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Abstract: Efficient and sustainable exploitation of water resources requires the adoption of innovative
and contemporary management techniques, a need that becomes even more demanding due to
climate change and increasing pressures coming from anthropogenic activities. An important
outcome of this reality is the qualitative and quantitative degradation of groundwater, which clearly
indicates the need to exploit surface runoff. This study presents an integrated Geographic Information
System (GIS)-based methodological framework for revealing and selecting suitable locations to build
small-scale reservoirs and exploit surface runoff. In this framework, the SWAT model was used to
quantify surface runoff, followed by the simulation of reservoir scenarios through reservoir simulation
software. Andros Island (located in Cyclades Prefecture), Greece was selected as the study area.
The obtained results indicated the most suitable location for creating a reservoir for maximizing
exploitation of surface runoff, based on the specific water demands of the nearby areas and the existing
meteorological, hydrological, and geological background potential. Thus, two selected dam locations
are analyzed by using the proposed framework. The findings showed that the first dam site is
inappropriate for creating a reservoir, as it cannot meet the demand for large water extraction volumes.
In addition, the outcomes confirmed the efficiency of the proposed methodology in optimum selection
of locations to construct small-scale water exploitation works. This research presents a contemporary
methodological framework that highlights the capability of GIS, SWAT modeling, and reservoir
simulation coupling in detecting optimal locations for constructing small reservoirs.

Keywords: reservoirs; Water Resources Management; local development; modeling; SWAT; GIS

1. Introduction

The pressure on water resources availability has increased significantly, mainly due to population
growth, migration to urban and coastal areas, climate change, and desertification, and is expected to
become even higher [1–3]. Therefore, the emerging issues will be even more significant as a result of
water shortages in most areas [4–9]. The primary challenge in urban and rural economic activities is the
irregular and short duration of rainfall. Another challenge, which establishes the importance of water

Water 2020, 12, 3182; doi:10.3390/w12113182 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-7952-0353
https://orcid.org/0000-0002-1921-9729
https://orcid.org/0000-0003-1442-1423
http://dx.doi.org/10.3390/w12113182
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/11/3182?type=check_update&version=3


Water 2020, 12, 3182 2 of 18

resources management (WRM) projects in insular clusters, is that of spatial discontinuity (distance
between island land masses) [10,11]. Therefore, the adoption of satisfactory socio-economic approaches,
concerning water deficiency, is the solution to those severe WRM problems [12]. Even more, spatial
analysis of the specific background factors (geology, slopes, meteorological, etc.) of each insular study
area is needed. In parallel, the degradation of ground water resources, related to the deprivation of their
quality due to over-exploitation of aquifers, as well as of relic waters, should also be prevented [13–15].
Furthermore, the use of non-renewable resources must be diminished and the rise of projects pointing
at an ideal and sustainable use of surface runoff must be encouraged. Thus, a multi-dimensional view
on the exploitation of water resources is considered necessary [16].

Constructing projects that guarantee the exploitation of surface water through adequate, dispersed,
small-scale harvesting systems (small dams, mountainous-hilly reservoirs) will possibly be more
ecologically approachable than big-scale ones or those over-exploiting ground water. In addition,
these systems might assist in various sustainable tasks, such as protection of natural environment,
local-scale hydropower energy systems etc., while creating new opportunities for local jobs. Taking into
account the evolving constraints, which arose through the recent economic crisis, inexpensive projects,
in terms of economic value, become very challenging for local development [17–24]. Small-scale
mountainous reservoirs are those, which serve local development purposes [25]. These are low-cost
projects of high domestic local added value and should be supported in the future [26,27]. The choice of
constructing small reservoirs takes into account economic criteria, social imperatives, and environmental
commitments [28].

Developing a model that simulates natural phenomena is not an easy task. Either the same
difficulty occurs when attempting to simulate the hydrological cycle, by lack of full knowledge of its
internal processes or, more often, by lack of primary measured data. Geographic information systems
(GIS) has made it easier and faster to process data to produce reliable simulation models. Thus, the
integration of hydrological processes into a GIS environment has now reached the maturity level to
allow a high degree of accuracy in simulating those processes. Many projects worldwide combine GIS
and specific hydrological models to study a variety of procedures concerning dams and reservoirs.
Most of these projects takes the existence of a dam or a reservoir for granted and simulates their
operation under various scenarios [29–31].

In view of the above, this paper presents a new methodological framework that can contribute
efficiently to the construction of effective, low-cost systems for harvesting rainwater [32]. It proposes a
contemporary and integrated approach for selecting suitable sites within a catchment, to construct
small-scale dams/reservoirs, by coupling GIS analysis techniques, SWAT (acronym for Soil and Water
Assessment Tool, Austin, TX, USA) hydrological model [33], and reservoir simulation software (RSS,
Athens, Greece). The main goal is to quantify the annual runoff for a catchment, based on meteorological
and spatial data (via SWAT), which then will be used as entry data in the RSS. The calculated monthly
failure (in terms of meeting the water demand) by RSS qualifies the optimal positioning of the
reservoir. Finally, the efficiency of the proposed methodological framework is verified in several stages
throughout its application, by field measurements, the Nash–Sutcliffe index and the assessment of the
simulated failure rates of the reservoirs scenarios. The verification results support the efficiency of the
proposed methodology.

2. Material and Methods

2.1. Study Area

Andros Island, Cyclades, Greece, was the wider study area for this research project (Figure 1).
Andros is the northernmost island of the Cyclades cluster, between Evoia Island and Tinos Island.
It has a very intense topography and elongated shape with a direction from NW to SE. It is the second
island in Cyclades (after Naxos) in terms of area extent, covering almost 375 km2 with a perimeter
of about 180 km. As far as the island’s anthropogenic environment is concerned, the population of



Water 2020, 12, 3182 3 of 18

Andros is about 10,000 residents. During the summer, the population of the island gets ten times
bigger, resulting in very serious problems in relation to water supply.
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Figure 1. The study area, the Afrouses catchment and the finally selected dam site (Afrouses catchment).

Afrouses catchment, which is the selected study area, covers an area of 12.9 km2, with a perimeter
of 28.70 km. The average altitude of the catchment is 515 m, and the average slope is 30%. The dominant
type of land cover is grassland-pasture and as far as the geological background is concerned slates,
amphibolites, and quartzites are the dominant formation types. Afrouses catchment is characterized
by ephemeral surface flow mostly due to intense and short-term rainfall events.
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2.2. Methodological Framework

2.2.1. Overview and Data

The conceptual scheme of this research is presenting in Figure 2.
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The proposed methodological framework includes procedures related to hydrological analysis,
modeling using the SWAT software, and to the RSS by Technologismiki. A summary of the main steps
of the proposed framework is provided in Figure 3.
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The evolution of GIS technology has led to improvements in data processing and to the
development of more sophisticated and reliable simulation models. The hydrological model used in
this work, coupled with GIS environment, is SWAT. The simulation of the hydrological cycle by SWAT
requires a large amount of meteorological and spatial data [34].

However, execution of the model is quite easy. Routines run serially, which means that the
program does not allow the user to proceed to the next step without completing the previous one.
The model uses the standard equations of hydrology to simulate the hydrological cycle. SWAT model
has been used within Mediterranean regions giving very accurate results [35–41] and worldwide in a
variety of applications [42–50].

All the procedures of the runoff simulation are carried out within an ArcGIS context. The input
data for this work is presented in Table 1.

Table 1. The Primary data of the methodology.

Type Details Source

DEM Raster (28 × 28 m pixel size)
Advanced Spaceborne Thermal Emission
and Reflection Radiometer Global Digital

Elevation Model (Aster GDEM)

Land cover Vector (initial analog map scale
1:5000) Greek Ministry of Agriculture

Hydrolithology Vector (initial analog map scale
1:50,000)

Institute of Geology and Mineral
Exploration

Meteorological data
(rainfall, temperature,
wind, solar radiation)

Tables Hellenic National Meteorological Service

In particular, the primary input data to execute SWAT are (Figure 4): (i) a Digital Elevation Model
(DEM) by Aster GDEM (28 × 28 m pixel size), (ii) a land-cover layer (produced by the Greek Ministry
of Agriculture land cover map, scale 1:5000), (iii) a hydrolithological layer of Andros by combining
the hydraulic characteristics of each formation (produced by the Institute of Geology and Mineral
Exploration geological map of Andros, scale 1:50,000), and (iv) meteorological data available by the
Hellenic National Meteorological Service for the period 1980–2000 [51]. A correlation between the
permeability of each hydrogeological formation and the equivalent permeability of SWAT’s database
was established to produce a SWAT-compatible soil map [37]. The hydrologic analysis of the used
DEM covers the needs of the work, as it provides satisfactory results [52].
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2.2.2. Hydrological and Background Analysis—SWAT Simulation

All the background data (hydrological and meteorological characteristics, land cover/use,
soil map, etc.) that are needed as inputs to the SWAT model can be prepared and analyzed both
manually/individually in a GIS software or by using the SWAT toolbox that works as an extension in
ArcGIS software. In this study, the second choice was selected as it offers direct control and display
over each action in a very easy step-by-step routine [53,54].

Thus, background data preparation and analysis are the most crucial steps of the modeling process.
As far as the hydrological analysis of the study area is concerned, the first step is DEM processing.

Andros island DEM follows the standard hydrological analysis procedure, which in the following
order includes the:

(a) filling of possible sinks and smoothing of possible excessive elevations lifts resolving thus possible
water trapping or pseudo-changes in flow direction [55]

(b) estimation of flow direction
(c) estimation of flow accumulation
(d) creation of streams and outlets of each catchment

It must be underlined that before catchment delineation, a threshold of 100 Ha is selected.
Thus, the produced catchments will be over 1 km2 in extent, avoiding the creation of very small
sub-catchments. The analysis process continues by selecting specific outlets. At this point, the Afrouses
catchment is selected for further research on possible reservoir creation. This choice was based on
its special spatial characteristics, namely its proximity to the biggest settlement of the Andros Island
(Andros settlement), its hydrological and hydrogeological background (low-very low permeability
resulting in small losses in percolation), etc. SWAT analyzes and records the characteristics of the
selected catchment.

The above procedure must be performed twice, once for each selected dam location. The model
must be executed for each of them. The next step refers to the Hydrological Response Units (HRUs)
analysis which demands (a) the land cover/use map, (b) the soil map and (c) the slope map of
the catchment. HRUs are smaller hydrological entities, within the sub-basins, that have the same
characteristics of hydrological soil type (same water permeability–soil map elements), land uses,
and slope. Each HRU is treated separately from the model and then all together compose, as the final
result, the hydrological cycle. This separation gives the user the ability to achieve a detailed setting of
the model in the catchment.

SWAT offers the prospect to either import historical data of rainfall, temperature, wind speed,
and solar radiation or generate a statistical weather station, in the absence of previous data. The second
solution was chosen for this current work. The next step was devoted to the execution of the simulation
scenarios. SWAT simulation was carried out for two selected dam sites within the studied catchment
(Afrouses catchment), to estimate runoff for each upstream sub-catchment. After setting and importing
the background data in the SWAT model, the simulation process of the two selected scenarios follows.
In this project, the simulation time period for the two dam location scenarios, and for the Afrouses
catchment as a whole, is from 1 January 2020 to 31 December 2119 (100 years). The model calculates
the parameters of the hydrological cycle for each simulation year.

2.2.3. SWAT Modeling Evaluation

A field campaign took place in the studied catchment in order to optimally evaluate the model
based on true data. The field measurements of the in situ research were accomplished by current meters
for the water velocity/volume recording, water level by a water level logger, and for the meteorological
parameters by a meteorological gauge station that was installed at a suitable location inside the studied
catchment. The time period of the measurements was September 2009 to September 2013.

Thus, using the available measurements of surface runoff (water yield) and the simulated results,
to evaluate the performance of the model, the Nash–Sutcliffe index (corresponds to a perfect match
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of simulation and measured values between −∞ and 1) and R2 (indicates the magnitude of the
correlation between simulated and measured values and ranges between 0 and 1) are used [56]. If the
Nash–Sutcliffe index and R2 are 1, then the model is considered to be the best possible.

The Nash–Sutcliffe coefficient [57] is given by the next Formula (1):

E =

∑T
t=1 (Q

t
0 −Qt

s)
2∑T

t−1 (Q
t
0 −Q0)

2 (1)

where Qo is the observed flow rate, Qs is the simulated flow rate and Q is the observed flow rate at a
time t.

R2 is given by Formula (2):

R2 =


∑n

i=1

(
Q0 −Qs

)(
Qs −Qs

)
√∑n

i=1

(
Q0 −Qo

)2
√∑n

i=1

(
Qs −Qs

)2


2

(2)

where Qo is the observed flow rate, Qo is the mean observed flow rate, Qs is the simulated flow rate
and Qs is the mean simulated flow rate during the model evaluation time.

2.2.4. Reservoir Simulation

RSS simulates the operation of a single- or multi-purpose reservoir, i.e., water storage system.
Thus, the operation of each of the two reservoirs, created by the dam location scenarios, is simulated
via RSS. The SWAT modeling results (simulated values of surface runoff) are the entry data for the RSS,
which simulates the reservoir operation for single or multiple probability in meeting the water demand.
The input data, required for the execution of this software, are presented in Figure 3. The Level-Area
Curve which is needed, is presented in Table 2.

Afrouses catchment, the two dam location scenarios and the corresponding reservoirs that were
modeled in SWAT are presented in Figure 5.
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Table 2. Level-Area-Volume data for the level-area Curve for the selected sites.

First Site Second Site

Level Area Volume
(Between) Total Volume Level Area Volume

(Between) Total Volume

(m a.s.l.) (m2) (m3) (m3) (m a.s.l.) (m2) (m3) (m3)
520 0 1352 0 420 0 2128 0
524 676 4988 1352 424 1064 7452 2128
528 1818 10,248 6340 428 2662 18,012 9580
532 3306 17,688 16,588 432 6344 34,528 27,592
536 5538 29,578 34,276 436 10,920 54,106 62,120
540 9251 63,854 440 16,133 116,226

A specific scenario was assumed in terms of monthly outflow rates, according to which in the
months with low consumption in Andros Island, from October to March (period without great needs
for domestic water and irrigation), the coefficients are smaller (from 4 to 6% of the total draw-off

amount). In April there is an increase in the seasonal population (due to Easter) and the percentage
rises by 9%. The same goes for the month of May, where the first vacationers arrive on the island.
In June, where there are more vacationers in general but also weekend vacationers (as Andros is very
close to Athens), the rate rises to 11%. In July, there is a higher increase in the seasonal population and
the percentage rises to 14%. In August, as in most tourist areas, the seasonal population peaks and the
percentage rises to 18% (about 1/5 of the annual water draw-off).

During the same period (summertime) irrigation needs are also increased. However, domestic
water use is the key need at the summer period due to the augmented seasonal population (tourism),
placing thus irrigation demand at a lower level of significance. Finally, in September, the percentage
drops to 12%, because there are still vacationers on the island.

In terms of operating volumes, the maximum and minimum operating levels of the reservoir are
imported. For the first month of simulation, the initial level (or volume) can be imported manually or
automatically calculated by the model.

At this point it should be clarified that by importing the minimum operation level, the available
amount of water draw-off is determined, without emptying the reservoir and with the maximum level
essentially determining the height of the dam. For the needs of this research, dams up to 15 m (8, 9,
10, 11, 12, 13, 14, and 15 m) are adopted, a height that sets the limit for small dams and the annual
water extraction volume up to 200,000 m3 (50,000, 100,000, 150,000, and 200,000 m3). For example, in
the first selected dam location, where the absolute altitude is 520 m, the minimum operating level is
considered to be 524 m, which means that 1352 m3 will always remain in the reservoir, for a 15 m dam
the maximum operating level will be 535 m.

Finally, when all the above data are imported, the simulations begin. As already mentioned,
this research examines the possibility of constructing a dam at two different selected locations in the
Afrouses catchment, while creating a water reservoir based on the water availability failure rates of
a certain water extraction volume per year. To address this matter, the number of failed months is
needed, information that is given from the simulation. Thus, for example when the number of failed
months is 223 in a total of 1200 months the failure (F) is: F = 223/1200 = 0.18583 ≈ 18.6%. The above
example presents the way that the simulation works to define the possibility of building a dam and
creating a reservoir.

3. Results

3.1. SWAT Modeling and Background Analysis

SWAT model showed an average annual rainfall of almost 570 mm and surface runoff of about
290 mm (for the selected catchment), which is in line with the Master Management Plan of the Greek
Ministry of Development (661 mm and 293 mm respectively), which was developed according to EU
Water Framework Directive. Thus, the simulation is considered to provide acceptable results based
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on the assumptions made and the data used [50]. In addition, the annual surface runoff coefficient of
the catchment is calculated at 0.52. The water capacity of the catchment is 23 mm/km2. It must be
noted that the mean annual rainfall value that was imported in the SWAT model was 569.4 mm (almost
identical to the value that SWAT calculated).

Dam location scenario 1 forms an upstream drainage sub-catchment of 3.63 km2 extent and
10.9 km perimeter. The spatial background characteristics of this basin are presented in Figure 6.

Water 2020, 12, x 9 of 18 

 

the catchment is calculated at 0.52. The water capacity of the catchment is 23 mm/km2. It must be 
noted that the mean annual rainfall value that was imported in the SWAT model was 569.4 mm 
(almost identical to the value that SWAT calculated). 

Dam location scenario 1 forms an upstream drainage sub-catchment of 3.63 km2 extent and 10.9 
km perimeter. The spatial background characteristics of this basin are presented in Figure 6. 

 
Figure 6. Dam location scenario 1: (a) land cover, (b) permeability, (c) slopes (%). 

Table 3 summarizes the SWAT results for the first year of the simulation in the first selected site 
(scenario 1). 

Table 3. SWAT results for the first year of simulation for the first selected site (scenario 1). 

UNIT        WATER SED 
TIME PREC SURQ LATQ GWQ SW ET PET YIELD YIELD 

(month) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (t/ha) 
1 77.13 0 25.57 0 52.62 18 49.16 25.57 0 
2 90.58 0.16 52.18 0.45 72.22 11.11 18.06 52.79 0.03 
3 73.81 0 32.27 4.39 68.64 38.41 70.9 36.66 0 
4 7.5 0 1.6 4.49 50.28 24.26 140.3 6.09 0 
5 7.53 0 1.58 2.21 19.52 36.7 106.55 3.79 0 
6 2.88 0 0 0.46 2.49 19.91 132.96 0.46 0 
7 2.58 0 0 0.18 0.74 4.33 129.02 0.18 0 
8 3.14 0 0.1 0.07 0.34 3.44 112.27 0.16 0 
9 10.87 0 3.04 0.02 0.55 7.61 84.92 3.07 0 
10 23.17 0 6.9 0.01 2.01 14.82 86.32 6.91 0 
11 89.68 0 40.68 0 26.43 24.58 75.54 40.68 0 
12 218.6 0.87 117.81 1.64 66.3 35.75 116.8 120.32 0.17 

2020 607.46 1.03 281.72 13.92 66.3 238.94 122.81 296.66 0.2 
Where PREC: Precipitation, SURQ: Surface runoff, LATQ: Lateral inflow, GWQ: Base runoff, SW: 
Amount of water in soil profile, ET: Actual Evapotranspiration, PET: Potential Evapotranspiration, 
SED YIELD: Sediment yield. 

A table such as the previous one is produced for each of the 100 years of SWAT simulation for 
the first site (scenario 1) within Afrouses catchment. 

Dam location scenario 2 forms an upstream drainage basin of 4.73 km2 extent and 12.7 km 
perimeter. The spatial background characteristics of this basin are presented in Figure 7. 

Figure 6. Dam location scenario 1: (a) land cover, (b) permeability, (c) slopes (%).

Table 3 summarizes the SWAT results for the first year of the simulation in the first selected site
(scenario 1).

Table 3. SWAT results for the first year of simulation for the first selected site (scenario 1).

UNIT WATER SED

TIME PREC SURQ LATQ GWQ SW ET PET YIELD YIELD
(month) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (t/ha)

1 77.13 0 25.57 0 52.62 18 49.16 25.57 0
2 90.58 0.16 52.18 0.45 72.22 11.11 18.06 52.79 0.03
3 73.81 0 32.27 4.39 68.64 38.41 70.9 36.66 0
4 7.5 0 1.6 4.49 50.28 24.26 140.3 6.09 0
5 7.53 0 1.58 2.21 19.52 36.7 106.55 3.79 0
6 2.88 0 0 0.46 2.49 19.91 132.96 0.46 0
7 2.58 0 0 0.18 0.74 4.33 129.02 0.18 0
8 3.14 0 0.1 0.07 0.34 3.44 112.27 0.16 0
9 10.87 0 3.04 0.02 0.55 7.61 84.92 3.07 0

10 23.17 0 6.9 0.01 2.01 14.82 86.32 6.91 0
11 89.68 0 40.68 0 26.43 24.58 75.54 40.68 0
12 218.6 0.87 117.81 1.64 66.3 35.75 116.8 120.32 0.17

2020 607.46 1.03 281.72 13.92 66.3 238.94 122.81 296.66 0.2

Where PREC: Precipitation, SURQ: Surface runoff, LATQ: Lateral inflow, GWQ: Base runoff, SW: Amount of water
in soil profile, ET: Actual Evapotranspiration, PET: Potential Evapotranspiration, SED YIELD: Sediment yield.

A table such as the previous one is produced for each of the 100 years of SWAT simulation for the
first site (scenario 1) within Afrouses catchment.

Dam location scenario 2 forms an upstream drainage basin of 4.73 km2 extent and 12.7 km
perimeter. The spatial background characteristics of this basin are presented in Figure 7.
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Table 4. SWAT results for the first year of simulation for the second selected site (scenario 2).

UNIT WATER SED

TIME PREC SURQ LATQ GWQ SW ET PET YIELD YIELD
(month) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (t/ha)

1 77.13 0.00 26.12 0.00 52.10 17.98 49.20 26.12 0.00
2 90.58 0.15 53.06 0.43 71.32 11.05 17.99 53.63 0.03
3 73.81 0.00 32.78 4.13 67.74 38.32 70.83 36.91 0.00
4 7.50 0.00 1.64 4.21 49.59 24.03 140.32 5.85 0.00
5 7.53 0.00 1.61 2.08 21.04 34.47 106.23 3.70 0.00
6 2.88 0.00 0.00 0.43 2.76 21.16 132.64 0.43 0.00
7 2.58 0.00 0.00 0.17 0.74 4.60 128.73 0.17 0.00
8 3.14 0.00 0.10 0.06 0.35 3.43 111.97 0.16 0.00
9 10.87 0.00 3.12 0.02 0.62 7.48 84.68 3.14 0.00

10 23.17 0.00 7.06 0.01 1.99 14.74 86.29 7.07 0.00
11 89.68 0.00 41.57 0.00 25.73 24.37 75.65 41.58 0.00
12 218.60 0.81 119.78 1.55 65.47 35.44 117.11 122.13 0.16

2020 607.46 0.95 286.84 13.09 65.47 237.071 121.64 300.87 0.19

Taking into consideration the adopted assumptions and the data that were used for the simulations
the results are considered satisfactory [58]. For validation purposes, the SWAT modeling results were
compared with the corresponding ones of the Master Management Plan of the Greek Ministry of
Development, as mentioned previously. This study used a Thornwaite-type rainfall-runoff model and
calculated the catchment’s runoff coefficient at 0.44, a slightly decreased value compared to the one
calculated by SWAT. On the other hand, the catchment’s water capacity was reported in this study to
be at 23 mm/km2, which is equal to the one calculated by SWAT.

3.2. SWAT Modeling Evaluation Results

The validation of the model, as mentioned before, was based on true data. Current meters, water
level logger, and meteorological data were used for this purpose (Figure 8).
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Table 5 presents the results of the evaluation for the measurement and simulated values.

Table 5. Statistical evaluation indicators of the model.

Mean (mm) Std (mm)

Measurements 245 75
Simulation 238 * 63

Nash–Sutcliffe coefficient 0.79
R2 0.85

* This simulated flow value (runoff) corresponds to the specific measured time period (in situ), namely September
2009 to September 2013.

The above results indicate that the selected catchment presents an excellent candidate for further
study in constructing a small reservoir.

3.3. Reservoir Simulation

As already mentioned, SWAT produced simulations for 100 years for two different dam sites (two
scenarios) within Afrouses catchment. This means that the software produced 2400 tables like Table 3;
Table 4 above. These data tables were the initial inputs for the RSS, along with the rest required data as
described in the Section 2.2.

The results of the reservoir simulation are presented in Figure 9.
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Figure 9. Simulation failure rate (%) for (a) the first selected dam site and (b) the second dam selected
site, based on the results of the Reservoir Simulation Software (V50 stands for 50,000 m3 of annual
volume extraction, V100 for 100,000 m3 of annual volume extraction, etc.).

It is clear that when the dam height is increasing (from 8 to 15 m), and the annual extraction
volume increases as well (from 50,000 to 200,000 m3), then the failure rate increases too.

In particular, for low volumes up to 50,000 m3, the creation of a reservoir in the first selected dam
site is possible. For dam height of 8 m the failure rate is 14.3% and for dam height 9 m the failure rate
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falls below 10% (9.9%). It is noticeable that the first dam site is inappropriate for creating a reservoir,
as it cannot meet the demand for large water extraction volumes. In the present study, the site’s
failure rate is ~20%, even for a dam height of 15 m and a volume of 200,000 m3. These estimates are
considered to be quite high and not acceptable to meet the demand (since, based on the results, failure
mainly occurs during the summer season). Therefore, the first dam site (scenario 1) is inadequate to
meet the water needs. Thus, the second dam site is a more reliable solution for high usable water
volume of about 200,000 m3. Also, a dam with a height up to 15 m is acceptable to meet the water
needs (acceptable failure rate of 7%). The Pareto front is another way to present the reliability of the
results. Thus, the second dam site (reliability for every dam height and every annual volume of water
extraction) eloquently presents the reasons for the eligibility of the second site (Figure 10).
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4. Discussion

The methodological framework presented in this research work examines first the specific and
unique characteristics of the selected study area (catchment) and then any possible intervention
(reservoir) in it. The obtained results revealed that creating small-scale water reservoirs in the study
catchment is feasible, provided that certain prerequisite criteria are met.

Cyclades Prefecture in Greece (a cluster of islands) experiences water scarcity, dependent on the
annual and seasonal climate fluctuations and in particular rainfall. Cyclades islands are characterized by
a permanent deficit in their annual spring and summer (May–September) water balance, hydrological
uncertainty, and water inefficiency. These islands exhibit a lack of efficient countermeasures to deal
with the rapid degradation of their water capital [59].

In this work, several sites were initially examined in Andros Island to build dams and therefore to
create a small reservoir. After this thorough site examination, the Afrouses catchment was chosen as
the best place to build a dam. This choice was based on the spatial characteristics of the area such as
slope, low-very low permeability of the geological formations, and altitude (Afrouses catchment is
located on the highest mountain of Andros Island). In addition, it must be highlighted that in terms
of geological/geotechnical conditions of the selected dam sites (two reservoir scenarios), a complete
geotechnical research study has taken place which included stress tests for the reservoirs, geological
background analysis, geotechnical slopes stability tests, etc. Also, this choice was based on its proximity
to the capital of Andros Island, where most of the people of the island live, and where the highest
touristic pressure occurs.

In general, the key outcome of this research is that with the results produced by the SWAT
hydrological model as inputs, the reservoir simulation presented two acceptable and applicable choices.
First, it is possible to build a dam in the selected location 1, for extracting low annual water volumes
(up to 50,000 m3) and for a dam height of not less than 9 m, while second, for higher annual water
volumes (up to 200,000 m3) and for heights of about 14–15 m, the selected dam location 2 is suitable.
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At this point, it must be underlined that the assumptions that were made at several stages of the
methodology define a specific uncertainty framework, according to which the results of this research
are evaluated. It must also be emphasized that the developed methodology can be used as a standard
procedure for quantifying surface runoff, which can be incorporated into a broader management
framework. This means for example that on a practical level, prior to the implementation of any project
(dam construction), a geological study must be carried out in order to clarify the local hydrogeological
conditions. Moreover, this research work highlights the need for additional measures to avoid possible
failures. In addition, in terms of meteorological data, the SWAT model provides the choice to the user
to create a weather generator. Thus, in absence of historical time series, the statistical background of
these meteorological data (of the weather generator) should be defined properly. Specifically, rainfall
and temperature statistics (average maximum and minimum air temperature, standard deviation
for maximum and minimum air temperature, average amount of precipitation, standard deviation
for daily precipitation, etc.) should be valid in order for climate-change effects to be taken under
considerations and co-estimated by the weather generator [37].

Another crucial aspect that must be taken into consideration is the effect of sediment yield in
reservoir operation. In this study, the rate of sediment yield is very low, as estimated by the SWAT
model (Tables 3 and 4) and the assumption that the operation of the reservoir will not be affected
was adopted. This was based on the fact that the geological background of the study area is not
highly erodible (based on the results of the detailed geotechnical study that took place in the frame of
this work) along with the fact that intense rainfall events are not frequent, thus lowering the erosion
dynamics. Nevertheless, if in some period during the reservoir’s operational life increased sediment
deposition is observed, thus reducing its efficiency, sediment removal actions can be considered.
Furthermore, in cases of high sediment yield (e.g., calculated by SWAT), reservoir simulation can be
modified accordingly.

The presented methodology offers results that can be continuously optimized as the data that are
used become more and more reliable. In any case, this methodology can exceed its initial research
purpose and become a very useful management tool. It can become part of a wider management plan,
not only for Andros Island but also, in a more general scope, for island complexes where due to their
isolation from the main continental inland, sustainable and efficient exploitation and management of
their natural resources (e.g., rainfall–surface runoff) is a necessity.

Further development and optimization of the presented integrated methodology can include
specific actions, which can result in the best possible approach to the real conditions of each area to
be applied. Such actions can be an even more thorough calibration of the modeling and simulation
processes (SWAT, reservoir simulation), based on true data from each studied site [60], and sensitivity
analysis as well [61]. Furthermore, the surface runoff results of the applied methodology have
been compared with those of other methods [62], as well as with satellite imagery of the reservoir
surface [63], and consequently with the available water volume for extraction, and were found to
converge satisfactorily.

Among the planned future actions, for testing and developing the predictive ability of the presented
research methodology, simulations are included that will take into account various climate-change
scenarios [64] and/or underestimated meteorological data, while exploring and analyzing each of the
estimated runoff volumes by the SWAT model [65]. Another parameter that will be tested via various
scenarios is the possible surface runoff alternations due to systematic changes in land use/cover [66].
Synthesis of a valid and detailed soil map, based on in situ measurements and recordings, is another
action currently developing, as expected, with great certainty, to contribute in producing even more
reliable results from SWAT modeling [67]. It must be mentioned here that the hydrologic analysis of
the used DEM (pixel size 28 × 28 m) covers the needs of this current work, since it provides satisfactory
results, as Chaplot already pointed out that there is no reason to use a very accurate DEM to obtain
better predictions [52]. Nevertheless, the used DEM cell size in this research is very close to the lower
limit (better resolution) that Chaplot used in his work.
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Following the aforementioned conceptual logic for evolving the presented integrated
methodological framework, it is of equal importance to investigate specific/individual flood phenomena
through daily simulations, in order to develop flood design maps, as well as scenarios for protective
actions and works against catastrophic events [68]. This investigation also makes sense in relation to
climate-change scenarios, as for example a small increase in temperature will lead to an increase in
evaporation and consequently a decrease in surface runoff [69].

In the present study, as mentioned above, the assessment of sediment yield that was attributed
by the model along with the other results was not taken into consideration in the evaluation process.
This is also a parameter that is important to be considered (as long as there are reliable soil data),
as it plays a critical role in the reservoir’s operation, in terms of availability of water volume for
extraction [70].

In addition, the results of the reservoir simulation can be explored in light of different scenarios
regarding changes in the water demand distribution rates per month, as well as different extraction
volumes from the reservoir depending on variations in demand. For the second case, comparisons can
be made with other research or applied works on reservoir management that use control curves [71].

Another point that could be explored further is the comparison of the produced results for the
selected dam locations, with the results of other similar works that relate to the location and size of the
reservoir [72]. Also, the size of the dam, compared to more classical methods used for its determination,
could be explored additionally [73]. Finally, in the present work, it is possible to measure/quantify the
sustainability of the examined reservoirs using a methodology for measuring it with specific indicators,
such as resilience, reliability, vulnerability, and relative vulnerability of the project [74].

All previous suggestions aim at improving the reliability, completeness, and predictive ability of
the methodology proposed herein and constitute a satisfactory framework for developing an integrated
decision-making system. It could be a policy-making tool towards the research and application of
sustainable and optimum reservoir construction, in various mountainous and semi-mountainous
areas in Greece, but worldwide as well. In this context, research projects funded by national bodies,
such as local authorities, aim at advancing local development. It must be also highlighted that in
the research project “Utilization of surface runoff in Andros Island via the creation of mountainous water
reservoirs” (2009–2014), the possibility of applying the developed methodology in catchments of similar
scale in the Aegean islands and beyond was examined, as the application in Andros Island was only a
pilot. This project has been accepted by the municipality of Andros and is in the process of finding the
necessary funding to implement it.

5. Conclusions

In the present paper, an integrated and contemporary methodological framework, based on
geoinformation technologies, was introduced for exploiting surface runoff, by creating small mountain
and semi-mountain water reservoirs. With this approach, descriptive and spatial information are
coupled in the best possible way, to produce reliable results, which will lead to the adoption of the best
and most sustainable practices. The presented methodology can be a part of a general and holistic
management framework for viable water resources exploitation. This was demonstrated using as a case
study the island of Andros, in Greece. Andros Island (and specifically Afrouses catchment) was selected
as the pilot study area for applying the research methodology, due to its specific characteristics of
particular interest. The fact that the island experiences sufficient rainfall in the period from September
to April, combined with the increased needs of the dry season and the lack of primary meteorological
data, led to its selection as the study area (it is considered important to apply this research in areas
with limited data adequacy).

Results showed that by using the proposed scheme it is possible to create small water reservoirs,
if certain criteria that have been set from the beginning are met. A small prediction uncertainty was
present, resulting from the various simulation uncertainty and the assumptions made in some stages
of the research. On the other hand, the validation process and the comparative analysis of the results,
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along with the comparison with similar works found in the literature, managed to minimize (or even
eliminate in some cases) these uncertainties. In any case, this research work highlights the need for
adopting additional measures to avoid potential failures in the design and/or operation of a small-scale
reservoir. Furthermore, it must be mentioned that the results of the presented methodology can be
continuously optimized as the data used become more and more reliable.

Taking into consideration all the above, it must be underlined that by selecting the best available
sites for constructing small-scale reservoirs, it is easy to create a network of them, using local human
resources and materials, thereby creating low-cost projects with high socio-economic benefits in local
scale. This is a huge step towards sustainable exploitation of surface runoff and an ideal countermeasure
for areas suffering from water scarcity.

In conclusion, the potential that rises by coupling geoinformation technologies, such as GIS,
with simulation process modeling offers a potentially promising roadmap towards improving our
ability to provide a mathematical representation of our natural environment. As the proposed
methodology can be automated to simulate both present and future conditions, it may offer a very
promising tool to the scientific and wider community for a better understanding of our dynamically
changing physical environment. As such, it could assist research and practical applications alike.
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