing json. Available at https://www.json.org/json‐en.html.

[6] R. Bray. (2017, 12) The javascript object notation (json) data interchange format.

https://datatracker.ietf.org/doc/html/rfc8259.

[7] V. Sinha, F. Doucet, C. Siska, R. Gupta, S. Liao, and A. Ghosh, “Yaml: a tool for hardware

design visualization and capture,” in Proceedings 13th International Symposium on System

Synthesis, 2000, pp. 9–14.

ML Lab / Georgia Chatzimarkaki 129

http://catb.org/jargon/html/U/user.html
https://en.wikipedia.org/wiki/JSON
https://datatracker.ietf.org/doc/html/rfc4627
https://www.json.org/json-en.html

[8] erik. (2018, 12) Yaml tutorial: Everything you need to get started in minutes. Available at

https://www.cloudbees.com/blog/yaml‐tutorial‐everything‐you‐need‐get‐started.

[9] S. Gholami, H. Khazaei, and C.‐P. Bezemer, “Should you upgrade official docker hub images

in production environments?” in 2021 IEEE/ACM 43rd International Conference on Software

Engineering: New Ideas and Emerging Results (ICSE‐NIER), 2021, pp. 101–105.

[10] K. Jangla, Docker Basics. Berkeley, CA: Apress, 2018, pp. 27–53. [Online]. Available:

https://doi.org/10.1007/978‐1‐4842‐3936‐0_4

[11] T. Combe, A. Martin, and R. Di Pietro, “To docker or not to docker: A security perspective,”

IEEE Cloud Computing, vol. 3, no. 5, pp. 54–62, 2016.

[12] N. Zhao, V. Tarasov, H. Albahar, A. Anwar, L. Rupprecht, D. Skourtis, A. S.Warke,M.Mohamed,

and A. R. Butt, “Large‐scale analysis of the docker hub dataset,” in 2019 IEEE International

Conference on Cluster Computing (CLUSTER), 2019, pp. 1–10.

[13] T. Butler. (2015, 9) Jargon file entry for ”user”. Available at https://www.cloudbees.com/

blog/what‐is‐a‐dockerfile.

[14] R. Gatev, Getting Up to Speed with Kubernetes. Berkeley, CA: Apress, 2021, pp. 51–67.

[Online]. Available: https://doi.org/10.1007/978‐1‐4842‐6998‐5_3

[15] A. Poniszewska‐Marańda and E. Czechowska, “Kubernetes cluster for automating software

production environment,” Sensors, vol. 21, no. 5, 2021. [Online]. Available: https:

//www.mdpi.com/1424‐8220/21/5/1910

ML Lab / Georgia Chatzimarkaki 130

https://www.cloudbees.com/blog/yaml-tutorial-everything-you-need-get-started
https://doi.org/10.1007/978-1-4842-3936-0_4
https://www.cloudbees.com/blog/what-is-a-dockerfile
https://www.cloudbees.com/blog/what-is-a-dockerfile
https://doi.org/10.1007/978-1-4842-6998-5_3
https://www.mdpi.com/1424-8220/21/5/1910
https://www.mdpi.com/1424-8220/21/5/1910

[16] J. Shah and D. Dubaria, “Building modern clouds: Using docker, kubernetes amp; google

cloud platform,” in 2019 IEEE 9th Annual Computing and CommunicationWorkshop and Con‐

ference (CCWC), 2019, pp. 0184–0189.

[17] P. H.‐B, “Assertions and protocol for the oasis security assertion markup language (saml),”

2002.

[18] P. M., “Bindings and profiles for the oasis security assertion markup language (saml),” 2002.

[19] W. Staff. (2021, 9) Saml. Available at https://www.webopedia.com/definitions/saml/.

[20] M. Pierce, M. Miller, E. Brookes, M. Wong, E. Afgan, Y. Liu, S. Gesing, M. Dahan, T. Walker,

and S. Marru, “Towards a science gateway reference architecture,” CEURWorkshop Proceed‐

ings, vol. 2357, Jan. 2019, 10th International Workshop on Science Gateways, IWSG 2018 ;

Conference date: 13‐06‐2018 Through 15‐06‐2018.

[21] J. Basney and V. Welch, “Science gateway security recommendations,” in 2013 IEEE Interna‐

tional Conference on Cluster Computing (CLUSTER), 2013, pp. 1–3.

[22] Incommon federation. Available at https://www.incommon.org/.

[23] D. Hardt, “The oauth 2.0 authorization framework,” RFC, vol. 6749, pp. 1–76, 2012.

[24] J. Basney, T. Fleury, and J. Gaynor, “Cilogon: A federated x.509 certification authority for

cyberinfrastructure logon,” Concurrency and Computation: Practice and Experience, vol. 26,

no. 13, pp. 2225–2239, 2014. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/

10.1002/cpe.3265

[25] Keycloak. Available at http://www.keycloak.org/.

ML Lab / Georgia Chatzimarkaki 131

https://www.webopedia.com/definitions/saml/
https://www.incommon.org/
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3265
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3265
http://www.keycloak.org/

[26] Apache spark. Available at http://spark.apache.org/.

[27] Y. Cheng, F. C. Liu, S. Jing, W. Xu, and D. H. Chau, “Building big data processing

and visualization pipeline through apache zeppelin,” in Proceedings of the Practice and

Experience on Advanced Research Computing, ser. PEARC ’18. New York, NY, USA:

Association for Computing Machinery, 2018. [Online]. Available: https://doi.org/10.1145/

3219104.3229288

[28] Apache software foundation:. Available at http://www.apache.org/.

[29] jbosskeycloak 15.0.2. Available at https://hub.docker.com/layers/jboss/keycloak/15.0.2/

images/sha256‐d8ed1ee5df42a178c341f924377da75db49eab08ea9f058ff39a8ed7ee05ec93?

context=explore.

[30] Baeldung. (2020, 11) Customizing themes for keycloak. Available at https://www.baeldung.

com/keycloak‐user‐registration.

[31] Keycloak themes docs. Available at https://www.keycloak.org/docs/4.8/server_

development/#_themes.

[32] S. Wagde. (2020, 10) Customizing the login page for keycloak. Available at https://www.

baeldung.com/keycloak‐custom‐login‐page.

[33] ——. (2020, 10) Customizing themes for keycloak. Available at https://www.baeldung.com/

spring‐keycloak‐custom‐themes.

[34] little_pinecone. (2021, 8) Keycloak in docker #2 – how to import a keycloak realm. Available

at https://keepgrowing.in/tools/keycloak‐in‐docker‐2‐how‐to‐import‐a‐keycloak‐realm/.

ML Lab / Georgia Chatzimarkaki 132

http://spark.apache.org/
https://doi.org/10.1145/3219104.3229288
https://doi.org/10.1145/3219104.3229288
http://www.apache.org/
https://hub.docker.com/layers/jboss/keycloak/15.0.2/images/sha256-d8ed1ee5df42a178c341f924377da75db49eab08ea9f058ff39a8ed7ee05ec93?context=explore
https://hub.docker.com/layers/jboss/keycloak/15.0.2/images/sha256-d8ed1ee5df42a178c341f924377da75db49eab08ea9f058ff39a8ed7ee05ec93?context=explore
https://hub.docker.com/layers/jboss/keycloak/15.0.2/images/sha256-d8ed1ee5df42a178c341f924377da75db49eab08ea9f058ff39a8ed7ee05ec93?context=explore
https://www.baeldung.com/keycloak-user-registration
https://www.baeldung.com/keycloak-user-registration
https://www.keycloak.org/docs/4.8/server_development/#_themes
https://www.keycloak.org/docs/4.8/server_development/#_themes
https://www.baeldung.com/keycloak-custom-login-page
https://www.baeldung.com/keycloak-custom-login-page
https://www.baeldung.com/spring-keycloak-custom-themes
https://www.baeldung.com/spring-keycloak-custom-themes
https://keepgrowing.in/tools/keycloak-in-docker-2-how-to-import-a-keycloak-realm/

[35] Available at https://spring.io/projects/spring‐cloud‐stream‐app‐starters.

[36] Available at https://shiro.apache.org/integration.html.

[37] Available at https://github.com/bujiio/buji‐pac4j.

ML Lab / Georgia Chatzimarkaki 133

https://spring.io/projects/spring-cloud-stream-app-starters
https://shiro.apache.org/integration.html
https://github.com/bujiio/buji-pac4j

	=Abstract in Greek
	Abstract in English
	=List of Figures
	= List of Tables
	= List of Source Codes
	=Abbreviations
	=Glossary
	Introduction
	Research Inspiration
	Contribution
	Organization of this Thesis

	Background
	Serialization
	Parsing
	JSON
	YAML

	Docker
	Containers
	Docker Registry
	Docker Hub
	Docker Images
	Docker Layers
	Dockerfile file
	.dockerignore file
	Docker engine
	Commands

	Kubernetes
	Kubernetes Features

	 User Authentication
	 Authorization
	 Authentication
	 OAuth 2.0
	OpenID Connect
	SAML
	Differences between OAuth 2 and OpenID Connect
	Keycloak

	Spring cloud dataflow
	Features of Spring Cloud Data Flow
	Components
	Applications
	Message Broker
	Storage

	Differences
	Apache Zeppelin
	Virtual Assistant Chatbot

	Prerequisites
	Prototype
	Technologies and Languages
	Kubernetes Configuration

	Implementation
	ML LAb - Spring Cloud Dataflow extension
	Export YAML file
	GPU property configuration
	Securing ML Lab with Keyclaok
	Streaming Object Detection Pipeline

	Notebook Implementation
	Securing Apache Zeppelin

	Chatbot Widget Creation

	Conclusions
	Future Implementations

