

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΣΧΟΛΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ, ΓΕΩΓΡΑΦΙΑΣ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΓΡΑΦΙΑ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΤΕΥΘΥΝΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ

ΣΥΓΚΡΙΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΨΗΦΙΑΚΩΝ ΜΟΝΤΕΛΩΝ ΕΔΑΦΟΥΣ ΕΜΠΕΙΡΙΚΗ ΑΝΑΛΥΣΗ ΣΤΟ ΝΟΜΟ ΙΩΑΝΝΙΝΩΝ

Διπλωματική Εργασία

MAPINA MAKH

Αθήνα, 2018

ΣΧΟΛΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ, ΓΕΩΓΡΑΦΙΑΣ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΓΡΑΦΙΑ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΤΕΥΘΥΝΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ

Τριμελής Εξεταστική Επιτροπή

Χρίστος Χαλκιάς (Επιβλέπων) Καθηγητής, Τμήμα Γεωγραφίας, Χαροκόπειο Πανεπιστήμιο

Ισαάκ Παρχαρίδης Καθηγητής, Τμήμα Γεωγραφίας, Χαροκόπειο Πανεπιστήμιο

Ανδρέας Τσάτσαρης Αναπληρωτής Καθηγητής, Τμήμα Μηχανικών Τοπογραφίας και Γεωπληροφορικής, Πανεπιστήμιο Δυτικής Αττικής Η Μαρίνα Μάκη δηλώνω υπεύθυνα ότι:

- Είμαι η κάτοχος των πνευματικών δικαιωμάτων της πρωτότυπης αυτής εργασίας και από όσο γνωρίζω η εργασία μου δε συκοφαντεί πρόσωπα, ούτε προσβάλει τα πνευματικά δικαιώματα τρίτων.
- 2) Αποδέχομαι ότι η ΒΚΠ μπορεί, χωρίς να αλλάξει το περιεχόμενο της εργασίας μου, να τη διαθέσει σε ηλεκτρονική μορφή μέσα από τη ψηφιακή Βιβλιοθήκη της, να την αντιγράψει σε οποιοδήποτε μέσο ή/και σε οποιοδήποτε μορφότυπο καθώς και να κρατά περισσότερα από ένα αντίγραφα για λόγους συντήρησης και ασφάλειας.

Αφιερώνεται στην οικογένειά μου

για την αμέριστη συμπαράσταση

και στήριξή της στις επιλογές μου

ΕΥΧΑΡΙΣΤΙΕΣ

Οφείλω να εκφράσω τις θερμές ευχαριστίες μου στον καθηγητή κ. Χρίστο Χαλκιά, για την επίβλεψη και την εξαιρετική συνεργασία που είχαμε καθ όλη τη διάρκεια εκπόνησης αυτής της εργασίας. Παρά τις αυξημένες υποχρεώσεις του, υπήρξε πάντα πρόθυμος να μου προσφέρει τις γνώσεις και την εμπειρία του σχετικά με ακαδημαϊκά ζητήματα. Τον ευχαριστώ θερμά για τις ιδέες και τη καθοδήγηση που μου πρόσφερε.

Στην συνέχεια θα ήθελα να ευχαριστήσω όλους τους διδάσκοντες καθηγητές του Προγράμματος Μεταπτυχιακών Σπουδών για το σημαντικό έργο που εκτελούν καθώς και τους συμφοιτητές μου για την υπέροχη συνύπαρξη και συνεργασία κατά τη διάρκεια των μαθημάτων.

Επίσης θα ήθελα να εκφράσω την ευγνωμοσύνη μου στη φίλη μου και συγκάτοικο Τζούλια για τη συνεχή εμψύχωση και υπομονή της καθώς και στους ανθρώπους που με κάθε τρόπο στήριξαν αυτή μου την προσπάθεια.

Πίνακας περιεχομένων

Περίληψη	8
Abstract	9
ΚΑΤΑΛΟΓΟΣ ΕΙΚΟΝΩΝ	10
ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ	11
ΚΑΤΑΛΟΓΟΣ ΧΑΡΤΩΝ	11
ΚΑΤΑΛΟΓΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ	12
ΣΥΝΤΟΜΟΓΡΑΦΙΕΣ	13
ΕΙΣΑΓΩΓΗ	14
ΚΕΦΑΛΑΙΟ 1	17
1. ΨΗΦΙΑΚΑ ΜΟΝΤΕΛΑ ΕΔΑΦΟΥΣ	17
1.1. Γενικά	17
1.2. Δομές Δεδομένων	19
1.2.1. Ακανόνιστο δίκτυο τριγώνων-Triangulated Irregular Network (TIN)	19
1.2.2. Δεδομένα κανονικού καννάβου (grid)	21
1.3. Ισοϋψείς καμπύλες και ΨΜΕ	22
1.4. Πλεονεκτήματα και μειονεκτήματα των δομών	23
	24
2. ΔΙΑΔΙΚΑΣΙΕΣ ΔΗΜΙΟΥΡΓΙΑΣ & ΕΛΕΓΧΟΥ ΠΟΙΟΤΗΤΑΣ ΨΜΕ	24
2.1. Μέθοδοι δημιουργίας Ψηφιακών Μοντέλων Εδάφους	24
2.1.1. Επίγειες μετρήσεις	24
2.1.2. Ψηφιοποίηση χαρτογραφικών δεδομένων	25
2.1.3. Φωτογραμμετρική απόδοση	27
2.1.4. Δεδομένα LiDAR (Light Detection And Ranging)	28
2.1.4.1. Αρχη λειτουργιας του συστηματος LIDAR	28
2.1.4.2. Σφαλματα συστηματος LiDAR	34
2.1.4.3. Πλεονεκτηματα και μειονεκτηματα του συστηματος	35
2.1.5. Δεδομενά SAR (Synthetic Aperture Radar)	36
2.1.5.1. Αρχη λειτουργιας SAR	36
2.1.5.2. Απεικονισεις SAR	38
2.1.5.3. Συμβολομετρία SAR απεικονίσεων	38
2.1.5.4. Συμβολομετρική οιαοικασία	40
2.1.6. Νη Επανορωμενα ιπταμενα Οχηματά (UAVS)	42
2.2. Ελεγχος ποιοτητας ψηφιακών μοντελών εδαφούς	43
2.2.1. Σφαλματά υψομετρικών δεοσμενών	43
2.2.2. Στατιστικά μεγεθή	44
	47
1. ΠΠΙ ΕΖ ΠΑΙ ΚΟΖΙΥΠΩΊΝ ΦΗΦΙΑΚΩΊΝ ΙΜΟΝΤΕΛΩΊΝ (GDEINI) 2.1. Δεδομόνα αποστολάς SBTM	47
2.1.1 Δεούμενα αποστολιής SRTM	4/ E0
2.1.2. Γιηγες υψαλματών σκηνη	50 E2
2.1.2. Exancipi i two oralikwo kai oovapikwo oqanpatwo	5Z
2.2. Δεδομένα ααδιάμετοου ΔΣΤΕΡ	5Z
2.2.1 Πανκόσιμο μαριακό μουπέλο εδάφους (CDEM)	54
5.2.1. Παγκουμίο ψηψιακό μοντελό εδαφούς (GDEN)	55 E6
3.3. Εμεύνες συγκρισης φινίε στην ελληνική και στευνή ριρλισγραφία	50 50
5.4. Διαθεσιμα Ψίνιε ελευθερίζη προσρασίζη με παγκουμία καλυψη	23 12
	UI 61
 Α. Εινιτειτικτι Αιναλίτειτ - Ινιελετητιετιττετιπτις 22112 Λ.1. Περιονή μελέτης 	01 61
	01 6
	0

4.2.	Δεδ	ομένα και Λογισμικό επεξεργασίας	62
4.2	.1.	Δεδομένα αξιολόγησης	62
4.2	.2.	Δεδομένα αναφοράς	63
4.2	.3.	Λογισμικό	63
4.3.	Επε	ξεργασία δεδομένων	64
4.4.	Στα	τιστική ανάλυση "σφαλμάτων" κάθε ΨΜΕ	70
4.4	.1.	Σύγκριση των ΨΜΕ με τα υψόμετρα του τριγωνομετρικού δικτύου	70
4.4	.2.	Χαρτογράφηση	79
4.5.	Χωρ	οική αυτοσυσχέτιση των σφαλμάτων	86
4.6.	Δια	χωρισμός σφαλμάτων σε ζώνες (υψόμετρο, κλίση, προσανατολισμός)	91
4.6	.1.	Διαχωρισμός σε ζώνες με βάση το υψόμετρο	91
4.6	.2.	Διαχωρισμός σε ζώνες με βάση την κλίση και την έκθεση	93
4.6	.3.	Διαχωρισμός σε ζώνες με βάση τον προσανατολισμό	97
4.7.	Παρ	οεμβολή IDW	99
4.8.	Αξια	ολόγηση της ποιότητας με τη χρήση γεωμορφολογικών χαρακτηριστικών	103
4.9.	Συζ	ήτηση - Συμπεράσματα	105
ΒΙΒΛΙΟΓΡΑΦΙΑ			111
ΠΑΡΑΡΤ	ΉMA	۱	116

Περίληψη

Το ανάγλυφο της φυσικής γήινης επιφάνειας είναι ένα τρισδιάστατο συνεχές χωρικό φαινόμενο, η διαχείριση του οποίου σε ψηφιακό περιβάλλον, γίνεται μέσω των Ψηφιακών Μοντέλων Εδάφους (ΨΜΕ). Σήμερα για πολλές εφαρμογές, όπως η χαρτογράφηση τεκτονικών γεωμορφών, η αποτύπωση υδρογραφικών δικτύων σε τοπογραφικούς χάρτες, η διαμόρφωση στρατηγικών περιβαλλοντικής εκτίμησης, κ.ά. υπάρχει μια συνεχώς αυξανόμενη ζήτηση για ψηφιακά μοντέλα εδάφους με υψηλή ακρίβεια κατάλληλα να περιγράψουν τα χαρακτηριστικά γνωρίσματα της γήινης επιφάνειας σε διάφορες κλίμακες. Τέτοια υψομετρικά μοντέλα εδάφους 30 μ ή και καλύτερα, διατίθενται δωρεάν στους χρήστες σε παγκόσμιο επίπεδο.

Στόχος της εργασίας είναι η αξιολόγηση τριών Ψηφιακών Μοντέλων Εδάφους μεμονωμένα, συγκριτικά μεταξύ τους αλλά και σε σύγκριση με δεδομένα αναφοράς που είναι υψόμετρα από το γεωδαιτικό τριγωνομετρικό δίκτυο της Γεωγραφικής Υπηρεσίας Στρατού (ΓΥΣ) με εφαρμογή στο Νομό Ιωαννίνων. Συγκεκριμένα, δυο σημαντικές πηγές παγκόσμιων ψηφιακών μοντέλων που αξιολογούνται είναι υψομετρικά δεδομένα που προέρχονται από το δέκτη ASTER (Advanced Spaceborne Thermal Emission and Reflection) έκδοση_2/ημερομηνία κυκλοφορίας 17-10-2011 και την αποστολή SRTM (Shuttle Radar Topography Mission) έκδοση_3/ημερομηνία κυκλοφορίας 23-09-2014 ενώ το ΨΜΕ που δημιουργήθηκε σε εθνικό επίπεδο και μελετάται είναι αυτό της Εθνικό Κτηματολόγιο & Χαρτογράφηση Α.Ε.

Τα τρία διαθέσιμα ΨΜΕ ελέγχονται με στατιστικές μεθόδους και αξιολογούνται με τη χρήση δεδομένων αναφοράς- γνωστά τριγωνομετρικά σημεία της περιοχής. Τα αποτελέσματα είναι τα σφάλματα και οι ακρίβειες του εκάστοτε μοντέλου προκειμένου να διαπιστωθεί η προσαρμογή τους στο τοπικό ανάγλυφο. Επιπρόσθετα, διερευνάται η χωρική αυτοσυσχέτιση της ακρίβειας κάθε μοντέλου όπως επίσης και η χωρική κατανομή των σφαλμάτων και η διερεύνηση της συσχέτισής τους με χαρακτηριστικά του εδάφους (κλίση, προσανατολισμός, κλπ). Η εμπειρική ανάλυση πραγματοποιείται στο Νομό Ιωαννίνων, περιοχή η οποία χαρακτηρίζεται από το πολύπλοκο ανάγλυφο και τη γεωγραφική ποικιλομορφία.

Λέξεις κλειδιά: Ψηφιακό Μοντέλο Εδάφους, SRTM, ASTER, Ακρίβεια, Αξιολόγηση

Abstract

The relief of the natural terrestrial surface is a three dimensional continuous spatial phenomenon, managed in a digital environment, through Digital Elevation Models (DEMs). Nowadays for many applications, such as mapping of tectonic geoforms, imprint of hydrographic networks in topographical maps, configuration of strategics of environmental assessment etc., there is an ever-increasing demand for digital elevation models with high precision appropriate to describe the features of the Earth's surface in various scales. Such digital elevation models with a resolution of 30m. or more are available free of charge to users worldwide.

The aim of the thesis is to evaluate three Digital Elevation Models individually, comparatively with each other, but also in comparison with reference data, which are elevation data from the geodetic trigonometric network of the Hellenic Military Geographical Service (HMGS) applied in the Prefecture of Ioannina. In particular, two major sources of global digital models evaluated are elevation data from the ASTER sensor (Advanced Spaceborne Thermal Emission and Reflection) version 2 / release date 17-10-2011 and the SRTM mission (Shuttle Radar Topography Mission) version 3 / release date 23-09-2014, while the DEM, which was created at a national level and is being studied, is that of the National Cadastre & Mapping Agency SA.

The three available DEMs are controlled with statistical methods and evaluated using reference data - known as trigonometric points of the area. The results are the errors and the accuracy of each model in order to determine their adjustment to the local relief. In addition, the spatial autocorrelation of the accuracy of each model as well as the spatial distribution of the errors and the investigation of their correlation with ground characteristics (slope, aspect, etc.) are investigated. The empirical analysis is being carried out in the prefecture of Ioannina, a region characterized by complex relief and geographic diversity.

Keywords: Digital Elevation Model, SRTM, ASTER, Accuracy, Evaluation

ΚΑΤΑΛΟΓΟΣ ΕΙΚΟΝΩΝ

Εικόνα 1-1: Δεδομένα απεικόνισης DEM/DTM (πράσινο χρώμα) και DSM (κόκκινο χρώμα)	17
Εικόνα 1-2: Ψηφιακό μοντέλο εδάφους της γης με δεδομένα υψομέτρου και βαθυμετρίας α	πό
τον δορυφόρο ΝΟΑΑ ΕΤΟΡΟ1	.18
Εικόνα 1-3: Δομές δεδομένων σε πλέγμα και σε ΤΙΝ	.19
Εικόνα 1-4: Δομή ΨΜΕ σε δίκτυο ορθογωνικού κανάβου & δομή ΤΙΝ σε δίκτυο τριγώνων	.20
Εικόνα 1-5: Τριγωνισμός Delaunay	.20
Εικόνα 1-6: Γραμμή ασυνέχειας σε μοντέλο ΤΙΝ	.21
Εικόνα 1-7: Δεδομένα απεικόνισης σε 2D/3D πλέγμα ή μορφή καννάβου	.22
Εικόνα 2-1: Ισοϋψείς καμπύλες	.26
Εικόνα 2-2: Κατά μήκος γεωμετρία λήψης στερεοσκοπικών δορυφορικών εικόνων	.27
Εικόνα 2-3: Σαρωτής laser	.28
Εικόνα 2-4: Ιπτάμενο σύστημα σάρωσης με laser για τον προσδιορισμό της γήινης επιφάνεια	χ
	.29
εικονά 2-5: Βασικά μερη του LIDAR	.30
σήματος	
Εικόνα 2-7: Σκιασμένη (hillshade) απεικόνιση ενός DSM (αριστερά) και ενός DEM (δεξιά) απο	ó
δεδομένα σάρωσης LiDAR	.33
Εικόνα 2-8: Γεωμετρία λήψης SAR απεικονίσεων	.37
Εικόνα 2-9: Συμβολομετρία radar για την παραγωγή Ψηφιακών Μοντέλων Εδάφους	.41
Εικόνα 2-10: Δημιουργία ΨΜΕ με τη χρήση UAV	.42
Εικόνα 2-11: Διαφορετικές περιπτώσεις που απεικονίζουν σχηματικά την ορθότητα και την ακρίβεια μετρούμενων τιμών ενός μεγέθους. (α) Μετρήσεις ορθές υψηλής ακρίβειας, (β) μη ορθές μετρήσεις υψηλής ακρίβειας, (γ) μετρήσεις ορθές χαμηλής ακρίβειας, (δ) μη ορθές μετρήσεις χαμηλής ακρίβειας) 44
Εικόνα 3-1: Γενική διάταξη του διαστημικού λεωφορείου Endeavour κατά την αποστολή SRT	⁻ М 48
Εικόνα 3-2: Τελικοί χάρτες κάλυψης για τα συστήματα (a) C band και (b) X band	.49
Εικόνα 3-3: Η αποστολή SRTM	.50
Εικόνα 3-4: Η εικόνα αριστερά με διακριτική ικανότητα 90μ, η εικόνα δεξιά με διακριτική	
ικανότητα 30μ	.54
Εικόνα 3-5: Ο δορυφόρος Terra του συστήματος παρατήρησης της γης (EOS)	.55
Εικόνα 4-1: Περιοχή μελέτης	.61
Εικόνα 4-2: Spatial Autogorrelation (Morans I)	.87

ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ

ΚΑΤΑΛΟΓΟΣ ΧΑΡΤΩΝ

Χάρτης 1: Κατανομή τριγωνομετρικών σημείων στην περιοχή μελέτης	65
Χάρτης 2: Μωσαϊκό ψηφιακού μοντέλου εδάφους ASTER	67
Χάρτης 3: Μωσαϊκό ψηφιακού μοντέλου εδάφους SRTM	68
Χάρτης 4: Κατανομή ακραίων τιμών ΔΗ κτηματολόγιο Α.Ε. για επίπεδο εμπιστοσύνης 95%	79
Χάρτης 5: Κατανομή ακραίων τιμών ΔΗ _{SRTM} για επίπεδο εμπιστοσύνης 95%	80
Χάρτης 6: Κατανομή ακραίων τιμών ΔΗ _{ASTER} για επίπεδο εμπιστοσύνης 95%	81
Χάρτης 7: Χαρτογράφηση απόλυτων τιμών ΔΗ (Η τριγωνομετρικό-Η κτηματολογίου Α.Ε.)	83
Χάρτης 8: Χαρτογράφηση απόλυτων τιμών ΔΗ (Η τριγωνομετρικό-Η _{SRTM})	84
Χάρτης 9: Χαρτογράφηση απόλυτων τιμών ΔΗ (Η τριγωνομετρικό-H _{ASTER})	85
Χάρτης 10 : Χαρτογράφηση των υψομετρικών διαφορών του ΨΜΕ Κτηματολόγιο Α.Ε.	100
Χάρτης 11: Χαρτογράφηση των υψομετρικών διαφορών του ΨΜΕ srtm	101
Χάρτης 12 : Χαρτογράφηση των υψομετρικών διαφορών του ΨΜΕ ASTER	102
Χάρτης 13: Χάρτης υψομετρικών διαφορών για υψόμετρο>1500μ & κλίση>20%	104

καταλογός διαγραμματών

Διάγραμμα 1: Κατανομή υψομετρικών διαφορών τριγωνομετρικών σημείων με το ΨΜΕ _{Κτηματ.} ,
σε σχέση με το υψόμετρο εμφάνισής τους73
Διάγραμμα 2: Κατανομή υψομετρικών διαφορών τριγωνομετρικών σημείων με το ΨΜΕ _{srtm} ,
σε σχέση με το υψόμετρο εμφάνισής τους74
Διάγραμμα 3: Κατανομή υψομετρικών διαφορών τριγωνομετρικών σημείων με το ΨΜΕ _{ASTER} ,
σε σχέση με το υψόμετρο εμφάνισής τους74
Διάγραμμα 4: Ποσοστό των τιμών που βρίσκονται μέσα σε μια ζώνη γύρω από το μέσο σε μια
κανονική κατανομή με ένα πλάτος δύο, τεσσάρων και έξι σ, αντίστοιχα
Διάγραμμα 5: Στατιστικά μεγέθη ελέγχου με τριγωνομετρικά σημεία για επίπεδο
εμπιστοσύνης 95%77
Διάγραμμα 6: Αναφορά χωρικής αυτοσυσχέτισης για τα σφάλματα του ΨΜΕ κτηματολόγιο Α.Ε88
Διάγραμμα 7: Αναφορά χωρικής αυτοσυσχέτισης για τα σφάλματα του ΨΜΕ SRTM89
Διάγραμμα 8: Αναφορά χωρικής αυτοσυσχέτισης για τα σφάλματα του ΨΜΕ ASTER90
Διάγραμμα 9: Διάγραμμα τυπικής απόκλισης ΨΜΕ ανά κατηγορία υψομέτρων92
Διάγραμμα 10: Κατανομή σφαλμάτων ΨΜΕ κτημτολόγιο Α.Ε. σε σχέση με την κλίση96
Διάγραμμα 11: Κατανομή σφαλμάτων ΨΜΕ srtm σε σχέση με την κλίση
Διάγραμμα 12: Κατανομή σφαλμάτων ΨΜΕ _{ASTER} σε σχέση με την κλίση96

ΣΥΝΤΟΜΟΓΡΑΦΙΕΣ

ALOS	Advanced Land Observing Satellite
ASI	Agenzia Spaziale Italiana
ASTER	Advanced Spaceborne Thermal Emission and Reflection Radiometer
CGIAR	Consultative Group on International Agricultural Research
CONUS	CONtinental United States
DEM	Digital Elevation Model
DLR	Deutsches Zentrum für Luft -und Raumfahrt
DSM	Digital Surface Model
DTM	Digital Terrain Model
EOS	Earth Observing Satellites
FGDC	Federal Geographic Data Committee
GCP	Ground Control Points
GEOSS	Global Earth Observing System of Systems
GMTED	Global Multi-resolution Terrain Elevation Data
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
IMU	Inertial Measurement Unit
INS	Inertial Navigation System
JAXA	Japan Aerospace Exploration Agency
JPL	Jet Propulsion Laboratory
LASER	Light Amplification by Stimulating Emission of Radiation
Lidar	Light Detection And Ranging
MEaSURE	Making Earth System Data Records for Use in Research Environments
METI	Ministry of Economy, Trade and Industry
NASA	National Aeronautics and Space Administration
NGA	National Geospatial- Intelligence Agency
NMAS	National Map Accuracy Standards
NSSDA	National Standard for Spatial Data Accuracy
POS	Positioning and Orientation System
PRISM	Panchromatic Remote sensing Instrument Stereo Mapping
RTK	Real Time Kinematic
SAR	Synthetic Aperture Radar
SRTM	Shuttle Radar Topography Mission
TIN	Triangulated Irregular Network
UAV	Unmanned Aerial Vehicle
USGS	United States Geological Survey
WGS84	World Geodetic System of 1984

ΕΙΣΑΓΩΓΗ

Η παρούσα διπλωματική εργασία εκπονήθηκε στα πλαίσια του 3^{ου} εξαμήνου φοίτησής μου στην κατεύθυνση "Γεωπληροφορική" του Προγράμματος Μεταπτυχιακών Σπουδών «Εφαρμοσμένη Γεωγραφία και Διαχείριση του Χώρου», στο Τμήμα Γεωγραφίας του Χαροκοπείου Πανεπιστημίου. Σημαντικό κίνητρο για την επιλογή του συγκεκριμένου θέματος αποτέλεσε η ενασχόληση με το γνωστικό πεδίο της συγκριτικής αξιολόγησης των ψηφιακών μοντέλων εδάφους μέσω στατιστικών μεθόδων καθώς και το σημαντικό εύρος εφαρμογών των ΨΜΕ σε πολλούς επιστημονικούς τομείς.

Η επιστημονική έρευνα και η εξέλιξη της τεχνολογίας τις τελευταίες δεκαετίες έχουν συμβάλλει καθοριστικά στην ανάπτυξη της δορυφορικής τεχνολογίας. Η επιστήμη της τηλεπισκόπησης δηλαδή η παρατήρηση και παρακολούθηση της γης από το διάστημα έχει πολλά πεδία εφαρμογών. Πολλοί επιστημονικοί τομείς αξιοποιούν τα δορυφορικά δεδομένα σύμφωνα με τις ανάγκες τους. Μετεωρολόγοι για την παρακολούθηση της ατμόσφαιρας και την πρόβλεψη του καιρού, χωροτάκτες για το σχεδιασμό χρήσεων γης, βιολόγοι για τη μελέτη των οικοσυστημάτων, γεωπόνοι για την αποτελεσματικότερη εκμετάλλευση γεωργικών εκτάσεων, δασολόγοι για την πρόγνωση και παρακολούθηση δασικών πυρκαγιών, γεωλόγοι για τον εντοπισμό κοιτασμάτων, τοπογράφοι για την δημιουργία ψηφιακών μοντέλων εδάφους κ.α.

Η γνώση της τοπογραφίας της γήινης επιφάνειας είναι σημαντική και αποτελεί μια από τις θεμελιώδεις απαιτήσεις για την μελέτη και αντιμετώπιση γεωεπιστημονικών και περιβαλλοντικών προβλημάτων. Σήμερα, οι αναγκαίες υψομετρικές πληροφορίες παρέχονται σε ψηφιακή μορφή ως ψηφιακά υψομετρικά μοντέλα εδάφους που αποτελούν μια αντιπροσώπευση της γήινης μορφολογίας σε συγκεκριμένα σημεία. Αυτά είναι διαθέσιμα σε μια σειρά κλιμάκων, με την οριζόντια διάσταση μεταξύ σημείων να κυμαίνεται από λίγα μέτρα έως μερικές δεκάδες μέτρα.

Η συγκεκριμένη εργασία επικεντρώνεται κυρίως στη διερεύνηση στατιστικών μεγεθών που σχετίζονται με την ανάλυση της τοπογραφίας στο Νομό Ιωαννίνων, με τα ελεύθερης πρόσβασης παγκόσμιας εμβέλειας υψομετρικά δεδομένα, από την ειδική αποστολή SRTM (Shuttle Radar Topography Mission) του διαστημικού λεωφορείου Endeavour το 2000 και το

δέκτη ASTER (Advanced Spaceborne Thermal Emission and Reflection) του δορυφόρου Terra καθώς και το ΨΜΕ εθνικής εμβέλειας της Εθνικό Κτηματολόγιο & Χαρτογράφηση Α.Ε.

Συγκεκριμένα, στόχος της εργασίας είναι η αξιολόγηση της ακρίβειας των τριών Ψηφιακών Μοντέλων Εδάφους μεμονωμένα αλλά και συγκριτικά μεταξύ τους με στατιστικούς μεθόδους προκειμένου να διαπιστωθεί η προσαρμογή τους στο τοπικό ανάγλυφο. Η αξιολόγηση πραγματοποιείται και σε σύγκριση με δεδομένα αναφοράς που είναι υψόμετρα από το γεωδαιτικό τριγωνομετρικό δίκτυο της Γεωγραφικής Υπηρεσίας Στρατού (ΓΥΣ). Ειδικότερα εξετάζονται τα σφάλματα που εμπεριέχονται στα υπό εξέταση υψομετρικά δεδομένα καθώς επίσης εκτιμάται η ακρίβεια των δεδομένων που προκύπτουν από τη σύγκρισή τους με ανεξάρτητα υψομετρικά δεδομένα. Τέλος παρουσιάζονται τα αποτελέσματα που αναδεικνύουν σημαντικές συσχετίσεις μεταξύ των σφαλμάτων των υψομετρικών δεδομένων με τα υψόμετρα της περιοχής, τις κλίσεις του εδάφους και τον προσανατολισμό τους, παρέχοντας μια ολοκληρωμένη αξιολόγηση της ακρίβειας και των χαρακτηριστικών σφαλμάτων- αστοχιών κάθε μοντέλου.

Η εργασία περιλαμβάνει τέσσερα κεφάλαια. Στο πρώτο κεφάλαιο γίνεται μια γενική αναφορά στα Ψηφιακά Μοντέλα Εδάφους (Digital elevations models, DEMs ή Digital Terrain Models, DTMs) καθώς και στις συνηθέστερες δομές δεδομένων που χρησιμοποιούνται για τη δημιουργία τους. Μέσω της ανάλυσης των πλεονεκτημάτων και μειονεκτημάτων τους, επιτυγχάνεται η βαθύτερη κατανόηση των δυνατοτήτων και η αποτελεσματικότερη χρήση τους.

Στο δεύτερο κεφάλαιο γίνεται ανασκόπηση της βιβλιογραφίας και πιο συγκεκριμένα παρατίθεται το θεωρητικό υπόβαθρο που υπάρχει τόσο στις τεχνικές δημιουργίας των ΨΜΕ, με αναφορά στις υψομετρικές και οριζοντιογραφικές ακρίβειες που παρέχει κάθε μέθοδος καθώς και τα πλεονεκτήματα και μειονεκτήματα τους όσο και στις τεχνικές ελέγχου της ακρίβειας και ποιότητάς τους.

Στο τρίτο κεφάλαιο παρουσιάζονται τα παγκόσμια ψηφιακά μοντέλα εδάφους, SRTM και ASTER. Γίνεται αναφορά στη μεθοδολογία παραγωγής τους, στις προδιαγραφές και τους ελέγχους κάθε μοντέλου καθώς και σε μελέτες που έχουν γίνει σχετικά με αυτά στον Ελλαδικό και παγκόσμιο χώρο. Σύντομη αναφορά γίνεται και σε άλλα διαθέσιμα ελεύθερης πρόσβασης παγκόσμια ΨΜΕ.

Το τέταρτο κεφάλαιο αποτελεί το εμπειρικό μέρος της εργασίας και τη μελέτη περίπτωσης. Συγκεκριμένα περιγράφεται η επιλεγμένη περιοχή μελέτης και γίνεται αναφορά στις πηγές από τις οποίες προήλθαν τα δεδομένα που χρησιμοποιήθηκαν στην παρούσα εργασία. Περιγράφεται αναλυτικά η μεθοδολογία που ακολουθήθηκε προκειμένου να γίνει η αρχική προ επεξεργασία των δεδομένων, η κύρια επεξεργασία των εικόνων και των παραγώγων του ψηφιακού μοντέλου εδάφους καθώς και η τελική επεξεργασία και οπτικοποίηση των εξαγόμενων αποτελεσμάτων σε ένα GIS σύστημα καθώς και στο πρόγραμμα Microsoft Excel.

Τέλος επιχειρείται μια αξιολόγηση των αποτελεσμάτων και επιπλέον διατυπώνονται τα συμπεράσματα και οι προτάσεις που προέκυψαν από την ενασχόληση με το θέμα της διπλωματικής εργασίας.

ΚΕΦΑΛΑΙΟ 1

1. ΨΗΦΙΑΚΑ ΜΟΝΤΕΛΑ ΕΔΑΦΟΥΣ

Στο κεφάλαιο αυτό γίνεται εισαγωγή στις βασικές έννοιες σχετικά με τα ψηφιακά μοντέλα αναπαράστασης της γήινης επιφάνειας και ακολουθεί μια σύντομη αναφορά στις συνηθέστερες δομές δημιουργίας τους καθώς και στα πλεονεκτήματα και μειονεκτήματά τους.

1.1. Γενικά

Ψηφιακό Μοντέλο Εδάφους (Digital Terrain Model -DTM) θεωρείται κάθε ψηφιακή αναπαράσταση της γεωμετρικής μορφής ενός τμήματος ή του συνόλου της γήινης επιφάνειας. Ο όρος Ψηφιακό Μοντέλο Υψομέτρων (Digital Elevation Model -DEM) αναφέρεται μόνο στην ψηφιακή αναπαράσταση υψομέτρων, ενώ ο όρος Ψηφιακό Μοντέλο Επιφάνειας (Digital Surface Model -DSM) χρησιμοποιείται επίσης σε ψηφιακές αναπαραστάσεις της γήινης επιφάνειας ιπόψη κι άλλα στοιχεία εκτός από το υψόμετρο, όπως είναι οι ανθρώπινες κατασκευές, η βλάστηση κ.α. (Li, Zhu, & Gold, 2004)

Οι όροι Ψηφιακό Μοντέλο Υψομέτρων και Ψηφιακό Μοντέλο Εδάφους συχνά συγχέονται. Σύμφωνα με τον Burrough (Burrough, 1986) το ΨΜΥ ορίζεται ως οποιαδήποτε ψηφιακή αναπαράσταση της συνεχούς μεταβολής του ανάγλυφου της γήινης επιφάνειας και επιπρόσθετα ότι το ΨΜΕ συχνά εμπεριέχει και επιπλέον ιδιότητες της επιφάνειας εκτός από το υψόμετρο. Λαμβάνοντας υπόψη ότι το ΨΜΥ υψηλής ποιότητας περιέχει πληροφορίες όχι μόνο για το υψόμετρο αλλά και για το σύνολο των μορφολογικών χαρακτηριστικών της φυσικής γήινης επιφάνειας όπως γραμμές αλλαγής κλίσης ή υψομετρικά σημεία, οι δύο όροι μπορούν να χρησιμοποιηθούν με την ίδια έννοια.

Εικόνα 1-1: Δεδομένα απεικόνισης DEM/DTM (πράσινο χρώμα) και DSM (κόκκινο χρώμα)

Πηγή: <u>http://www.gisresources.com/confused-dem-dtm-dsm/</u>

Σύμφωνα με τους (Miller & Laflamme, 1958) το ψηφιακό μοντέλο εδάφους (ΨΜΕ) είναι απλώς μια στατιστική αναπαράσταση της συνέχειας της επιφάνειας του εδάφους από ένα μεγάλο αριθμό επιλεγμένων σημείων με γνωστές XYZ συντεταγμένες σ' ένα ανεξάρτητο πεδίο συντεταγμένων και προσεγγίζει με τον καλύτερο δυνατό τρόπο την πραγματική επιφάνεια του εδάφους. Συγκεκριμένα είναι μια 2.5D αναπαράσταση του εδάφους, που σημαίνει ότι σε κάθε X, Y σημείο αντιστοιχεί μόνο μια τιμή υψομέτρου (Weibel & Heller, 1990).

Η τεχνολογία των ψηφιακών μοντέλων εδάφους (DTM ή DEM) παρέχει τη βάση για την ανάπτυξη μεγάλου αριθμού εφαρμογών που σχετίζονται με τις γεωεπιστήμες και τα αντικείμενα των μηχανικών. Παρότι έχουν χρησιμοποιηθεί ήδη από τη δεκαετία του 1950 (Miller & Laflamme, 1958), σήμερα με την ανάπτυξη της επιστήμης της γεωπληροφορικής παρέχουν τη δυνατότητα μοντελοποίησης, ανάλυσης και απόδοσης χωρικών φαινομένων που σχετίζονται με το ανάγλυφο ή άλλες επιφάνειες με ανάλογες χωρικές ιδιότητες. Έτσι, θεωρούνται απαραίτητο στοιχείο σε πολλές εφαρμογές γεωγραφικής ανάλυσης (Peckham & Jordan, 2007).

Εικόνα 1-2: Ψηφιακό μοντέλο εδάφους της γης με δεδομένα υψομέτρου και βαθυμετρίας από τον δορυφόρο NOAA ETOPO1

Πηγή: https://www.flickr.com/photos/kevinmgill/5864336344/in/photostream/

1.2. Δομές Δεδομένων

Τα ψηφιακά μοντέλα με τα υψομετρικά δεδομένα που περιέχουν δομούνται σε διάφορες μορφές προκειμένου να αποθηκευτούν και να αναπαραστήσουν την επιφάνεια του εδάφους. Οι διαφορές τους εντοπίζονται στη δομή αποθήκευσης και στον τρόπο διαχείρισης των δεδομένων ενώ παρέχουν διαφορετικές δυνατότητες στο χρήστη ανάλογα με τη χρήση για την οποία προορίζονται και την απαιτούμενη ακρίβεια.

Σήμερα χρησιμοποιούνται κυρίως δύο δομές ψηφιακών μοντέλων εδάφους: τα ακανόνιστα τριγωνικά δίκτυα (Triangulated Irregular Network) όπου η επιφάνειά τους προσομοιάζεται από τρίγωνα με γνωστές τις τρισδιάστατες συντεταγμένες των κορυφών τους και τα δίκτυα που αποτελούνται από ένα κάνναβο στις κορυφές του οποίου υπάρχει η τιμή κάθε υψομέτρου παρουσιάζοντας έτσι μια συστηματική κατανομή. Η μορφή (TIN), επειδή έχει ακανόνιστα πολυγωνικά αντικείμενα (τρίγωνα) ως δομικές μονάδες, έχει αντιστοιχίες με το διανυσματικό μοντέλο (vector), ενώ η μορφή (DEM), λόγω του ότι αποτελείται από στοιχειώδη ομοειδή αντικείμενα έχει αναλογίες με το ψηφιδωτό μοντέλο (raster) (Χαλκιάς & Γκούσια, 2015).

Εικόνα 1-3: Δομές δεδομένων σε πλέγμα και σε TIN Πηγή: <u>http://sar.kangwon.ac.kr/etc/rs_note/giswb/vol2/cp3/3-1.gif</u>

1.2.1. Ακανόνιστο δίκτυο τριγώνων-Triangulated Irregular Network (TIN)

Το Ψηφιακό Μοντέλο Εδάφους με βάση τη δομή του δικτύου ακανόνιστων τριγώνων-ΤΙΝ, αναπαριστά το ανάγλυφο με ένα σύνολο τριγωνικών επιφανειών των οποίων οι κορυφές ταυτίζονται με τις θέσεις των σημείων των δεδομένων εισόδου (Τσούλος, 2008). Η υψομετρική πληροφορία κατανέμεται ανά σημεία, τα οποία δεν παρουσιάζουν ομοιόμορφη κατανομή. Δεδομένου ότι η κατανομή των κόμβων του ΤΙΝ στο χώρο δεν είναι κανονική, το μοντέλο ΤΙΝ ενδέχεται να έχει, υψηλότερη πυκνότητα σε περιοχές όπου το ανάγλυφο μεταβάλλεται έντονα και τα πρωτογενή δεδομένα είναι πιο λεπτομερή, και χαμηλότερη πυκνότητα σε περιοχές που τα αρχικά δεδομένα είναι αραιά. Η προσεκτική επιλογή των πρωτογενή στοιχείων, τα οποία θα αξιοποιηθούν για τη δημιουργία του μοντέλου του ανάγλυφου μέσω ενός TIN, είναι καθοριστική για την ακρίβεια και την αναπαράστασή του (Τσούλος, Σκοπελίτη, & Στάμου, 2015).

Εικόνα 1-4: Δομή ΨΜΕ σε δίκτυο ορθογωνικού κανάβου & δομή ΤΙΝ σε δίκτυο τριγώνων

Πηγή: <u>http://portal.survey.ntua.gr/main/courses/geoinfo/admcarto/lecture_notes/dtm%27s/dtm%27s.pdf</u>

Το δίκτυο των τριγώνων που δημιουργείται πρέπει να ικανοποιεί τη συνθήκη τριγωνισμού Delaunay σύμφωνα με την οποία για το σύνολο των σημείων που βρίσκονται στο επίπεδο, υπάρχει ένας τριγωνισμός τέτοιος ώστε κανένα σημείο του συνόλου να μην βρίσκεται στο εσωτερικό του περιγεγραμμένου κύκλου οποιουδήποτε τριγώνου.

Εικόνα 1-5: Τριγωνισμός Delaunay

Πηγή: https://en.wikipedia.org/wiki/Delaunay_triangulation

Σημαντικό ρόλο στη δημιουργία του τριγωνικού δικτύου αποτελούν οι γραμμές ασυνέχειας (breaklines) οι οποίες καθορίζουν και ελέγχουν τη συμπεριφορά του ανάγλυφου από άποψη ομαλότητας και συνέχειας. Όπως υποδηλώνει το όνομά τους, είναι γραμμικά χαρακτηριστικά που περιγράφουν αλλαγές κλίσης (π.χ. ρήγματα, υδατορέματα, κορυφογραμμές) και έχουν σημαντική επίδραση όσον αφορά την περιγραφή της συμπεριφοράς της επιφάνειας όταν ενσωματώνονται σε ένα μοντέλο επιφάνειας.

Εικόνα 1-6: Γραμμή ασυνέχειας σε μοντέλο ΤΙΝ Πηγή: <u>https://www.xmswiki.com/wiki/WMS:TIN_Breaklines</u>

Τα δεδομένα των κορυφών των τριγώνων, αλλά και άλλα επιπλέον στοιχεία που αφορούν την οργάνωση και την διαχείριση του δικτύου των τριγώνων μπορούν να αποθηκευτούν σε κάποια βάση δεδομένων, για να είναι προσπελάσιμα από ένα υπολογιστικό πρόγραμμα Η/Υ.

1.2.2. Δεδομένα κανονικού καννάβου (grid)

Ο δεύτερος τρόπος ψηφιακής αναπαράστασης ενός ψηφιακού μοντέλου εδάφους είναι αυτός της ψηφιδωτής μορφής, κατά τον οποίο η υψομετρική του πληροφορία αποδίδεται ανά σημεία, βάσει ενός πλέγματος καννάβου με συγκεκριμένο βήμα, που αντιστοιχεί στην διακριτική ικανότητα των δεδομένων που παρέχει. Η μορφή αυτή ισοδυναμεί με μία ψηφιακή εικόνα, μόνο που αντί για τιμή χρωματικής απόχρωσης, σε κάθε εικονοστοιχείο αντιστοιχεί μια τιμή υψομέτρου.

Το πρόβλημα που παρουσιάζεται με τη χρήση ψηφιδωτών εικόνων είναι ότι οι τιμές του υψομέτρου που αναπαριστούν αναφέρονται στους κόμβους του, είναι δηλαδή σημειακές. Για τον προσδιορισμό του υψομέτρου σε σημεία που βρίσκονται ανάμεσα στις κορυφές του καννάβου, εφαρμόζεται κάποια μέθοδος παρεμβολής από διάφορους αλγόριθμους που έχει προτείνει η επιστημονική έρευνα.

Εικόνα 1-7: Δεδομένα απεικόνισης σε 2D/3D πλέγμα ή μορφή καννάβου Πηγή: <u>http://www.innovativegis.com/basis/mapanalysis/topic18/topic18.htm</u>

1.3. Ισοϋψείς καμπύλες και ΨΜΕ

Οι ισοϋψείς καμπύλες (contour lines), οι οποίες είναι κλειστές καμπύλες γραμμές που ενώνουν σημεία ίδιου υψομέτρου, αποτελούν την πιο διαδεδομένη μέθοδο για την αποθήκευση και την απεικόνιση των χαρακτηριστικών του ανάγλυφου. Όμως, ενώ συνιστούν τον κύριο όγκο των στοιχείων για την παραγωγή ενός ΨΜΕ και λόγω της διαθεσιμότητάς τους χρησιμοποιούνται εκτεταμένα, παρουσιάζουν ορισμένα προβλήματα καθώς έχουν δημιουργηθεί για την γραφική απεικόνιση του ανάγλυφου και όχι για την ψηφιακή καταγραφή του. Κατά τη χρήση τους ως πηγή για τη δημιουργία ενός ΨΜΕ παρατηρείται το φαινόμενο το μεγαλύτερο πλήθος των σημείων γνωστού υψομέτρου να συγκεντρώνεται κατά μήκος των ισοϋψών ενώ δεν υπάρχει πληροφορία με την ίδια πυκνότητα ενδιάμεσα στις ισοϋψείς. Τα σφάλματα που δημιουργούνται κατά τη χρήση τους λόγω των διαδικασιών της σχεδίασης, της γενίκευσης, της εξομάλυνσης κ.ά. κληροδοτούνται και στο ΨΜΕ, ενώ συχνά ένα μεγάλο μέρος της αρχικής πληροφορίας έχει χαθεί κατά τη χαρτοσύνθεση με αποτέλεσμα να μην εμφανίζεται στο τελικό προϊόν (Weibel & Heller, 1991).

1.4. Πλεονεκτήματα και μειονεκτήματα των δομών

Η ψηφιδωτή μορφή αναπαράστασης των ψηφιακών μοντέλων εδάφους είναι η πλέον συνηθέστερη και ευρέως διαδεδομένη τις τελευταίες δεκαετίες. Παρουσιάζει σημαντικά πλεονεκτήματα στην διαχείριση της από τους ηλεκτρονικούς υπολογιστές, τόσο στη διαδικασία υπολογισμού της υψομετρικής τιμής στα επιθυμητά σημεία, όσο και στην απλότητα του χειρισμού της. Επιπλέον επιτρέπει στατιστικές και χωρικές αναλύσεις, ενώ παρέχει τη δυνατότητα παραγωγής ψευδο-εικόνων, όπως είναι οι σκιασμένες επιφάνειες. Το άλλοτε μεγάλο μειονέκτημά της, που αφορούσε την απαιτούμενη χωρητικότητα για την αποθήκευση των δεδομένων της έχει χάσει την σημαντικότητα του με την ανάπτυξη των σύγχρονων μέσων αποθήκευσης, τα οποία εμφανίζουν πλέον τεράστιες δυνατότητες αποθήκευσης δεδομένων.

Το βασικό μειονέκτημα των ψηφιακών μοντέλων εδάφους ψηφιδωτής μορφής είναι ότι επηρεάζονται άμεσα από την διακριτική ικανότητα της δειγματοληπτικής μεθόδου από όπου προκύπτουν. Αυτή η παράμετρος επηρεάζει καθοριστικά τόσο την ακρίβεια του παραγόμενου ψηφιακού προϊόντος όσο και τους απαιτούμενους ψηφιακούς χώρους για την αποθήκευση του. Εξαιτίας της ίδιας παραμέτρου, παρέχουν δεδομένα με ομοιόμορφη ανάλυση και αδυνατούν να αναδείξουν μικρές ανωμαλίες της επιφάνειας που περιγράφουν, σε αντίθεση με τις άλλες δύο μορφές των ψηφιακών μοντέλων εδάφους που παρουσιάζουν σαφώς μεγαλύτερη προσαρμοστικότητα.

Οι δομές των δικτύων ΤΙΝ αναπαριστούν με μεγάλη ακρίβεια το ανάγλυφο και προτιμώνται στις περιπτώσεις απεικόνισης μικρών επιφανειακών χαρακτηριστικών όπως είναι τα αναχώματα, μεμονωμένες κορυφές κ.α. Παρουσιάζουν μεγάλη ευελιξία καθώς υπάρχει η δυνατότητα πρόσθεσης δεδομένων μετά την δημιουργία τους και προσαρμογής τους στο γήινο ανάγλυφο διαφοροποιώντας το μέγεθος των τριγώνων τους. Ένα μειονέκτημα αυτής της μορφής απεικόνισης των ΨΜΕ είναι η ύπαρξη επίπεδων τριγώνων, τα οποία έχουν την ίδια τιμή υψομέτρου και στις τρεις κορυφές που τα ορίζουν, με αποτέλεσμα να έχουν μηδενική κλίση. Η ύπαρξη των επίπεδων τριγώνων αντιμετωπίζεται με τη χρήση συναρτήσεων και την προσθήκη μεμονωμένων υψομετρικών σημείων. Ως εκ τούτου η επιλογή της δομής αναπαράστασης ενός ΨΜΕ εξαρτάται από τον καθορισμό αναπαράστασης των τοπογραφικών χαρακτηριστικών του εδάφους καθώς και τον σκοπό χρήσης τους.

ΚΕΦΑΛΑΙΟ 2

2. ΔΙΑΔΙΚΑΣΙΕΣ ΔΗΜΙΟΥΡΓΙΑΣ & ΕΛΕΓΧΟΥ ΠΟΙΟΤΗΤΑΣ ΨΜΕ

Στο πρώτο μέρος του συγκεκριμένου κεφαλαίου γίνεται μια σύντομη περιγραφή των πιο συχνά χρησιμοποιούμενων μεθόδων για τη δημιουργία ΨΜΕ και στο δεύτερο μέρος γίνεται αναφορά στις παραμέτρους που καθορίζουν την ποιότητά τους και στις μεθόδους αξιολόγησης αυτών.

2.1. Μέθοδοι δημιουργίας Ψηφιακών Μοντέλων Εδάφους

Για τη δημιουργία ΨΜΕ έχουν αναπτυχθεί αρκετές τεχνικές. Η κλασσική προσέγγιση παραγωγής ΨΜΕ από ισοϋψείς καμπύλες εξακολουθεί να είναι μια από τις πιο συνήθης τεχνικές. Η τεχνική της φωτογραμμετρίας χρησιμοποιείται εδώ και πολλά χρόνια για τη παραγωγή ΨΜΕ είτε μέσα από τη διαδικασία της στερεό-απόδοσης είτε μέσα από τις σύγχρονες αυτοματοποιημένες μεθόδους. Παράλληλα, η μεγάλη διαθεσιμότητα των τελευταίων δεκαετιών σε δορυφορικά οπτικά δεδομένα οδήγησε στην ανάπτυξη νέων μεθοδολογιών βασισμένες στη φωτογραμμετρίας για τη δημιουργία ΨΜΕ. Η ανάπτυξη του κινηματικού GPS και των αδρανειακών συστημάτων πλοήγησης (Inertial Navigation Systems – INS) βελτίωσε την απόδοση της φωτογραμμετρίας (εναέρια και δορυφορική) και κατέστη δυνατή η ανάπτυξη και η ολοκλήρωση συστημάτων σάρωσης με ακτίνες laser. Πέρα από τις παραπάνω τεχνικές δεν θα πρέπει να παραλείψουμε τη χρήση του GPS και του Total Station για τη δημιουργία ΨΜΕ.

2.1.1. Επίγειες μετρήσεις

Οι κλασσικές τοπογραφικές.-γεωδαιτικές μέθοδοι που έχουν χρησιμοποιηθεί για τη δημιουργία ΨΜΕ υψηλής ακρίβειας και ποιότητας αποτελούν χρονοβόρες διαδικασίες και έχουν αρκετά μεγάλο κόστος. Αντίθετα, οι πιο σύγχρονες μέθοδοι με τη χρήση διαφορικών GPS προσφέρουν ένα επαρκές εργαλείο για την παραγωγή ΨΜΕ. Η πιο κοινή τεχνική σχετικού προσδιορισμού θέσης που βασίζεται στην μετάδοση διορθώσεων σε πραγματικό χρόνο είναι η τεχνική κινηματικού προσδιορισμού σε πραγματικό χρόνο (RTK – Real Time Kinematic) και επιτυγχάνει ακρίβεια σε επίπεδο εκατοστών (Riley, Talbot, & Kirk, 2000). Η τεχνική RTK απαιτεί τη χρήση ενός δέκτη GPS, ως δέκτη αναφοράς, τοποθετημένο σε σημείο γνωστών συντεταγμένων. Ένας άλλος δέκτης χρησιμοποιείται ως κινητός (rover) για τη μέτρηση των

σημείων ενδιαφέροντος. Οι δύο δέκτες πραγματοποιούν ταυτόχρονες παρατηρήσεις του σήματος GPS, ενώ μέσω ραδιοζεύξης επιτυγχάνεται η αποστολή διορθωμένων μετρήσεων από το δέκτη αναφοράς στο κινητό δέκτη προκειμένου ο τελευταίος να επιλύσει τις ασάφειες φάσεις και να καθορίσει την ακριβή του θέση με βάση τα δεδομένα που του έχουν αποσταλεί.

Το κύριο πλεονέκτημα της χρήσης των επίγειων τοπογραφικών μετρήσεων είναι η εξαιρετικά υψηλή οριζοντιογραφική και υψομετρική ακρίβεια που επιτυγχάνεται. Επιπρόσθετα οι σύγχρονες μέθοδοι είναι αρκετά πιο οικονομικές. Το σημαντικότερο μειονέκτημα είναι η δυσκολία πρόσβασης σε πολλές περιοχές, λόγω ανάγλυφου ή ειδικών συνθηκών, που αντιμετωπίζεται με τις τοπογραφικές – γεωδαιτικές μεθόδους σε σύγκριση με άλλες μεθόδους στη δημιουργία ΨΜΕ. Γενικά, ποια μέθοδος πρέπει να χρησιμοποιηθεί για τη δημιουργία ΨΜΕ εξαρτάται από πολλούς παράγοντες όπως η επιδιωκόμενη ακρίβεια, ο χρόνος, το ανάγλυφο, η περιοχή ενδιαφέροντος, το κόστος.

2.1.2. Ψηφιοποίηση χαρτογραφικών δεδομένων

Η ψηφιοποίηση χαρτών είναι μια διαδεδομένη και οικονομική μέθοδος για τη δημιουργία ΨΜΕ. Η παραγωγή των ισοϋψών καμπυλών στηρίζεται κυρίως στη ψηφιοποίηση υπαρχουσών καμπυλών από τοπογραφικούς χάρτες, ενώ ο πρωτογενής τρόπος παραγωγής αυτών είναι στερεοαπόδοση από αεροφωτογραφίες ή δορυφορικά οπτικά δεδομένα. Οι ισοϋψείς καμπύλες είναι το βασικότερο στοιχείο της χαρτογραφικής απεικόνισης και το μοναδικό μέσο το οποίο καθορίζει γεωμετρικά- ποσοτικά τις μορφές του ανάγλυφου όπως γραμμές αλλαγής κλίσης και υψομετρικά σημεία.

Τα πλεονεκτήματα αυτής της διαδικασίας είναι το χαμηλό κόστος και η ταχύτητα παραγωγής του ΨΜΕ καθώς γίνεται χειροκίνητα ή με ημιαυτόματες μεθόδους. Η ορθότητα των ισοϋψών καμπυλών εξαρτάται κυρίως από την ποιότητα και την κλίμακα των αεροφωτογραφιών, τα χαρακτηριστικά του φωτογραμμετρικού συστήματος (εξοπλισμός- λογισμικό), καθώς και από τις ικανότητες του χειριστή.

Τα κυριότερα μειονεκτήματα που παρουσιάζονται είναι τα μεγάλα σφάλματα που υπεισέρχονται κατά τη διαδικασία παραγωγής του ΨΜΕ. Το αρχικό σφάλμα των ισοϋψών καμπυλών αυξάνεται με γεωμετρική πρόοδο κατά τη διαδικασία παραγωγής του ΨΜΕ καθώς οι τοπογραφικοί χάρτες σαρώνονται, οπότε υπεισέρχεται σφάλμα λόγω της διαδικασίας

σάρωσης, γεωαναφέρονται (σφάλμα γεωαναφοράς) και οι ισοϋψείς καμπύλες ψηφιοποιούνται (σφάλμα ψηφιοποίησης). Σε πολλές περιπτώσεις, η κακή ποιότητα χαρτών, η πυκνότητα των ισοϋψών καμπυλών και η κακή ποιότητα εκτύπωσης καθιστά αδύνατη τη διάκριση των ισοϋψών καμπυλών. Επομένως λόγω της μορφής των δεδομένων, παρουσιάζονται διαφορετικές ακρίβειες κατά μήκος των ισοϋψών καμπυλών και κάθετα προς αυτές. Υπάρχει επομένως η ανάγκη εφαρμογής αλγορίθμων χωρικής παρεμβολής για την εκτίμηση του υψομέτρου σε όλα τα σημεία μεταξύ των ισοϋψών καμπυλών. (Νικολακόπουλος, Κατσάνου, & Λαμπράκης, 2015)

Εικόνα 2-1: Ισοϋψείς καμπύλες

Πηγή: http://jokru.tumblr.com/post/45116029501/vector-contour-lines

Κατά καιρούς αρκετές μεθοδολογίες έχουν προταθεί για τη δημιουργία ΨΜΕ από ψηφιοποιημένους τοπογραφικούς χάρτες, όπως αυτή των (Soille & Arrighi, 1999), στην οποία προτείνονται τρία στάδια για την παραγωγή ΨΜΕ: (α) την εξαγωγή των ισοϋψών γραμμών και το φιλτράρισμά τους, (β) τη σύνδεση των ασύνδετων ισοϋψών και (γ) την γεωδαιτική παρεμβολή τους.

2.1.3. Φωτογραμμετρική απόδοση

Μέχρι πριν λίγα χρόνια η εφαρμογή φωτογραμμετρικών μεθόδων σε στερεοσκοπικές φωτογραφίες του εδάφους αποτελούσε μια ευρέως χρησιμοποιούμενη τεχνική για τη λήψη πραγματικών υψομετρικών δεδομένων μεγάλης ακρίβειας και την παραγωγή ΨΜΕ. Οι φωτογραφίες λαμβάνονται κατά τη διάρκεια πτήσης από κατάλληλα εξοπλισμένο αεροπλάνο και με τη χρήση ειδικών φωτογραμμετρικών οργάνων γίνεται η εξαγωγή των πραγματικών τρισδιάστατων συντεταγμένων σημείων του εδάφους. Η διαδικασία αυτή στηρίζεται κυρίως στην κριτική ικανότητα του ανθρώπου να αναγνωρίσει ομόλογα σημεία στην επικάλυψη των αεροφωτογραφιών. Ως ομόλογα σημεία θεωρούνται οι απεικονίσεις ενός σημείου του εδάφους στις δύο αεροφωτογραφίες. Με γνωστή την θέση των ομόλογων σημείων, εφαρμόζονται οι κατάλληλες φωτογραμμετρικές εξισώσεις και από αυτές υπολογίζονται οι τρισδιάστατες συντεταγμένες του αντίστοιχου σημείου εδάφους. (Παπαπαναγιώτου, 2000)

Γίνεται αντιληπτό ότι, η παραπάνω διαδικασία είναι χρονοβόρα, επίπονη, μεγάλου κόστους και απαιτεί υψηλή εξειδίκευση. Με την ανάπτυξη της ψηφιακής τεχνολογίας αναζητήθηκαν τρόποι αυτοματοποίησής της. Τα τελευταία χρόνια αναπτύχθηκε ιδιαίτερα η δημιουργία ΨΜΕ από οπτικά δορυφορικά δεδομένα. Η αρχή έγινε με την εκτόξευση του δορυφόρου SPOT, το 1986, ο οποίος για πρώτη φορά παρείχε στερεοζεύγη εικόνων που επέτρεπαν την εξαγωγή υψομετρικής πληροφορίας για μεγάλες περιοχές της Γης. Η εξαγωγή της πληροφορίας βασιζόταν στη στερεοσκοπική παράλλαξη εικόνων που είχαν ληφθεί κάθετα στην τροχιά σε διαφορετικές ημερομηνίες. Πιο πρόσφατα, η κατά μήκος της τροχιάς σχεδόν ταυτόχρονη λήψη των στερεοζεύγων θεωρήθηκε ότι δίνει πιο αξιόπιστα αποτελέσματα καθώς μειώνει τις ραδιομετρικές διαφορές μεταξύ των εικόνων του ζεύγους και αυξάνει τις πιθανότητες επιτυχούς συσχέτισης (Νικολακόπουλος, Κατσάνου, & Λαμπράκης, 2015).

Εικόνα 2-2: Κατά μήκος γεωμετρία λήψης στερεοσκοπικών δορυφορικών εικόνων Πηγή:<u>https://ocw.aoc.ntua.gr/modules/document/file.php/SURVEY121/Foto II 11 2013 Doryforikes%20apeikoni</u> seis.pdf

2.1.4. Δεδομένα LiDAR (Light Detection And Ranging)

Η τεχνολογία LiDAR (Light Detection And Ranging) είναι μια από τις νεότερες μεθόδους συλλογής τρισδιάστατων δεδομένων φυσικών ή τεχνικών επιφανειών καθώς και για την παραγωγή μικρότερης έκτασης ΨΜΕ. Η τεχνολογία που διαθέτουν επιτρέπει την λήψη δεδομένων μεγάλης πυκνότητας και υψηλής ακρίβειας με μικρή επιβάρυνση στην επεξεργασία. Τα ιδιαίτερα πλεονεκτήματα που τη χαρακτηρίζουν την έχουν κατατάξει ως μια από τις σημαντικότερες σύγχρονες τεχνολογίες απόκτησης γεωχωρικών δεδομένων.

2.1.4.1. Αρχή λειτουργίας του συστήματος LiDAR

Η εξέλιξη της τεχνολογίας οδήγησε στην εμφάνιση νέων μορφών δεδομένων προερχόμενες από ενεργητικούς δέκτες, διευρύνοντας και άλλο το πεδίο εφαρμογής της επιστήμης της φωτογραμμετρίας. Ως ενεργητικοί δέκτες ορίζονται τα συστήματα εκείνα τα οποία δεν καταγράφουν την ανακλώμενη ηλιακή ακτινοβολία, αλλά ακτινοβολούν τον στόχο με μια ανεξάρτητα δημιουργούμενη ενεργειακή ακτινοβολία ενώ καταγράφουν παράλληλα την ανακλώμενη από το στόχο ποσότητά της μαζί με τις μεταβολές που υφίσταται το αρχικό εκπεμπόμενο σήμα από την ανάκλαση. Ένα τέτοιο σύστημα, το οποίο παράγει υψομετρικά δεδομένα είναι οι σαρωτές laser (Φράγκος, 2013).

Εικόνα 2-3: Σαρωτής laser

Πηγή: https://ocw.aoc.ntua.gr/modules/document/file.php/SURVEY121/Foto II 08 2015 LiDAR.pdf

Οι σαρωτές laser παράγουν νέφη σημείων που προέρχονται από τους πομποδέκτες ακτινοβολίας laser. Η τεχνολογία laser αφορά τη χρήση φωτός με συγκεκριμένο μήκος κύματος το οποίο διαδίδεται προς μια συγκεκριμένη κατεύθυνση σχηματίζοντας στενές δέσμες. Οι σαρωτές laser διακρίνονται σε επίγειους (terrestrial), αερομεταφερόμενους (airborne), δορυφορικούς (satellite), υδρογραφικούς (hydrographic) και μετακινούμενους (mobile mapping systems). Ο τύπος σαρωτή που χρησιμοποιείται ευρέως για την λήψη πρωτογενών δεδομένων τα οποία θα αξιοποιηθούν μετέπειτα για την παραγωγή ενός Ψηφιακού Μοντέλου Εδάφους είναι οι αερομεταφερόμενοι. Τα συστήματα αυτά είναι ευρέως γνωστά ως LiDAR.

Όσον αφορά τον τρόπο λειτουργίας τους, τα κύρια μέρη του συστήματος LiDAR είναι μια πλατφόρμα μεταφοράς του σαρωτή (αεροσκάφος ή ελικόπτερο), ο εναέριος σαρωτής laser, μια μονάδα δορυφορικού προσδιορισμού θέσης (Global Positioning System, GPS) και τον αντίστοιχο σταθμό εδάφους με τα οποία υπολογίζεται η θέση του σαρωτή ως προς το εκάστοτε σύστημα αναφοράς καθώς και το αδρανειακό σύστημα πλοήγησης (Inertial Navigation System – INS) που χρησιμοποιείται για τον υπολογισμό των στροφών του σαρωτή ως προς τις τρεις διευθύνσεις (roll, pitch, yaw).

Στην επιστημονική κοινότητα έχει γίνει κοινά αποδεκτό ότι οι γωνίες roll, pitch, yaw ταυτίζονται με τις γνωστές φωτογραμμετρικές γωνίες ω, φ, κ για το σύνηθες μέγεθος των επιφανειών που χαρτογραφούνται. Επίσης σημειώνεται ότι ο όρος INS (Inertial Navigation System) είναι ο πιο συχνά χρησιμοποιούμενος για τα αδρανειακά συστήματα, αντί του όρου IMU (Inertial Measurement Unit) αν και αυστηρά επιστημονικά ο όρος IMU αναφέρεται στον αδρανειακό δέκτη, ενώ ο όρος INS αναφέρεται στο σύνολο του δέκτη μαζί με το λογισμικό που παράγει την επίλυση πλοήγησης.

Εικόνα 2-5: Βασικά μέρη του LIDAR

Πηγή: <u>https://www.ngs.noaa.gov/corbin/class_description/Nayegandhi_green_lidar.pdf</u>

Ο σαρωτής LiDAR συλλέγει μετρήσεις αποστάσεων οι οποίες πραγματοποιούνται υπό συγκεκριμένη γωνία. Τα πρωτογενή αυτά δεδομένα αποτελούν ζεύγη πολικών συντεταγμένων (γωνία και απόσταση), τα οποία μπορούν να χρησιμοποιηθούν για να προσδιοριστούν οι συντεταγμένες των μετρούμενων σημείων, σε καθορισμένο σύστημα αναφοράς. Ως εκ τούτου απαιτείται η γνώση της θέσης του σαρωτή (X₀, Y₀, Z₀) ως προς το χρησιμοποιούμενο σύστημα αναφοράς κατά τη χρονική στιγμή της κάθε μέτρησης, καθώς και ο αντίστοιχος προσανατολισμός του, δηλαδή οι στροφές ω, φ, κ που παρουσιάζει ως προς του άξονες X, Y, Z του συστήματος. Το σύνολο των στοιχείων αυτών ονομάζεται εξωτερικός προσανατολισμός του δέκτη αντίστοιχα.

Η μέθοδος προσδιορισμού θέσης έχει ως γενική αρχή την μέτρηση των αποστάσεων μεταξύ του δέκτη GPS και περισσότερων από τεσσάρων δορυφόρων, η οποία επιτυγχάνεται με την χρονική ανάλυση του συνεχώς εκπεμπόμενου σήματος από κάθε δορυφόρο. Το σήμα αυτό μεταφέρεται μέσω της ατμόσφαιρας και λαμβάνεται από τον δέκτη GPS, στην συνέχεια αποκωδικοποιείται και βάσει του εσωτερικού χρονομέτρου ακριβείας, τόσο του δέκτη όσο και του δορυφόρου, προσδιορίζεται η απόσταση από τον δορυφόρο. Οι μετρήσεις τόσο από τον σταθμό εδάφους όσο και από τον δέκτη επί της πλατφόρμας μεταφοράς του σαρωτή, συμμετέχουν σε μια διαδικασία επίλυσης post-processing για να αρθούν τα σφάλματα χρόνου από τα χρονόμετρα των δεκτών και των δορυφόρων και να υπολογιστούν οι συντεταγμένες της θέσης του κινητού δέκτη στην πλατφόρμα μεταφοράς. Η ακρίβεια μέτρησης αποστάσεων στα σύγχρονα συστήματα κυμαίνεται από 1cm - 5cm (Nayegandhi 2007) και ως εκ τούτου η αντίστοιχη ακρίβεια στον προσδιορισμό θέσης πρέπει να είναι τουλάχιστον ανάλογης τάξης μεγέθους. Αξίζει να τονισθεί πως ο σταθμός εδάφους πρέπει να βρίσκεται σε σταθερό σημείο γνωστών συντεταγμένων και σε απόσταση όχι μεγαλύτερη των 25 χιλιομέτρων από την εκάστοτε θέση της πλατφόρμας. (Φράγκος, 2013)

Ο επιτυχής συνδυασμός των δεδομένων που παράγουν τα διάφορα υποσυστήματα ενός συστήματος LiDAR αποτελεί παράγοντα καθοριστικής σημασίας για την σωστή λειτουργία του. Η ακρίβεια του τελικού προϊόντος επηρεάζεται άμεσα από την ακρίβεια των επιμέρους δεκτών, την θέση και τον προσανατολισμό, που επιτυγχάνεται μέσω των συστημάτων GPS/INS, τον συγχρονισμό τους, την βαθμονόμηση του συστήματος, τις ιδιότητες του δέκτη απεικόνισης και την επίδραση της γεωμετρίας του (Πόθου, 2012).

Επιπρόσθετα το σύστημα LiDAR, συνδυάζοντας τις μετρήσεις από τα διασυνδεδεμένα υποσυστήματα του και με τη διαδικασία της άμεσης γεωαναφοράς μετατρέπει τις πρωταρχικές μετρήσεις πολικών συντεταγμένων σημείων του εδάφους από το σαρωτή, σε συντεταγμένες των σημείων αυτών με βάση το γεωδαιτικό σύστημα αναφοράς και δημιουργεί ένα σύνολο από σημεία με συντεταγμένες στον 3d χώρο, το νέφος σημείων. Ανάλογα με την πυκνότητα των σημείων μπορεί να αποδοθεί με εξαιρετική λεπτομέρεια η περιοχή σάρωσης σε τρισδιάστατη απεικόνιση.

Τα σύγχρονα συστήματα LiDAR έχουν την δυνατότητα να καταγράφουν πολλαπλές επιστροφές-οπισθοσκεδάσεις ανά εκπεμπόμενο παλμό laser, οι οποίες αντιστοιχούν σε αντικείμενα διαφορετικού υψομέτρου που εμπεριέχει ο φυσικός κόσμος. Η σημασία των πολλαπλών επιστροφών είναι ότι οι πρώτες αντιπροσωπεύουν σημεία στις υψηλότερες επιφάνειες της περιοχής σάρωσης, όπως κορυφές δέντρων και σκεπές κτηρίων, οι ενδιάμεσες επιστροφές αντιστοιχούν σε χαμηλότερα τμήματα των παραπάνω αντικειμένων, ενώ οι τελευταίες επιστροφές αντιστοιχούν, ως επί το πλείστον, στην επιφάνεια του εδάφους.

Η συνεχώς αναπτυσσόμενη τεχνολογία των LiDAR έχει οδηγήσει στην ανάπτυξη πολλών εφαρμογών που βασίζονται σε δεδομένα τέτοιου είδους. Τέτοιες εφαρμογές είναι η παραγωγή ψηφιακών μοντέλων εδάφους, η δημιουργία τρισδιάστατων μοντέλων πόλεων, η χαρτογράφηση της ποσότητας της βιομάζας της βλάστησης, η παρακολούθηση των διαβρώσεων σε παραποτάμιες περιοχές, η ανίχνευση μετακινήσεων και αλλαγών στο γήινο ανάγλυφο, η χαρτογράφηση φυσικών καταστροφών όπως πλημμύρες, η χαρτογράφηση αγωγών και δικτύων μεταφοράς ενέργειας, η παρακολούθηση και ο έλεγχος της αυθαίρετης δόμησης και πολλές άλλες.

Η πιο διαδεδομένη εφαρμογή για την εκμετάλλευση των νεφών σημείων τα οποία παράγονται από τα δεδομένα LiDAR, είναι η μοντελοποίηση τόσο της φυσικής γήινης επιφάνειας όσο και της φυσικής επιφάνειας με τα υπερκείμενα αυτής αντικείμενα. Η τεχνολογία των LiDAR αρχικά αποσκοπούσε στην ύπαρξη μιας μεθόδου δημιουργίας DTM υψηλής ακρίβειας και με κάλυψη μεγάλων περιοχών, η οποία θα ήταν πολύ οικονομικότερη από την κλασική φωτογραμμετρική διαδικασία με τη χρήση στερεοζευγών. Η σάρωση LiDAR προσφέρει πολύ υψηλότερη πυκνότητα σημείων (και συνεπώς μεγαλύτερη δειγματοληψία του εδάφους), τη δυνατότητα της ύπαρξης μετρήσεων για το έδαφος σε περιοχές με πυκνή βλάστηση, μικρότερο χρόνο επεξεργασίας για την παραγωγή του DTM, ενώ ταυτόχρονα αίρεται ο περιορισμός της εκτέλεσης πτήσεων μόνο την ημέρα και με καλές συνθήκες φωτισμού που απαιτείται από την κλασική αεροφωτογράφηση. Το DSM προκύπτει συνήθως με την χρήση μόνο των πρώτων επιστροφών σε περιοχές με πυκνή κάλυψη (π.χ. δασωμένες ή αστικές περιοχές) Το DTM προκύπτει με τη χρήση μόνο των τελευταίων επιστροφών ή με εξελιγμένους αλγόριθμους οι οποίοι κατά τη διαδικασία του φιλτραρίσματος διαχωρίζουν τα σημεία του εδάφους από τα

Το DTM που παράγεται από το νέφος σημείων του συστήματος LiDAR παρουσιάζει πολύ μεγάλη υψομετρική ακρίβεια, δεδομένης της ακρίβειας των μετρήσεων τις οποίες πραγματοποιεί το σύστημα, καθώς και μεγάλη πιστότητα λόγω της εξαιρετικά πυκνής δειγματοληψίας του εδάφους η οποία πραγματοποιείται κατά τη σάρωση.

Εικόνα 2-7: Σκιασμένη (hillshade) απεικόνιση ενός DSM (αριστερά) και ενός DEM (δεξιά) από δεδομένα σάρωσης LiDAR

Πηγή: <u>http://desktop.arcgis.com/en/arcmap/latest/manage-data/las-dataset/lidar-solutions-creating-raster-dems-and-dsms-from-large-lidar-point-collections.htm</u>

2.1.4.2. Σφάλματα συστήματος LiDAR

Το σύστημα LiDAR αποτελείται από πολλαπλούς δέκτες και πολλά από τα σφάλματα προκαλούνται από την ξεχωριστή βαθμονόμηση των δεκτών, την έλλειψη συγχρονισμού και την απόκλιση μεταξύ των προσανατολισμών των αξόνων των διαφόρων δεκτών. Επίσης από τα πιο σημαντικά θεωρούνται τα σφάλματα πλοήγησης και της συνολικής βαθμονόμησης του συνολικού συστήματος. Επιπρόσθετα τα σφάλματα που μπορεί να εντοπιστούν στα τελικά προϊόντα των μετρήσεων LiDAR είναι συνάρτηση της τοπογραφίας και της διεύθυνσης πτήσης και εξαρτώνται από παραμέτρους όπως το ύψος πτήσης, τη γωνία σάρωσης, τη μορφολογία του εδάφους, την εδαφοκάλυψη, την ακρίβεια του GPS, κ.ά.

Η επίδραση της ατμόσφαιρας στην ακτίνα του φωτός προκαλεί εκτροπή της διαδρομής του παλμού laser, καθώς ταξιδεύει προς τον στόχο και επιστρέφει, με αποτέλεσμα να επηρεάζει την τελική μέτρηση της απόστασης. Κατά μήκος της διαδρομής της δέσμης προκαλείται καμπύλωση λόγω της διάθλασης της ατμόσφαιρας. Γενικά το σφάλμα στη μέτρηση της απόστασης εξαιτίας της ατμόσφαιρας αυξάνεται με το υψόμετρο καθώς και με την ύπαρξη καπνού ή σκόνης. Επίσης η επίδραση ενδεχόμενου θορύβου στο σύστημα LiDAR επηρεάζει τις μετρήσεις και είναι είτε από λανθασμένη γωνία πρόσπτωσης της δέσμης, με συνέπεια η επιστροφή που λαμβάνει ο δέκτης να είναι ασθενέστερη, είτε λόγω των πολλαπλών ανακλάσεων μιας δέσμης από τυχαία αντικείμενα που βρίσκονται κοντά στα σημεία ενδιαφέροντος.

Τα σφάλματα τα οποία παρουσιάζει ένα DEM που προέρχεται από δεδομένα LiDAR εξαρτώνται από τα δεδομένα, αλλά και από τις διαδικασίες από τις οποίες παράγεται. Η διαδικασία της ταξινόμησης καθώς και η απόδοση των αλγορίθμων φιλτραρίσματος ενδέχεται να προκαλέσει ανεπιθύμητες και εσφαλμένες υψομετρικές αποκλίσεις στο εξαγόμενο DEM. Η συνόρθωση των δεδομένων, οι μέθοδοι παρεμβολής όπου αυτό χρειάζεται, αλλά και η μετέπειτα οπτική ανάλυση των προϊόντων ενέχουν επίσης την πιθανότητα δημιουργίας σφαλμάτων.

2.1.4.3. Πλεονεκτήματα και μειονεκτήματα του συστήματος

Η φωτογραμμετρία για πολλές δεκαετίες αποτελούσε μια από τις κύριες τεχνικές συλλογής 3D πληροφοριών για την επιφάνεια του εδάφους. Η τεχνολογία LiDAR εμφανίστηκε ως εναλλακτική λύση της εναέριας φωτογραμμετρίας για την παραγωγή DEM ή DSM λόγω της ταχύτατης συλλογής δεδομένων, της πυκνότητας και της ακρίβειάς τους. Η απόκτηση των δεδομένων επιτυγχάνεται μέρα-νύχτα ακόμα και με ελαφριά συννεφιά ενώ η μέτρηση 3D συντεταγμένων σημείων είναι άμεση. Όσον αφορά στις ακρίβειες θέσεων των σημείων LiDAR στο έδαφος, υπολογίζεται ότι η υψομετρική ακρίβεια είναι καλύτερη από 15cm και εξαρτάται από το ύψος και την ταχύτητα πτήσης ενώ η οριζοντιογραφική ακρίβεια είναι καλύτερη από 20cm. (Πόθου, 2012)

Με την πάροδο του χρόνου αποδεικνύεται ότι το σύστημα LiDAR συμβάλλει στην επίλυση προβλημάτων, όπως η σάρωση παράκτιων ζωνών και δασοκαλυμένων εκτάσεων, όπου είναι ιδιαίτερα δύσκολο να εντοπισθούν σημεία εδάφους από τις αεροφωτογραφίες. Από τα σημαντικότερα πλεονεκτήματα των συστημάτων LiDAR είναι η ταυτόχρονη δημιουργία ΨΜΕ τόσο στην επιφάνεια του εδάφους όσο και στο φύλλωμα των δέντρων σε δασώδεις περιοχές. Τα συστήματα σάρωσης ακτινών laser μπορούν να φέρονται τόσο από αεροσκάφος όσο και από ελικόπτερο. Οι ακρίβειες που επιτυγχάνονται είναι της τάξης των 10-20 cm. Η πυκνότητα των μετρήσεων laser είναι αρκετά υψηλή ώστε να εξασφαλίζεται επιστρεφόμενο σήμα από τα διαφορετικά επίπεδα βλάστησης.

Παρόλο την ιδιαίτερη δυναμική της τεχνικής LiDAR, είναι δύσκολο να εφαρμοστεί σε μεγάλης έκτασης περιοχές καθώς το κόστος συλλογής και επεξεργασίας των δεδομένων αυξάνει σημαντικά. Επίσης, το σύστημα LiDAR αν και παράγει υψηλής πυκνότητας σημεία, δεν είναι σε θέση να συλλέξει τις γραμμές ασυνέχειας, όπως για παράδειγμα τις ακμές κτηρίων. Μειονέκτημα αυτής της μεθόδου είναι και η μειωμένη ακρίβεια των μετρήσεων λόγω των δυσμενών επιπτώσεων της σκόνης, της υγρασίας και της ομίχλης καθώς και η δυσκολία που εντοπίζεται στην ερμηνεία του νέφους των σημείων.

2.1.5. Δεδομένα SAR (Synthetic Aperture Radar)

Η συμβολομετρία SAR απεικονίσεων είναι μια ευρέως διαδεδομένη τεχνολογία της επιστήμης της τηλεπισκόπησης και αποτελεί μια από τις πιο σύγχρονες τεχνικές για την δημιουργία ΨΜΕ μεγάλης ακρίβειας για εκτεταμένης έκτασης περιοχές. Η συνεχής πρόοδος, η εξέλιξη, η ανάπτυξη και η βελτίωση τόσο της συμβολομετρικής διαδικασίας ως τεχνική όσο και των συστημάτων SAR, συνέβαλλαν τα τελευταία χρόνια στη δημιουργία ΨΜΕ παγκόσμιας κλίμακας με μέγεθος εικονοστοιχείου 12μ και κατακόρυφη ακρίβεια που φτάνει στα 2μ (σχετική) και 4μ (απόλυτη) από την αξιοποίηση των δεδομένων των αποστολών TerraSAR – X / TanDEM – X. (https://en.wikipedia.org/wiki/TanDEM-X)

2.1.5.1. Αρχή λειτουργίας SAR

Τα RADAR εικονοληπτικών δεδομένων διακρίνονται σε δύο κατηγορίες. Στα RADAR πραγματικού ανοίγματος (Real Aperture Radar – RAR) και τα RADAR συνθετικού ανοίγματος (Synthetic Aperture Radar – SAR).

Τα RADAR πραγματικού ανοίγματος έχουν κατά κανόνα ως φορέα μεταφοράς αεροσκάφος ενώ τα RADAR συνθετικού ανοίγματος έχουν ως φορέα μεταφοράς δορυφόρο. Η διαφορά μεταξύ των δύο τύπων RADAR έγκειται στη χωρική διακριτική τους ικανότητα κατά τη διεύθυνση της γραμμής πτήσης (Καραθανάση, 2006). Συγκεκριμένα, στα RADAR πραγματικού ανοίγματος αυτή είναι συνάρτηση του εύρους της δέσμης και συνεπώς είναι ανάλογη της απόστασης δέκτη – στόχου. Αντίθετα στα RADAR συνθετικού ανοίγματος πραγματοποιείται επεξεργασία του σήματος προκειμένου να υλοποιηθεί ένα πιο στενό εύρος δέσμης μέσα από τη δημιουργία της συνθετικής κεραίας και έτσι επιτυγχάνεται η ανεξαρτησία της διακριτικής ικανότητας από την απόσταση δέκτη – στόχου.

Τα συστήματα RADAR συνθετικού ανοίγματος (SAR) εφαρμόζουν μια τεχνική που συνθέτει την μέτρηση μιας κεραίας μεγάλου μήκους με το συνδυασμό των σημάτων που λαμβάνονται από ένα RADAR καθώς αυτό κινείται κατά μήκος της διαδρομής πτήσης του. Ο όρος άνοιγμα υποδηλώνει το φυσικό άνοιγμα που χρησιμοποιείται για τη συλλογή της ανακλώμενης ενέργειας του παλμού του RADAR που χρησιμοποιείται για να διαμορφωθεί μια εικόνα. Σε αντιδιαστολή, ένα συνθετικό άνοιγμα κατασκευάζεται με την κίνηση του πραγματικού
ανοίγματος ενός RADAR μέσω μιας σειράς θέσεων κατά μήκος της διαδρομής πτήσης του αισθητήρα RADAR. (Δελικαράογλου, 2005)

Καθώς το RADAR κινείται, ένας παλμός εκπέμπεται διαδοχικά σε τακτά χρονικά διαστήματα και το σήμα της ανακλώμενης ενέργειας κάθε παλμού, από τα σημεία του εδάφους ή αντικειμένων, λαμβάνεται από το δέκτη του RADAR και καταγράφονται το πλάτος, η φάση και η συχνότητα του ανακλώμενου σήματος. Επειδή το RADAR κινείται σε σχέση με το έδαφος, τα επιστρεφόμενα σήματα είναι μετατοπισμένα εξ αιτίας του φαινομένου Doppler. Η σύγκριση της μετατοπισμένης εξ αιτίας του Doppler συχνότητας του εκάστοτε ανακλώμενου σήματος με την αντίστοιχη συχνότητα αναφοράς του εκπεμπόμενου παλμού επιτρέπει την ανίχνευση πολλαπλών ανακλώμενων σημάτων που σχετίζονται με κάθε σημείο του αντίστοιχου αντικειμένου που προκαλεί το οπισθοσκεδαζόμενο σήμα. Η συγκεκριμένη διαδικασία SAR ουσιαστικά αυξάνει το μήκος της κεραίας του RADAR που απεικονίζει το συγκεκριμένο σημείο. Αυτή η λειτουργία, είναι συνήθως γνωστή ως επεξεργασία SAR, γίνεται εντελώς ψηφιακά και το αποτέλεσμα είναι μια εικόνα υψηλής διακριτικής ικανότητας.

Εικόνα 2-8: Γεωμετρία λήψης SAR απεικονίσεων Πηγή: <u>https://earth.esa.int/web/guest/missions/esa-operational-eo-</u> <u>missions/ers/instruments/sar/applications/radar-courses/content-2/-</u> /asset_publisher/gIBc6NYRXfnG/content/radar-course-2-synthetic-aperture-radar

Τα συστήματα SAR λειτουργούν συγχρόνως ως πομποί και ως δέκτες, δηλαδή εκπέμπουν το σήμα τους προς τη γήινη επιφάνεια, λαμβάνουν πίσω στην κεραία την ενέργεια που ανακλάται από τα διάφορα φυσικά ή άλλα αντικείμενα και υπολογίζουν την απόσταση των στόχων από την κεραία του αισθητήρα μετρώντας το χρόνο της διπλής διαδρομής του σήματος. Το βασικό πλεονέκτημα των συστημάτων SAR είναι η λειτουργία τους όλο το εικοσιτετράωρο και το ότι δεν επηρεάζονται από τις καιρικές συνθήκες, όπως τα σύννεφα και η ομίχλη.

2.1.5.2. Απεικονίσεις SAR

Οι απεικονίσεις SAR αντιπροσωπεύουν την οπισθοσκέδαση του σήματος από τη συγκεκριμένη περιοχή που απεικονίζουν η οποία και προσδιορίζει την φωτεινότητα του κάθε εικονοστοιχείου της απεικόνισης. Διαφορετικές επιφάνειες εκδηλώνουν διαφορετική συμπεριφορά οπισθοσκέδασης. Π.χ. η θάλασσα παρουσιάζει αυξημένη οπισθοσκέδαση λόγω ανέμων και ρευμάτων και εμφανίζεται με ανοιχτούς τόνους στις εικόνες SAR.

Η μορφολογία του εδάφους προκαλεί μια σειρά από γεωμετρικές παραμορφώσεις στις δημιουργούμενες εικόνες SAR. Εάν η κλίση μιας επιφάνειας η οποία βλέπει προς την κεραία του RADAR είναι μικρότερη από τη γωνία πρόσπτωσης της δέσμης του RADAR, τότε διαπιστώνεται σμίκρυνση της επιφάνειας. Στην πτύχωση συμβαίνει ακριβώς το αντίστροφο από ότι συμβαίνει στη σμίκρυνση. Στην περίπτωση των απότομων πλαγιών τα σημεία τα οποία βρίσκονται στην κορυφή έχουν μικρότερη πλευρική απόσταση από τα σημεία τα οποία βρίσκονται στις παρυφές. Η διάταξη όλων αυτών των σημείων στην απεικόνιση είναι ακριβώς η αντίθετη από αυτή της φυσικής πραγματικότητας. Η σκίαση στις απεικονίσεις εμφανίζεται όταν η δέσμη του RADAR δεν είναι δυνατό να φωτίσει την γήινη επιφάνεια. Επειδή η δέσμη του RADAR δεν φωτίζει την επιφάνεια, οι σκιασμένες περιοχές θα εμφανίζονται σκοτεινές (μαύρες) στην απεικόνιση καθώς δεν υπάρχει διαθέσιμη ενέργεια να οπισθοσκεδαστεί.

2.1.5.3. Συμβολομετρία SAR απεικονίσεων

Η συμβολομετρία SAR απεικονίσεων (SAR Interferometry – InSAR) αναπτύχθηκε για τον υπολογισμό υψομέτρων και τη δημιουργία Ψηφιακών Μοντέλων Εδάφους (ΨΜΕ). Για να εφαρμοστεί η τεχνική της συμβολομετρίας, πρέπει να υπάρχουν τουλάχιστον δύο εικόνες του ίδιου στόχου. Ένας δορυφόρος SAR μπορεί να παρατηρήσει την ίδια περιοχή από ελαφρώς διαφορετικές οπτικές γωνίες. Αυτό δύναται να γίνει είτε την ίδια χρονική στιγμή, με δύο RADAR προσαρμοσμένα πάνω στην πλατφόρμα του δορυφόρου, ή σε διαφορετικές στιγμές, εκμεταλλευόμενοι τις επαναλαμβανόμενες τροχιές του ίδιου δορυφόρου.

Οι κύριες μορφές συμβολομετρίας είναι οι εξής:

- Κατά μήκος συμβολομετρία (along track interferometry). Σε αυτή τη μέθοδο απαιτούνται δύο κεραίες που τοποθετούνται πάνω στην πλατφόρμα μεταφοράς του RADAR με διεύθυνση κατά μήκος της τροχιάς πτήσης. Συνήθως χρησιμοποιείται σε αερομεταφερόμενα RADAR, αν και τα τελευταία χρόνια εφαρμόζεται στους δορυφόρους TanDEM-X/TerraSAR-X. Οι εφαρμογές της σχετίζονται με τη χαρτογράφηση των υδάτινων διαθεσίμων, την ανίχνευση κινούμενων αντικειμένων, τη μελέτη παγετώνων και την ωκεανογραφία.
- Κατά πλάτος συμβολομετρία (across track interferometry). Οι δύο κεραίες είναι τοποθετημένες στο σύστημα RADAR σε διεύθυνση κάθετη στη τροχιά πτήσης ώστε να υπάρχει ταυτόχρονη λήψη δεδομένων για το σχηματισμό δύο RADAR απεικονίσεων. Η μια κεραία αποτελεί πομπό και δέκτη ηλεκτρομαγνητικού παλμού και η άλλη κεραία είναι μόνο δέκτης. Μια τέτοια περίπτωση αποτέλεσε η αποστολή του διαστημικού λεωφορείου (Shuttle Radar Topographic Mission, SRTM) που μετέφερε ένα ειδικό μηχανισμό δύο κεραιών που χρησιμοποιήθηκαν σε μια εντεκαήμερη πτήση το 2000, για τη λεπτομερή χαρτογράφηση του 80% του πλανήτη από μετρήσεις SAR (Δεληκαράογλου, 2005).
- Επαναληπτική συμβολομετρία. Σε αυτή την περίπτωση χρησιμοποιείται μόνο μια κεραία σε δύο διαφορετικές θέσεις. Δηλαδή, η πλατφόρμα του αισθητήρα πρέπει να περάσει πάνω από την ίδια περιοχή ενδιαφέροντος στην ίδια κατεύθυνση κατά μήκος της ίδιας τροχιάς ή μιας παράλληλης στην πρώτη. Μια ειδική τέτοια περίπτωση είναι όταν γίνεται ταυτόχρονη χρήση δύο δορυφόρων που κινούνται σε τροχιές "σχηματισμού" όπου οι δορυφόροι κινούνται σε μικρές προκαθορισμένες αποστάσεις μεταξύ τους στην ίδια ή σε ελαφρά παράλληλες τροχιές (π.χ. στην περίπτωση των δορυφόρων ERS-1 και ERS-2 ή ERS-2 και ENVISAT) (Δεληκαράογλου, 2005).
- Διαφορική συμβολομετρία (Differential Interferometry ή inSAR). Σε αυτή την περίπτωση γίνεται χρήση δύο εικόνων SAR σε συνδυασμό με ένα λεπτομερές ΨΜΕ της περιοχής ή περισσότερων των δύο εικόνων προκειμένου να αφαιρεθεί η τοπογραφία της περιοχής και να παραμείνουν μόνο οι αλλαγές που συνέβησαν. Χρησιμοποιείται για να ανιχνεύσει πολύ μικρές υψομετρικές αλλαγές (της τάξης ±1 cm ή λιγότερο) γεωδυναμικών φαινομένων όπως η μετακίνηση παγετώνων, οι σεισμοί, τα ηφαίστεια, οι κατολισθήσεις, η εξόρυξη ορυκτού πλούτου κ.α.

2.1.5.4. Συμβολομετρική διαδικασία

Ως συμβολομετρική διαδικασία καλείται το σύνολο των βημάτων που πρέπει να εκτελεστούν για την παραγωγή υψομέτρων και επομένως τη δημιουργία ΨΜΕ.

- Υπολογισμός διανύσματος βάσης (Baseline estimation): Διάνυσμα βάσης καλείται η απόσταση μεταξύ των δύο θέσεων του αισθητήρα SAR λόγω των δύο διαφορετικών λήψεων. Όσο αυξάνεται το διάνυσμα βάσης μεταξύ των λήψεων, τόσο αυξάνεται η αβεβαιότητα προσδιορισμού του υψομέτρου. Το μήκος του διανύσματος βάσης αποτελεί ένα μέτρο της αναμενόμενης συνάφειας των δύο SAR απεικονίσεων.
- Φασματική επεξεργασία (Filtering): Η επεξεργασία γίνεται και στις δυο κατευθύνσεις (αζιμούθιο, πλάγια διεύθυνση) και περιλαμβάνει το φιλτράρισμα της φασματικής μετατόπισης και του κοινού εύρους της συχνότητας Doppler.
- Συμπροσαρμογή απεικονίσεων (Coregistration): Κατά τη συμπροσαρμογή η δευτερεύουσα απεικόνιση καλείται να αποκτήσει την ίδια γεωμετρία με την κύρια απεικόνιση. Η υλοποίησή της εξασφαλίζει ότι κάθε αντικείμενο στο έδαφος αντιστοιχεί στο ίδιο εικονοστοιχείο των δύο SAR απεικονίσεων.
- Δημιουργία διαγράμματος κροσσών συμβολής (Συμβολόγραμμα-Interferogram):
 Δημιουργείται πολλαπλασιάζοντας το κάθε εικονοστοιχείο της μιας εικόνας με τον συζυγή μιγαδικό της άλλης. Οι κροσσοί συμβολής είναι οι γεωμετρικοί τόποι των σημείων που έχουν ίδια τιμή φάσης στην εικόνα και καταγράφονται ως τιμές στο διάστημα [0,2π].
- Αφαίρεση του όρου της επίπεδης γης (Flat earth removal): Αφαιρείται ο όρος της επίπεδης γης με αποτέλεσμα την εξομαλυμένη συμβολομετρική φάση. Το στάδιο αυτό είναι σημαντικό κυρίως για τον μετέπειτα σωστό μετασχηματισμό της φάσης σε υψόμετρο.
- Φιλτράρισμα του συμβολογράμματος (Adaptive filtering): Η χρήση φίλτρου έχει ως σκοπό τη βελτίωση της ευκρίνειας των κροσσών. Συνήθως το φιλτράρισμα γίνεται με χρήση κατάλληλου μετασχηματισμού Fourier. Είναι απαραίτητο για την απομάκρυνση του θορύβου που υπάρχει λόγω του φαινομένου της κηλίδωσης, της αποσυσχέτισης των απεικονίσεων και του θορύβου που προκαλείται από το RADAR.
- Αποκατάσταση της φάσης (Phase unwrapping): Στο στάδιο αυτό γίνεται αποκατάσταση των ακέραιων κύκλων (2π) που χάθηκαν κατά τη δημιουργία του συμβολογράμματος.

- Μετατροπή της φάσης σε υψόμετρο (Phase to height conversion): Η μετατροπή απαιτεί την ακριβή γνώση των τροχιακών παραμέτρων και τον επαναπροσδιορισμό του διανύσματος της βάσης. Το υψόμετρο που προκύπτει είναι το σχετικό υψόμετρο.
- Γεωκωδικοποίηση (Geocoding): Στο τελευταίο στάδιο της συμβολομετρίας μετατρέπεται η απεικόνιση SAR από τη γεωμετρία που ήδη έχει σε μια χαρτογραφική προβολή.

Τα τελευταία χρόνια η ραγδαία ανάπτυξη της τεχνολογίας της Συμβολομετρίας SAR έχει συμβάλλει καθοριστικά στην παραγωγή ψηφιακών μοντέλων εδάφους υψηλής ακρίβειας και διακριτικότητας. Η εικόνα 2-9 δείχνει πώς ένα ζεύγος εικόνων από τους δίδυμους δορυφόρους ERS χρησιμοποιήθηκαν για τη δημιουργία ΨΜΕ του ηφαιστείου Αίτνα στη Σικελία της Ιταλίας.

Εικόνα 2-9: Συμβολομετρία radar για την παραγωγή Ψηφιακών Μοντέλων Εδάφους

Πηγή:<u>http://www.esa.int/spaceinimages/Images/2002/10/Radar interferometry to produce Digital Elevation</u> Models

2.1.6. Μη Επανδρωμένα Ιπτάμενα Οχήματα (UAVs)

Τα μη επανδρωμένα συστήματα λήψης εικόνων συνιστούν ένα πολύτιμο εργαλείο για την απόκτηση δεδομένων και τη χρήση τους για επιστημονικούς σκοπούς. Ειδικότερα, η ανάγκη για χρήση αυτόνομων συστημάτων, που θα αντικαθιστούν τον ανθρώπινο παράγοντα, έχει οδηγήσει στην ανάπτυξη πλατφορμών ικανών να συμμετέχουν σε πλήθος εφαρμογών και με τη βοήθεια εξελιγμένων αισθητήρων να συλλέγουν δεδομένα υψηλής φασματικής, ραδιομετρικής και χωρικής ανάλυσης.

Η σύγχρονη φωτογραμμετρία και τηλεπισκόπηση αναγνωρίζει τα συστήματα αυτά ως μια πηγή συλλογής δεδομένων για τον έλεγχο, τη χαρτογράφηση και την τρισδιάστατη μοντελοποίηση της γήινης επιφάνειας και των αντικειμένων της. Μια από αυτές τις εφαρμογές είναι και η δημιουργία ενός ψηφιακού μοντέλου εδάφους μέσω των μετρήσεων ακριβείας που παρέχουν οι αισθητήρες που ενσωματώνονται στις σύγχρονες πλατφόρμες UAV (Unmanned Aerial Vehicle).

Οι παράγοντες που μπορεί να επηρεάσουν την ακρίβεια της μεθόδου κατά τη δημιουργία ενός τρισδιάστατου μοντέλου εδάφους ποικίλουν. Τέτοιοι παράγοντες είναι το ύψος πτήσης του UAV, ο αριθμός επίγειων σημείων ελέγχου, το ανάγλυφο της περιοχής, ο φακός της κάμερας που λαμβάνονται οι φωτογραφίες, το λογισμικό επεξεργασίας των εικόνων. Θα πρέπει ωστόσο να τονιστεί πως ο σπουδαιότερος παράγοντας για την επίτευξη υψηλών ακριβειών κατά τη δημιουργία ενός τους. Ωστόσο, η μέθοδος της απευθείας γεωαναφοράς των εικόνων UAV, παρά τη χαμηλή ακρίβεια, έχει αποδειχθεί χρήσιμη σε περιπτώσεις έκτακτης χαρτογράφησης, όπου ο επίγειος έλεγχος δεν είναι εφικτός.

Εικόνα 2-10: Δημιουργία ΨΜΕ με τη χρήση UAV

Πηγή: https://www.slideshare.net/UASColorado/unmanned-aerial-systems-for-precision-mapping

2.2. Έλεγχος ποιότητας ψηφιακών μοντέλων εδάφους

Η ποιότητα ενός ψηφιακού μοντέλου εδάφους καθορίζεται από την ακρίβεια της οριζοντιογραφικής και υψομετρικής θέσης για κάθε σημείο της επιφάνειας αναφοράς. Επίσης η ποιότητα ενός τέτοιου μοντέλου εξαρτάται από ένα σύνολο παραμέτρων όπως είναι η μορφολογία του εδάφους, η μέθοδος συλλογής δεδομένων, οι αλγόριθμοι που χρησιμοποιούνται για την επεξεργασία των δεδομένων και η ανάλυση του τελικού προϊόντος που παράγεται. Ο καθορισμός των παραπάνω παραμέτρων, εξαρτάται κάθε φορά από την απαιτούμενη ποιότητα, το κόστος και τα μέσα που διατίθενται, ανάλογα πάντα με τον σκοπό που καλείται να εξυπηρετήσει το ψηφιακό μοντέλο εδάφους.

2.2.1. Σφάλματα υψομετρικών δεδομένων

Ως σφάλμα ορίζεται η διαφορά της μέτρησης από την άγνωστη αληθινή τιμή. Τα υψομετρικά δεδομένα, όπως και κάθε είδους δεδομένα, εμφανίζουν τριών ειδών σφάλματα:

- Τα χονδροειδή σφάλματα, τα οποία οφείλονται σε ανθρώπινα λάθη και προκαλούνται από εσφαλμένες παρατηρήσεις, λάθος καταγραφή στοιχείων κατά τη ψηφιοποίηση των ισοϋψών καμπυλών, αναγραμματισμούς ή εσφαλμένους συσχετισμούς.
- Τα συστηματικά σφάλματα, τα οποία εισάγονται λόγω των διαδικασιών και των συστημάτων και ακολουθούν κάποιο συγκεκριμένο μοτίβο εμφάνισης. Τα συστηματικά σφάλματα εμφανίζονται στο ΨΜΕ ως μια γενική τάση. Σε αυτή τη κατηγορία σφαλμάτων περιλαμβάνονται κατακόρυφες υψομετρικές μετατοπίσεις και φωτοερμηνευτικά σφάλματα που οφείλονται στην ύπαρξη κτιρίων, σκιών και δένδρων.
- Τα τυχαία σφάλματα, τα οποία κατά κανόνα δεν προσδιορίζονται. Αποτελούν απρόβλεπτα σφάλματα που η συμπεριφορά τους είναι δυνατό να περιγραφεί με τη βοήθεια της θεωρίας των πιθανοτήτων.

Κατά τη διάρκεια της επεξεργασίας τα χονδροειδή σφάλματα πρέπει να εντοπίζονται και να απομακρύνονται. Τα συστηματικά σφάλματα θα πρέπει να μειώνονται και εάν είναι δυνατό να εξαλείφονται. Από τη δεκαετία του 1980, η θεωρία μετάδοσης των σφαλμάτων έχει χρησιμοποιηθεί ως το κυρίαρχο πλαίσιο για την αξιολόγηση της ακρίβειας των ΨΜΕ. Ωστόσο, η υπόθεση ότι τα σφάλματα σε ένα σημείο του ΨΜΕ είναι τυχαία και ανεξάρτητα μεταξύ τους έρχεται σε αντίθεση με την εμπειρική παρατήρηση ότι τα σφάλματα των ΨΜΕ δεν είναι τυχαία αλλά σχετίζονται με τη μορφολογία του εδάφους, την πυκνότητα δειγματοληψίας και τη μέθοδο παρεμβολής που εφαρμόστηκε για την παραγωγή τους (Hu, Liu, & Hu, 2009).

2.2.2. Στατιστικά μεγέθη

Για την αξιολόγηση του ΨΜΕ, γίνεται έλεγχος της ορθότητας, της ακρίβειας και κατά συνέπεια της ποιότητας του ΨΜΕ. Το κύριο μέτρο ποιότητας είναι η ακρίβεια των τιμών των μετρήσεων. Η σχετική ακρίβεια (relative) είναι η ακρίβεια μεταξύ των τιμών δεδομένων στο ίδιο σύνολο δεδομένων. Η απόλυτη ακρίβεια (absolute) είναι η ακρίβεια που προκύπτει από τη σύγκριση των δεδομένων με άλλα δεδομένα αναφοράς στο ίδιο πάντοτε σύστημα αναφοράς.

Τα συστηματικά σφάλματα επαναλαμβάνονται και είναι δύσκολο να εντοπισθούν. Μπορούν όμως να απαλειφτούν με κατάλληλη βαθμονόμηση του συστήματος. Τα συστηματικά σφάλματα ορίζουν την ορθότητα της μέτρησης, δηλαδή κατά πόσο οι μετρήσεις είναι κοντά στις πραγματικές τιμές. Η ορθότητα (accuracy) εκφράζει τη μέγιστη απόκλιση της μετρούμενης τιμής ενός μεγέθους από την άγνωστη αληθινή τιμή του. Τα τυχαία σφάλματα ορίζουν την ακρίβεια επανάληψης (precision) της μέτρησης, δηλαδή το μέγεθος της μεταβολής των τιμών μέτρησης σε κάθε επανάληψη της μέτρησης. Η έννοια της ορθότητας είναι διαφορετική από την έννοια της ακρίβειας και σε καμία περίπτωση υψηλή ορθότητα μετρήσεων δε συνεπάγεται και υψηλή ακρίβεια ή το αντίθετο. (Σάλτας, 2015)

Εικόνα 2-11: Διαφορετικές περιπτώσεις που απεικονίζουν σχηματικά την ορθότητα και την ακρίβεια μετρούμενων τιμών ενός μεγέθους. (α) Μετρήσεις ορθές υψηλής ακρίβειας, (β) μη ορθές μετρήσεις υψηλής ακρίβειας, (γ) μετρήσεις ορθές χαμηλής ακρίβειας, (δ) μη ορθές μετρήσεις χαμηλής ακρίβειας

Πηγή: https://repository.kallipos.gr/bitstream/11419/4613/1/Chapter_2.pdf

Ο πιο συνήθης τρόπος ελέγχου της ποιότητας του ΨΜΕ είναι με τη χρήση σημείων γνωστών συντεταγμένων. Η ακρίβεια υπολογίζεται με σύγκριση μεταξύ του υψομέτρου του σημείου γνωστών συντεταγμένων (τριγωνομετρικά σημεία, φωτοσταθερά) και του αντίστοιχου σημείου στο ΨΜΕ. Τα σημεία γνωστών συντεταγμένων τα οποία θεωρούνται σημεία ελέγχου πρέπει να είναι ομοιόμορφα κατανεμημένα στην επιφάνεια που καλύπτει το ΨΜΕ και τα υψόμετρα τους να είναι αντιπροσωπευτικά του εύρους της υψομετρικής πληροφορίας. Η ακρίβεια των σημείων ελέγχου θα πρέπει να είναι τουλάχιστον τρεις φορές καλύτερη από την επιδιωκόμενη ακρίβεια του ΨΜΕ για μια αυστηρή εκτίμηση της ποιότητάς του (Spatial Analytix, 2016).

Η χρήση ενός ΨΜΕ αναφοράς για την αξιολόγηση άλλων ΨΜΕ, είναι μια εναλλακτική προσέγγιση καθώς μας παρέχει τη δυνατότητα της πλήρους σύγκρισης μεταξύ των ΨΜΕ. Το ΨΜΕ αναφοράς θα πρέπει από στατιστικής άποψης να είναι τουλάχιστον μιας τάξης καλύτερης ακρίβειας από αυτό που αξιολογείται. Τα ΨΜΕ αναφοράς που μπορούν να χρησιμοποιηθούν για αυτό το σκοπό μπορεί να προέρχονται από οποιαδήποτε πηγή όπως LIDAR δεδομένα από στερεοαπόδοση αεροφωτογραφιών ή δορυφορικών εικόνων, από αυτοματοποιημένες μεθόδους ψηφιακής φωτογραμμετρίας και τηλεπισκόπησης και από ψηφιοποίηση ισοϋψών καμπυλών.

Από τη σύγκριση του υπό εξέταση ΨΜΕ με τα δεδομένα αναφοράς προκύπτουν υπόλοιπα. Τα υπόλοιπα αυτά είναι οι υψομετρικές διαφορές μεταξύ των πραγματικών σημείων και της επιφάνειας του ΨΜΕ, ενώ τα αποτελέσματα είναι σημειακά. Από τα αποτελέσματα αυτά, υπολογίζονται στατιστικά μεγέθη, που συμβάλλουν στη εκτίμηση της ακρίβειας και ποιότητας των υπό έλεγχο ΨΜΕ.

Τα στατιστικά μεγέθη που πρέπει να εξετάζονται κατά την αξιολόγηση της ακρίβειας είναι το μέσο τετραγωνικό σφάλμα που εξυπηρετεί ως μέτρο την συνολική ορθότητα του αποτελέσματος, ενώ η τυπική απόκλιση χρησιμοποιείται ως μέτρο ακρίβειας.

Το μέσο τετραγωνικό σφάλμα (RMSE) έχει τιμή μεγαλύτερη από αυτή της τυπικής απόκλισης καθώς περιλαμβάνει τυχαία και συστηματικά σφάλματα, σε αντίθεση με την τυπική απόκλιση που αναφέρεται μόνο σε τυχαία. Αν οι τιμές των δύο μεγεθών είναι ίσες τότε δεν υπάρχουν συστηματικά σφάλματα στο υπό εξέταση ΨΜΕ. Το RMSE θεωρείται το γενικό σφάλμα του ΨΜΕ και υπολογίζεται από τον τύπο RMSE= $\sqrt{\Sigma_{el}}$ ($\Delta z^2/n$)

όπου Δz οι υψομετρικές διαφορές και n το σύνολο των παρατηρήσεων.

Η τυπική απόκλιση είναι η συνηθέστερη μέθοδος εκτίμησης της ακρίβειας και υποδηλώνει ότι το 68% περίπου των σφαλμάτων εντοπίζεται στην περιοχή $\pm \sigma$.

Η τυπική απόκλιση υπολογίζεται από τον τύπο :

$$\sigma = \sqrt{\sum_{i=1}^{n} (\Delta z - \dot{z})^2 / n - 1}$$

όπου Δz οι υψομετρικές διαφορές, ż ο μέσος όρος των παρατηρήσεων και n το σύνολο των παρατηρήσεων.

Επιπρόσθετα, θα πρέπει να εξετάζονται κάποια επιπλέον στατιστικά μεγέθη. Ο μέσος όρος καταδεικνύει την ύπαρξη ή μη συστηματικού σφάλματος. Στην περίπτωση που ο μέσος όρος των διαφορών είναι πολύ κοντά στο μηδέν, τότε θεωρείται ότι δεν υπάρχει συστηματικό σφάλμα στο υπό εξέταση ΨΜΕ. Η μέγιστη (max) και ελάχιστη (min) τιμή των διαφορών είναι καθώς ένα ακόμη μέτρο της ποιότητας των δεδομένων το οποίο θα πρέπει να εξετάζεται καθώς θεωρούνται δείκτες ύπαρξης μεμονωμένων χονδροειδών σφαλμάτων, αν και αυτό δεν σημαίνει απαραίτητα ότι οι αποκλίσεις αυτές οφείλονται σε λανθασμένες παρατηρήσεις.

Τέλος, σύνηθες στατιστικό μέτρο που χρησιμοποιείται είναι η ακρίβεια (γραμμικό σφάλμα) η οποία προσδιορίζεται πολλαπλασιάζοντας την τιμή του RMSE με ένα συντελεστή 1.96 σύμφωνα με το National Standard for Spatial Data Accuracy (NSSDA) του FGDC (Federal Geographic Data Committee), για επίπεδο εμπιστοσύνης 95% (LE95) (Ioannidis, Xinogalas, & Soile, 2013). Όλα τα παραπάνω στατιστικά μεγέθη συμβάλλουν καθοριστικά στην εξαγωγή σημαντικών συμπερασμάτων για την καταλληλότητα ενός ΨΜΕ για την εφαρμογή για την οποία προορίζεται.

Δύο παράγωγα προϊόντα του ΨΜΕ είναι η κλίση του εδάφους και ο προσανατολισμός. Κατά την αξιολόγηση ενός ΨΜΕ τα προϊόντα αυτά θα πρέπει να εξετάζονται σε σχέση με τα σφάλματα που εμφανίζονται στο ΨΜΕ, καθώς υπάρχει συσχέτιση μεταξύ αυτών. Η κλίση (slope) εκφράζει το μέγιστο ρυθμό μεταβολής του υψομέτρου ενώ ο προσανατολισμός της κλίσης (aspect) εκφράζει τη διεύθυνση του μέγιστου ρυθμού μεταβολής του υψομέτρου. Ο υπολογισμός των κλίσεων και του προσανατολισμού, παρέχει σημαντικά στοιχεία για τον τύπο του εδάφους και για το πόσο η επιφάνεια του ΨΜΕ ανταποκρίνεται στο πραγματικό ανάγλυφο.

ΚΕΦΑΛΑΙΟ 3

3. ΠΗΓΕΣ ΠΑΓΚΟΣΜΙΩΝ ΨΗΦΙΑΚΩΝ ΜΟΝΤΕΛΩΝ (GDEM)

Τα σύγχρονα ψηφιακά μοντέλα εδάφους παγκόσμιας κάλυψης και υψηλής ακρίβειας δημιουργήθηκαν τις τελευταίες δεκαετίες με σκοπό να προσφέρουν τρισδιάστατη πληροφορία σχεδόν για το σύνολο της γήινης επιφάνειας. Τα μοντέλα αυτά, ανάλογα με την ποιότητα και την ακρίβειά τους αποτελούν χρήσιμο εργαλείο για πολλές εφαρμογές. Δύο πολύ σημαντικές πηγές παγκόσμιων ψηφιακών μοντέλων εδάφους είναι η αποστολή SRTM και ο δορυφόρος ASTER.

3.1. Δεδομένα αποστολής SRTM

Η διεθνής διαστημική αποστολή SRTM (Shuttle Radar Topography Mission) εφαρμόζοντας την τεχνολογία της συμβολομετρίας συνθετικού ανοίγματος είχε σαν στόχο την δημιουργία ενός ψηφιακού μοντέλου εδάφους με την μεγαλύτερη, έως τότε, διακριτική ικανότητα. Η αποστολή πραγματοποιήθηκε το Φεβρουάριο του 2000 με την συνεργασία τεσσάρων υπηρεσιών, της Εθνικής Υπηρεσίας Αεροναυτικής και Διαστήματος των ΗΠΑ -NASA, της Εθνικής Υπηρεσίας DLR και της υπηρεσίας διαστήματος της Ιταλίας ASI.

Η αποστολή SRTM έγινε με τη συμμετοχή του διαστημικού λεωφορείου Endeavour και διήρκησε 11 μέρες καταγράφοντας με επιτυχία δεδομένα της επιφάνειας της γης μεταξύ των παραλλήλων 60°N και 57°S καλύπτοντας περίπου το 80% της γήινης επιφάνειας (Rabus, Eineder, Roth, & Bamler, 2003). Στο διαστημικό λεωφορείο, το οποίο αποτελούσε το κύριο μέρος του δορυφορικού σχηματισμού όπως επίσης και στην άκρη ενός παρατεταμένου αναδιπλωμένου βραχίονα μήκους 60 μ. τοποθετήθηκαν δύο κεραίες radar. Τα radar είχαν την δυνατότητα να λαμβάνουν σήματα στις φασματικές ζώνες C Band και X Band, ενώ το radar που είχε τοποθετηθεί στο κύριο μέρος του δορυφορικού σχηματισμού, εκτός από την δυνατότητα λήψης, είχε και την δυνατότητα εκπομπής σημάτων.

Χρησιμοποιώντας τις αρχές της συμβολομετρίας επετεύχθη με ακρίβεια και αποτελεσματικότητα η πρόσβαση στην τρίτη διάσταση. Υποθέτοντας ότι η θέση των δύο κεραιών ήταν γνωστή και μετρώντας την διαφορά φάσης των λαμβανόμενων σημάτων και διάφορες άλλες συστηματικές επιδράσεις για κάθε λήψη, ήταν εφικτός ο υπολογισμός του υψομέτρου στα σημεία πρόσπτωσης της ακτινοβολίας. Το πλάτος των λωρίδων σάρωσης του C radar ήταν ίσο με 225 km ενώ του X radar ήταν ίσο με 50 km (directory.eoportal.org). Αυτές οι λωρίδες προσέφεραν συνεχή κάλυψη σε υψηλότερα γεωγραφικά πλάτη (Foni & Seal, 2004).

Εικόνα 3-1: Γενική διάταξη του διαστημικού λεωφορείου Endeavour κατά την αποστολή SRTM Πηγή: <u>https://directory.eoportal.org/web/eoportal/satellite-missions/s/srtm</u>

Η μέθοδος συμβολομετρίας που εφαρμόστηκε ήταν αυτή της μονής διέλευσης, σε αντίθεση με την αντίστοιχη της επαναληπτικής διέλευσης, η οποία παρουσίαζε σοβαρά μειονεκτήματα. Τα μειονεκτήματα αυτά οφείλονταν στη μεταβολή των ατμοσφαιρικών συνθηκών, στην αβεβαιότητα της δορυφορικής τροχιάς και στην αποσυσχέτιση που παρουσίαζαν οι ανακλώμενες ακτίνες από διέλευση σε διέλευση, δημιουργώντας έτσι προβλήματα στην αυτοματοποίηση της υπολογιστικής διαδικασίας με επιπτώσεις στην τελική ποιότητα του παραγόμενου προϊόντος (Farr, et al., 2007).

Η σάρωση της γήινης επιφάνειας θα ολοκλήρωνε έναν κύκλο επανάληψης με την συμπλήρωση 159 περιστροφών του δορυφορικού σχηματισμού. Η αποστολή ήταν επιτυχής, με εξαίρεση την απώλεια δεδομένων για κάποιες περιοχές της Βόρειας Αμερικής, εξαιτίας της απώλειας 10 τροχιών. Με το πέρας της αποστολής, το 99.96% της συνολικής περιοχής είχε καταγραφεί από το C radar, ενώ το 40% καλύφθηκε επίσης από το X radar. Τα δεδομένα από το X radar χρησιμοποιήθηκαν για τη δημιουργία ΨΜΕ ανάλυσης 1 arc- sec (περίπου 30μ) για την περιοχή των ΗΠΑ ενώ τα δεδομένα από το C radar χρησιμοποιήθηκαν για τη δημιουργία ΨΜΕ ανάλυσης 3 arc- sec (περίπου 90μ) το οποίο κάλυπτε σχεδόν όλη τη γήινη επιφάνεια.

Συνολικά, το 99.96% της συνολικής περιοχής καταγράφηκε τουλάχιστον μία φορά, το 94.59% αντίστοιχα, σαρώθηκε τουλάχιστον δύο φορές και περίπου το 50% της περιοχής καταγράφηκε τρείς ή περισσότερες φορές.

Τα χαρτογραφικά προϊόντα που προέρχονται από δεδομένα SRTM κατανέμονται σε ένα πλέγμα καννάβου ανάλυσης 1×1 arc-second (περίπου 30×30m) με:

- γραμμικό κατακόρυφο απόλυτο υψομετρικό σφάλμα μικρότερο από 16 m
- γραμμικό κατακόρυφο σχετικό υψομετρικό σφάλμα μικρότερο από 10 m
- κυκλικό απόλυτο γεωγραφικό σφάλμα μικρότερο από 20 m
- κυκλικό σχετικό γεωγραφικό σφάλμα μικρότερο από 15 m

Το σχετικό υψομετρικό σφάλμα των δεδομένων SRTM που προέρχονται από την X band έπρεπε να είναι μικρότερο από 6 m. Όλα τα παραπάνω σφάλματα αναφέρονται για επίπεδο εμπιστοσύνης 90% σύμφωνα με τα πρότυπα του NMAS (National Map Accuracy Standards) (Farr, et al., 2007).

Εικόνα 3-3: Η αποστολή SRTM Πηγή: <u>http://www.digital-geography.com/srtm-1-1-arc-second-now-available-large-global-coverage/</u>

3.1.1. Πηγές σφαλμάτων SRTM

Τα συμβολομετρικά σφάλματα μπορεί να χωριστούν σε στατικά και χρονικά μεταβαλλόμενα σφάλματα. Στατικά σφάλματα είναι αυτά που θεωρούνται σταθερά κατά τη συλλογή των δεδομένων. Δεδομένου ότι αυτά τα σφάλματα είναι σταθερά, μπορούν να βαθμονομούνται με τη βοήθεια φυσικών ή τεχνητών στόχων γνωστής θέσης και υψομέτρου. Τα χρονικά μεταβαλλόμενα σφάλματα οφείλονται στην κίνηση του συμβολομετρικού ιστού και στις αλλαγές στο σύστημα διεύθυνσης της δέσμης. Αυτά τα σφάλματα μπορούν να αντισταθμιστούν εν μέρει από τη δυναμική βαθμονόμηση και τη δημιουργία μωσαϊκών (Rodriguez, et al., 2005).

Παρακάτω αναφέρονται αναλυτικά, οι κύριες πηγές δημιουργίας των σφαλμάτων, η μέθοδος βαθμονόμησης που χρησιμοποιείται για την εκτίμησή τους καθώς και το μέγεθος του εναπομένοντος σφάλματος μετά τη βαθμονόμηση.

Σφάλματα περιστροφής της βάσης: Ένα σφάλμα στην γωνία περιστροφής της βάσης θα προκαλέσει σφάλμα κλίσης εγκάρσιας τροχιάς στην εκτιμώμενη τοπογραφία. Το όργανο SRTM χρησιμοποίησε ένα εξελιγμένο σύστημα μετρολογίας σε συνδυασμό με ένα φίλτρο για την εκτίμηση της θέσης της βάσης. Οι κινήσεις της βάσης οφείλονται στη φυσική ταλάντωση του ιστού. Αυτές οι κινήσεις μπορούν να μοντελοποιηθούν και να αφαιρεθούν έτσι ώστε να μην αποτελούν κυρίαρχη πηγή σφάλματος. Επιπλέον η θέση της βάσης επηρεάζεται από τους ελιγμούς του διαστημικού λεωφορείου. Οι μέγιστες τιμές των υπολειμμάτων είναι ~±10 m.

Σφάλματα φάσης: Τα σφάλματα αυτά οφείλονται σε δύο παράγοντες, στο θερμικό ή διαφορικό θόρυβο του στίγματος και στις συστηματικές διαφορές φάσης λόγω των αναντιστοιχιών των κεραιών ή της μετατόπισης των ηλεκτρονικών του οργάνου. Το αποτέλεσμα του θορύβου είναι η δημιουργία τυχαίων σφαλμάτων στην εκτίμηση των υψομέτρων τα οποία εμφανίζουν μικρή χωρική συσχέτιση και δεν μπορούν να αντισταθμιστούν από εργασίες πεδίου. Τα συστηματικά σφάλματα φάσης δημιουργούνται λόγω της διαφοράς των χαρακτηριστικών φάσης κάθε κεραίας. Η διόρθωση της φάσης δεν παρατηρήθηκε να αλλάζει σημαντικά κατά τη διάρκεια της αποστολής καθώς οι εκτιμώμενες μεταβολές στη διόρθωση των σφαλμάτων των υψομέτρων ήταν κάτω από 10cm.

Σφάλματα λόγω της απόκλισης δέσμης: Στα τμήματα αλληλοεπικάλυψης των δεσμών παρουσιάστηκαν συστηματικές διαφορές φάσης οι οποίες δημιούργησαν σφάλματα στα υψόμετρα. Οι διαφορές αυτές ήταν χρονικά μεταβαλλόμενες δεδομένου ότι οι γωνίες διεύθυνσης δέσμης άλλαζαν σύμφωνα με την τοπογραφία για τη διατήρηση του πλάτους της λωρίδας. Δεδομένου ότι το όργανο έχει σχεδιαστεί έτσι ώστε όλες οι δέσμες να επικαλύπτονται, η βαθμονόμηση φάσης κατά μήκος της τροχιάς μπορεί να εκτιμηθεί και να εφαρμοστεί στα δεδομένα διασφαλίζοντας όλες οι δέσμες να έχουν σταθερό σφάλμα φάσης. Το υπολειμματικό σφάλμα λόγω αυτής της αναντιστοιχίας φάσης ήταν αμελητέο (κάτω από 10 cm) μετά τη βαθμονόμηση.

Χρονικά σφάλματα και σφάλματα θέσης: Τα σφάλματα αυτά οφείλονται σε καθυστερήσεις του συστήματος ή σε σφάλματα στην εκτιμώμενη θέση της βάσης. Βαθμονομούνται με τη χρήση στόχων των οποίων η θέση είναι γνωστή και μπορούν να εντοπιστούν σε εικόνες radar ή μέσω της τοπογραφίας (Rodriguez, et al., 2005).

3.1.2. Εξάλειψη των στατικών και δυναμικών σφαλμάτων

Τα εναπομένοντα σφάλματα που περιγράφονται παραπάνω μπορούν να αντιμετωπιστούν με τρεις τρόπους:

Κατά μήκος βαθμονόμηση: Εκτιμώνται δέσμη προς δέσμη οι ασυνέχειες των υψομέτρων.

Δυναμική βαθμονόμηση: Με τη βοήθεια της τοπογραφίας στους ωκεανούς (συμπεριλαμβανόμενων των παλιρροϊκών φαινομένων) εκτιμώνται οι στατικές και χρονικά μεταβαλλόμενες εναπομείναντες διαφορές φάσης και τα σφάλματα λόγω περιστροφής της βάσης και δημιουργούνται σημεία ελέγχου για τους ωκεανούς.

Μωσαϊκό: Με τη χρήση των δεδομένων βαθμονόμησης σε συνδυασμό με σημεία γνωστών συντεταγμένων εφαρμόζεται σε κάθε ήπειρο συνόρθωση σταθμισμένων ελαχίστων τετραγώνων για τη μείωση των υπολειμματικών υψομετρικών σφαλμάτων. Με αυτή τη διόρθωση εκτιμώνται τα σφάλματα φάσης του συστήματος και διορθώνονται η θέση και το υψόμετρο των δεδομένων. Με την προσαρμογή συνεπάγεται ότι τα εναπομένοντα σφάλματα θα έχουν κάποια συσχέτιση σε μεγάλες κλίμακες. Λόγω έλλειψης μιας εκτεταμένης βάσης δεδομένων GCPs στις ηπείρους, τα σφάλματα είναι περιορισμένα στους ωκεανούς και μεγαλύτερα στις ηπείρους (Rodriguez, et al., 2005).

3.1.3. Εκδόσεις SRTM

Το αποτέλεσμα της διαστημικής αποστολής SRTM ήταν η ανάπτυξη ενός ψηφιακού μοντέλου εδάφους, το οποίο εμφανίζεται στην διεθνή βιβλιογραφία με τον όρο «SRTM DEM», υπό την ευθύνη του ομοσπονδιακού κέντρου έρευνας και ανάπτυξης JPL (Jet Propulsion Laboratory). Τα SRTM DEMs διακριτικής ικανότητας 3 arcsec (~ 90 m) είναι διαθέσιμα στο κοινό μέσω του διαδικτύου κυρίως από τη NASA και τον διεθνή οργανισμό USGS.

Η 1^η έκδοση (version 1) του ψηφιακού μοντέλου εδάφους SRTM συναντάται στη διεθνή βιβλιογραφία με τον όρο «unfinished data». Αποτελείται από τα αρχικά ψηφιακά υψομετρικά μοντέλα. Αυτά τα δεδομένα είναι χωρίς διορθώσεις και περιέχουν εσφαλμένα σημεία δεδομένων σε περιοχές με χαμηλή οπισθοσκέδαση radar όπως υδάτινες μάζες (Mouratidis, Briole, & Katsambalos, 2010). Επίσης σε αρκετές ορεινές περιοχές παρουσιάστηκαν κενά δεδομένων (voids), τα οποία θα μπορούσαν να συμπληρωθούν με τεχνικές παρεμβολής από γειτονικά σημεία, όπως και πραγματοποιήθηκε στις μεταγενέστερες εκδόσεις του (Dowding, Kuuskivi, & Li, 2004).

Η 2^η έκδοση (version 2), γνωστή ως «finished version» είναι το αποτέλεσμα μιας σημαντικής προσπάθειας καθορισμού υδάτινων μαζών και ακτογραμμών και της απουσίας εξάρσεων και βυθίσεων (single pixel errors), αν και σε ορισμένες περιοχές τα κενά δεδομένων εξακολουθούν να υπάρχουν. Αυτά τα κενά εμφανίζονται κυρίως πάνω από υδατικά συστήματα (λίμνες και ποτάμια), περιοχές με κάλυψη χιονιού και σε ορεινές περιοχές (π.χ. τα Ιμαλάια έχουν τη μεγαλύτερη συγκέντρωση των κενών δεδομένων).

Εκτός από τις δύο παραπάνω εκδόσεις SRTM, μια εναλλακτική 3^η έκδοση (version 3) παρέχεται από την κοινοπραξία χωρικών πληροφοριών (CGIAR-CSI) προκειμένου να αντιμετωπιστούν τα προβλήματα που δεν ξεπεράστηκαν κατά την 2^η έκδοση. Αυτό το σύνολο δεδομένων έχει υποστεί μεταεπεξεργασία από τα δεδομένα της NASA για να συμπληρωθούν τα κενά δεδομένων μέσω τεχνικών παρεμβολής. Λόγω ενός συστηματικού σφάλματος που οφειλόταν στην ασαφή κατεύθυνση μετατόπισης του πλέγματος των εικονοστοιχείων (Mouratidis, Briole, & Katsambalos, 2010) η 3^η έκδοση του SRTM DEM αποσύρθηκε από την CGIAR-CSI και αντικαταστάθηκε από μία 4^η έκδοση (version 4) η οποία διατέθηκε στο κοινό το Σεπτέμβριο του 2008. Αυτή η τελευταία έκδοση αντιπροσωπεύει μια σημαντική βελτίωση σε σχέση με τις προηγούμενες εκδόσεις, με τη χρήση νέων αλγορίθμων παρεμβολής και καλύτερα βοηθητικά DEMs.

Το Σεπτέμβριο του 2014 η NASA κυκλοφόρησε μια έκδοση SRTM ψηφιακού υψομετρικού μοντέλου γνωστή ως SRTM Plus ή SRTM NASA Version 3. Η έκδοση SRTM Plus χρησιμοποιεί την 2^η έκδοση όπου η μέθοδος παρεμβολής ήταν επιτυχής προκειμένου να συμπληρωθούν τα κενά δεδομένων. Τα περισσότερα κενά συμπληρώνονται με δεδομένα υψομέτρου από το ASTER GDEM2 και το GMTED2010 το οποίο δημιουργήθηκε από το αμερικανικό Γεωλογικό Ινστιτούτο. Το SRTM Plus παρήχθη υπό το πρόγραμμα της NASA MEaSUREs με διακριτική ικανότητα 1 arcsec (~ 30 m).

https://lpdaac.usgs.gov/sites/default/files/public/measures/docs/NASA_SRTM_V3.pdf

Παρακάτω, σκιασμένες εικόνες από βαθιά διαβρωμένα ηφαιστειογενές έδαφος στη βορειοανατολική Τανζανία καταδεικνύουν τη βελτιωμένη φύση των δεδομένων SRTM υψηλότερης ανάλυσης που κυκλοφόρησε το 2015.

Εικόνα 3-4: Η εικόνα αριστερά με διακριτική ικανότητα 90μ, η εικόνα δεξιά με διακριτική ικανότητα 30μ

Πηγή: <u>https://www2.jpl.nasa.gov/srtm/</u>

3.2. Δεδομένα ραδιόμετρου ASTER

Στα πλαίσια του προγράμματος EOS (Earth Observing Satellites), η NASA έθεσε σε τροχιά στις 18 Δεκεμβρίου, 1999 τον δορυφόρο Terra ο οποίος άρχισε να συλλέγει δεδομένα στις 24 Φεβρουαρίου, 2000. Η εκτόξευση του δορυφόρου Terra σηματοδότησε την έναρξη ενός ολοκληρωμένου προγράμματος για την παρακολούθηση της ηλιακής ακτινοβολίας, της ατμόσφαιρας, τους ωκεανούς και τις ηπείρους από μια ενιαία διαστημική πλατφόρμα. Παρέχει μετρήσεις της παγκόσμιας/εποχιακής κατανομής της παγκόσμιας βιοπαραγωγικότητας της γης και των ωκεανών, των χρήσεων γης, της κάλυψης γης, του χιονιού και του πάγου, εικοσιτετράωρη μέτρηση της θερμοκρασίας στην επιφάνεια της γης, των σύννεφων κ.α. <u>http://cimss.ssec.wisc.edu/satmet/modules/9 global monitor/gm-8.html#tag</u>

Η τροχιά του δορυφόρου είναι ηλιοσύγχρονη με ύψος 705 km, κλίση 98,3 μοίρες από τον Ισημερινό και περίοδο περιστροφής 98,88 λεπτά. Ο χρόνος επαναδιεύλευσης είναι 16 μέρες -233 τροχιές (Περάκης, Φαρασλής, & Μωυσιάδης, 2015).

Ο δορυφόρος Terra φέρει συνολικά πέντε όργανα που είναι τα ακόλουθα:

- ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
- CERES Clouds and the Earth's Radiant Energy System
- MISR Multi-angle Imaging Spectro-Radiometer
- MODIS Moderate-resolution Imaging Spectroradiometer
- MOPITT Measurements Of Pollution In the Troposphere

Εξαιτίας των πέντε οργάνων, ο δορυφόρος Terra έχει τη δυνατότητα να συγκεντρώνει συμπληρωματικές παρατηρήσεις από την επιφάνεια της γης και την ατμόσφαιρα.

Εικόνα 3-5: Ο δορυφόρος Terra του συστήματος παρατήρησης της γης (EOS) Πηγή: <u>http://cimss.ssec.wisc.edu/satmet/modules/9_global_monitor/images/terra_instruments.jpg</u>

Ο δέκτης ASTER έχει την υψηλότερη χωρική ανάλυση από όλα τα όργανα μέτρησης του δορυφόρου (15 έως 90 τετραγωνικά μέτρα) παρέχοντας εικόνες της Γης στο ορατό, εγγύς υπέρυθρο, υπέρυθρο και θερμικό υπέρυθρο του ηλεκτρομαγνητικού φάσματος. Λόγω κυρίως της υψηλής ανάλυσης ο δέκτης ASTER είναι το μόνο όργανο του δορυφόρου Terra που δεν συλλέγει συνεχώς δεδομένα. Οι επιστήμονες μπορούν να αλλάξουν τις ρυθμίσεις συλλογής δεδομένων από τη Γη ανάλογα με το ποιες είναι οι ανάγκες τους, ωστόσο, η ρουτίνα συλλογής δεδομένων είναι μόλις 8 λεπτά κάθε τροχιάς.

3.2.1. Παγκόσμιο ψηφιακό μοντέλο εδάφους (GDEM)

Στις 29 Ιουνίου, 2009, η NASA και το Υπουργείο Οικονομίας, Εμπορίου και Βιομηχανίας (METI) της Ιαπωνίας εξέδωσαν ένα Παγκόσμιο Ψηφιακό Μοντέλο Εδάφους (GDEM) σε χρήστες σε όλο τον κόσμο, χωρίς χρέωση, ως συμβολή του Παγκόσμιου Δικτύου Συστημάτων Γεωσκόπησης (GEOSS). Η 1^η έκδοση του ASTER GDEM (GDEM1) προέκυψε από το συνδυασμό περισσότερων από 1,2 εκατομμύρια ανεξάρτητων, στερεοσκοπικών εικόνων που συλλέχθηκαν μέσω του δέκτη ASTER καλύπτοντας επιφάνειες γης μεταξύ των παραλλήλων 83° N και 83° S. Το GDEM1 είναι διακριτικής ικανότητας 1 arcsec και διατίθεται σε τμήματα (tiles) μεγέθους 1°×1°. Τα δεδομένα αναφέρονται στο γεωδαιτικό σύστημα αναφοράς WGS84 και η ονομαστική του ακρίβεια παρουσιάζεται ίση με 20μ (απόλυτη υψομετρική θέση) και 30μ (απόλυτη οριζόντια θέση) για επίπεδο εμπιστοσύνης 95%. Μια κοινή ομάδα επικύρωσης ΗΠΑ-Ιαπωνίας αξιολόγησε την ακρίβεια του GDEM1, με τη συμβολή μιας ομάδας 20 συνεργατών. Το GDEM1 βρέθηκε να έχει μια συνολική ακρίβεια της τάξης των 20 μέτρων σε επίπεδο εμπιστοσύνης 95%. Η ομάδα διαπίστωσε ακόμη σοβαρά μειονεκτήματα στη διαδικασία δημιουργίας του GDEM1 λόγω των ανωμαλιών που προκαλούνται από τα νέφη κατά την διάρκεια των λήψεων καθώς και συστηματικών αποκλίσεων και αδικαιολόγητων μεταβολών της υψομετρικής πληροφορίας των υδάτινων περιοχών. Επιπλέον διαπιστώθηκαν προβληματικές περιοχές που συμπίπτουν στα όρια των στερεοσκοπικών εικόνων ASTER που χρησιμοποιήθηκαν για την παραγωγή του GDEM1 λόγω της Validation Team, 2011).

Μια δεύτερη έκδοση του ASTER GDEM (GDEM2) εξέδωσαν οι NASA και METI στα μέσα Οκτωβρίου, 2011. Βελτιώσεις στη δημιουργία του GDEM2 επέφεραν οι επιπλέον 260.000 στερεοσκοπικές εικόνες που συλλέχθηκαν μετά την πρώτη έκδοση του ASTER GDEM. Η νέα έκδοση υπόσχεται την βελτίωση της χωρικής ανάλυσης λόγω του μικρότερου μεγέθους του παραθύρου συσχέτισης (5x5 έναντι 9x9 για το GDEM1), την αντικατάσταση και τον περιορισμό των προβληματικών περιοχών καθώς και την υψομετρική ισοστάθμιση των υδάτινων περιοχών που παρουσίαζαν προβλήματα στην προηγούμενη έκδοση (Tachikawa, Hato, Kaku, & Iwasaki, 2011). Επιπλέον μια συστηματική επίδραση της τάξης των -5μ που παρατηρήθηκε στα δεδομένα του GDEM1 απομακρύνθηκε στη νεότερη έκδοση. Όπως και με το GDEM1, η επικύρωση για το GDEM2 διεξήχθη από τους Αμερικανούς και τους Ιάπωνες εταίρους και η ακρίβειά του εκτιμήθηκε στα 17μ. για επίπεδο εμπιστοσύνης 95%.

3.3. Έρευνες σύγκρισης ΨΜΕ στην ελληνική και διεθνή βιβλιογραφία

Πλήθος εργασιών έχουν υπάρξει κατά καιρούς μέσω των οποίων εξετάζεται η ακρίβεια και η ποιότητα των ψηφιακών μοντέλων εδάφους των εκδόσεων SRTM DEM και ASTER GDEM στην Ελλάδα αλλά και σε παγκόσμιο επίπεδο. Παρόλο που τα υψομετρικά τους δεδομένα είναι διαθέσιμα δωρεάν και σχεδόν χωρίς γεωγραφικό περιορισμό, οι χρήστες αγνοούν ή αδυνατούν να ελέγχουν την καταλληλότητα αυτών των δεδομένων για μια συγκεκριμένη χρήση. Ως εκ τούτου πολλές δοκιμές έχουν διεξαχθεί για την επαλήθευση της υψομετρικής ακρίβειας αυτών των δεδομένων τόσο (Analytix, 2016) από τις επιστημονικές ομάδες των οργανισμών που τα παρήγαγαν (Rodriguez E., et al., 2005; Tachikawa, Hato, Kaku, & Iwasaki,

2011; Gesch, Zhang, Oimoen, Danielson, & Meyer, 2011) όσο και από άλλα πανεπιστημιακά ινστιτούτα και ανεξάρτητα ερευνητικά κέντρα (Koch, Heipke, & Lohmann, 2002; Jarvis, Rubiano, Nelson, & Mulligan, 2004; Blitzkow, Matos, & Cintra, 2009; Sertel, 2010; Slater, et al., 2009).

Για τον ελλαδικό χώρο, αρκετές εργασίες έχουν γίνει μέχρι σήμερα προκειμένου να αξιολογηθεί η υψομετρική ακρίβεια των δεδομένων SRTM κυρίως σε σύγκριση με DEM μοντέλα προερχόμενα από την ψηφιοποίηση χαρτών της Γεωγραφικής Υπηρεσίας Στρατού (ΓΥΣ) ή σε σύγκριση με τα υψόμετρα του γεωδαιτικού τριγωνομετρικού δικτύου της ΓΥΣ (Δεληκαράογλου, 2008), με επίγειες τεχνικές και μετρήσεις GNSS (Mouratidis, Briole, & Katsambalos, 2010), με εναέριες φωτογραμμετρικές μεθόδους καθώς και με δορυφορικές εικόνες ASTER (Nikolakopoulos, Kamaratakis, & Chrysoulakis, 2006).

Μια πρώτη μελέτη όπου γίνεται σύγκριση των υψομετρικών δεδομένων SRTM και ASTER στην Ελλάδα, αφορά δύο περιοχές της Κρήτης, το βόρειο Ηράκλειο και την Σητεία. Η σύγκριση που πραγματοποιήθηκε μεταξύ των δύο ψηφιακών μοντέλων εδάφους επέτρεψε μια ποιοτική αξιολόγηση της οριζόντιας και κάθετης συνιστώσας του σφάλματος, ενώ στατιστικές μετρήσεις χρησιμοποιήθηκαν για την εκτίμηση της κατακόρυφης ακρίβειάς τους. Τα αποτελέσματα έδειξαν ισχυρή συσχέτιση των αντίστοιχων συνόλων δεδομένων (Nikolakopoulos, Kamaratakis, & Chrysoulakis, 2006).

Μια άλλη εργασία πραγματεύεται την ενημέρωση τοπογραφικών χαρτών κλίμακας 1:50.000 χρησιμοποιώντας τα ψηφιακά μοντέλα εδάφους ASTER και SRTM DEM στην περιοχή της Αθήνας. Ένα dem από ψηφιοποιημένες ισοϋψείς καμπύλες από τοπογραφικούς χάρτες κλίμακας 1:50.000 δημιουργήθηκε και συγκρίθηκε με τα ASTER και SRTM DEMs. Σχεδόν τριακόσια σημεία με γνωστό υψόμετρο χρησιμοποιήθηκαν για την εκτίμηση της ακρίβειας αυτών των τριών DEMs. Η ακρίβεια που προέκυψε των SRTM και ASTER DEMs ήταν ικανοποιητική, ως εκ τούτου, θεωρούνται κατάλληλα για την ενημέρωση των 1:50.000 τοπογραφικών χαρτών (Nikolakopoulos & Chrysoulakis, 2006).

Σύμφωνα με τους Ioannidis, Xinogalas, & Soile, 2013 αξιολογώντας την υψομετρική ακρίβεια των ψηφιακών μοντέλων εδάφους ASTER GDEM και SRTM για την περιοχή της Ελλάδας τίθεται το ερώτημα ποιο είναι το καλύτερο στη χρήση. Η απόφαση βασίζεται σε μια σειρά παραμέτρων, όπως η ακρίβεια, η ομοιογένεια, η αξιοπιστία, η πληρότητα, η απόδοση των

μορφολογικών χαρακτηριστικών καθώς και το αντικείμενο του έργου για το οποίο θα χρησιμοποιηθούν οι πληροφορίες του υψομέτρου.

Αρκετοί ερευνητές έχουν ελέγξει την ακρίβεια των SRTM και ASTER σε πολλά μέρη του κόσμου με τη χρήση σημείων επίγειου ελέγχου (Ground Control Points -GCP) τα οποία μετρήθηκαν με διαφορικό GPS ή με τη χρήση υψομέτρων από τοπογραφικούς χάρτες π.χ. (Bolkas, Fotopoulos, Braun, & Tziavos, 2016); (Gesch, Oimoen, Danielson, & Meyer, 2016); (Kocak, Buyuksalih, & Oruc, 2005); (Gorokhovich & Voustianiouk, 2006); (Hayakawa, Oguchi, & Lin, 2008).

Σύμφωνα με τους Rodriguez, Morris, & Belz, 2006 η απόδοση για SRTM DSMs διακριτικής ικανότητας 1 arc-second για την Ευρασία έδειξε απόλυτο σφάλμα γεωθέσης και απόλυτο υψομετρικό σφάλμα (για 90% πιθανότητα) ±8,8m και ±6,2m αντίστοιχα. Σε εργασία με περιοχή μελέτης την πόλη Najran στη Σαουδική Αραβία αξιολογήθηκε η ποιότητα των SRTM ver.3 και ASTER ver.2 DEMs με επίπεδα αναφοράς υψόμετρα GPS και υψόμετρα από τοπογραφικούς χάρτες. Για την περιοχή μελέτης η έκδοση SRTM χωρικής ανάλυσης 30μ παρουσίασε πολύ μεγαλύτερη απόλυτη κατακόρυφη ακρίβεια από την απόλυτη κατακόρυφη ακρίβεια με τιμή ± 16 m, η οποία δημοσιεύθηκε στις προδιαγραφές δεδομένων SRTM (Elkhrachy, 2017).

Μια άλλη εργασία που πραγματοποιήθηκε με περιοχές μελέτης την Τυνησία και την Αλγερία πραγματεύεται την σύγκριση των ελεύθερης πρόσβασης ψηφιακών μοντέλων εδάφους ASTER GDEM2, GMTED2010 και SRTM v4.1 με υψομετρικά δεδομένα υψηλής ακρίβειας που προέκυψαν από κινηματικές μετρήσεις GPS. Τα αποτελέσματα υποδεικνύουν ότι η κατακόρυφη ακρίβεια του SRTM μοντέλου είναι πολύ υψηλότερη από τα ASTER GDEM2 και GMTED2010 και για τις δύο περιοχές. Η εργασία αυτή είναι η πρώτη μελέτη όπου γίνεται αναφορά στη χαμηλότερη ακρίβεια του ASTER GDEM2 GDEM2 συγκριτικά με τα δεδομένα του GMTED2010 (Athmania & Achour, 2014).

Σε αντίστοιχη μελέτη που διενεργήθηκε στην Αυστραλία συγκρίνονται τα ελεύθερης πρόσβασης ψηφιακά μοντέλα εδάφους ASTER GDEM ver1, SRTM ver4.1 και GEODATA DEM-9S ver3. Με αναφορά ένα σύνολο γεωδαιτικών σημείων ελέγχου του εδάφους (GCPs) διαπιστώθηκε η κατακόρυφη ακρίβειά τους, για το DEM-9S ~9m, για το SRTM~6m και για το ASTER~15m. Ωστόσο, οι τιμές αυτές ποικίλουν ως συνάρτηση του τύπου και σχήματος του εδάφους. Έτσι, ενώ το SRTM ver4.1 μπορεί να αποτελέσει μια εναλλακτική λύση σε σχέση με

το DEM-9S για ορισμένες εφαρμογές, τα συστηματικά σφάλματα που παρουσιάζει το ASTER GDEM εμποδίζουν την άμεση χρήση του για ορισμένες εφαρμογές (Hirt, Filmer, & Featherstone, 2010).

3.4. Διαθέσιμα ΨΜΕ ελεύθερης πρόσβασης με παγκόσμια κάλυψη

Η ευρεία πρόσβαση του κοινού στον παγκόσμιο ιστό τις τελευταίες δεκαετίες έγειρε την ανάγκη της ελεύθερης πρόσβασης των χρηστών παγκοσμίως για αποτελέσματα επιστημονικών ερευνών. Τα τελευταία χρόνια όλο και περισσότερα σύνολα δεδομένων DEM δημοσιεύονται στο διαδίκτυο. Παρακάτω παρατίθονται ενδεικτικά ορισμένα DEM που είναι διαθέσιμα δωρεάν στους χρήστες.

Η Ιαπωνική Υπηρεσία Ερευνών Αεροδιαστημικής (JAXA) έχει θέσει στη διάθεση του κοινού δωρεάν το ALOS World 3D, ένα παγκόσμιο ψηφιακό μοντέλο υψομέτρου/επιφάνειας οριζόντιας ανάλυσης 30 μέτρων. Το DEM δημιουργήθηκε από τις προηγμένες δορυφορικές εικόνες του δορυφόρου ALOS (Advanced Land Observing Satellite "DAICHI") ο οποίος λειτούργησε από το 2006 μέχρι το 2011, διαθέτοντας ένα πανχρωματικό δέκτη με δυνατότητα λήψης στερεοσκοπικών απεικονίσεων-PRISM (Tadono, Ishida, Oda, Naito, Minakawa, & Iwamoto, 2014). Ελεύθερης πρόσβασης ψηφιακα μοντέλα εδάφους είναι ακόμη το GLOBE (Global Land One-km Base Elevation Project) όπως και το GTOPO30 τα οποία καλύπτουν ολόκληρη την επιφάνεια της γης και έχουν ανάλυση 30 arc seconds (~1 km).

Με κύριο στόχο την απόκτηση ενός παγκόσμιου DEM μεγάλης ακρίβειας, η αποστολή TanDEM-X ανοίγει μια νέα εποχή στα ραντάρ συνθετικού ανοίγματος (SAR). Αναπτύχθηκε με σύμπραξη δημόσιου-ιδιωτικού τομέα μεταξύ του Γερμανικού Κέντρου Αεροδιαστημικής (DLR) και του Airbus Defense and Space και περιλαμβάνει δύο σχεδόν πανομοιότυπους δορυφόρους τους TerraSAR-X και TanDEM-X, οι οποίοι είναι εξοπλισμένοι με ραντάρ συνθετικού ανοίγματος που λειτουργούν στην μπάντα X (Rizzoli, et al., 2017). Από τον Δεκέμβριο του 2010 και μέχρι τις αρχές του 2015 η επιφάνεια όλης της γης καλύφθηκε τουλάχιστον δύο φορές και η επεξεργασία όλων των δεδομένων ολοκληρώθηκε το Σεπτέμβριο του 2016 οπότε και παρουσιάστηκε το παγκόσμιο DEM TanDEM-X το οποίο παρέχει δεδομένα υψηλής ποιότητας και ακρίβειας και είναι διαθέσιμο υπό όρους στην επιστημονική κοινότητα.

DEM	SOURCE	REFERENCE YEAR	REGION	FORMAT	SPATIAL RESOLUTION	METHOD OF PRODUCTION
ASTER V2	https://earth explorer.usgs .gov/	2011	World from 83°N to 83°S	GeoTIFF	1 arc second	Stereoscopic pairs & digital image correlation methods
SRTM 1 arc sec	https://earth explorer.usgs .gov/	2014	World from 56°S to 60°N	GeoTIFF	1 arc second	InSAR technology
ALOS 3D World- 30m	http://www. eorc.jaxa.jp/ ALOS/en/aw 3d30/	2015	World	GeoTIFF	30m	It uses the Advanced Land Observing Satellite "DAICHI"(ALOS) based on stereo mapping from PRISM
GTOPO30	https://dds.c r.usgs.gov/ee 	1996	World	Compre ssed tar file	30 arc seconds (∼1km)	From satellite data processing, a combination of data sets
GLOBE	https://data. noaa.gov//m etaview/pag e?xml=NOAA /NESDIS/NG DC/MGG/DE M/iso/xml/2 80.xml&view =getDataVie w&header=n one	1999	World	BIL File Compre ssion: GZIP	30 arc seconds	DEMs from many sources were merged including GTOPO30
TanDEM-X	https://tand emx- science.dlr.d e/	2014	World	GeoTIFF	12m	SAR technology-Synthetic Aperture Radar

Πίνακας 1: Χαρακτηριστικά γνωρίσματα των διαθέσιμων ΨΜΕ

ΚΕΦΑΛΑΙΟ 4

4. ΕΜΠΕΙΡΙΚΗ ΑΝΑΛΥΣΗ - ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ

Το κεφάλαιο αυτό αποτελεί το εμπειρικό μέρος της εργασίας. Αρχικά γίνεται μια σύντομη περιγραφή της περιοχής μελέτης, καθώς και των ΨΜΕ που επιλέχθηκαν για την αξιολόγηση. Στη συνέχεια γίνεται αναφορά στο λογισμικό που χρησιμοποιήθηκε, την μεθοδολογία που ακολουθήθηκε για την επεξεργασία των δεδομένων, τη χαρτογράφηση, τη χωρική αυτοσυσχέτιση των σφαλμάτων, τον χωρισμό τους σε ζώνες με βάση το υψόμετρο, την κλίση και τον προσανατολισμό καθώς και την αξιολόγηση των αποτελεσμάτων.

4.1. Περιοχή μελέτης

Η περιοχή μελέτης της παρούσας εργασίας επιλέχθηκε να είναι ο Νομός Ιωαννίνων, μια ορεινή κυρίως περιοχή που χαρακτηρίζεται από έντονο ανάγλυφο, με εδάφη με μεγάλες κλίσεις, με υψηλές οροσειρές (π.χ. Πίνδος), ογκώδη βουνά με πανύψηλες κορυφές (π.χ. Σμόλικας, Τύμφη), που τροφοδοτούν ποτάμια μεγάλου μήκους. Λόγω της γεωγραφικής της ποικιλομορφίας, η περιοχή παρουσιάζει ιδιαίτερο ερευνητικό ενδιαφέρον. Ο Νομός Ιωαννίνων βρίσκεται στην βοριοδυτική πλευρά της χώρας, καλύπτει έκταση 4.999 τ. χλμ και εκτείνεται από 40°22.516′B , 20°51.590′E βόρεια έως 39°16.901′B , 20°40.650′E νότια και από 39°51.386′B, 21°17.598′E ανατολικά έως 39°58.882′B, 20°17.993′E δυτικά.

Εικόνα 4-1: Περιοχή μελέτης Πηγή: Google earth

4.2. Δεδομένα και Λογισμικό επεξεργασίας

Στη συνέχεια παρουσιάζονται τα δεδομένα ελέγχου, δηλαδή τα ψηφιακά μοντέλα εδάφους που χρησιμοποιήθηκαν στην εργασία και υπόκεινται σε αξιολόγηση μεμονωμένα αλλά και σε σύγκριση με δεδομένα αναφοράς. Επιπλέον γίνεται μια σύντομη αναφορά στο λογισμικό που χρησιμοποιήθηκε για την επεξεργασία των δεδομένων, στην στατιστική ανάλυση των σφαλμάτων των ΨΜΕ και τη δημιουργία των χαρτογραφικών προϊόντων.

4.2.1. Δεδομένα αξιολόγησης

Από την επίσημη ιστοσελίδα <u>https://earthexplorer.usgs.gov/</u> του κέντρου διανομής του διεθνούς οργανισμού USGS αναζητήθηκαν με ημερομηνία πρόσβασης το Φεβρουάριο του 2018 τα δύο παγκόσμιας εμβέλειας ΨΜΕ που χρησιμοποιήθηκαν στην εργασία και είναι τα εξής:

- Το ψηφιακό μοντέλο εδάφους SRTM PLUS έκδοση 3.0 με χωρική ανάλυση (διακριτική ικανότητα) 1 arcsec που αντιστοιχεί μεταξύ σημείων στο έδαφος περίπου 30m και το οποίο δημοσιεύθηκε στις 23 Σεπτεμβρίου 2014 https://www2.jpl.nasa.gov/srtm/. Τα δεδομένα SRTM αναφέρονται στο ελλειψοειδές WGS84 όσον αφορά τις οριζόντιες (γεωγραφικές) συντεταγμένες και στη μέση στάθμη θάλασσας που καθορίστηκε από το μοντέλο του γεωειδούς από το γεωδυναμικό μοντέλο EGM96 (Lemoine, et al., 1997) όσον αφορά τα υψόμετρα. Τα υψόμετρα διατάσσονται σε κελιά (tiles) διάστασης 1°x1°, που το κάθε ένα ονομάζεται σύμφωνα με τις γεωγραφικές συντεταγμένες της νοτιοδυτικής γωνίας του, π.χ. N39E020 και περιέχει 3601x3601 υψόμετρα. Ο Νομός Ιωαννίνων εκτείνεται σε τέσσερα κελιά τα οποία και επιλέχθηκαν N39E020, N39E021, N40E020, N40E021.
- Το ψηφιακό μοντέλο εδάφους ASTER έκδοση 2.0 με χωρική ανάλυση 1 arcsec και το οποίο δημοσιεύθηκε στις 17 Οκτωβρίου 2011 https://ssl.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary GDEM2 validation report final.pdf. To ASTER GDEM διανέμεται βάσει συγκεκριμένου χαρτογραφικού καννάβου και διατίθεται σε τμήματα (tiles) μεγέθους των 1°x1°, ομοίως με την έκδοση SRTM DEM. Κάθε ένα τμήμα από αυτά περιέχει υψομετρικά δεδομένα σε μορφή πίνακα με 3601 σειρές και 3601 στήλες ενώ η ψηφιακή μορφή των αρχείων είναι η GeoTIFF, η οποία συναντιέται και στην έκδοση του SRTM DEM. Τα δεδομένα αναφέρονται στο γεωδαιτικό σύστημα

αναφοράς WGS84 ενώ το GDEM 2 έχει συνολική ακρίβεια περίπου 17m για επίπεδο εμπιστοσύνης 95%. Αντίστοιχα επιλέχθηκαν τέσσερα τμήματα, στα οποία εκτείνεται ο Νομός Ιωαννίνων.

 Το ψηφιακό μοντέλο εδάφους της Εθνικό Κτηματολόγιο & Χαρτογράφηση Α.Ε. Το ΨΜΕ δημιουργήθηκε με αυτοματοποιημένες φωτογραμμετρικές μεθόδους από λήψεις αεροφωτογραφιών κλίμακας περίπου 1:25000 την περίοδο 2007-2009 και έχει μέγεθος εικονοστοιχείου στο έδαφος 5,00m. Κάθε πινακίδα DEM έχει διαστάσεις στο έδαφος 4600m x 3600m, με περιμετρική επικάλυψη 300m και ακολουθούν τη διανομή ΕΓΣΑ87 κλίμακας 1:5000. Ο τύπος των αρχείων είναι img και για την περιοχή μελέτης χρησιμοποιήθηκαν 488 αρχεία συνολικού μεγέθους 2GB. Η γεωμετρική ακρίβεια του προϊόντος είναι RMSEz<= 2,00m και η απόλυτη ακρίβεια<= 3,92m για επίπεδο εμπιστοσύνης 95% <u>http://www.ktimatologio.gr/Pages/edu material.aspx</u>.

4.2.2. Δεδομένα αναφοράς

Για την αξιολόγηση της ακρίβειας και της ποιότητας των υπό έλεγχο ψηφιακών μοντέλων εδάφους είναι απαραίτητα ορισμένα δεδομένα αναφοράς τα οποία θεωρούνται υψηλής ακρίβειας. Ως δεδομένα αναφοράς χρησιμοποιήθηκαν τα τριγωνομετρικά σημεία του Κρατικού Τριγωνομετρικού Δικτύου της Ελλάδας που διαχειρίζεται η Γεωγραφική Υπηρεσία Στρατού (ΓΥΣ). Το πλήθος των τριγωνομετρικών σημείων που βρίσκονται εντός της περιοχής μελέτης είναι 696 και η υψομετρική ακρίβεια προσδιορισμού τους είναι της τάξης μερικών εκατοστών. Το εύρος των υψομέτρων κυμαίνεται μεταξύ 207-2631m και αναφέρονται στη μέση στάθμη θάλασσας.

4.2.3. Λογισμικό

Το λογισμικό που χρησιμοποιήθηκε για την εισαγωγή, την επεξεργασία, την ανάλυση και την παρουσίαση των γεωγραφικών δεδομένων είναι το ArcGIS 10.3 (με εργαλεία του περιβάλλοντος ArcMap) το οποίο αποτελεί ένα ολοκληρωμένο πακέτο λογισμικού της εταιρείας ESRI. Για την στατιστική ανάλυση των υψομετρικών δεδομένων χρησιμοποιήθηκε στη συνέχεια το λογισμικό του Microsoft Office Excel.

4.3. Επεξεργασία δεδομένων

Η επεξεργασία των δεδομένων αποτελεί ένα από τα πιο χρονοβόρα στάδια της εργασίας και αφορά κυρίως την τελική μορφοποίηση των δεδομένων των τριών ψηφιακών μοντέλων εδάφους καθώς και των τριγωνομετρικών σημείων της ΓΥΣ ώστε να είναι εφικτή η άμεση σύγκριση των υψομετρικών πληροφοριών τους. Η εξαγωγή των επιθυμητών αποτελεσμάτων απαιτεί ένα πλήθος ενεργειών για την συνολική προετοιμασία των δεδομένων πριν τις τελικές συγκρίσεις, το οποίο δεν μπορεί να αγνοηθεί. Οι ενέργειες και τα εργαλεία του λογισμικού ArcGIS Desktop που χρησιμοποιήθηκαν για την επεξεργασία των διαθέσιμων δεδομένων παρουσιάζονται παρακάτω.

Ένα από τα πρώτα βήματα της επεξεργασίας των δεδομένων είναι η μετατροπή των συντεταγμένων των τριγωνομετρικών σημείων της ΓΥΣ σε σχηματικό αρχείο προκειμένου να συσχετιστούν γραφικές και περιγραφικές πληροφορίες. Οι πληροφορίες που διαθέτουμε για τα 696 τριγωνομετρικά σημεία περιέχονται σε ένα αρχείο excel. Το υπολογιστικό φύλλο του αρχείου μετατρέπεται αρχικά σε ένα txt αρχείο με στήλες τις συντεταγμένες X,Y και το ορθομετρικό υψόμετρο Z των σημείων. Στη συνέχεια μετατρέπεται σε dbf (database file), ώστε να είναι συμβατό με το λογισμικό ArcGIS της ESRI. Με την εισαγωγή του αρχείου dbf στο ArcGIS, οι συντεταγμένες αυτές αποκτούν και χωρική οντότητα και δημιουργείται ένα σχηματικό αρχείο σημειακών δεδομένων (shapefile) στο Ελληνικό Γεωδαιτικό Σύστημα Αναφοράς (ΕΓΣΑ87).

Στο χάρτη 1 διακρίνεται η χωρική αναπαράσταση των τριγωνομετρικών σημείων της ΓΥΣ στο Νομό Ιωαννίνων. Παρατηρούμε ότι τα τριγωνομετρικά σημεία παρουσιάζουν μια ομοιόμορφη κατανομή σε όλο το εύρος της περιοχής μελέτης γεγονός που θα βοηθήσει να εξαχθούν ασφαλή συμπεράσματα για την οριζοντιομετρική και κατακόρυφη ακρίβεια.

Να σημειωθεί ότι χρησιμοποιήθηκε ένα πολυγωνικό διανυσματικό επίπεδο το οποίο απεικονίζει την περιοχή μελέτης. Πηγή του επιπέδου αυτού αποτελεί η ιστοσελίδα <u>http://geodata.gov.gr/geodata/</u> η οποία προσφέρει στους χρήστες δημόσια και ανοιχτά δεδομένα σχετικά με την Ελλάδα.

ΚΑΤΑΝΟΜΗ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΣΗΜΕΙΩΝ ΣΤΗΝ ΠΕΡΙΟΧΗ ΜΕΛΕΤΗΣ

Χάρτης 1: Κατανομή τριγωνομετρικών σημείων στην περιοχή μελέτης

Στη συνέχεια ακολουθεί η δημιουργία μωσαϊκού των ψηφιδωτών δεδομένων. Η διανομή των δεδομένων των παγκόσμιων ψηφιακών μοντέλων εδάφους ASTER και SRTM γίνεται τμηματικά ανά γεωγραφικές περιοχές βάσει συγκεκριμένου γεωδαιτικού καννάβου. Για την κάλυψη της περιοχής μελέτης χρειάστηκαν τέσσερα τμήματα (tiles) από κάθε ΨΜΕ τα οποία και αντίστοιχα επιλέχθηκαν όπως προηγουμένως έχει αναφερθεί. Τα τμήματα αυτά αποτελούν αυτοτελή, ψηφιδωτά αρχεία που παρουσιάζουν ομοιογένεια ως προς τα χαρακτηριστικά τους και είναι πλήρως διαχειρίσιμα από το λογισμικό ArcGIS Desktop στη μορφή που διανέμονται ελεύθερα μέσω του διαδικτύου. Η συνολική διαχείριση τους κατά τμήματα απαιτεί αρκετό χρόνο και η επεξεργασία τους στα επόμενα στάδια της εργασία φαντάζει περίπλοκη και κυρίως χρονοβόρα. Με σκοπό την πιο εύχρηστη και παραγωγική διαχείριση τους σε αυτοτελή αρχεία που καλούνται μωσαϊκά ψηφιδωτών δεδομένων.

Τα μωσαϊκά ψηφιδωτών δεδομένων αποτελούν μία ενοποίηση ψηφιδωτών δεδομένων που παρουσιάζουν την ίδια προέλευση και την ίδια μορφοποίηση. Η διαδικασία της δημιουργίας του μωσαϊκού ψηφιδωτών δεδομένων πραγματοποιείται χωριστά για κάθε ψηφιακό μοντέλο εδάφους που χρησιμοποιήθηκε στο πλαίσιο αυτής της εργασίας η οποία είναι πανομοιότυπη για το καθένα. Παρακάτω ακολουθεί ενδεικτικά η περιγραφή της δημιουργίας του μωσαϊκού των ψηφιδωτών δεδομένων του παγκόσμιου ψηφιακού μοντέλου εδάφους ASTER.

Με τη βοήθεια της εργαλειοθήκης του ArcToolBox και μέσω της εντολής Data Management Tools>Raster>Raster Dataset>Mosaic To New Raster εισάγονται στο πλαίσιο επιλογών «Input Rasters» τα τέσσερα ψηφιδωτά αρχεία ASTER και στο πλαίσιο επιλογών «Pixel Type» επιλέγεται η τιμή « 16_BIT_SIGNED », όπως ακριβώς αυτή προκύπτει από τη μορφοποίηση (format) των ψηφιδωτών δεδομένων που πρόκειται να σχηματίσουν το συγκεκριμένο μωσαϊκό. Στο πλαίσιο επιλογής Raster Dataset Name with Extension δηλώνεται το όνομα του μωσαϊκού που δημιουργείται ενώ στο πλαίσιο Number of Bands σημειώνεται ο αριθμός 1.

Η επόμενη ενέργεια που ακολουθεί είναι ο μετασχηματισμός των χωρικών δεδομένων από το παγκόσμιο γεωδαιτικό σύστημα αναφοράς WGS84 στο ελληνικό ΕΓΣΑ87. Μέσω του εργαλείου Data Management Tools>Projections and Transformations>Raster>Project στο πλαίσιο επιλογής Output Coordinate System δηλώνεται το «Greek Grid» (ΕΓΣΑ87) προκειμένου όλες οι χωρικές πληροφορίες να αναφέρονται σε κοινό σύστημα συντεταγμένων.

Χάρτης 2: Μωσαϊκό ψηφιακού μοντέλου εδάφους ASTER

Χάρτης 3: Μωσαϊκό ψηφιακού μοντέλου εδάφους SRTM

Όσον αφορά το μωσαϊκό των ψηφιδωτών δεδομένων των αρχείων εικόνας δίσκου της Εθνικό Κτηματολόγιο & Χαρτογράφηση Α.Ε. δεν κατέστη δυνατή η δημιουργία του λόγω του ιδιαιτέρως μεγάλου όγκου των αρχείων. Για το λόγο αυτό περιγράφεται παρακάτω η διαδικασία που ακολουθείται προκειμένου να εξαχθούν τα δεδομένα υψομέτρου από τα αρχεία img. Αρχικά με τη βοήθεια του εργαλείου Analysis Tools>Proximity>Buffer δημιουργούνται buffer πολύγωνα γύρω από κάθε τριγωνομετρικό σημείο σε καθορισμένη απόσταση 250μ. Το πολυγωνικό αρχείο που δημιουργείται ορίζεται ως περιβάλλον μάσκας από την καρτέλα Geoprocessing>Environments...>Raster Analysis> Mask. Το περιβάλλον μάσκας χρησιμοποιείται για τον εντοπισμό εκείνων των τοποθεσιών που θα συμπεριληφθούν κατά την εκτέλεση μιας λειτουργίας. Η μάσκα μπορεί να είναι raster ή feature class (ομάδα οντοτήτων). Όλα τα κελιά που βρίσκονται εκτός της μάσκας δεν εξετάζονται στην ανάλυση και τους αποδίδεται η τιμή NoData στο αποτέλεσμα.

Στη συνέχεια με τη βοήθεια του εργαλείου Spatial Analyst Tools>Map Algebra>Raster Calculator πολλαπλασιάζεται κάθε ένα αρχείο img *1 προκειμένου να αποδοθεί η τιμή NoData εκτός μάσκας και έτσι το αρχείο να αποκτήσει μικρότερο όγκο πληροφοριών και να γίνει διαχειρίσιμο. Η διαδικασία επαναλαμβάνεται τόσες φορές όσες είναι τα αρχεία (σύνολο αρχείων 488) και έπειτα ακολουθεί η δημιουργία του μωσαϊκού με την ίδια διαδικασία όπως πραγματοποιήθηκε για τα δύο παγκόσμια ψηφιακά μοντέλα εδάφους.

Επόμενο βήμα είναι η δημιουργία ενός πίνακα που να δείχνει τις τιμές των κελιών από το σύνολο των τριών μετασχηματισμένων μωσαϊκών των ψηφιακών μοντέλων εδάφους για καθορισμένες θέσεις οι οποίες ορίζονται από το σύνολο των τριγωνομετρικών σημείων. Στην λίστα των εργαλείων της εφαρμογής ArcToolBox αναπτύσσοντας τις διακλαδώσεις Spatial Analyst Tools>Extraction>Sample εισάγονται τα παραπάνω δεδομένα και στο πλαίσιο επιλογής Resampling technique δηλώνεται «NEAREST». Στο σημείο αυτό αξίζει να αναφερθεί ότι η μέθοδος του πλησιέστερου γειτονικού σημείου (nearest neighbor method) αποτελεί την πιο γνωστή τεχνική επαναδειγματοληψίας και η χρήση του συνίσταται για περιπτώσεις δεδομένων διακριτού χαρακτήρα. Εντούτοις μπορεί να χρησιμοποιηθεί επίσης με επιφύλαξη και σε περιπτώσεις επαναδειγματοληψίας δεδομένων συνεχούς χαρακτήρα. Η διαδικασία της επαναδειγματοληψίας των ψηφιδωτών δεδομένων μέσω των εργαλείων της εφαρμογής ArcToolbox απαιτεί περισσότερη εμβάθυνση και χρήζει επιπλέον ενδιαφέροντος για περεπαίρω μελέτη, η οποία δεν μπορεί να καλυφθεί πλήρως στο πλαίσιο αυτής της εργαραίας.

Στο περιβάλλον εργασίας της εφαρμογής ArcMap ενώνεται στη συνέχεια το σημειακό αρχείο (shp) των τριγωνομετρικών σημείων με τον πίνακα sample που δημιουργήθηκε προηγουμένως με την εντολή Joins and Relates> Join... προκειμένου να προστεθούν επιπλέον δεδομένα στον πίνακα χαρακτηριστικών αυτού του επιπέδου έτσι ώστε να μπορούν να συμβολιστούν τα χαρακτηριστικά αυτού του επιπέδου χρησιμοποιώντας αυτά τα δεδομένα. Επόμενο βήμα είναι η εξαγωγή του παραπάνω πίνακα σε μορφή dbf (database file) αρχείου και η εισαγωγή του σε ένα κενό υπολογιστικό φύλλο excel.

Ο απώτερος σκοπός αυτής της διαδικασίας ήταν η συγκέντρωση των υψομετρικών τιμών που αποδίδονται από όλα τα μωσαϊκά των διαθέσιμων ψηφιακών μοντέλων εδάφους καθώς και των υψομετρικών τιμών των τριγωνομετρικών σημείων της ΓΥΣ σε έναν πίνακα με την μορφή ποσοτικών πληροφοριών ώστε στη συνέχεια να είναι εφικτή η σύγκριση και αξιολόγησή τους με στατιστικά μεγέθη.

4.4. Στατιστική ανάλυση "σφαλμάτων" κάθε ΨΜΕ

Η στατιστική βασίζεται στη διαδικασία συλλογής των δεδομένων, τη συνοπτική και αποτελεσματική παρουσίασή τους καθώς και την ανάλυση για την εξαγωγή χρήσιμων συμπερασμάτων. Ως σφάλμα νοείται η διαφορά μεταξύ της προβλεπόμενης τιμής και της πραγματικής παρατήρησης. Το υπόλοιπο ή κατάλοιπο (residual) εκφράζει την απόκλιση μιας συγκεκριμένης τιμής από το μέσο όρο. Η στατιστική ανάλυση που πραγματοποιείται αφορά την ερμηνεία των στατιστικών μεγεθών που υπολογίζονται από τις υψομετρικές διαφορές (Η_{αναφοράς}-Η_{ελέγχου}).

4.4.1. Σύγκριση των ΨΜΕ με τα υψόμετρα του τριγωνομετρικού δικτύου

Η σύγκριση των ΨΜΕ με το εθνικό υψομετρικό δίκτυο γίνεται σε ένα σύνολο 696 τριγωνομετρικών σημείων της ΓΥΣ με αντιπαραβολή της υψομετρικής πληροφορίας των ψηφιακών μοντέλων εδάφους στα τριγωνομετρικά σημεία της ΓΥΣ, για τα οποία παρέχονται οι τιμές των ορθομετρικών υψομέτρων τους. Οι υψομετρικές διαφορές που αξιολογούνται σε 696 σημεία είναι της μορφής: ΔΗ _{ΨΜΕ}= Η_{ΓΥΣ} - Η_{ΨΜΕ}

Στατιστικά μεγέθη	КТНМ	SRTM	ASTER
Πλήθος (count)	696	696	696
Ελάχιστη τιμή (min)	-14.60	-2.10	-12.34
Μέγιστη τιμή (max)	98.04	67.34	126.44
Μέσος όρος (mean)	2.14	11.93	15.69
Τυπική απόκλιση (stdev)	9.35	8.79	15.61
Μέσο τετραγωνικό σφάλμα (RMSE)	9.58	14.82	22.12
NSSDA	18.79	29.05	43.36

Πίνακας 2: Στατιστικά μεγέθη σε μέτρα, Η_{ΓΥΣ} – Η_{ΨΜΕ}

Τα συμπεράσματα που μπορούν να εξαχθούν από τα παραπάνω αποτελέσματα είναι τα εξής:

- Στην περίπτωση του ΨΜΕ _{Κτηματολόγιο Α.Ε.} παρατηρείται μικρό συστηματικό σφάλμα της τάξης των 2.14μ, καθώς ο μέσος όρος των διαφορών είναι διάφορος του μηδενός. Το ίδιο παρατηρείται και στα ΨΜΕ SRTM και ASTER με μεγαλύτερα συστηματικά σφάλματα 11.93μ και 15.69μ αντίστοιχα. Επιπρόσθετα παρατηρείται ότι ο μέσος όρος των υψομετρικών διαφορών και στα τρία ΨΜΕ είναι θετικός, γεγονός που υποδηλώνει την υποεκτίμηση των μοντέλων δηλαδή της συστηματικής μετατόπισής τους σε χαμηλότερα επίπεδα από τα τριγωνομετρικά σημεία της ΓΥΣ.
- Μεγάλες διαφορές μεταξύ τυπικής απόκλισης και RMS σφάλματος παρατηρούνται στις περιπτώσεις των ΨΜΕ SRTM και κυρίως του ASTER, κάτι το οποίο επιβεβαιώνει την ύπαρξη συστηματικού σφάλματος. Επιπλέον, μικρότερη διαφορά των τιμών αυτών εντοπίζεται στην περίπτωση του ΨΜΕ _{κτηματολόγιο Α.Ε.}, σχεδόν οι τιμές είναι ίσες, καθιστώντας το έτσι πιο ακριβές. Καθώς η ακρίβειά του είναι καλύτερη και η δημιουργία του έγινε σε εθνικό επίπεδο, υπερτερεί των αντίστοιχων παγκόσμιων ΨΜΕ.
- Το γενικό σφάλμα του ΨΜΕ _{Κτηματολόγιο Α.Ε.} είναι το μικρότερο όλων και ίσο με 9.58μ, ακολουθεί αυτό του SRTM με σφάλμα 14.82μ και τελευταίο του ASTER με σφάλμα 22.12μ. Η διαπίστωση αυτή έρχεται να επιβεβαιώσει την βιβλιογραφία και τις προδιαγραφές δημιουργίας του κάθε μοντέλου καθώς το ΨΜΕ _{Κτηματολόγιο Α.Ε.} έχει καλύτερη ακρίβεια σε σχέση με τα άλλα δύο ΨΜΕ, επομένως προσαρμόζεται καλύτερα στο τοπικό ανάγλυφο.

- Η ακρίβεια που παρατηρείται στην περίπτωση του ΨΜΕ _{Κτηματολόγιο Α.Ε.} είναι 18.79μ και ακολουθεί του ΨΜΕ SRTM με 29.05μ, η οποία είναι εκτός των προβλεπόμενων ορίων.
 Και για το ΨΜΕ του ASTER η ακρίβεια υπολογίζεται σε 43.36μ κάτι που δεν συνάδει με τις προδιαγραφές του μοντέλου, οι οποίες καθορίζουν την ακρίβεια στα 17μ. Το γεγονός αυτό εξηγεί την πιθανή ύπαρξη χονδροειδών σφαλμάτων τα οποία δεν αφαιρέθηκαν πριν τον υπολογισμό των στατιστικών μεγεθών.
- Η τυπική απόκλιση στην περίπτωση του ΨΜΕ Κτηματολόγιο Α.Ε δηλώνει ότι το μεγαλύτερο ποσοστό των σφαλμάτων εντοπίζεται στην περιοχή ±9.35μ ενώ στο ΨΜΕ SRTM εντοπίζεται σε περιοχή μικρότερου εύρους ±8.79μ. Αντίθετα στο ΨΜΕ ASTER παρουσιάζεται η μεγαλύτερη διασπορά των σφαλμάτων εντός των ορίων ±15.61μ.
- Τέλος μεγαλύτερες μέγιστες και ελάχιστες διαφορές εντοπίζονται στον έλεγχο των ΨΜΕ SRTM και ASTER. Παρόλο που και τα δύο αυτά μεγέθη θεωρούνται δείκτες ύπαρξης μεμονωμένων χονδροειδών σφαλμάτων στα ΨΜΕ που μελετώνται, δεν σημαίνει απαραίτητα ότι οι αποκλίσεις αυτές οφείλονται σε λανθασμένες παρατηρήσεις.

Συνεπώς, κατά την αξιολόγηση των τριών ψηφιακών μοντέλων εδάφους με δεδομένα αναφοράς τα τριγωνομετρικά σημεία της ΓΥΣ, υψηλής ακρίβειας, διαπιστώνεται ότι το ΨΜΕ _{Κτηματολόγιο Α.Ε.} παρουσιάζει την καλύτερη ακρίβεια και το μικρότερο γενικό σφάλμα, ενώ δεν φαίνεται να έχει μεγάλα συστηματικά σφάλματα καθώς οι τιμές των δύο μεγεθών σ και RMSE είναι σχεδόν ίσες. Από τα δύο παγκόσμια ΨΜΕ εκείνο που φαίνεται να ανταποκρίνεται λιγότερο στην πραγματικότητα είναι το ΨΜΕ ASTER καθώς μειονεκτεί σε σχέση με το ΨΜΕ SRTM σε όλες τις παραμέτρους που εξετάζονται.

Αν και το υψομετρικό μοντέλο της Κτηματολόγιο Α.Ε. έχει ελεγχθεί και πιστοποιηθεί για την ακρίβειά του, ελέγχεται η ακρίβεια και αυτού του ΨΜΕ για να διαπιστωθεί κατά πόσο ανταποκρίνεται στο ανάγλυφο της περιοχής μελέτης. Λαμβάνοντας επομένως υπόψη και τις ιδιαιτερότητες του ανάγλυφου στο Νομό Ιωαννίνων, το αποτέλεσμα κρίνεται αρκετά ικανοποιητικό.
Επιπλέον δημιουργούνται διαγράμματα κατανομής των υψομετρικών διαφορών που υπολογίστηκαν για όλα τα ΨΜΕ, σε σχέση με το υψόμετρο εμφάνισής τους. Από τα διαγράμματα αυτά γίνεται αντιληπτή η πιθανή μετατόπιση των ψηφιακών μοντέλων εδάφους σε σχέση με τα τριγωνομετρικά σημεία, ενώ εντοπίζονται και τα υψόμετρα στα οποία παρατηρούνται τα μεγαλύτερα σφάλματα σε κάθε περίπτωση.

Διάγραμμα 1: Κατανομή υψομετρικών διαφορών τριγωνομετρικών σημείων με το ΨΜΕ _{Κτηματ.}, σε σχέση με το υψόμετρο εμφάνισής τους.

Στο παραπάνω διάγραμμα διασποράς παρατηρείται ότι η πλειοψηφία των υψομετρικών διαφορών είναι θετικές και συγκεντρωμένες κοντά στο 0 παρουσιάζοντας μια ενιαία συμπεριφορά. Αυτό σημαίνει ότι το ΨΜΕ _{Κτηματολόγιο. Α.Ε} βρίσκεται "χαμηλότερα" σε σχέση με τα τριγωνομετρικά σημεία με μια μέση μετατόπιση της τάξης των 0-1μ περίπου (υποεκτίμηση του μοντέλου) με εξαίρεση τις ακραίες τιμές.

Διάγραμμα 2: Κατανομή υψομετρικών διαφορών τριγωνομετρικών σημείων με το ΨΜΕ _{SRTM}, σε σχέση με το υψόμετρο εμφάνισής τους.

Στο διάγραμμα διασποράς (2) διαπιστώνεται ότι οι θετικές υψομετρικές διαφορές υπερτερούν έναντι των αρνητικών. Επιπλέον είναι διασκορπισμένες και η πλειοψηφία τους κυμαίνεται μεταξύ 0-10μ περίπου. Συνεπώς το ΨΜΕ _{SRTM} βρίσκεται "χαμηλότερα" από τα τριγωνομετρικά σημεία, χωρίς ένα σταθερό μέτρο μετατόπισης (υποεκτίμηση του μοντέλου).

Διάγραμμα 3: Κατανομή υψομετρικών διαφορών τριγωνομετρικών σημείων με το ΨΜΕ _{ASTER}, σε σχέση με το υψόμετρο εμφάνισής τους.

Όπως φαίνεται στο παραπάνω διάγραμμα οι περισσότερες υψομετρικές διαφορές είναι θετικές και διασκορπισμένες μεταξύ 0-10μ περίπου. Κατά συνέπεια διαπιστώνεται υποεκτίμηση του ΨΜΕ _{ASTER.} Από τα διαγράμματα διασποράς των τριγωνομετρικών σημείων με τα υπό μελέτη ΨΜΕ επιβεβαιώνεται η υποεκτίμηση και των τριών μοντέλων δηλαδή της συστηματικής μετατόπισής τους σε χαμηλότερα επίπεδα από τα τριγωνομετρικά σημεία της ΓΥΣ. Επιπρόσθετα διαπιστώνεται η ύπαρξη ακραίων τιμών οι οποίες δεν μπορούν να οδηγήσουν σε ασφαλή συμπεράσματα.

Στο σημείο αυτό θα πρέπει να αναφερθεί ότι τα στατιστικά μεγέθη υπολογίστηκαν λαμβάνοντας υπόψη όλα τα τριγωνομετρικά σημεία ΓΥΣ που διαθέτουμε για την περιοχή μελέτης χωρίς να γίνει κάποια προεπεξεργασία για την αφαίρεση χονδροειδών σφαλμάτων και την εξαίρεση κάποιων σημείων από την κατανομή.

Στην στατιστική, ισχύει ο κανόνας 68-95-99.7 δηλαδή το ποσοστό των τιμών που βρίσκονται μέσα σε μια ζώνη γύρω από το μέσο σε μια κανονική κατανομή με ένα πλάτος δύο, τεσσάρων και έξι τυπικών αποκλίσεων, αντίστοιχα. Ακριβέστερα, 68,27%, 95,45% και 99,73% των τιμών βρίσκονται εντός μιας, δύο και τριών τυπικών αποκλίσεων του μέσου, αντίστοιχα. Στα μαθηματικά, τα δεδομένα αυτά μπορούν να εκφραστούν ως εξής, όπου το Χ είναι μια παρατήρηση από μια κανονικά κατανεμημένη τυχαία μεταβλητή, μ είναι ο μέσος όρος της κατανομής και σ είναι η τυπική απόκλιση. <u>https://en.wikipedia.org/wiki/68–95–99.7 rule</u>

Διάγραμμα 4: Ποσοστό των τιμών που βρίσκονται μέσα σε μια ζώνη γύρω από το μέσο σε μια κανονική κατανομή με ένα πλάτος δύο, τεσσάρων και έξι σ, αντίστοιχα

Στην συνέχεια υπολογίζονται τα διαστήματα για επίπεδο εμπιστοσύνης 33%, 68% και 95% αντίστοιχα και για τα τρία υπό εξέταση μοντέλα.

Επίπεδο εμπιστοσύνης 33%	КТНМ	SRTM	ASTER
μ+1/2σ	6,81	16,33	23,49
μ -1/2σ	-2,54	7,54	7,88
Επίπεδο εμπιστοσύνης 68%			
μ+σ	11,49	20,73	31,29
μ-σ	-7,21	3,14	0,08
Επίπεδο εμπιστοσύνης 95%			
μ +2σ	20,84	29,52	46,90
μ-2σ	-16,56	-5,65	-15,53

Πίνακας 3: Υπολογισμός διαστημάτων για επίπεδα εμπιστοσύνης 33%, 68%, 95%

Ενδεικτικά αναφέρεται ότι κατά τη σάρωση των υψομετρικών διαφορών βρέθηκαν εκτός του διαστήματος [μ-2σ, μ+2σ] για το ΨΜΕ _{Κτηματολόγιο Α.Ε.} 17 από τις 696 υψομετρικές διαφορές που αντιστοιχούν στο 2,4% του αρχικού πλήθους των υψομετρικών διαφορών, για το ΨΜΕ_{SRTM} βρέθηκαν 30 υψομετρικές διαφορές (4,3% του αρχικού πλήθους) και για το ΨΜΕ_{ASTER} βρέθηκαν 26 υψομετρικές διαφορές (3,7% του αρχικού πλήθους).

Τα στατιστικά μεγέθη υπολογίστηκαν εκ νέου και παρουσιάζονται στον πίνακα 4 και στο παρακάτω διάγραμμα.

Στατιστικά μεγέθη	КТНМ	SRTM	ASTER
Πλήθος (count)	679	666	670
Ελάχιστη τιμή (min)	-14.60	-2.10	-12.34
Μέγιστη τιμή (max)	17.54	28.78	45.99
Μέσος όρος (mean)	0.82	10.63	13.64
Τυπική απόκλιση (stdev)	2.35	6.10	11.11
Μέσο τετραγωνικό σφάλμα (RMSE)	2.49	12.26	17.58
NSSDA	4.88	24.02	34.46

Πίνακας 4: Στατιστικά μεγέθη (m), Η_{ΓΥΣ} – Η_{ΨΜΕ}, για επίπεδο εμπιστοσύνης 95%

Διάγραμμα 5: Στατιστικά μεγέθη ελέγχου με τριγωνομετρικά σημεία για επίπεδο εμπιστοσύνης 95%

Στα στατιστικά μεγέθη του πίνακα 4 παρατηρείται αισθητή βελτίωση των τιμών σε σχέση με τις τιμές του πίνακα 1. Το ΨΜΕ _{Κτηματολόγιο Α.Ε.} έχει την χαμηλότερη τυπική απόκλιση 2.35μ γεγονός που υποδηλώνει ότι οι υψομετρικές διαφορές τείνουν να είναι κοντά στο μέσο όρο, την αναμενόμενη τιμή του συνόλου, ενώ τα δύο παγκόσμια ΨΜΕ SRTM και ASTER παρουσιάζουν υψηλότερη τυπική απόκλιση 6.10μ και 11.11μ αντίστοιχα γεγονός που υποδεικνύει ότι τα σφάλματα απλώνονται πάνω από ένα ευρύτερο φάσμα τιμών. Όσον αφορά το ΜΤΣ του ΨΜΕ _{Κτηματολόγιο Α.Ε} είναι το μικρότερο 2.49μ, ακολουθεί του ΨΜΕ_{SRTM} με 12.26μ και τελευταίο του ΨΜΕ_{ASTER} με 17.58μ.

Καλύτερη ακρίβεια για επίπεδο εμπιστοσύνης 95% παρατηρείται στην περίπτωση του ΨΜΕ _{Κτηματολόγιο Α.Ε.} με 4.88μ, η οποία είναι όμως εκτός των προβλεπόμενων ορίων. Η χειρότερη ακρίβεια για το ίδιο επίπεδο εμπιστοσύνης εμφανίζεται στο ΨΜE_{ASTER} και συγκεκριμένα με μέτρο 34.46μ ενώ για το ΨΜE_{SRTM} είναι 24.02μ.

Επομένως, από τους δύο δείκτες που διατίθενται, της τυπικής απόκλισης και του ΜΤΣ, διαπιστώνεται μια σαφής ανωτερότητα του ΨΜΕ _{Κτηματολόγιο Α.Ε.}, ακολουθεί το ΨΜΕ_{SRTM} και τελευταίο έπεται το ΨΜΕ_{ASTER.} Η διαπίστωση αυτή έρχεται να επιβεβαιώσει τις βιβλιογραφικές αναφορές αν και οι τιμές των δεικτών είναι εκτός ορίων των προδιαγραφών τους. Ο μέσος όρος είναι θετικός και για τα τρία μοντέλα, συνεπώς πρόκειται για υποεκτίμηση των μοντέλων, δηλαδή μια συστηματική μετατόπισή τους ¨χαμηλότερη¨ από τα δεδομένα αναφοράς. Ακολουθεί ο πίνακας 5 όπου έχουν υπολογιστεί οι δείκτες του μέσου όρου, της τυπικής απόκλισης και του μέσου τετραγωνικού σφάλματος για τις θετικές/αρνητικές υψομετρικές διαφορές και τις απόλυτες τιμές τους για τα τρία υπό εξέταση μοντέλα.

Στατιστικά μεγέθη	KTHM	SRTM	ASTER
Πλήθος	193	4	48
Μέσος όρος (αρνητικές τιμές)	-1.35	-0.87	-3.37
Τυπική απόκλιση (αρνητικές τιμές)	1.97	0.86	2.82
Μέσο τετραγωνικό σφάλμα (αρνητικές τιμές)	2.38	1.15	4.38
Πλήθος	503	692	648
Μέσος όρος (θετικές τιμές)	3.48	12.01	17.10
Τυπική απόκλιση (θετικές τιμές)	10.63	8.76	15.24
Μέσο τετραγωνικό σφάλμα (θετικές τιμές)	11.18	14.86	22.89
Πλήθος	696	696	696
Μέσος όρος (απόλυτες τιμές)	2.89	11.94	16.15
Τυπική απόκλιση (απόλυτες τιμές)	9.15	8.78	15.12
Μέσο τετραγωνικό σφάλμα (απόλυτες τιμές)	9.58	14.82	22.12

Πίνακας 5: Στατιστικά μεγέθη σε (m) για θετικές/αρνητικές και απόλυτες τιμές των Η_{ΓΥΣ}-Η_{ΨΜΕ} Στον παραπάνω πίνακα παρατηρείται ότι το πλήθος των θετικών τιμών υπερτερεί έναντι των αρνητικών τιμών και στα τρία μοντέλα. Ο μέσος όρος των αρνητικών τιμών πλησιάζει στο μηδέν και στα τρία ΨΜΕ ενώ για τις θετικές τιμές παρατηρούνται μεγάλες αποκλίσεις του μέσου όρου από το μηδέν κυρίως για τα παγκόσμια μοντέλα, το οποίο υποδηλώνει ότι τα παγκόσμια ΨΜΕ βρίσκονται ¨χαμηλότερα¨ από το ΨΜΕ _{Κτηματολόγιο Α.Ε} και τα σημεία αναφοράς.

Η απόλυτη τιμή ενός αριθμού, η οποία δείχνει την απόσταση του αριθμού από το μηδέν, αποτελεί ίσως και τον ουσιαστικότερο δείκτη κατά την αξιολόγηση των ΨΜΕ. Με τον υπολογισμό των στατιστικών μεγεθών, με βάση τις απόλυτες τιμές τους, διαπιστώνεται ότι, υπάρχει μια συστηματική μετατόπιση των μοντέλων "χαμηλότερα" από τα σημεία αναφοράς με καλύτερη προσέγγιση στο ανάγλυφο του ΨΜΕ _{Κτηματολόγιο Α.Ε} και χειρότερη του ΨΜΕ _{ASTER} (υποεκτίμηση των μοντέλων).

Ο δείκτης της τυπικής απόκλισης δείχνει ότι την μικρότερη διασπορά των σφαλμάτων την έχει το ΨΜΕ _{SRTM} με τιμή 8.78μ, ακολουθεί του ΨΜΕ _{Κτηματολόγιο Α.Ε} με 9.15μ και έπεται του ΨΜΕ _{ASTER} με τιμή 15.12μ Το ΜΤΣ του ΨΜΕ _{Κτηματολόγιο Α.Ε} είναι το μικρότερο όλων και ίσο με 9.58μ, ενώ ακολουθεί του ΨΜΕ _{SRTM} με σφάλμα 14.82μ και τελευταίο του ΨΜΕ _{ASTER} με σφάλμα 22.12μ.

4.4.2. Χαρτογράφηση

Ακολουθεί η χαρτογράφηση των σφαλμάτων (residuals) τα οποία αποτελούν ακραίες τιμές (outliers) για επίπεδο εμπιστοσύνης 95% για τα τρία υπό εξέταση ΨΜΕ.

ΚΑΤΑΝΟΜΗ ΑΚΡΑΙΩΝ ΤΙΜΩΝ ΔΗ_ΚΤΗΜ ΓΙΑ ΕΠΙΠΕΔΟ ΕΜΠΙΣΤΟΣΥΝΗΣ 95%

Πηγή: Επεξεργασία της συγγραφέα Ημερ/νια κατασκευής: 24/6/2018 7.000 14.000 28.000 Meters

Χάρτης 4: Κατανομή ακραίων τιμών ΔΗ _{Κτηματολόγιο Α.Ε.} για επίπεδο εμπιστοσύνης 95%

0

Παρατηρείται ότι οι ακραίες τιμές για το ΨΜΕ _{Κτηματολόγιο Α.Ε.} εντοπίζονται συγκεντρωμένες κυρίως στο βόρειο τμήμα του Νομού όπου δεσπόζουν τα όρη Σμόλικας και Τύμφη και επομένως το ανάγλυφο είναι εντονότερο σε σχέση με την υπόλοιπη περιοχή μελέτης, ενώ μια ομάδα ακραίων τιμών εντοπίζεται δυτικά της συμβολής των ποταμών Αώου- Βοϊδομάτη.

ΚΑΤΑΝΟΜΗ ΑΚΡΑΙΩΝ ΤΙΜΩΝ ΔΗ_SRTM ΓΙΑ ΕΠΙΠΕΔΟ ΕΜΠΙΣΤΟΣΥΝΗΣ 95%

Πηγή: Επεξεργασία της συγγραφέα Ημερ/νια κατασκευής: 24/6/2018

7.000 14.000 28.000 Meters

Χάρτης 5: Κατανομή ακραίων τιμών ΔΗ_{SRTM} για επίπεδο εμπιστοσύνης 95%

0

Σύμφωνα με τον χάρτη 5 οι ακραίες τιμές για το ΨΜΕ _{SRTM} είναι διάσπαρτες, οι περισσότερες όμως εντοπίζονται στο βόρειο, βορειοανατολικό και νοτιοανατολικό άκρο του Νομού εκεί όπου βρίσκονται τα όρη Σμόλικας, Τύμφη (Εθνικός Δρυμός Βίκου-Αώου) και Λάκμος (Αθαμανικά όρη) αντίστοιχα.

ΚΑΤΑΝΟΜΗ ΑΚΡΑΙΩΝ ΤΙΜΩΝ ΔΗ_ASTER ΓΙΑ ΕΠΙΠΕΔΟ ΕΜΠΙΣΤΟΣΥΝΗΣ 95%

Πηγή: Επεξεργασία της συγγραφέα Ημερ/νια κατασκευής: 24/6/2018 7.000 14.000 28.000 Meters

Χάρτης 6: Κατανομή ακραίων τιμών ΔΗ_{ASTER} για επίπεδο εμπιστοσύνης 95%

0

Στον χάρτη 6 οι ακραίες τιμές για το ΨΜΕ _{ASTER} είναι εξίσου διάσπαρτες και εντοπίζονται κυρίως στις κορυφογραμμές και παρυφές των βουνών του Νομού. Συγκεκριμένα επισημαίνονται στις παρυφές των όρων Σμόλικα, Τύμφη, στο βόρειο, βορειοανατολικό άκρο του Νομού καθώς και στις κορυφές των όρων Μιτσικέλι (κεντρικά), Τόμαρο (νότια), Κασιδιάρη (δυτικά) και Αθαμανικά όρη (νοτιοανατολικά) του Νομού. Μέσω της εφαρμογής ArcMap, στον περιγραφικό πίνακα του σημειακού επιπέδου sample προστίθενται στήλες όπου υπολογίζονται με τη βοήθεια του field calculator οι υψομετρικές διαφορές ΔΖ_(αναφοράς-ΨΜΕ) και στη συνέχεια με τη λειτουργία abs() υπολογίζονται οι απόλυτες τιμές των σφαλμάτων. Επόμενο βήμα είναι η χαρτογράφηση των απόλυτων τιμών όλων των σημείων σε πέντε κλάσεις με διαβάθμιση χρώματος και μεγέθους των σημείων για την καλύτερη απεικόνισή τους.

Στο χάρτη 7 όπου έχουν χαρτογραφηθεί οι απόλυτες τιμές των σφαλμάτων για το ΨΜΕ _{Κτηματολόγιο Α.Ε.} παρατηρείται ότι υπάρχει ομοιογένεια στην κατανομή των υψομετρικών διαφορών και υπερισχύουν τα σφάλματα με τιμή < 1.99μ, δηλαδή της πρώτης ζώνης. Κατά τη σάρωση δεδομένων των υψομετρικών διαφορών αυτής της σύγκρισης, 508 από τις 696 υψομετρικές διαφορές, που αντιστοιχούν στο 73% του αρχικού πλήθους των υψομετρικών διαφορών έχουν τιμή < 1.99μ. Η συγκέντρωση των μεγαλύτερων υψομετρικών διαφορών εντοπίζεται στο βόρειο τμήμα και σε περιοχές με έντονο ανάγλυφο.

Στον χάρτη 8 διαπιστώνεται ότι τα περισσότερα σφάλματα που αφορούν το ΨΜΕ_{SRTM} κυμαίνονται μεταξύ των τιμών 6.99μ - 12.73μ δηλαδή υπερισχύει η δεύτερη κλάση και στη συνέχεια ακολουθεί η πρώτη με τιμές < 6.99 μ. Επομένως κατά τον υπολογισμό αυτής της σύγκρισης, 455 από τις 696 υψομετρικές διαφορές, που αντιστοιχούν στο 65% του αρχικού πλήθους των υψομετρικών διαφορών έχουν τιμή < 12.73μ.

Ανάλογες διαπιστώσεις προκύπτουν εξετάζοντας τον χάρτη 9 που αφορά τις απόλυτες τιμές των σφαλμάτων του ΨΜΕ_{ASTER.} Οι υψομετρικές διαφορές που ανήκουν στην πρώτη κλάση δηλαδή έχουν τιμή <9.47μ υπερτερούν έναντι των υπολοίπων ζωνών ενώ κατά την σάρωση των σφαλμάτων, 493 από τις 696 υψομετρικές διαφορές, που αντιστοιχούν στο 71% του αρχικού πλήθους των υψομετρικών διαφορών έχουν τιμή < 19.96μ.

Η ποιοτική ανάλυση των δεδομένων, δηλαδή η αξιολόγηση των μέσω σφαλμάτων ανά ζώνη ανάλυσης (ζωνοποίηση) αποδεικνύει ότι το μεγαλύτερο ποσοστό σφαλμάτων εντοπίζεται σε συγκεκριμένες ζώνες. Ειδικότερα για το ΨΜΕ _{Κτηματολόγιο Α.Ε.} τα περισσότερα σφάλματα εκτείνονται στην πρώτη ζώνη, έχοντας δηλαδή τις χαμηλότερες τιμές, ενώ για τα ΨΜΕ_{SRTM} και ΨΜΕ_{ASTER} τα περισσότερα σφάλματα εντοπίζονται κυρίως στις δύο πρώτες ζώνες.

82

Χάρτης 7: Χαρτογράφηση απόλυτων τιμών ΔΗ (Η τριγωνομετρικό-Η Κτηματολογίου Α.Ε.)

Χάρτης 8: Χαρτογράφηση απόλυτων τιμών ΔΗ (Η τριγωνομετρικό-Η_{SRTM)}

Χάρτης 9: Χαρτογράφηση απόλυτων τιμών ΔΗ (Η τριγωνομετρικό-HASTER)

4.5. Χωρική αυτοσυσχέτιση των σφαλμάτων

Οι Bailey and Gatrell (1995) ορίζουν τη χωρική ανάλυση ως την ποσοτική ανάλυση/μελέτη των χωρικών φαινομένων που βρίσκονται στο γεωγραφικό χώρο. Η ανάπτυξη της θεωρίας και των μεθόδων ανάλυσης χωρικών δεδομένων βασίζεται στον πρώτο νόμο της Γεωγραφίας ή νόμος του Tobler σύμφωνα με τον οποίο "Everything is related to everything else, but near things are more related than distant things" που σε ελεύθερη μετάφραση είναι «Τα πάντα σχετίζονται μεταξύ τους, αλλά τα κοντινά πράγματα σχετίζονται μεταξύ τους περισσότερα από τα απομακρυσμένα» όπου η λέξη «πράγματα» αφορά στα χωρικά δεδομένα ή τις παρατηρήσεις ενός φαινομένου με χωρική αναφορά (Καλογήρου, 2015).

Με βάση τον πρώτο νόμο της γεωγραφίας έχουν αναπτυχθεί μέθοδοι ανάλυσης χωρικών δεδομένων όπου λαμβάνεται υπόψη αυτή η τάση γειτονικών παρατηρήσεων να μοιάζουν. Οι πιο διαδεδομένες μέθοδοι είναι αυτές που ελέγχουν την ύπαρξη χωρικής εξάρτησης ή χωρικής αυτοσυσχέτισης σε μια ποσοτική μεταβλητή (Καλογήρου, 2015). Ως χωρική αυτοσυσχέτιση ορίζεται η συσχέτιση μεταξύ των τιμών μιας μεταβλητής που οφείλεται αυστηρά στην εγγύτητα των τιμών αυτών στο γεωγραφικό χώρο, εισάγοντας μια απόκλιση από την υπόθεση ανεξάρτητων παρατηρήσεων της κλασικής στατιστικής (Griffith, 2003).

Ο δείκτης Moran's Ι είναι ένας από τους παλαιότερους και πιο κοινούς δείκτες που χρησιμοποιούνται για να εξετάσουν την ύπαρξη χωρικής αυτοσυσχέτισης σε χωρικά δεδομένα μίας μεταβλητής. Ο ολικός δείκτης Moran's Ι παίρνει τιμές από -1 ως +1 όπου:

- Τιμές κοντά στο +1 υποδηλώνουν ισχυρή θετική χωρική αυτοσυσχέτιση
- Τιμές κοντά στο -1 υποδηλώνουν ισχυρή αρνητική χωρική αυτοσυσχέτιση
- Τιμές κοντά στο 0 υποδηλώνουν απουσία χωρικής αυτοσυσχέτισης

Αξίζει να σημειωθεί ότι γενικά τα χωρικά δεδομένα τείνουν να έχουν θετική χωρική αυτοσυσχέτιση ως απόρροια του πρώτου νόμου της γεωγραφίας ενώ η αρνητική χωρική αυτοσυσχέτιση είναι σπάνια.

Στο περιβάλλον εργασίας της εφαρμογής ArcMap, έχοντας ήδη εισάγει τα σχετικά δεδομένα, ενεργοποιούμε το εργαλείο «Spatial Autocorrelation (Morans I)» που εντοπίζεται αναπτύσσοντας τις διακλαδώσεις των εργαλείων ArcToolbox> Spatial Statistics Tools>Analyzing Patterns. Στο ομώνυμο παράθυρο που εμφανίζεται επιλέγονται τα σχετικά δεδομένα όπως φαίνονται παρακάτω.

💐 Spatial Autocorrelation (Morans I)	—		×
Input Feature Class			_ ^
sample_F Events		-	-
Input Field			
DZ_KTHM			~
Generate Report (optional)			
Conceptualization of Spatial Relationships			
INVERSE_DISTANCE			~
Distance Method			_
EUCLIDEAN_DISTANCE			~
Standardization			_
NONE			~
Distance Band or Threshold Distance (optional)			_
Weights Matrix File (optional)			
		E	🐴 🎽
OK Cancel Environments	s	Show Help	>>

Εικόνα 4-2: Spatial Autogorrelation (Morans I)

Πηγή: ArcGIS 10.3

Η ίδια διαδικασία επαναλαμβάνεται άλλες δύο φορές ορίζοντας στο πλαίσιο "input field" τις μεταβλητές DZ_SRTM και DZ_ASTER αντίστοιχα. Το αποτέλεσμα της διαδικασίας της χωρικής αυτοσυσχέτισης για κάθε μεταβλητή είναι η δημιουργία ενός αρχείου αναφοράς html.

Εξετάζοντας τα τρία παρακάτω διαγράμματα (6)- (7)- (8), διαπιστώνεται ότι ο δείκτης Moran's I είναι # 0 και θετικός και για τα τρία ΨΜΕ με τιμή 0.241 για το Κτηματολόγιο, 0.266 για το SRTM και 0.237 για το ASTER. Επομένως τα σφάλματα δεν είναι τυχαία κατανεμημένα στο χώρο και εμφανίζουν συγκεκριμένο χωρικό πρότυπο ή έχουν συγκεκριμένη χωρική δομή και κατανομή. Η διαδικασία της χωρικής αυτοσυσχέτισης καταδεικνύει την εκτίμηση σφάλματος στην περιοχή μελέτης. Τα σφάλματα είναι συγκεντρωμένα δημιουργώντας χωρικά συσσωματώματα και παρουσιάζοντας χωρική ομοιογένεια.

Ο δείκτης Moran's Ι υποδηλώνει θετική χωρική αυτοσυσχέτιση, επομένως υπάρχει ένδειξη συσχέτισης των σφαλμάτων με ανεξάρτητες μεταβλητές όπως τα υψόμετρα, η κλίση και ο προσανατολισμός.

Given the z-score of 11.5121082087, there is a less than 1% likelihood that this clustered pattern could be the result of random chance.

Global Moran's I Summary				
Moran's Index:	0,241150			
Expected Index:	-0,001439			
Variance:	0,000444			
z-score:	11,512108			
p-value:	0,000000			
Dataset Information				
Input Feature Class:	sample_F Events			
Input Field:	DZ_KTHM			
Conceptualization:	INVERSE_DISTANCE			
Distance Method:	EUCLIDEAN			
Row Standardization:	False			
Distance Threshold:	4356,4139 Meters			
Weights Matrix File:	None			
Selection Set:	False			

Διάγραμμα 6: Αναφορά χωρικής αυτοσυσχέτισης για τα σφάλματα του ΨΜΕ Κτηματολόγιο Α.Ε.

Διάγραμμα 7: Αναφορά χωρικής αυτοσυσχέτισης για τα σφάλματα του ΨΜΕ SRTM

Global Moran's I Summary				
Moran's Index:	0,237351			
Expected Index:	-0,001439			
Variance:	0,000475			
z-score:	10,952942			
p-value:	0,000000			
Dataset Information				
Input Feature Class:	sample_F Events			
Input Field:	DZ_ASTER			
Conceptualization:	INVERSE_DISTANCE			
Distance Method:	EUCLIDEAN			
Row Standardization:	False			
Distance Threshold:	4356,4139 Meters			
Weights Matrix File:	None			
Selection Set:	False			

Διάγραμμα 8: Αναφορά χωρικής αυτοσυσχέτισης για τα σφάλματα του ΨΜΕ ASTER

4.6. Διαχωρισμός σφαλμάτων σε ζώνες (υψόμετρο, κλίση, προσανατολισμός)

Επόμενο βήμα είναι ο διαχωρισμός των σφαλμάτων σε ζώνες με βάση το υψόμετρο, την κλίση και τον προσανατολισμό, προκειμένου να γίνει ανάλυση και να εντοπισθεί χωρικά ο συσχετισμός των σφαλμάτων με τις παραπάνω μεταβλητές.

4.6.1. Διαχωρισμός σε ζώνες με βάση το υψόμετρο

			ΚΤΗΜΑΤΟΛΟΓΙΟ Α.Ε.				
Υψόμετρο Η_τριγΩΝΟΜΕΤΡΙΚΟ	Χαρακτηρισμός ανάγλυφου	Πλήθος σημείων	min	max	mean	stdev	
0-500μ	Πεδινό	58	-5,88	4,98	0,40	1,61	
500-1000µ	Ημιορεινό	280	-14,60	98,04	2,19	9,96	
1000-2000µ	Ορεινό	309	-10,16	65,40	1,59	7,27	
>2000µ	Αλπικό	49	-1,20	96,65	7,32	17,71	

Πίνακας 6: Διαχωρισμός σφαλμάτων ΨΜΕ Κτηματολογίου Α.Ε. σε ζώνες με βάση το υψόμετρο

			SRTM				
Υψόμετρο Η_τριγΩΝΟΜΕΤΡΙΚΟ	Χαρακτηρισμός ανάγλυφου	Πλήθος σημείων	min	max	mean	stdev	
0-500μ	Πεδινό	58	0,24	14,66	7,23	4,28	
500-1000µ	Ημιορεινό	280	-0,48	55 <i>,</i> 85	9,26	6,06	
1000-2000µ	Ορεινό	309	-2,10	62,54	13,86	9,05	
>2000µ	Αλπικό	49	3,71	67,34	20,66	13,72	

Πίνακας 7: Διαχωρισμός σφαλμάτων ΨΜΕ SRTM σε ζώνες με βάση το υψόμετρο

			ASTER				
Υψόμετρο Η_τριγΩΝΟΜΕΤΡΙΚΟ	Χαρακτηρισμός ανάγλυφου	Πλήθος σημείων	min	max	mean	stdev	
0-500μ	Πεδινό	58	-10,34	28,98	8,87	8,37	
500-1000µ	Ημιορεινό	280	-6,62	114,10	12,05	12,30	
1000-2000µ	Ορεινό	309	-12,34	106,80	18,09	16,83	
>2000µ	Αλπικό	49	2,14	126,44	29,36	19,61	

Πίνακας 8: Διαχωρισμός σφαλμάτων ΨΜΕ ASTER σε ζώνες με βάση το υψόμετρο

Σύμφωνα με τους πίνακες (6)-(7)-(8) πραγματοποιείται διαχωρισμός των σφαλμάτων των τριών υπό εξέταση ΨΜΕ σε τέσσερις κατηγορίες όπου για υψόμετρα 0-500μ το ανάγλυφο του εδάφους χαρακτηρίζεται ως «πεδινό», για υψόμετρα 500-1000μ το ανάγλυφο χαρακτηρίζεται ως «ημιορεινό», για υψόμετρα 1000-2000μ το ανάγλυφο χαρακτηρίζεται ως «ορεινό» και για υψόμετρα >2000μ το ανάγλυφο του εδάφους χαρακτηρίζεται ως «αλπικό». Το μεγαλύτερο πλήθος των τριγωνομετρικών σημείων εντοπίζεται στην ορεινή ζώνη, ακολουθεί η ημιορεινή και έπονται οι υπόλοιπες δύο, γεγονός που δικαιολογείται απόλυτα, καθώς τα τριγωνομετρικά

Όσον αφορά τα σφάλματα του ΨΜΕ _{κτηματολογίου Α.Ε} παρατηρείται ότι η μικρότερη τιμή τυπικής απόκλισης (1.61μ) εντοπίζεται σε χαμηλά υψόμετρα όπου το ανάγλυφο είναι πεδινό. Στην αμέσως επόμενη κατηγορία η τυπική απόκλιση έχει τιμή (9.96μ), στο ορεινό ανάγλυφο η τυπική απόκλιση έχει τιμή χαμηλότερη (7.27μ) από την ημιορεινή περιοχή, ενώ στο αλπικό ανάγλυφο έχει την μέγιστη τιμή (17.71μ).

Στα παγκόσμια ΨΜΕ SRTM και ASTER παρατηρείται ότι η τιμή της τυπικής απόκλισης, άρα και το σφάλμα αυξάνει γραμμικά όσο αυξάνει το υψόμετρο. Ιδιαίτερα σε υψόμετρα >2000μ (αλπικό ανάγλυφο) και τα τρία μοντέλα παρουσιάζουν συστηματικά μεγάλα σφάλματα.

Διάγραμμα 9: Διάγραμμα τυπικής απόκλισης ΨΜΕ ανά κατηγορία υψομέτρων

4.6.2. Διαχωρισμός σε ζώνες με βάση την κλίση και την έκθεση

Στο περιβάλλον εργασίας της εφαρμογής ArcMap, ενεργοποιούμε το εργαλείο «Slope» που εντοπίζεται αναπτύσσοντας τις διακλαδώσεις των εργαλείων ArcToolbox> Spatial Analyst Tools>Surface. Ως κλίση (slope) μιας επιφάνειας, ορίζεται ο μέγιστος ρυθμός μεταβολής του υψομέτρου, υπολογίζεται δε, σε μοίρες ή σε ποσοστό επί τοις εκατό. Υπολογίζονται επομένως οι κλίσεις του ΨΜΕ _{Κτηματολογίου Α.Ε.} σε ποσοστό %.

Στη συνέχεια, ενεργοποιούμε το εργαλείο «Aspect» που εντοπίζεται αναπτύσσοντας τις διακλαδώσεις των εργαλείων ArcToolbox> Spatial Analyst Tools>Surface. Ο προσανατολισμός ή έκθεση (aspect) μιας επιφάνειας αντιστοιχεί στη διεύθυνση κατά την οποία παρατηρείται ο μέγιστος ρυθμός μεταβολής του υψομέτρου και συνήθως μετριέται με το αζιμούθιο της διεύθυνσης αυτής, δηλ. σε μοίρες από 0 έως 360 κατά τη φορά του ρολογιού, με προσανατολισμό αναφοράς το Βορρά (Χαλκιάς & Γκούσια, 2015). Ακολουθεί η διαδικασία δημιουργίας του προσανατολισμού του ΨΜΕ _{Κτηματολογίου Α.Ε} στην περιοχή μελέτης.

Το επίπεδο του προσανατολισμού ταξινομείται σε έξι κλάσεις και ακολουθεί η επαναταξινόμησή του. Ιδιαίτερη προσοχή δίνεται στην επαναταξινόμηση του προσανατολισμού, καθώς ο τιμές που περιλαμβάνει είναι ειδικού τύπου (κυκλική ταξινόμηση, με τις τιμές «Ο» και «360» να έχουν την ίδια σημασία «βόρειος προσανατολισμός». Επιπρόσθετα, στο επίπεδο αυτό η τιμή «-1» αντιστοιχεί σε επίπεδες επιφάνειες, οι οποίες δεν έχουν προσανατολισμό προς μια διεύθυνση. Για αυτό το επίπεδο, η επαναταξινόμηση υλοποιείται ως εξής: οι ψηφίδες με αρχική τιμή -1 (επίπεδες επιφάνειες) παίρνουν την τιμή «1», οι ψηφίδες με βορειοανατολικό προσανατολισμό (αρχική τιμή 45°-135°) παίρνουν την τιμή «2», οι ψηφίδες με νότιο προσανατολισμό (αρχική τιμή 135°-225°) παίρνουν την τιμή «3», οι ψηφίδες με βορειοδυτικό προσανατολισμό (αρχική τιμή 315°-360°) παίρνουν την τιμή «1».

Επόμενο βήμα είναι η δημιουργία ενός πίνακα που να δείχνει τις τιμές των κελιών από το σύνολο των τριών επιπέδων που δημιουργήθηκαν παραπάνω για καθορισμένες θέσεις οι οποίες ορίζονται από το σύνολο των τριγωνομετρικών σημείων.

93

Στην λίστα των εργαλείων της εφαρμογής ArcToolBox αναπτύσσοντας τις διακλαδώσεις Spatial Analyst Tools>Extraction>Sample εισάγονται τα παραπάνω ψηφιδωτά επίπεδα και στο πλαίσιο επιλογής Resampling technique δηλώνεται «NEAREST». Ο πίνακας που δημιουργείται ονομάζεται sample_sl_f. Στη συνέχεια το σημειακό αρχείο των τριγωνομετρικών σημείων ενώνεται με τον πίνακα sample_sl_f που δημιουργήθηκε προηγουμένως με την εντολή Joins and Relates> Join... Επόμενο βήμα είναι η εξαγωγή του πίνακα σε μορφή dbf (database file) αρχείου και η εισαγωγή του σε ένα κενό υπολογιστικό φύλλο excel για περεταίρω επεξεργασία.

			ΚΤΗΜΑΤΟΛΟΓΙΟ Α.Ε.			
Κλίση	Χαρακτηρισμός	Πλήθος σημείων	min	max	mean	stdev
<5%	Μικρή	111	-7,83	5,11	0,39	1,37
5-10%	Μικρή-Μέση	144	-5 <i>,</i> 88	3,27	0,49	1,16
10-20%	Μέση-Μεγάλη	222	-14,6	98,04	1,48	8,55
>20%	Μεγάλη	219	-10,16	96,65	4,78	13,85

Πίνακας 9: Κατηγοριοποίηση σφαλμάτων ΨΜΕ Κτηματολογίου Α.Ε. σε ζώνες με βάση την κλίση

			SRTM			
Κλίση	Χαρακτηρισμός	Πλήθος σημείων	min	max	mean	stdev
<5%	Μικρή	111	-2,10	24,66	7,93	5 <i>,</i> 47
5-10%	Μικρή-Μέση	144	0,24	34,81	8,77	5 <i>,</i> 94
10-20%	Μέση-Μεγάλη	222	-0,13	47,37	11,54	7,35
>20%	Μεγάλη	219	-0,77	67,34	16,45	10,86

Πίνακας 10: Κατηγοριοποίηση σφαλμάτων ΨΜΕ SRTM σε ζώνες με βάση την κλίση

			ASTER			
Κλίση	Χαρακτηρισμός	Πλήθος σημείων	min	max	mean	stdev
<5%	Μικρή	111	-12,34	126,44	11,04	15,17
5-10%	Μικρή-Μέση	144	-10,34	70,12	11,72	11,53
10-20%	Μέση-Μεγάλη	222	-8,52	114,10	16,12	17,16
>20%	Μεγάλη	219	-4,84	106,80	20,22	15,25

Πίνακας 11: Κατηγοριοποίηση σφαλμάτων ΨΜΕ ASTER σε ζώνες με βάση την κλίση

Σύμφωνα με τους πίνακες (9)-(10)-(11) υλοποιείται η κατηγοριοποίηση των σφαλμάτων των τριών ΨΜΕ σε τέσσερις κατηγορίες ως εξής: για κλίσεις <5% (μικρές), για κλίσεις 5-10% (μικρές-μέσες), για κλίσεις 10-20% (μέσες-μεγάλες) και για κλίσεις >20% (μεγάλες).

Για τα σφάλματα του ΨΜΕ _{Κτηματολογίου Α.Ε} παρατηρείται ότι σε περιοχές με μεγάλες κλίσεις παρουσιάζονται και τα μεγαλύτερα σφάλματα καθώς για την κατηγορία με κλίσεις 10-20% η τυπική απόκλιση έχει υψηλή τιμή 8.55μ σε σχέση με τον μέσο όρο (1.48μ) και αντίστοιχα για την κατηγορία με κλίσεις >20% η τυπική απόκλιση έχει επίσης υψηλή τιμή 13.85μ σε συνάρτηση με τον μέσο όρο (4.78μ).

Για τις δύο πρώτες κατηγορίες κλίσεων <5% και 5-10%, τα τρία μοντέλα έχουν παρόμοια χαρακτηριστικά και ενιαία συμπεριφορά. Όσο μεγαλώνει η κλίση, το σφάλμα αυξάνει με συστηματικό τρόπο. Το ΨΜΕ _{Κτηματολογίου Α.Ε} θεωρείται καλύτερο μοντέλο, ενώ το ΨΜΕ _{SRTM} προσαρμόζεται καλύτερα στο ανάγλυφο σε σχέση με το ΨΜΕ _{ASTER}. Διαπιστώνεται επομένως ότι τα μεγάλα σφάλματα συσχετίζονται με τις μεγάλες κλίσεις του εδάφους στα ΨΜΕ. Το μέσο σφάλμα μεγαλώνει όσο μεγαλώνει η κλίση, δηλαδή υπάρχει γραμμικότητα. Επίσης η κατηγορία κλίσεων «μικρή- μέση» αποτελεί την πιο προβλέψιμη ζώνη καθώς τα σφάλματα κατανέμονται με ομοιογένεια και για τα τρία μοντέλα.

Στη συνέχεια παρουσιάζονται τα διαγράμματα διασποράς (10), (11) και (12) των σφαλμάτων σε συνάρτηση με την κλίση και για τρία υπό εξέταση μοντέλα όπου επιβεβαιώνεται η παρόμοια συμπεριφορά των παγκόσμιων ψηφιακών μοντέλων, ενώ την μικρότερη διασπορά των σφαλμάτων φαίνεται να έχει το ΨΜΕ _{Κτηματολογίου Α.Ε} καθώς το μεγαλύτερο ποσοστό τους τείνει στο μηδέν.

Διάγραμμα 10: Κατανομή σφαλμάτων ΨΜΕ κτημτολόγιο Α.Ε. σε σχέση με την κλίση

Διάγραμμα 11: Κατανομή σφαλμάτων ΨΜΕ srtm σε σχέση με την κλίση

Διάγραμμα 12: Κατανομή σφαλμάτων ΨΜΕ ASTER σε σχέση με την κλίση

4.6.3. Διαχωρισμός σε ζώνες με βάση τον προσανατολισμό

Σύμφωνα με τους κάτωθι πίνακες (12)-(13)-(14) πραγματοποιείται η κατηγοριοποίηση των σφαλμάτων των τριών ΨΜΕ σε τέσσερις κατηγορίες με βάση τον προσανατολισμό: βόρειος, ανατολικός, νότιος και δυτικός.

		ΚΤΗΜΑΤΟΛΟΓΙΟ Α.Ε.			
Προσανατολισμός	Πλήθος σημείων	min	max	mean	stdev
Βόρειος	186	-7,63	98,04	2,31	8,72
Ανατολικός	136	-10,16	65 <i>,</i> 40	1,16	7,44
Νότιος	163	-7,83	63,47	1,12	6,76
Δυτικός	211	-14,60	96,65	3,41	12,18

Πίνακας 12: Κατηγοριοποίηση σφαλμάτων ΨΜΕ ΚΤΗΜ σε ζώνες με βάση τον προσανατολισμό

		SRTM			
Προσανατολισμός	Πλήθος σημείων	min	max	mean	stdev
Βόρειος	186	-2,10	62 <i>,</i> 54	11,83	8,95
Ανατολικός	136	-0,48	59 <i>,</i> 40	12,46	8,55
Νότιος	163	-0,77	55,85	10,36	7,23
Δυτικός	211	0,67	67,34	12,91	9,74

Πίνακας 13: Κατηγοριοποίηση σφαλμάτων ΨΜΕ SRTM σε ζώνες με βάση τον προσανατολισμό

		ASTER			
Προσανατολισμός	Πλήθος σημείων	min	max	mean	stdev
Βόρειος	186	-12,34	126,44	16,65	17,25
Ανατολικός	136	-6,70	114,10	16,51	16,51
Νότιος	163	-7,05	71,96	12,72	12,68
Δυτικός	211	-8,52	106,80	16,61	15,36

Πίνακας 14: Κατηγοριοποίηση σφαλμάτων ΨΜΕ ASTER σε ζώνες με βάση τον προσανατολισμό

Διαπιστώνεται ότι και για τα τρία μοντέλα οι νότιες περιοχές είναι καλύτερες καθώς παρουσιάζουν μικρότερα σφάλματα ενώ στις δυτικές περιοχές τα σφάλματα δεν παρουσιάζουν σημαντική εξάρτηση από τον προσανατολισμό. Σε γενικές γραμμές, για το βόρειο ημισφαίριο, πλαγιές με νότιο προσανατολισμό λαμβάνουν περισσότερο φως του ήλιου και γίνονται περισσότερο ξερές και θερμότερες, υποστηρίζοντας ανθεκτική στην ξηρασία βλάστηση και λιγότερο ευνοϊκή για την ανάπτυξη δέντρων, ενώ πλαγιές με βόριο προσανατολισμό διατηρούν την υγρασία και είναι κρύες και υγρές, υποστηρίζοντας φυτά που τα ευνοεί η υγρασία (Maren, Karki, Prajapati, Yadav, & Shrestha, 2015).

Λαμβάνοντας υπόψη τις τιμές της τυπικής απόκλισης των παραπάνω πινάκων και συγκρίνοντάς τες ανά κατηγορία παρατηρείται ότι για το ΨΜΕ _{κτηματολογίου Α.Ε} η τυπική απόκλιση έχει την μικρότερη τιμή 6.76μ για τον νότιο προσανατολισμό και την μεγαλύτερη τιμή 12.18μ για τον δυτικό. Αντίστοιχες διαπιστώσεις γίνονται και για τα παγκόσμια ψηφιακά μοντέλα. Για το ΨΜΕ _{SRTM} η μικρότερη τιμή της τυπικής απόκλισης είναι 7.23μ στο νότιο προσανατολισμό και η μεγαλύτερη τιμή 9.74μ στο δυτικό ενώ για το ΨΜΕ _{ASTER} η νότια έκθεση παρουσιάζει το μικρότερο σφάλμα.

Γενικά η συμπεριφορά των ΨΜΕ είναι παρόμοια. Διαπιστώνεται ότι ο προσανατολισμός δεν συσχετίζεται με τα σφάλματα καθώς η έκθεση τα επηρεάζει λιγότερο. Οι τιμές της τυπικής απόκλισης πλησιάζουν τον μέσο όρο στις περισσότερες κατηγορίες γεγονός που αποδεικνύει την ύπαρξη μικρότερων σφαλμάτων σε σχέση με την κλίση. Ο νότιος προσανατολισμός είναι ο ευνοϊκότερος και για τα τρία μοντέλα ενώ χειρότερος αποτελεί ο δυτικός προσανατολισμός.

4.7. Παρεμβολή IDW

Η χωρική παρεμβολή αποτελεί μια διαδικασία εκτίμησης της τιμής ενός χαρακτηριστικού σε σημεία που δεν ανήκουν στο δείγμα, με βάση τις μετρήσεις στα σημεία του δείγματος. Οι μέθοδοι παρεμβολής που βρίσκονται στα διαθέσιμα λογισμικά είναι ποικίλες. Στα Γεωγραφικά Συστήματα Πληροφοριών (GIS) η παρεμβολή αποτελεί μέρος ενός ευρύτερου πεδίου επιλογών και εργαλείων χωρικής ανάλυσης.

Η σταθμισμένη παρεμβολή αντίστροφης απόστασης (inverse distance weighted interpolation-IDW), αποτελεί μια μέθοδος τοπικής γειτνίασης η οποία βασίζεται στην υπόθεση ότι η μεταβλητή που χαρτογραφείται μειώνεται σε επιρροή με την απόσταση από τη θέση δειγματοληψίας της. Στην λίστα των εργαλείων της εφαρμογής ArcToolBox του λογισμικού ArcGIS αναπτύσσοντας τις διακλαδώσεις Spatial Analyst Tools>Interpolation>IDW εισάγονται τα κατάλληλα δεδομένα όπου στο πεδίο «z value field» επιλέγονται κάθε φορά οι υψομετρικές διαφορές των ΨΜΕ. Στη συνέχεια εκτελείται η εντολή, αντίστοιχα για κάθε μοντέλο, με σκοπό τη μετατροπή των διαφορών σε επιφάνειες και τη δημιουργία χαρτών με ισαριθμητικές καμπύλες (ποιοτική αξιολόγηση). Στους χάρτες που ακολουθούν το κόκκινο χρώμα σημαίνει υποεκτίμηση των μοντέλων, δηλαδή τη μετατόπιση του ανάγλυφου τους σε χαμηλότερα υψόμετρα σε σχέση με τα τριγωνομετρικά σημεία της ΓΥΣ.

Αξίζει να σημειωθεί ότι η επιλογή της κατάλληλης μεθόδου παρεμβολής για εφαρμογές πεδίου θέτει μια σειρά προβλημάτων. Τα υπό προσομοίωση φαινόμενα είναι συνήθως αρκετά πολύπλοκα, τα δεδομένα είναι χωρικά ετερογενή και συχνά η δειγματοληψία δεν είναι ιδανική και περιέχει «θόρυβο». Η επιλογή της κατάλληλης μεθόδου για μια συγκεκριμένη εφαρμογή είναι ιδιαίτερα κρίσιμη, καθώς διαφορετικές μέθοδοι θα παράγουν διαφορετικές χωρικές απεικονίσεις και ενδεχομένως ασαφή γνώση και προσομοίωση του υπό εξέταση φαινομένου.

Εν κατακλείδι, η επιτυχημένη εφαρμογή της κατάλληλης μεθόδου παρεμβολής, επαφίεται στην επαρκή γνώση και σύγκριση των διαθέσιμων μεθόδων, του προσομοιωμένου φαινομένου και της διαδικασίας δοκιμής-λάθους, η οποία περιλαμβάνει προχωρημένη απεικόνιση και ψηφιακή ανάλυση τοπογραφικού ανάγλυφου, που βοηθά στον εντοπισμό λαθών στην παρεμβολή και γεωμετρικών στρεβλώσεων (Νικολακόπουλος, Κατσάνου, & Λαμπράκης, 2015).

99

Χάρτης 10 : Χαρτογράφηση των υψομετρικών διαφορών του ΨΜΕ κτηματολόγιο Α.Ε.

Χάρτης 11: Χαρτογράφηση των υψομετρικών διαφορών του ΨΜΕ SRTM

Χάρτης 12 : Χαρτογράφηση των υψομετρικών διαφορών του ΨΜΕ ASTER

4.8. Αξιολόγηση της ποιότητας με τη χρήση γεωμορφολογικών χαρακτηριστικών

Από τα αναφερόμενα αποτελέσματα των εμπειρικών αναλύσεων των υψομετρικών δεδομένων SRTM, ASTER και της Κτηματολόγιο Α.Ε. γίνεται άμεσα αντιληπτό ότι τα δεδομένα αυτά προσφέρουν μια νέα προοπτική που επιτρέπει τη βαθύτερη ανάλυση των χαρακτηριστικών γνωρισμάτων της γήινης επιφάνειας προς όφελος της χαρτογραφικής απεικόνισής τους.

Επιλέγοντας επομένως ως δεδομένα τριγωνομετρικά σημεία με υψόμετρο μεγαλύτερο από 1500μ και κλίση μεγαλύτερη από 20% παρουσιάζεται παρακάτω η στατιστική ανάλυση των σφαλμάτων καθώς και η χαρτογράφηση των περιοχών αυτών.

Στατιστικά μεγέθη	КТНМ	SRTM	ASTER
Πλήθος (count)	84	84	84
Ελάχιστη τιμή (min)	-10.16	-0.77	-2.39
Μέγιστη τιμή (max)	96.65	67.34	74.76
Μέσος όρος (mean)	4.52	19.04	22.47
Τυπική απόκλιση (stdev)	13.06	13.15	17.15
Μέσο τετραγωνικό σφάλμα (RMSE)	13.74	23.10	28.21

Πίνακας 15: Στατιστικά μεγέθη σε (m) για Η>1500μ και κλίσεις>20%

Σύμφωνα με τον πίνακα (15), 84 από τις 696 υψομετρικές διαφορές, που αντιστοιχούν στο 12% του αρχικού πλήθους των υψομετρικών διαφορών, βρέθηκαν να πληρούν το παραπάνω κριτήριο. Παρατηρείται ότι το ΨΜΕ _{Κτηματολόγιο Α.Ε.} παρουσιάζει το μικρότερο RMS σφάλμα σε σχέση με τα παγκόσμια μοντέλα, ακολουθεί το ΨΜΕ _{SRTM} και έπεται το ΨΜΕ _{ASTER}.

Οι τιμές των στατιστικών μεγεθών είναι μεγάλες και στα τρία μοντέλα και διαπιστώνεται ισχυρή συσχέτιση των σφαλμάτων με τα μεγάλα υψόμετρα και τις μεγάλες κλίσεις και στα τρία ΨΜΕ. Επιβεβαιώνεται δηλαδή ότι τα σφάλματα μεγαλώνουν όσο αυξάνει το υψόμετρο και αντίστοιχα τα σφάλματα μεγαλώνουν όσο αυξάνει η κλίση του εδάφους. Ο ρυθμός αύξησης είναι μεγαλύτερος στα δεδομένα ASTER.

Στη συνέχεια ακολουθεί ο χάρτης 13 όπου παρουσιάζεται η οπτικοποίηση των υψομετρικών διαφορών για υψόμετρο>1500μ και κλίση >20%.

ΧΑΡΤΗΣ ΥΨΟΜΕΤΡΙΚΩΝ ΔΙΑΦΟΡΩΝ ΓΙΑ ΥΨΟΜΕΤΡΟ>1500Μ & ΚΛΙΣΗ>20%

Χάρτης 13: Χάρτης υψομετρικών διαφορών για υψόμετρο>1500μ & κλίση>20%

4.9. Συζήτηση - Συμπεράσματα

Στο πλαίσιο της συγκεκριμένης εργασίας εξετάστηκε η δυνατότητα προσαρμογής των υψομετρικών δεδομένων από τις δορυφορικές αποστολές SRTM και ASTER καθώς και των υψομέτρων του ΨΜΕ της Εθνικό Κτηματολόγιο & Χαρτογράφηση Α.Ε. που δημιουργήθηκε σε εθνικό επίπεδο, στο τοπικό ανάγλυφο του Νομού Ιωαννίνων το οποίο χαρακτηρίζεται ιδιαίτερα πολύπλοκο. Τα εν λόγω δεδομένα, τα οποία είναι ευρέως προσβάσιμα και χωρίς κόστος για τους χρήστες, αναλύθηκαν στατιστικά και ποιοτικά με στόχο να αξιολογηθούν μεμονωμένα αλλά και συγκριτικά με δεδομένα αναφοράς. Ειδικότερα δόθηκαν εκτιμήσεις της ακρίβειας των υψομετρικών διαφορών που προκύπτουν από ανεξάρτητα υψομετρικά δεδομένα και συγκεκριμένα από το γεωδαιτικό τριγωνομετρικό δίκτυο της ΓΥΣ.

Επιπρόσθετα, παρουσιάστηκαν ενδεικτικά αποτελέσματα από αναλύσεις που αναδεικνύουν σημαντικές χωρικές σχέσεις μεταξύ των υψομετρικών δεδομένων ως συνάρτηση της γεωγραφικής περιοχής, των κλίσεων του εδάφους και του προσανατολισμού τους. Επομένως παρέχεται μια ολοκληρωμένη αξιολόγηση της ακρίβειας και των χαρακτηριστικών σφαλμάτων που επηρεάζουν τις υψομετρικές πληροφορίες από τα εν λόγω δεδομένα και τη χρήση τους σε εφαρμογές όπου ένα αξιόπιστο ψηφιακό μοντέλο εδάφους αποτελεί κύριο εργαλείο μελέτης της περιοχής ενδιαφέροντος.

Συγκεκριμένα τα συμπεράσματα που προκύπτουν με την ολοκλήρωση της εργασίας είναι συνοπτικά τα εξής:

Το ΨΜΕ της Κτηματολόγιο Α.Ε., το οποίο βάσει των προδιαγραφών δημιουργίας του έχει χωρική ανάλυση 5μ και έχει παραχθεί με φωτογραμμετρικές μεθόδους που θεωρούνται ιδιαίτερα ακριβείς, ελέγχθηκε με τη χρήση των τριγωνομετρικών σημείων της περιοχής. Σύμφωνα με τους στατιστικούς ελέγχους εντοπίστηκε η ύπαρξη μικρού μεγέθους συστηματικού σφάλματος. Παρατηρήθηκε ότι ο μέσος όρος των υψομετρικών διαφορών είναι θετικός, γεγονός που υποδηλώνει την υποεκτίμηση του μοντέλου δηλαδή της συστηματικής μετατόπισής του σε χαμηλότερα επίπεδα από τα τριγωνομετρικά σημεία της ΓΥΣ. Όσον αφορά την ακρίβεια του ΨΜΕ, για επίπεδο εμπιστοσύνης 95% (πίνακας 4), είναι εκτός των προδιαγραφών του, γεγονός που πιθανόν να οφείλεται στην ύπαρξη αρχικών σφαλμάτων.

- Το ΨΜΕ SRTM παρουσιάζει και αυτό συστηματικό σφάλμα, τάξης μεγέθους 10.63μ για επίπεδο εμπιστοσύνης 95% (πίνακας 4) στον έλεγχο με τα τριγωνομετρικά σημεία γεγονός που επιβεβαιώνει και η μεγάλη διαφορά τυπικής απόκλισης και RMS σφάλματος. Εντοπίζεται συστηματική μετατόπιση του ΨΜΕ «χαμηλότερα» από τα δεδομένα αναφοράς (υποεκτίμηση των υψομέτρων) ενώ οι μεγάλες τιμές των στατιστικών μεγεθών ελέγχου της ακρίβειάς του πιθανότατα να οφείλονται στο γεγονός ότι τα τριγωνομετρικά σημεία βρίσκονται σε θέσεις με σχετικά μεγάλο υψόμετρο και πιθανότατα το ΨΜΕ SRTM να μην περιγράφει ικανοποιητικά τέτοιου είδους θέσεις (ακρότατα).
- Το ΨΜΕ ASTER περιέχει συστηματικό σφάλμα και μάλιστα το μεγαλύτερο σε σχέση με τα άλλα δύο ελεγχθέντα ΨΜΕ. Έχει τη μικρότερη υψομετρική ακρίβεια για επίπεδο εμπιστοσύνης 95% και παρουσιάζει το μεγαλύτερο σφάλμα σε σχέση με τα υπόλοιπα ελεγχθέντα ΨΜΕ. Παρατηρείται συστηματική υποεκτίμηση των υψομέτρων , καθώς το ΨΜΕ ASTER βρίσκεται συστηματικά «χαμηλότερα» από τα τριγωνομετρικά σημεία. Επομένως παρουσιάζει τη μεγαλύτερη απόκλιση από το πραγματικό ανάγλυφο της περιοχής σε σύγκριση με τα άλλα δύο ΨΜΕ.

Σε γενικές γραμμές, σύμφωνα με τα αποτελέσματα των ελέγχων, το ΨΜΕ της Κτηματολόγιο A.Ε. μπορεί να θεωρηθεί ως το πιο ακριβές, καθώς υπερτερεί σε σχέση με τα παγκόσμια ψηφιακά μοντέλα σε όλες τις τιμές των στατιστικών μεγεθών, ενώ ανεξάρτητα από τους ελέγχους, έχει την μεγαλύτερη διακριτική ικανότητα. Το ΨΜΕ SRTM δείχνει να προσαρμόζεται καλύτερα από άποψη ακρίβειας, αντί του ΨΜΕ ASTER, στα υψομετρικά δεδομένα του Νομού Ιωαννίνων, βάσει σύγκρισής τους με ένα σύνολο 696 τριγωνομετρικών σημείων της ΓΥΣ. Το ΨΜΕ ASTER δείχνει να αποτελεί παράγωγο προϊόν ελαφρώς κατώτερης ακρίβειας σε σύγκριση με το ΨΜΕ SRTM.

Στο σημείο αυτό θα πρέπει να τονιστεί το γεγονός ότι οι απαιτήσεις και οι προδιαγραφές των τριών ΨΜΕ διαφέρουν. Συγκεκριμένα, το εθνικής εμβέλειας ΨΜΕ της Κτηματολόγιο Α.Ε. δημιουργήθηκε με στόχο να παρέχει υψηλές προδιαγραφές χωρικών πληροφοριών για τον ελλαδικό χώρο. Έχει αξιολογηθεί και πιστοποιηθεί η ακρίβεια και η ποιότητά του, συνεπώς ο χρήστης έχει τη δυνατότητα να γνωρίζει αν και κατά πόσο η χρήση του ενδείκνυται για την εκάστοτε εφαρμογή.

Θα πρέπει να σημειωθεί ότι, η εκτελεσθείσα στατιστική ανάλυση βασίστηκε στην παραδοχή ότι κατά την συγκριτική αξιολόγηση των τριών ΨΜΕ με τα δεδομένα αναφοράς, ελήφθησαν υπόψη όλα τα τριγωνομετρικά σημεία ΓΥΣ της περιοχής μελέτης χωρίς καμία προεπεξεργασία για την αφαίρεση χονδροειδών σφαλμάτων και την εξαίρεση κάποιων σημείων από την κατανομή. Επιπλέον τα αποτελέσματα του ελέγχου με τα τριγωνομετρικά σημεία δεν θεωρούνται ιδιαίτερα αξιόπιστα καθώς τα σημεία αυτά δεν περιγράφουν πλήρως το ανάγλυφο της περιοχής μελέτης και βρίσκονται σε περιοχές με σχετικά μεγάλο υψόμετρο ώστε να εξυπηρετούν τον σκοπό για τον οποίο ιδρύθηκαν.

Κατά τη σύγκριση των αποτελεσμάτων των στατιστικών ελέγχων που πραγματοποιήθηκαν στην εργασία για τα παγκόσμια ψηφιακά μοντέλα εδάφους SRTM και ASTER σε σχέση με τα αποτελέσματα πιστοποίησής τους διαπιστώνεται ότι:

Για τα δεδομένα του ΨΜΕ_{SRTM} πραγματοποιήθηκαν έλεγχοι με δεδομένα κινηματικού εντοπισμού GPS, με ψηφιακά υψομετρικά δεδομένα εδάφους DTED Level 2 και με σύνολα δεδομένων με υψομετρική πληροφορία (Height Patches) (Rodriguez E. et al., 2005). Τα αποτελέσματα που αφορούν την Ελλάδα από τους ελέγχους πιστοποίησης που πραγματοποιήθηκαν είναι αυτά της Ευρασίας.

	Mean	STD	90% Absolute Error	RMS
Ευρασία (σημεία GPS GCP)	-0.7	3.7	6.6	-
Ευρασία (δεδομένα DTED Level 2)	-0.07	4.5	8.07	5.36
Ευρασία (height patches)	-1.79	5.99	12.48	8.28
Τριγωνομετρικά σημεία Ν. Ιωαννίνων	10.63	6.10	10.03	12.26

Πίνακας 16: Πίνακας στατιστικών μεγεθών (μέτρα) για την αξιολόγηση της ακρίβειας του ΨΜΕ_{SRTM} στο Ν. Ιωαννίνων σε σύγκριση με δοκιμές στην περιοχή της Ευρασίας.

Σύμφωνα με τον παραπάνω πίνακα παρατηρείται ότι τα αποτελέσματα του ελέγχου με χρήση των τριγωνομετρικών σημείων δίνουν σφάλματα μεγαλύτερα από τις αναμενόμενες τιμές. Επίσης εμφανίζουν μεγάλο συστηματικό σφάλμα και μάλιστα με αντίθετο πρόσημο από τους υπόλοιπους ελέγχους. Μια πιθανή εξήγηση είναι ο λανθασμένος εντοπισμός των σημείων από το ΨΜΕ _{SRTM} εξαιτίας πιθανής οριζοντιογραφικής μετάθεσης του ΨΜΕ συνδυαστικά με τη θέση των τριγωνομετρικών σημείων (τοπικά ακρότατα). Για τα δεδομένα του ΨΜΕ_{ASTER V2} πραγματοποιήθηκαν έλεγχοι με δεδομένα αναφοράς, τόσο στις ΗΠΑ όσο και στην Ιαπωνία. Για την αξιολόγηση χρησιμοποιήθηκαν 18.200 σημεία GPS που μετρήθηκαν στο CONUS και έδωσαν ακρίβεια 17 μέτρα για επίπεδο εμπιστοσύνης 95%.

	Min	Max	Mean	Std	RMSE	LE95
Σημεία GPS (CONUS)	-137.37	64.80	-0.20	8.68	8.68	17.01
Τριγωνομετρικά σημεία	-12.34	45.99	13.64	11.11	17.58	34.46

Πίνακας 17: Πίνακας στατιστικών μεγεθών (μέτρα) για την αξιολόγηση της ακρίβειας του ΨΜΕ_{ASTER} στο Ν. Ιωαννίνων σε σύγκριση με τις μετρήσεις CONUS.

Σύμφωνα με τον παραπάνω πίνακα εντοπίζεται η ύπαρξη μεγάλου συστηματικού σφάλματος στον έλεγχο της περιοχής μελέτης, γεγονός που δεν συνάδει με τους ελέγχους του προϊόντος. Και σε αυτή την περίπτωση τα αποτελέσματα ελέγχου με τη χρήση των τριγωνομετρικών σημείων δίνουν σφάλματα μεγαλύτερα από τις αναμενόμενες τιμές. Το γενικό σφάλμα είναι μεγαλύτερο από το αντίστοιχο του ΨΜΕ SRTM.

Κατά τον υπολογισμό των στατιστικών μεγεθών για τις αρνητικές/θετικές υψομετρικές διαφορές καθώς και τις απόλυτες τιμές τους για τα τρία υπό εξέταση μοντέλα, οι έλεγχοι επιβεβαίωσαν τη συστηματική μετατόπιση των μοντέλων "χαμηλότερα" από τα σημεία αναφοράς με καλύτερη προσέγγιση στο ανάγλυφο του ΨΜΕ _{Κτηματολόγιο Α.Ε} και χειρότερη του ΨΜΕ _{ΑSTER} (υποεκτίμηση των μοντέλων).

Με τη χαρτογράφηση των σφαλμάτων για επίπεδο εμπιστοσύνης 95% για τα τρία υπό εξέταση ΨΜΕ διαπιστώθηκε ότι οι ακραίες τιμές και για τα τρία ΨΜΕ εντοπίζονται συγκεντρωμένες στο βόρειο τμήμα του Νομού όπου δεσπόζουν τα όρη Σμόλικας και Τύμφη. Ακραίες τιμές υπάρχουν και διάσπαρτες, που εντοπίζονται κυρίως στις κορυφογραμμές και παρυφές των βουνών.

Η διαδικασία της χωρικής αυτοσυσχέτισης καταδεικνύει την εκτίμηση σφάλματος στην περιοχή μελέτης. Τα σφάλματα είναι συγκεντρωμένα δημιουργώντας χωρικά συσσωματώματα και παρουσιάζοντας χωρική ομοιογένεια. Ο δείκτης Moran's Ι υποδηλώνει θετική χωρική αυτοσυσχέτιση, επομένως υπάρχει ένδειξη συσχέτισης των σφαλμάτων με ανεξάρτητες μεταβλητές όπως τα υψόμετρα, η κλίση και ο προσανατολισμός.
Με το διαχωρισμό των σφαλμάτων σε τέσσερις ζώνες με βάση το υψόμετρο, 0-500μ, 500-1000μ, 1000-2000μ, >2000μ διαπιστώνεται ότι το μεγαλύτερο πλήθος των τριγωνομετρικών σημείων εντοπίζεται στην ορεινή ζώνη, γεγονός που δικαιολογεί απόλυτα τον σκοπό ίδρυσής τους. Στα παγκόσμια ΨΜΕ SRTM και ASTER παρατηρείται ότι το σφάλμα αυξάνει γραμμικά όσο αυξάνει το υψόμετρο. Ιδιαίτερα σε υψόμετρα >2000μ (αλπικό ανάγλυφο) και τα τρία μοντέλα παρουσιάζουν συστηματικά μεγάλα σφάλματα.

Με το διαχωρισμό των σφαλμάτων σε τέσσερις ζώνες με βάση την κλίση, <5%, 5-10%, 10-20%, >20% παρατηρείται ότι για τις δύο πρώτες κατηγορίες, τα τρία μοντέλα έχουν παρόμοια χαρακτηριστικά και ενιαία συμπεριφορά. Διαπιστώνεται επομένως ότι τα μεγάλα σφάλματα συσχετίζονται με τις μεγάλες κλίσεις του εδάφους. Το μέσο σφάλμα μεγαλώνει όσο μεγαλώνει η κλίση, δηλαδή υπάρχει γραμμικότητα. Επίσης η κατηγορία κλίσεων «μικρή- μέση» αποτελεί την πιο προβλέψιμη ζώνη καθώς τα σφάλματα κατανέμονται με ομοιογένεια και για τα τρία μοντέλα.

Με το διαχωρισμό των σφαλμάτων σε τέσσερις ζώνες με βάση τον προσανατολισμό, βόρειος, ανατολικός, νότιος, δυτικός, παρατηρείται ότι η συμπεριφορά των ΨΜΕ είναι παρόμοια και διαπιστώνεται ότι ο προσανατολισμός δεν συσχετίζεται με τα σφάλματα καθώς η έκθεση τα επηρεάζει λιγότερο. Ο νότιος προσανατολισμός είναι ο ευνοϊκότερος και για τα τρία μοντέλα ενώ χειρότερος αποτελεί ο δυτικός προσανατολισμός.

Η ποιοτική αξιολόγηση αναφέρεται στη μετατροπή των διαφορών σε επιφάνειες και τη δημιουργία χαρτών με ισαριθμητικές καμπύλες. Στους χάρτες που δημιουργούνται το κόκκινο χρώμα σημαίνει υποεκτίμηση των μοντέλων, δηλαδή τη μετατόπιση του ανάγλυφου σε χαμηλότερα υψόμετρα σε σχέση με τα τριγωνομετρικά σημεία της ΓΥΣ.

Τέλος, επιλέγοντας ως δεδομένα τριγωνομετρικά σημεία με υψόμετρο μεγαλύτερο από 1500μ και κλίση μεγαλύτερη από 20%, που αντιστοιχεί σε ποσοστό 12% του αρχικού πλήθους των δεδομένων, από τον στατιστικό έλεγχο των μεγεθών διαπιστώνεται ισχυρή συσχέτιση των σφαλμάτων με τα μεγάλα υψόμετρα και τις μεγάλες κλίσεις και στα τρία ΨΜΕ. Επιβεβαιώνεται δηλαδή ότι τα σφάλματα μεγαλώνουν όσο αυξάνει το υψόμετρο και αντίστοιχα όσο αυξάνει η κλίση του εδάφους. Με την αξιολόγηση των τριών ψηφιακών μοντέλων εδάφους διερευνήθηκε η προσαρμογή τους στο τοπικό ανάγλυφο ώστε στη συνέχεια να περιγραφούν οι διαδικασίες αξιοποίησης τους και τα χαρτογραφικά προϊόντα που μπορούν να παραχθούν από αυτά ώστε να μπορούν να συμβάλουν σε ποικίλες εφαρμογές που σχετίζονται από μελέτες του φυσικού περιβάλλοντος και την αξιολόγηση περιβαλλοντικών και γεωμορφολογικών κινδύνων, μέχρι το χαρακτηρισμό του υδρογραφικού δικτύου και την αναβάθμιση του περιβάλλοντος μέσω υδρονομικών έργων.

Τα ενδεικτικά αποτελέσματα που παρουσιάστηκαν για την περιοχή της Ηπείρου είναι ενθαρρυντικά και συνοψίζουν τις δυνατότητες που προσφέρονται από τη χρήση των εν λόγω υψομετρικών δεδομένων για την συγκριτική μελέτη των ηπειρωτικών περιοχών, κυρίως των ορεινών και ημιορεινών, καθώς και τη διερεύνηση του ρόλου του ανάγλυφου μέσα από συγκεκριμένους δείκτες που περιγράφουν τα χαρακτηριστικά γνωρίσματα της γήινης επιφάνειας μιας περιοχής.

Θα πρέπει να επισημανθεί ότι, η χρήση των παγκόσμιων ΨΜΕ είναι εξαιρετικά χρήσιμη σε ένα ευρύ φάσμα εφαρμογών που απαιτούν πληροφορίες υψομέτρου, ειδικά όταν δεν απαιτείται υψηλή ακρίβεια δεδομένων, η περιοχή μελέτης είναι μεγάλη σε μέγεθος ή δεν υπάρχει άλλη πηγή υψομετρικών δεδομένων. Ωστόσο, οι χρήστες των παγκόσμιων ΨΜΕ πρέπει να γνωρίζουν τα χαρακτηριστικά τους (ακρίβεια και μορφολογικά χαρακτηριστικά) που μπορεί να διαφέρουν όχι μόνο μεταξύ ηπείρων αλλά και σε μια χώρα τόσο μεγάλη όσο η Ελλάδα. Μόνο τότε θα είναι σε θέση να αποφασίσουν αν μπορούν και τι πρέπει να χρησιμοποιήσουν και θα μπορούν να επιλέξουν το καταλληλότερο από τα διαθέσιμα ΨΜΕ για τη συγκεκριμένη εφαρμογή και περιοχή μελέτης.

Στο μέλλον προτείνεται τα αποτελέσματα της συγκεκριμένης εργασίας να επεκταθούν σε μια συστηματικότερη σύγκριση και σε ένα βέλτιστο συνδυασμό των SRTM και ASTER υψομετρικών δεδομένων όχι μόνο σε ερευνητικό αλλά και σε επιχειρησιακό επίπεδο. Επιπλέον η εξέταση ψηφιακών μοντέλων εδάφους που έχουν προκύψει από άλλες μεθόδους (όπως π.χ. συστήματα LiDAR, χρήση UAV κ.α.) χρήζει περαιτέρω διερεύνησης. Για την καλύτερη αποτίμηση του σφάλματος των δεδομένων θα πρέπει να χρησιμοποιηθούν ακριβέστερα δεδομένα αναφοράς όπως φωτοσταθερά (GCPs), σημεία από μετρήσεις κινηματικού εντοπισμού GPS ή σημεία από επίγειες μετρήσεις, γεγονός που μπορεί να αποτελέσει αντικείμενο μελλοντικών εργασιών.

110

ΒΙΒΛΙΟΓΡΑΦΙΑ

Athmania, D., & Achour, H. (2014). External Validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI-SRTM v4.1 Free Access Digital Elevation Models (DEMs) in Tunisia and Algeria. *Remote Sensing*, *6*, σσ. 4600-4620.

Blitzkow, D., Matos, A., & Cintra, J. (2009). *Digital Terrain Model evaluation and computation of the terrain correction and indirect effect in South America*. GEOACTA.

Bolkas, D., Fotopoulos, G., Braun, A., & Tziavos, I. (2016). Assessing Digital Elevation Model Uncertainty Using GPS Survey Data. *Journal of Surveying Engineering*, 142.

Burrough, P. (1986). *Principles of Geographical Information Systems for Land Resources Assessment.* Oxford University press.

Dowding, S., Kuuskivi, T., & Li, X. (2004). Void fill of STM elevation data: Principles, processes and performance.In ASPRS Images to Decisions:Remote Sensing Foundations for GIS Applications. *ASPRS Fall Conference*, (σσ. September 12-16). Kansas City,MO,USA.

Elkhrachy, I. (2017). Vertical accuracy assessment for SRTM and ASTER Digital Elevation Models: A case of Najran city, Saudi Arabia. *Civil Engineering*.

Farr, T., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., και συν. (2007). THE SHUTTLE RADAR TOPOGRAPHY MISSION. *Reviews of Geophysics*. American Geophysical Union.

Foni, A., & Seal, D. (2004). Shuttle Radar Topography Mission: An innovative approach to shuttle orbital control. Acta Astron.

Gesch, D., Oimoen, M., Danielson, J., & Meyer, D. (2016). VALIDATION OF THE ASTER GLOBAL DIGITAL ELEVATION MODEL VERSION 3 OVER THE CONTERMINOUS UNITED STATES. *The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B4.* Prague, Czech Republic.

Gesch, D., Zhang, Z., Oimoen, M., Danielson, j., & Meyer, D. (2011). *Validation of the ASTER Global Digital Elevation Model (GDEM) Version 2 over the Conterminous United States.* South Dakota USA: U.S. Geological Survey-Earth Resources Observation Science (EROS) Center.

Gorokhovich, Y., & Voustianiouk, A. (2006). Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. *104*, σσ. 409-415.

Griffith, D. (2003). *Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization.* Berlin: Springer-Verlag.

Hayakawa, Y., Oguchi, T., & Lin, Z. (2008). Comparison of new and existing global digital elevation models: ASTER G-DEM and SRTM-3. *Geophysical Research Letters*, 35.

Hirt, C., Filmer, M., & Featherstone, W. (2010). Comparison and validation of the recent freelyavailable ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 digital elevation models over Australia. *Australian Journal of Earth Sciences*, 57.

Hu, P., Liu, X., & Hu, H. (2009). Accuracy Assessment of Digital Elevation Models based on Approximation Theory. *Photogrammetric Engineering & Remote Sensing*, (σσ. 49-56).

Ioannidis, C., Xinogalas, E., & Soile, S. (2013). Assessment of the global Digital Elevation Models ASTER and SRTM- Application in Greece. *International Conference "SDI & SIM 2013"*. Skopje.

Jarvis, A., Rubiano, J., Nelson, A., & Mulligan, M. (2004). *Practical use of SRTM data in the tropics- Comparisons with digital elevation models generated from cartographic data.* Cali, Colombia: Centro Internacional de Agricultura Tropical (CIAT).

Kocak, G., Buyuksalih, G., & Oruc, M. (2005). Accuracy assessment of interferometric digital elevation models derived from the Shuttle Radar Topography Mission X- and C-band data in a test area with rolling topography and moderate forest cover. *Optical Engineering*, 44, σ. 7.

Koch, A., Heipke, C., & Lohmann, P. (2002). *Analysis of SRTM DTM- Methology and practical results.* . Ottawa Canada: Proceedings of the ISPRS Commission IV Symposium.

Lemoine, F., Smith, D., Kunz, L., Smith, R., Pavlis, E., Pavlis, N., και συν. (1997). The development of the NASA GSFC and NIMA joint geopotential model. *in 'Gravity, Geoid and Marine Geodesy' International Association of Geodesy Symposia*. *117*, σσ. 461-469. Segawa, J., Fujimoto, h., and Okubo, S.

Li, Z., Zhu, Q., & Gold, C. (2004). *Digital Terrain Modeling, Principles and Methodology*. CRC Press.

Maren, I. E., Karki, S., Prajapati, C., Yadav, R. K., & Shrestha, B. B. (2015). Facing north or south: Does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-Himalayan valley? *Journal of Arid Environments*, σσ. 112-123.

Miller, C., & Laflamme, R. (1958). The Digital Terrain Model — Theory & Application. *Photogrammetric Engineering*, σσ. 433-442.

Mouratidis, A., Briole, P., & Katsambalos, K. (2010). SRTM 3" DEM (versions 1,2,3,4) validation by means of extensive kinematic GPS measurements: a case study from North Greece. *International Journal of Remote Sensing Vol.31, No.23*, og. pp.6205-6222.

Nikolakopoulos, K., & Chrysoulakis, N. (2006). Updating the 1:50.000 topographic maps using ASTER and SRTM DEM. The case of Athens, Greece. *Remote Sensing for Environmental Monitoring, GIS Applications and Geology VI*.

Nikolakopoulos, K., Kamaratakis, E., & Chrysoulakis, N. (2006). SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece. *International Journal of Remote Sensing Vol.27, No. 21*, oo. pp.461-469.

Peckham, R., & Jordan, G. (2007). *Digital Terrain Modelling: Development and Applications in a Policy Support Environment*. Berlin: Springer.

Rabus, B., Eineder, M., Roth, A., & Bamler, R. (2003). The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. *ELSEVIER*, σσ. 241-262.

Riley, S., Talbot, N., & Kirk, G. (2000). A new system for RTK performance evaluation. IEEE Position Location and Navigation Symposium.

Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Tridon, D. B., Brautigam, B., και συν. (2017). Generation and performance assessment of the global TanDEM-X digital elevation model. *ISPRS Journal of Photogrammetry and Remote Sensing*, σσ. 119-139.

Rodriguez, E., Morris, C., & Belz, J. (2006). A Global Assessment of the SRTM Performance. *Photogrammetric Engineering & Remote Sensing*, *72* (3), σσ. 249-260.

Rodriguez, E., Morris, C., Belz, J., Chapin, E., Martin, J., Daffer, W., και συν. (2005). *An Assessment of the SRTM Topographic Products.* Calofornia: Technical Report JPL D-31639, Jet Propulsion Laboratory.

Sertel, E. (2010). *Accuracy assessment of ASTER global DEM over Turkey*. Orlando, FL, USA: Proceedings of the Joint Symposium of ISPRS Commission IV & AutoCarto.

Slater, J., Heady, B., Kroenung, G., Curtis, W., Haase, J., Hoegemann, D., και συν. (2009). *Evaluation of the New ASTER Global Digital Elevation Model.* USA: National Geospatial-Intelligence Agency.

Soille, P., & Arrighi, P. (1999). From scanned topographic maps to digital elevation models. *Proceedings Geovision.*

Tachikawa, T., Hato, M., Kaku, M., & Iwasaki, A. (2011). *Characteristics of ASTER GDEM version* 2. Vancouver Canada: International Geoscience and Remote Sensing Symposium (IGARSS).

Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., & Iwamoto, H. (2014). PRECISE GLOBAL DEM GENERATION BY ALOS PRISM . *ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences*. Suzhou, China: ISPRS Technical Commission IV Symposium.

Weibel, R., & Heller, M. (1990). A framework for digital terrain modelling. *Proceedings of the 4th International Symposium on Spatial Data Handling, International Geographical Union*, (σσ. 219-229). Columbus Ohio.

Weibel, R., & Heller, M. (1991). *Digital Terrain Modeling.In Maguire,D.J.,Goodchild, M.F.,Rhind,D.W.(Eds),Geographical Information Systems:Principles ana Applications.* London: Longman.

Δεληκαράογλου, Δ. (2005). Ειδικά Θέματα Δορυφορικής Γεωδαισίας. Αθήνα: ΕΜΠ.

Δεληκαράογλου, Δ. (2008). Νέες προοπτικές χαρτογράφησης της γεωμορφολογίας ηπειρωτικών περιοχών χρησιμοποιώντας υψομετρικά δεδομένα από τις δορυφορικές αποστολές SRTM και ICESAT. Η Χαρτογραφία της Ηπειρωτικής Περιφέρειας. Όρια-Φραγμοί-Άξονες-Πρότυπα-Ποιότητα. Ιωάννινα: ResearchGate.

Καλογήρου, Σ. (2015). Χωρική Ανάλυση- Μεθοδολογία και εφαρμογές με τη γλώσσα R. Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκων Βιβλιοθηκών.

Καραθανάση, Β. (2006). Μικροκυματική Τηλεπισκόπηση. Αθήνα.

Νικολακόπουλος, Κ., Κατσάνου, Κ., & Λαμπράκης, Ν. (2015). Χωρική Παρεμβολή. Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών.

Νικολακόπουλος, Κ., Κατσάνου, Κ., & Λαμπράκης, Ν. (2015). Ψηφιακά μοντέλα αναγλύφου. Στο Υδρολογία με χρήση γεωγραφικών συστημάτων πληροφοριών και δεδομένων τηλεπισκόπησης. Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών.

Παπαπαναγιώτου, Ε. (2000). Αυτόματος συσχετισμός στερεοζεύγους ψηφιακών εικόνων για την εξαγωγή τρισδιάστατων συντεταγμένων με τη χρήση πολυωνυμικού γεωμετρικού μοντέλου. Μυτιλήνη: Διδακτορική διατριβή.

Περάκης, Κ., Φαρασλής, Ι., & Μωυσιάδης, Α. (2015). *Η Τηλεπισκόπηση σε 13 Ενότητες.* Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών.

Πόθου, Ά. (2012). Ανάπτυξη διαδικασίας βαθμονόμησης συστήματος LiDAR. Αθήνα: ΕΜΠ.

Σάλτας, Β. (2015). Στο Εργαστηριακός οδηγός φυσικής. Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών.

Τσούλος, Λ. (2008). Ψηφιακή Χαρτογραφία. Αθήνα: ΕΜΠ.

Τσούλος, Λ., Σκοπελίτη, Α., & Στάμου, Λ. (2015). Ψηφιακό Μοντέλο Εδάφους. Στο *Χαρτογραφική σύνθεση και απόδοση σε ψηφιακό περιβάλλον.* Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών. Φράγκος, Π. (2013). Αρχές λειτουργίας Εναέριων σαρωτών LiDAR και εφαρμογές τους στην παραγωγή φωτογραμμετρικών προϊόντων. Αθήνα: ΕΜΠ.

Χαλκιάς, Χ., & Γκούσια, Μ. (2015). Ψηφιακά Μοντέλα Εδάφους. Στο Γεωγραφική ανάλυση με την αξιοποίηση της γεωπληροφορικής. Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών.

Πηγές στο διαδίκτυο

ALOS Global Digital Surface Model (1997). Ανάκτηση Αύγουστος 5, 2018, από <u>http://www.eorc.jaxa.jp/ALOS/en/aw3d30/</u>

Analytix, Spatial (2016). Geospatial Data Accuracy Standards. Ανάκτηση Μάιος 10, 2018, από <u>https://c.ymcdn.com/sites/www.nysapls.org/resource/resmgr/2017_conference_handouts/Acc</u> <u>uracy_Standards_Handouts.pdf</u>

Global Land One-kilometer Base Elevation (GLOBE)v.1 (2017). Ανάκτηση Ιούλιος 6, 2018, από https://data.noaa.gov//metaview/page?xml=NOAA/NESDIS/NGDC/MGG/DEM/iso/xml/280.xml &view=getDataView&header=none

GTOPO30 DEM. Ανάκτηση Αύγουστος 5, 2018, από <u>https://dds.cr.usgs.gov/ee-data/coveragemaps/shp/ee/gtopo30/gtopo30.zip</u>

Satellite TanDEM-X (n.d.). Ανάκτηση Ιούλιος 6, 2018, από <u>https://en.wikipedia.org/wiki/TanDEM-X</u>

SRTM (Shuttle Radar Topography Mission) (n.d.). Ανάκτηση Μάρτιος 30, 2018, από directory.eoportal.org: <u>https://directory.eoportal.org/web/eoportal/satellite-missions/s/srtm</u>

TanDEM-X Science Service System (n.d.). Ανάκτηση Ιούνιος 10, 2018, από <u>https://tandemx-science.dlr.de/</u>

Team, A. G. (2011). Ανάκτηση Ιούνιος 10, 2018, από Summary of Validation Results: https://ssl.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary GDEM2 validation rep ort_final.pdf

U.S. Releases Enhanced Shuttle Land Elevation Data (n.d.) Ανάκτηση Ιούνιος 28, 2018, από <u>https://www2.jpl.nasa.gov/srtm/</u>

Εθνικό Κτηματολόγιο & Χαρτογράφηση Α.Ε. Γεωχωρικά δεδομένα της ΕΚΧΑ Α.Ε. και ΕΥΓΕΠ Ανάκτηση Ιανουάριος 18, 2018 από <u>http://www.ktimatologio.gr/Pages/edu_material.aspx</u>

ΠΑΡΑΡΤΗΜΑ

α/α	X(m)	Y(m)	Z(m)
1	242466,469	4371653,049	1194,523
2	244592,639	4372961,918	569,503
3	243330,058	4375016,885	1025,812
4	244180,246	4375062,558	1003,307
5	220682,776	4432809,825	1780,238
6	216195,370	4433014,639	435,950
7	211176,881	4433400,870	1026,766
8	202244,236	4434597,267	705,032
9	214267,248	4435473,275	529,164
10	209781,820	4435910,794	1250,706
11	204826,171	4435825,147	1126,475
12	218818,819	4436858,365	423,370
13	221732,736	4438940,089	564,880
14	203557,893	4438038,161	1470,837
15	208944,573	4437028,262	1168,151
16	219746,875	4438023,674	459,010
17	214979,590	4437894,712	673,116
18	201884,466	4438689,495	1548,877
19	210705,851	4438436,761	626,411
20	218509,039	4439356,475	625,622
21	215052,935	4439457,549	677,677
22	204981,637	4440608,344	1395,960
23	220553,979	4440388,061	713,471
24	202124,211	4441210,606	1717,775
25	213603,234	4440052,948	604,603
26	220033,968	4442671,709	840,144
27	221866,058	4441789,917	908,854
28	216588,706	4441716,302	760,272
29	216572,766	4444145,035	633,116
30	217756,292	4445516,744	712,387
31	219796,926	4446607,119	750,181
32	220434,732	4443405,338	869,146
33	222053,507	4448788,803	829,042
34	222365,912	4451600,437	965,945
35	219504,085	4451123,384	1243,299
36	216863,069	4451722,771	1518,863
37	220591,102	4448624,705	1223,833
38	205520,517	4433714,214	764,682
39	221226,716	4453246,076	1651,151
40	221531,451	4457575,560	1919,070
41	220148,894	4455824,073	2041,700
42	229904,692	4460990,173	1518,494
43	233880,295	4460945,223	1230,342
44	237914,595	4460676,977	1557,240

α/α	X(m)	Y(m)	Z(m)
45	226709,249	4462022,636	1344,610
46	239328,379	4462800,024	2073,348
47	223629,401	4463578,405	1561,178
48	230696,301	4463890,844	1573,170
49	228657,285	4465794,225	1791,090
50	238417,828	4463968,671	2084,879
51	234928,135	4464904,025	1841,404
52	229266,413	4465912,992	1919,087
53	223845,099	4465977,691	1825,892
54	236540,658	4466480,700	2195,636
55	229863,490	4467582,206	2162,662
56	224963,200	4468123,854	1975,473
57	227237,880	4467646,447	1609,370
58	234634,781	4468752,638	2174,043
59	229424,433	4469674,921	2444,369
60	231790,701	4470216,878	2395,208
61	234327,771	4471549,008	2149,464
62	223717,932	4467279,213	2163,275
63	191801,868	4410301,673	1748,895
64	197990,331	4410156,749	458,246
65	198204,018	4412264,091	557,876
66	195121,094	4412376,920	454,529
67	194743,501	4414788,287	669,024
68	199118,118	4416050,686	578,202
69	193744,775	4416995,163	620,937
70	196330,857	4417529,399	417,844
71	200335,753	4417320,578	1230,947
72	197697,270	4418717,260	574,728
73	192028,411	4418548,782	658,768
74	196013,159	4420436,327	545,048
75	198996,966	4421158,649	1132,437
76	197268,687	4421409,460	752,504
77	193192,627	4422194,432	597,551
78	191358,053	4421763,341	494,856
79	189122,190	4423037,385	498,373
80	195194,692	4424374,211	681,281
81	197606,031	4424738,102	991,090
82	187460,570	4424772,676	368,826
83	190350,659	4425683,497	720,643
84	193261,306	4427103,317	626,885
85	190831,733	4426609,518	866,415
86	196434,777	4427197,138	855,695
87	200549,443	4427845,504	1115,747
88	188569,598	4428960,185	665,264

α/α	X(m)	Y(m)	Z(m)
89	195382,252	4429305,432	1012,865
90	191781,293	4429732,027	723,785
91	197574,820	4429754,436	1325,097
92	186034,420	4430858,302	1128,455
93	193532,772	4431094,409	704,443
94	187504,694	4431268,504	1023,226
95	198427,150	4429443,549	1290,204
96	197080,492	4431138,425	1305,437
97	190707,571	4426935,036	876,865
98	200001,365	4424501,231	1154,022
99	208253,332	4405876,860	479,177
100	199969,227	4406032,973	390,178
101	216268,258	4405898,205	781,281
102	219899,155	4405797,319	464,852
103	212867,958	4405937,693	698,463
104	216529,401	4408101,430	676,404
105	212420,114	4411492,730	838,874
106	204227,611	4408104,531	1136,478
107	207984,163	4408119,180	403,030
108	211190,084	4407806,631	719,902
109	205221,391	4409422,362	880,206
110	219350,494	4407572,244	465,214
111	200202,866	4408824,607	514,008
112	201367,416	4409725,231	592,170
113	210160,484	4409161,394	434,908
114	213415,778	4409643,615	732,711
115	207410,168	4410328,521	432,608
116	203249,997	4410741,231	1278,275
117	216083,981	4410214,614	712,157
118	218768,076	4410448,947	662,143
119	209019,530	4411171,178	500,673
120	200919,475	4413127,972	680,871
121	220372,267	4411996,318	1208,946
122	203541,016	4413633,884	931,538
123	206469,297	4413960,436	550,141
124	201820,049	4414481,641	1299,148
125	209603,781	4414516,269	790,419
126	215312,453	4414393,415	875,988
127	219210,328	4415517,619	1126,455
128	204394,146	4415314,129	734,776
129	207576,273	4415217,739	467,763
130	213211,392	4415782,619	771,126
131	201068,742	4416755,506	1314,008
132	203075,830	4416613,603	893,082
133	217202,277	4416891,351	1132,802

α/α	X(m)	Y(m)	Z(m)
134	207396,574	4418197,072	407,260
135	220415,661	4417110,265	1006,842
136	213443,930	4417490,086	661,755
137	211420,648	4417547,320	690,553
138	209271,563	4419393,490	393,320
139	201984,645	4419234,344	686,545
140	219584,749	4418865,544	1213,974
141	204046,357	4420060,667	511,791
142	214787,186	4419507,682	1043,872
143	208218,164	4420208,687	417,500
144	211646,714	4419228,384	599 <i>,</i> 382
145	217451,443	4419864,054	1105,675
146	200887,937	4420752,659	727,374
147	214248,289	4421233,465	1090,228
148	210227,890	4422350,049	680,040
149	218225,529	4422320,778	1557,836
150	203476,072	4422911,771	652,665
151	216805,891	4423259,153	1332,489
152	205601,727	4422939,776	660,463
153	208433,054	4424271,421	753,454
154	214531,439	4424332,705	1200,101
155	218539,037	4424206,528	1622,087
156	211484,713	4425378,998	601,139
157	206361,445	4424762,730	743,506
158	202967,913	4427551,624	883,274
159	205386,536	4426163,597	781,912
160	209594,775	4426984,917	802,555
161	214147,531	4426905,438	934,844
162	220462,014	4427479,634	1788,113
163	203980,447	4428285,662	782,702
164	211752,064	4428475,253	769,922
165	215518,996	4428762,029	779,109
166	219081,183	4428456,527	871,736
167	210358,941	4429613,918	634,826
168	207968,763	4430011,599	662,505
169	205051,302	4430652,249	738,990
170	219619,406	4430197,664	1199,451
171	200972,197	4432936,907	681,213
172	216460,726	4431012,756	1067,270
173	211714,743	4431162,304	819,927
174	209664,446	4432285,616	833,887
175	217693,351	4431862,981	1528,958
176	206244,192	4432601,739	541,288
177	216897,631	4413156,072	829,315
178	203535,142	4424965,162	887,020

1799217714,8654414699,580980,732180212688,3954430029,002836,125181209945,670440270,054401,980182220670,2274408898,292618,319183202255,813442602,3481033,514184221777,599442628,9631777,946185200663,879440573,654379,678186204979,055440597,1961328,538187231466,431437730,0091064,606189228405,92043789,7781074,57719023823,93643793,534895,070191222577,114437885,7671819,876192236206,307437819,9311058,483193229867,20843793,65,534895,070194241364,301437889,781969,073195232017,091438014,731969,07319622873,728438107,7891643,03819722873,728438107,7391483,03819823920,178438107,07891483,038199220749,649438107,7891483,03810123982,721438415,314306,12110223824,6854383,431,841700,830103229362,721438431,841700,83010423982,312438431,841703,830105225816,7654383,31,841704,318104235940,425438,431,841704,324105225816,7654383,63,6361404,638 <th>α/α</th> <th>X(m)</th> <th>Y(m)</th> <th>Z(m)</th>	α/α	X(m)	Y(m)	Z(m)
180212688,3954430029,002836,12518120945,6704420700,054401,980182220670,2274408898,292618,319183202255,813442602,3481033,514184221777,5994426268,9631777,946185200663,879440593,654379,678186204979,055440597,17961328,538187231466,431437730,0001664,606188224196,314437890,7981074,57719023823,936437931,440969,04519122577,114437885,7671819,876192236206,307437819,9311058,483193229867,20843793,534895,070194241364,301437889,781956,102195232017,091438014,053542,21019622685,003438014,7311073,279197228737,284380167,371969,073198235920,178438107,371969,073199220749,649438107,371822,00920123817,241438194,125929,19420223824,685438331,841700,830203223824,685438343,841700,830204221643,324438405,934662,440205225816,76543832,312543,180206237864,615438363,485670,84220723784,615438603,786670,84220823493,9064384478,985670,8422	179	217714,865	4414699,580	980,732
181209945,6704420700,054401,980182220670,2274408898,292618,319183202295,813442602,3481033,514184221777,5994426268,9631777,946185200663,879440573,654379,678186204979,055440597,1961328,538187231466,4314377190,499799,524188224196,3144377320,1001664,606189228405,92043789,7781074,577190238239,396437731,440969,04519122577,114437885,7671819,876192236206,3074378619,9311058,483193229867,208438014,053542,210194241364,301437889,781956,102195232017,091438014,053542,21019622685,003438079,7581068,662197228737,2884380167,3711073,279198235920,178438107,7891483,03820023763,467438215,3143063,014201239817,241438104,6145362,10420223824,685438343,1841700,830203229362,721438215,312544,472204221643,3244384016,945662,140205225816,765438334,845670,842206237864,615438363,636670,84220723784,615438445,731543,814208234984,0964384478,985670,842 </td <td>180</td> <td>212688,395</td> <td>4430029,902</td> <td>836,125</td>	180	212688,395	4430029,902	836,125
182220670,2274408898,292618,319183202295,813442602,3481033,514184221777,5994426268,9631777,946185200663,879440573,654379,678186204979,055440597,1961328,538187231466,4314377190,499799,524188224196,314437890,7981074,577190238239,396437931,440969,04519122577,114437885,7671819,876192236206,307437819,9311058,483193229867,2084379365,534895,070194241364,301437889,781956,102195232017,091438014,033542,210196226885,003438079,7831068,662197228737,298438107,7891483,038198235920,178438107,7891483,038199220749,649438107,7891483,038200233763,467438141,841700,83020123982,721438215,312544,472202223824,685438343,841700,83020322932,721438425,731531,800204221643,3244384016,945662,140205225816,76543832,312348,0420422483,936438445,935670,842205225816,76543833,485670,842206234984,096438445,935670,84220722982,312438601,945652,406 <t< td=""><td>181</td><td>209945,670</td><td>4420700,054</td><td>401,980</td></t<>	181	209945,670	4420700,054	401,980
183202295,813442602,3481033,514184221777,5994426268,9631777,968185200663,8794405503,654379,678186204979,0554405971,7961328,538187231466,4314377190,499799,524188224196,3144377320,1001664,606189228405,9204378907,7981074,577190238239,3964377931,440969,04519122577,114437885,7671819,876192236206,307437819,9311058,483193229867,2084379365,534895,070194241364,301437889,781956,102195232017,091438014,053542,210196226885,003438079,7881068,66219722873,728438107,789168,66219823592,0178438107,7891483,038199220749,649438107,7891483,038200233763,467438215,3145822,009201239817,241438141,841700,830202223824,6854383431,841700,83020322962,721438425,731531,800204221643,3244384016,945662,140205225816,675438322,312855,470204221643,324438405,637670,842205225816,675438334,885670,842206237864,615438603,786670,842207223824,635438601,746652,406	182	220670,227	4408898,292	618,319
184221777,5994426268,9631777,946185200663,879440550,3654379,678186204979,0554405971,7961328,538187231466,4314377190,499799,524188224196,31443780,7781074,577190238239,396437931,440969,045191222577,114437885,7671819,876192236206,3074378619,9311058,483193229867,2084379365,534895,070194241364,3014380914,053542,210195232017,0914380167,3711073,279196226885,003438079,7581068,662197228737,2984380167,3711073,279198235920,178438108,107969,073199220749,649438107,7891483,038200233763,4674382153,145822,009201239817,2414381944,254929,194202223824,685438343,841700,830203229362,721438215,312544,472204225816,755438322,312855,470205225816,755438323,134531,80020624153,4684384016,945662,140207229823,3124384455,731531,800208234984,0964384478,985670,842209237864,615438636,771643,324201232540,129438603,748650,443211227304,926438636,771654,396 </td <td>183</td> <td>202295,813</td> <td>4426022,348</td> <td>1033,514</td>	183	202295,813	4426022,348	1033,514
185200663,8794405503,654379,678186204979,0554405971,7061328,538187231466,4314377190,499799,524188224196,3144377320,1001664,606189228405,9204378907,7981074,577190238239,3964377931,440969,045191222577,1144378885,7671819,876192236206,3074378619,9311058,483193229867,2084379365,534895,070194241364,3014378889,781956,102195232017,091438014,053542,21019622685,003438079,7581068,662197228737,298438108,107969,073198235920,178438107,3711073,279198235920,178438107,3711073,279199220749,649438107,738822,009201233763,4674382153,145822,009202223824,6854383431,841700,830203229362,721438215,312544,72204225816,76543832,312855,470205225816,76543832,312855,470206241538,468438032,6061045,603207229823,312438416,945670,842208234984,0964384478,985670,842209237864,615438636,771654,480210232540,129438616,474665,449211227304,926438636,771654,380	184	221777,599	4426268,963	1777,946
186204979,0554405971,7961328,538187231466,4314377190,499799,524188224196,3144377320,1001664,606189228405,9204378907,7981074,577190238239,3964377931,440969,045191222577,114437885,7671819,876192236206,3074378619,9311058,483193229867,2084379365,534895,070194241364,301437889,781956,102195232017,0914380914,053542,21019622685,0034380799,7581068,662197228737,298438106,107969,073198235920,178438108,6107969,073199220749,649438107,7891483,038200233763,467438104,514822,009201239817,2414381944,254929,194202223824,6854383431,841700,830203229362,721438415,332544,472204221643,3244384016,945662,140205225816,765438322,312855,470206241538,468438032,6061045,603207229823,3124384016,945670,842208234984,0964384455,731513,804209237864,615438363,678670,842209237864,615438636,771654,394210232540,129438616,374654,494211227304,96438772,049652,300 </td <td>185</td> <td>200663,879</td> <td>4405503,654</td> <td>379,678</td>	185	200663,879	4405503,654	379,678
187231466,4314377190,499799,524188224196,3144377320,1001664,606189228405,9204378907,7981074,577190238239,3964377931,440969,045191222577,1144378885,7671819,876192236206,3074378619,9311058,483193229867,2084379365,534895,070194241364,3014378889,781956,102195232017,0914380914,053542,210196226885,003438079,7581068,662197228737,298438107,3711073,279198235920,178438107,3791483,03820023763,4674381944,254929,194201239817,2414381944,254929,19420223824,685438343,1841700,830203229362,721438215,312544,472204221643,3244384016,945662,140205225816,765438322,312885,470206241538,4684383082,6061045,603207229823,312438415,733531,800208234984,0964384478,985670,842209237864,615438534,885851,814210232540,1294386036,786697,668211227304,9264386019,436504,35021223200,306438636,771654,306214238713,1144386712,83654,492215232200,306438742,906880,937<	186	204979,055	4405971,796	1328,538
188224196,3144377320,1001664,606189228405,9204378907,7981074,577190238239,3964377931,440969,045191222577,114437885,7671819,876192236206,3074378619,9311058,483193229867,2084379365,534895,070194241364,3014378889,781956,102195232017,0914380914,053542,210196226885,0034380799,7581068,662197228737,298438106,107969,073198235920,178438107,7391483,03820023763,4674382153,145822,009201239817,2414381944,254929,194202223824,6854383431,841700,830203229362,721438215,312544,472204221643,3244384016,945662,140205225816,765438322,312885,470206241538,4684383082,6061045,603207229823,3124384455,731531,800208234984,0964384478,985670,842209237864,615438636,771654,498210232540,1294386036,786697,668211227304,9264386019,436504,350212224319,7734385763,3811046,39821322981,4364386019,436504,35021423871,3114386712,433665,449215232200,3064387720,479652,	187	231466,431	4377190,499	799,524
189228405,9204378907,7981074,577190238239,3964377931,440969,045191222577,114437885,7671819,876192236206,3074378619,9311058,483193229867,2084379365,534895,070194241364,3014378889,781956,102195232017,0914380914,053542,210196226885,003438079,7581068,662197228737,2984381067,3711073,279198235920,1784381070,7891483,038200233763,467438194,254929,194201239817,241438194,254929,194202223824,6854383431,841700,830203229362,721438215,352544,472204221643,3244384016,945662,140205225816,765438382,3181045,603206241538,4684383082,6061045,60320722982,3124384478,985670,842208234984,0964384478,985670,842209237864,615438603,786697,668211227304,9264386019,436504,350212224319,773438772,479652,3002132299,326438772,479652,300214238713,1144386712,833665,449215232207,239438772,479652,300216227741,485438772,479652,300217232907,239438750,61,301172,458	188	224196,314	4377320,100	1664,606
190238239,3964377931,440969,045191222577,1144378885,7671819,876192236206,3074378619,3311058,483193229867,2084379365,534895,070194241364,301437889,781956,102195232017,0914380914,053542,210196226885,0034380799,7581068,662197228737,298438106,3711073,279198235920,1784381070,7891483,038200233763,4674382153,145822,009201239817,2414381944,254929,194202223824,6854383431,841700,830203229362,721438215,352544,472204221643,3244384016,945662,140205225816,7654383822,312885,470206241538,4684383082,6061045,60320722982,3124384478,985670,842208234984,0964384478,985670,842209237864,615438534,885851,814210232540,129438603,786697,668211227304,926438603,786665,449213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,3064387720,479652,300216227741,4854387720,479652,30021723993,8264387742,906880,937218237823,1014387506,1301172,	189	228405,920	4378907,798	1074,577
191222577,114437885,7671819,876192236206,3074378619,9311058,483193229867,2084379365,534895,070194241364,301437889,781956,102195232017,0914380914,053542,210196226885,003438079,7581068,662197228737,2984381067,3711073,279198235920,1784381086,107969,073199220749,6494381070,7891483,038200233763,4674382153,145822,009201239817,2414381944,254929,194202223824,6854383431,841700,830203229362,7214382815,352544,472204221643,3244384016,945662,140205225816,7654383822,312885,470206241538,4684383082,6061045,60320722982,3124384478,985670,842208234984,0964384478,985670,842209237864,615438636,771531,80021022540,1294386019,436504,350211227304,9264386019,436504,350213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,306438636,771652,300216227741,4854387720,479652,30021723993,8264387720,479560,516218237823,1014387720,479560,5	190	238239,396	4377931,440	969,045
192236206,3074378619,9311058,483193229867,2084379365,534895,070194241364,3014378889,781956,102195232017,0914380914,053542,210196226885,0034380799,7581068,662197228737,2984381086,107969,073198235920,1784381070,7891483,038200233763,4674382153,145822,009201239817,2414381944,254929,194202223824,6854383431,841700,830203229362,721438215,352544,472204221643,3244384016,945662,140205225816,7654383822,312885,470206241538,4684383082,6061045,603207229823,3124384478,985670,842208234984,0964384478,985670,842209237864,615438636,786697,668210232540,1294386019,436504,350211227304,9264386019,436504,350212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,306438636,771652,300216227741,4854387720,479652,30021723993,826438742,906880,937218237823,1014387506,1301172,458220232515,8964388237,59554	191	222577,114	4378885,767	1819,876
193229867,2084379365,534895,070194241364,3014378889,781956,102195232017,0914380914,053542,210196226885,0034380799,7581068,662197228737,2984380167,3711073,279198235920,1784381086,107969,073199220749,6494381070,7891483,038200233763,4674382153,145822,009201239817,2414381944,254929,194202223824,6854383431,841700,830203229362,7214382815,352544,472204221643,3244384016,945662,140205225816,765438382,3061045,603206241538,4684383082,6061045,603207229823,3124384455,731531,800208234984,0964384478,985670,842209237864,6154383534,885851,814210232540,1294384014,466863,214211227304,9264386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,3064387720,479652,300216227741,4854387720,479652,30021723993,826438742,906880,937218237823,1014387506,1301172,458220232515,8964388055,329 <td< td=""><td>192</td><td>236206,307</td><td>4378619,931</td><td>1058,483</td></td<>	192	236206,307	4378619,931	1058,483
194241364,3014378889,781956,102195232017,0914380914,053542,210196226885,0034380799,7581068,662197228737,2984380167,3711073,279198235920,1784381086,107969,073199220749,6494381070,7891483,038200233763,4674382153,145822,009201239817,2414381944,254929,194202223824,6854383431,841700,830203229362,7214382815,352544,472204221643,3244384016,945662,140205225816,765438322,312885,470206241538,468438082,6061045,603207229823,3124384455,731531,800208234984,0964384478,985670,842209237864,6154383534,885851,814210232540,1294384014,466863,214211227304,9264386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,306438742,906880,937216227741,4854387720,479652,30021723993,826438742,906880,937218237823,1014387506,1301172,458220232515,8964388237,595543,190221225530,9684388593,41374	193	229867,208	4379365,534	895,070
195232017,0914380914,053542,210196226885,0034380799,7581068,662197228737,2984380167,3711073,279198235920,1784381086,107969,073199220749,6494381070,7891483,038200233763,4674382153,145822,009201239817,2414381944,254929,194202223824,6854383431,841700,830203229362,7214382815,352544,472204221643,3244384016,945662,140205225816,7654383082,6061045,603206241538,468438082,6061045,603207229823,3124384455,731531,800208234984,0964384478,985670,842209237864,6154383534,885851,814210232540,1294386036,786697,668211227304,9264386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,306438742,906880,937216227741,4854387720,479652,30021723993,826438742,906880,937218237823,1014387506,1301172,458219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388055,329 <td< td=""><td>194</td><td>241364,301</td><td>4378889,781</td><td>956,102</td></td<>	194	241364,301	4378889,781	956,102
196226885,0034380799,7581068,662197228737,2984380167,3711073,279198235920,1784381086,107969,073199220749,6494381070,7891483,038200233763,4674382153,145822,009201239817,2414381944,254929,194202223824,6854383431,841700,830203229362,7214382815,352544,472204221643,3244384016,945662,140205225816,765438382,312885,470206241538,4684383082,6061045,603207229823,3124384455,731531,800208234984,0964384478,985670,842209237864,6154386036,786697,668211227304,9264386036,786697,668212224319,7734386712,833665,449213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,3064387720,479652,300216227741,4854387720,479652,30021723993,826438742,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,968438853,413748,236222230714,6594388055,329479,600223224773,9654391091,59379	195	232017,091	4380914,053	542,210
197228737,2984380167,3711073,279198235920,1784381086,107969,073199220749,6494381070,7891483,038200233763,4674382153,145822,009201239817,2414381944,254929,194202223824,6854383431,841700,830203229362,7214382815,352544,472204221643,3244384016,945662,140205225816,7654383822,312885,470206241538,4684383082,6061045,603207229823,3124384455,731531,800208234984,0964384478,985670,842209237864,6154383534,885851,814210232540,1294384014,466863,214211227304,9264386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,306438636,771652,300216227741,4854387720,479652,30021723993,826438742,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388593,413748,236222230714,6594388055,329479,600223224773,9654391091,5937	196	226885,003	4380799,758	1068,662
198235920,1784381086,107969,073199220749,6494381070,7891483,038200233763,4674382153,145822,009201239817,2414381944,254929,194202223824,6854383431,841700,830203229362,7214382815,352544,472204221643,3244384016,945662,140205225816,7654383822,312885,470206241538,4684383082,6061045,603207229823,3124384455,731531,800208234984,0964384478,985670,842209237864,615438303,786697,668210232540,1294384014,466863,214211227304,9264386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,306438636,771654,086216227741,4854387720,479652,30021723993,826438742,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388593,413748,236222230714,6594388055,329479,600223224773,9654391091,593791,299	197	228737,298	4380167,371	1073,279
199220749,6494381070,7891483,038200233763,4674382153,145822,009201239817,2414381944,254929,194202223824,6854383431,841700,830203229362,7214382815,352544,472204221643,3244384016,945662,140205225816,7654383822,312885,470206241538,4684383082,6061045,603207229823,3124384478,985670,842209237864,6154383534,885851,814210232540,1294386036,786697,668211227304,9264386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,3064386636,771654,086216227741,4854387720,479652,30021723993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388055,329479,600223230714,659438005,329479,600223224773,9654391091.593791.299	198	235920,178	4381086,107	969,073
200233763,4674382153,145822,009201239817,2414381944,254929,194202223824,6854383431,841700,830203229362,7214382815,352544,472204221643,3244384016,945662,140205225816,7654383822,312885,470206241538,4684383082,6061045,603207229823,3124384455,731531,800208234984,0964384478,985670,842209237864,6154383534,885851,814210232540,1294384014,466863,214211227304,9264386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,306438636,771654,086216227741,4854387720,479652,30021723993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388055,329479,600223224773,9654391091.593791.299	199	220749,649	4381070,789	1483,038
201239817,2414381944,254929,194202223824,6854383431,841700,830203229362,7214382815,352544,472204221643,3244384016,945662,140205225816,7654383822,312885,470206241538,4684383082,6061045,603207229823,3124384455,731531,800208234984,0964384478,985670,842209237864,6154383534,885851,814210232540,1294384014,466863,214211227304,9264386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,3064386636,771654,086216227741,4854387720,479652,30021723993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388055,329479,600223224773,9654391091.593791.299	200	233763,467	4382153,145	822,009
202223824,6854383431,841700,830203229362,7214382815,352544,472204221643,3244384016,945662,140205225816,7654383822,312885,470206241538,4684383082,6061045,603207229823,3124384455,731531,800208234984,0964384478,985670,842209237864,6154383534,885851,814210232540,1294386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,3064386636,771654,086216227741,4854387720,479652,30021723993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388593,413748,236222230714,6594388055,329479,600223224773,9654391091.593791.299	201	239817,241	4381944,254	929,194
203229362,7214382815,352544,472204221643,3244384016,945662,140205225816,7654383822,312885,470206241538,4684383082,6061045,603207229823,3124384455,731531,800208234984,0964384478,985670,842209237864,6154383534,885851,814210232540,1294384014,466863,214211227304,9264386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,3064386636,771654,086216227741,4854387720,479652,30021723993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388055,329479,600223224773,9654391091.593791.299	202	223824,685	4383431,841	700,830
204221643,3244384016,945662,140205225816,7654383822,312885,470206241538,4684383082,6061045,603207229823,3124384455,731531,800208234984,0964384478,985670,842209237864,6154383534,885851,814210232540,1294384014,466863,214211227304,9264386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,3064386636,771654,086216227741,4854387720,479652,300217239993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388055,329479,600223224773,9654391091.593791.299	203	229362,721	4382815,352	544,472
205225816,7654383822,312885,470206241538,4684383082,6061045,603207229823,3124384455,731531,800208234984,0964384478,985670,842209237864,6154383534,885851,814210232540,1294384014,466863,214211227304,9264386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,3064386636,771654,086216227741,4854387720,479652,30021723993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388055,329479,600223224773,9654391091.593791.299	204	221643,324	4384016,945	662,140
206241538,4684383082,6061045,603207229823,3124384455,731531,800208234984,0964384478,985670,842209237864,6154383534,885851,814210232540,1294384014,466863,214211227304,9264386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,3064386636,771654,086216227741,4854387720,479652,30021723993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388055,329479,600223224773,9654391091.593791.299	205	225816,765	4383822,312	885,470
207229823,3124384455,731531,800208234984,0964384478,985670,842209237864,6154383534,885851,814210232540,1294384014,466863,214211227304,9264386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,3064386636,771654,086216227741,4854387720,479652,30021723993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388055,329479,600223224773,9654391091.593791.299	206	241538,468	4383082,606	1045,603
208234984,0964384478,985670,842209237864,6154383534,885851,814210232540,1294384014,466863,214211227304,9264386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,3064386636,771654,086216227741,4854387720,479652,30021723993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388055,329479,600223224773,9654391091.593791.299	207	229823,312	4384455,731	531,800
209237864,6154383534,885851,814210232540,1294384014,466863,214211227304,9264386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,3064386636,771654,086216227741,4854387720,479652,30021723993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388055,329479,600223224773,9654391091.593791.299	208	234984,096	4384478,985	670,842
210232540,1294384014,466863,214211227304,9264386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,3064386636,771654,086216227741,4854387720,479652,30021723993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388055,329479,600223224773,9654391091.593791.299	209	237864,615	4383534,885	851,814
211227304,9264386036,786697,668212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,3064386636,771654,086216227741,4854387720,479652,30021723993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388055,329479,600223224773,9654391091.593791.299	210	232540,129	4384014,466	863,214
212224319,7734385763,3811046,398213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,3064386636,771654,086216227741,4854387720,479652,300217239993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388055,329479,600223224773,9654391091.593791.299	211	227304,926	4386036,786	697,668
213229814,3364386019,436504,350214238713,1144386712,833665,449215232200,3064386636,771654,086216227741,4854387720,479652,30021723993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388593,413748,236222230714,6594388055,329479,600223224773,9654391091.593791.299	212	224319,773	4385763,381	1046,398
214238713,1144386712,833665,449215232200,3064386636,771654,086216227741,4854387720,479652,300217239993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388593,413748,236222230714,6594388055,329479,600223224773,9654391091.593791.299	213	229814,336	4386019,436	504,350
215232200,3064386636,771654,086216227741,4854387720,479652,300217239993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388593,413748,236222230714,6594388055,329479,600223224773,9654391091.593791.299	214	238713,114	4386712,833	665,449
216227741,4854387720,479652,300217239993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388593,413748,236222230714,6594388055,329479,600223224773,9654391091.593791.299	215	232200,306	4386636.771	654,086
217239993,8264387442,906880,937218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388593,413748,236222230714,6594388055,329479,600223224773,9654391091.593791.299	216	227741,485	4387720,479	652,300
218237823,1014387905,759560,516219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388593,413748,236222230714,6594388055,329479,600223224773,9654391091.593791.299	217	239993,826	4387442.906	880,937
219223207,2394387506,1301172,458220232515,8964388237,595543,190221225530,9684388593,413748,236222230714,6594388055,329479,600223224773,9654391091.593791.299	218	237823,101	4387905.759	560,516
220 232515,896 4388237,595 543,190 221 225530,968 4388593,413 748,236 222 230714,659 4388055,329 479,600 223 224773,965 4391091.593 791.299	219	223207,239	4387506.130	1172,458
221 225530,968 4388593,413 748,236 222 230714,659 4388055,329 479,600 223 224773,965 4391091.593 791.299	220	232515.896	4388237.595	543,190
222 230714,659 4388055,329 479,600 223 224773,965 4391091.593 791.299	221	225530.968	4388593.413	748,236
223 224773,965 4391091.593 791.299	222	230714.659	4388055.329	479.600
	223	224773.965	4391091.593	791,299

α/α	X(m)	Y(m)	Z(m)
224	226954,921	4390073,103	776,039
225	227254,932	4389196,291	759,047
226	241634,194	4388826,360	1081,401
227	235242,368	4390048,844	755,397
228	231905,742	4390519,531	527,220
229	238310,175	4390469,874	527,520
230	241776,646	4391075,733	936,603
231	223547,390	4392184,047	830,187
232	234455,420	4392172,415	471,850
233	237168,639	4392132,714	493,080
234	225847,753	4392237,412	812,091
235	241004,746	4393021,889	1077,459
236	228518,426	4394400,532	615,122
237	235613,783	4393012,726	473,240
238	223244,799	4393780,395	876,706
239	223831,283	4395258,387	865,063
240	234804,628	4396017,321	475,720
241	230797,482	4395591,567	488,790
242	240101,951	4395357,316	999 <i>,</i> 545
243	231760,916	4396073,266	482,930
244	221419,158	4396687,169	754,016
245	222724,794	4397215,170	699,740
246	238408,283	4396738,437	1007,852
247	240341,088	4396032,173	890,825
248	237186,523	4397784,642	1402,503
249	233809,137	4397425,849	1015,876
250	227379,718	4397252,782	559,270
251	225519,517	4399062,089	608,080
252	229114,693	4399134,451	567,987
253	236478,188	4399248,906	1625,702
254	232076,558	4399273,446	1148,675
255	240042,946	4399652,430	719,099
256	226879,980	4401120,067	472,230
257	239123,254	4400499,147	692,991
258	222670,924	4400322,872	758,863
259	230344,644	4402075,088	1133,164
260	221782,697	4402065,830	703,413
261	222758,147	4402467,067	622,067
262	224472,156	4403245,686	466,090
263	232484,218	4402255,927	1739,849
264	241132,475	4402955,826	594,294
265	235256,668	4403540,746	665,609
266	229488,027	4403631,619	1456,405
267	238740,192	4403685,891	818,008
268	222086,656	4404271,967	513,140

α/α	X(m)	Y(m)	Z(m)
269	227200,899	4403993,149	1224,217
270	234473,580	4400252,752	1810,002
271	220145,689	4377465,671	1347,819
272	214759,657	4378343,095	510,589
273	210127,243	4379123,151	733,217
274	218562,124	4379899,498	832,177
275	216726,811	4380348,525	536,264
276	212627,521	4380906,208	558,343
277	210531,527	4381217,390	687,831
278	219984,465	4381712,561	1330,484
279	202241,504	4382934,955	1036,262
280	206574,009	4382760,104	631,209
281	216767,333	4382826,574	542,190
282	210302,714	4384185,175	525,940
283	207277,112	4384169,316	754,340
284	200073,322	4384567,868	1260,341
285	202143,438	4384579,149	951,784
286	213681,580	4384087,488	670,596
287	215454,431	4384373,657	710,170
288	217210,148	4384967,880	634,170
289	209159,151	4385373,219	617,710
290	211801,740	4386079,114	553,970
291	202525,282	4386443,335	760,874
292	206352,033	4386870,152	658,530
293	214659,665	4386339,093	1070,346
294	219630,606	4386344,028	653,250
295	207522,287	4387304,057	680,012
296	211556,812	4387530,147	623,204
297	201872,738	4388196,457	754,887
298	216141,031	4387354,877	634,734
299	219293,959	4387793,803	682,970
300	205686,348	4388852,587	629,370
301	208799,751	4389053,440	294,880
302	212835,797	4389499,748	1077,781
303	220489,489	4389566,918	987,505
304	210249,150	4390609,674	527,039
305	217969,926	4390393,250	824,728
306	204869,616	4390917,380	449,920
307	212025,534	4391227,449	871,048
308	199964,405	4391194,584	647,200
309	202859,888	4391751,539	309,465
310	206053,861	4391403,768	435,660
311	217155,017	4391301,516	758,290
312	199916,968	4392683,143	548,480
313	209683,506	4392586,623	481,072

α/α	X(m)	Y(m)	Z(m)
314	218600,641	4392705,572	682,011
315	212271,765	4393383,575	768,875
316	204679,450	4393637,727	362,647
317	202410,248	4394228,052	235,362
318	214698,310	4393924,682	666,856
319	206405,201	4394280,567	302,659
320	218799,869	4393751,728	728,234
321	204204,130	4395508,906	276,610
322	210759,541	4395878,951	747,170
323	215717,888	4395551,451	700,920
324	219488,141	4396843,967	743,820
325	208985,710	4394975,684	384,197
326	212540,871	4397773,022	414,250
327	210211,077	4397548,418	671,119
328	205255,531	4397616,272	249,789
329	217229,931	4398250,686	645,580
330	202094,468	4398382,902	207,760
331	216117,457	4398466,740	589,620
332	207562,777	4397930,345	276,738
333	218896,638	4398632,167	763,650
334	205280,061	4400626,405	348,621
335	202057,629	4400078,711	354,355
336	209032,547	4400355,593	389,588
337	217347,993	4400762,698	736,625
338	214587,694	4401183,820	513,327
339	205475,319	4402973,775	435,700
340	202660,637	4401729,326	569,130
341	202561,621	4403843,580	573 <i>,</i> 410
342	209009,004	4402798,600	324,256
343	212344,824	4403459,256	540,495
344	216812,933	4403273,087	780,069
345	203748,332	4404116,467	649,700
346	220383,693	4403408,495	559,973
347	214757,400	4397142,436	621,775
348	212268,349	4404888,373	662,571
349	213558,148	4388092,971	1172,468
350	222483,324	4432756,295	2254,070
351	234760,302	4432743,700	1165,355
352	237832,153	4433475,565	1175,046
353	231960,635	4433730,754	1022,964
354	242793,827	4434362,075	1260,596
355	236306,095	4435946,814	1133,241
356	233389,887	4436160,889	1072,936
357	229227,072	4437178,356	1296,802
358	225042,430	4437031,070	1665,244

α/α	X(m)	Y(m)	Z(m)
359	227073,498	4437280,647	2024,488
360	242818,743	4436974,841	1876,437
361	238863,435	4436175,699	1381,956
362	234964,493	4437760,226	1640,604
363	232334,009	4438199,974	1234,815
364	224571,701	4438721,074	958,600
365	223259,063	4439352,298	1071,142
366	241778,095	4438765,005	2008,507
367	239230,596	4439023,507	2212,896
368	235162,237	4439658,467	1953,379
369	231741,954	4439838,649	1372,462
370	228999,736	4439976,876	1438,703
371	225984,975	4441545,539	1008,045
372	228898,928	4441730,838	1508,781
373	239795,027	4441394,852	2599,957
374	234101,523	4442376,440	2217,009
375	231015,758	4442570,961	1846,869
376	226782,177	4442905,418	1111,064
377	224219,764	4443348,538	726,400
378	239872,234	4442222,639	2554,385
379	242902,581	4443298,303	2216,455
380	233149,029	4443970,033	1787,930
381	242220,791	4444002,816	2236,091
382	229145,542	4444312,712	1508,227
383	237313,591	4443593,793	2180,143
384	226116,113	4445863,051	773,012
385	224629,835	4445738,893	865,864
386	241684,090	4445295,534	2053,666
387	234432,850	4446571,224	1489,935
388	231554,051	4447076,388	944,969
389	228081,692	4447422,564	898,511
390	239408,605	4448006,701	1679,847
391	225626,360	4448404,578	711,647
392	230909,877	4448666,532	975,097
393	235257,724	4449228,755	1445,403
394	238751,522	4449034,912	1584,046
395	229181,148	4450913,508	1047,293
396	243724,094	4449144,291	1419,872
397	226252,584	4450253,140	1034,090
398	232789,846	4450425,481	1624,451
399	230249,746	4451322,548	1292,148
400	236863,552	4451108,119	1875,776
401	225448,273	4451495,318	1384,970
402	232600,558	4451743,810	1750,131
403	234452,234	4451956,925	1700,141

α/α	X(m)	Y(m)	Z(m)
404	238771,564	4452259,976	1715,506
405	240815,473	4452600,253	1462,605
406	229653,710	4453171,134	1037,903
407	234379,057	4454307,367	1481,920
408	239350,921	4454481,031	1333,370
409	231826,263	4454201,530	1411,588
410	226743,303	4455263,308	1103,685
411	224747,413	4455403,586	1579,149
412	236754,790	4455677,962	1208,587
413	231108,705	4456150,608	1112,148
414	227526,747	4456765,375	1216,253
415	233051,678	4456734,563	1028,874
416	223800,307	4457465,094	1955,163
417	235912,104	4456828,999	1054,939
418	228305,429	4459106,523	880,183
419	223247,254	4458190,129	1799,779
420	229503,877	4458140,645	1009,690
421	231997,416	4459218,261	1115,766
422	241202,270	4458965,620	1697,801
423	236609,980	4459508,780	1263,648
424	237698,466	4441876,690	2631,397
425	245688,704	4403888,658	1119,448
426	254833,212	4403805,636	1006,730
427	259643,080	4403648,250	1633,561
428	252240,281	4403913,174	965,323
429	249898,577	4404690,121	709,795
430	255944,884	4404909,615	1439,011
431	262355,429	4405216,012	1706,991
432	258641,135	4405668,178	1148,630
433	247814,852	4405886,993	1107,394
434	243383,017	4406536,103	1188,730
435	256016,933	4406230,431	1593,325
436	251451,494	4406520,554	889,418
437	253774,956	4406648,628	1147,062
438	245695,408	4407019,263	1281,962
439	262160,997	4407176,543	1821,690
440	249069,855	4408077,905	1388,791
441	252531,748	4408266,468	1422,615
442	254239,289	4409060,029	1578,950
443	248043,318	4409310,352	1559,291
444	257567,070	4409110,041	1517,592
445	260141,420	4409237,690	1686,454
446	244789,182	4410388,853	1502,566
447	250437,897	4410384,158	1534,084
448	262597,595	4409985,165	1820,286

α/α	X(m)	Y(m)	Z(m)
449	246767,427	4411497,254	1503,743
450	254651,873	4411930,112	1400,246
451	260753,675	4411796,897	1725,922
452	263162,068	4411888,713	1787,189
453	257830,429	4412028,581	1482,885
454	251908,542	4412738,137	1450,378
455	249991,626	4414270,070	1586,538
456	262285,395	4414417,000	1320,086
457	258619,094	4414580,083	1970,026
458	255754,062	4414871,432	1997,012
459	247325,495	4415140,031	1666,704
460	260540,217	4415396,731	1499,164
461	257397,959	4415630,336	2049,114
462	251702,561	4415227,060	1524,789
463	245743,637	4416727,507	1985,256
464	244027,976	4416281,558	1566,794
465	262946,596	4416569,187	1533,498
466	251219,944	4418112,449	2081,431
467	248045,090	4418221,928	1802,823
468	262531,647	4418566,501	1720,269
469	246349,533	4421174,366	1581,852
470	244046,711	4421390,628	1614,183
471	247008,437	4424383,329	1153,274
472	244329,914	4425105,946	1534,037
473	250473,454	4424703,319	1743,640
474	246215,410	4425992,210	1452,324
475	244454,664	4427930,196	1904,571
476	244021,506	4429277,422	1914,207
477	265716,746	4414705,157	1675,953
478	223295,900	4362913,658	1282,120
479	221462,495	4364525,152	396,768
480	223813,175	4364418,035	1329,628
481	224527,504	4365990,563	1258,001
482	220593,560	4366058,341	450,784
483	224501,430	4367585,532	1172,493
484	221227,751	4368776,578	531,820
485	223825,134	4369694,820	1067,687
486	220377,328	4371550,015	690,421
487	223345,048	4371225,787	1197,407
488	223607,018	4373380,186	1247,875
489	237017,355	4373208,160	1137,117
490	234150,275	4373680,802	1008,235
491	230235,375	4375045,529	777,304
492	236179,960	4375930,030	965,317
493	226334,543	4375890,415	1062,765

α/α	X(m)	Y(m)	Z(m)
494	240898,592	4375514,813	723,414
495	226671,954	4374446,206	1117,013
496	227388,332	4361213,977	825,809
497	225204,099	4362381,587	1059,525
498	227591,116	4362923,806	769,955
499	233116,568	4363320,724	752,626
500	228895,414	4363480,764	701,768
501	240927,016	4364526,740	1654,947
502	236666,080	4364695,917	1284,628
503	225583,250	4363986,285	794,188
504	232526,739	4365049,098	723,589
505	238481,846	4365580,843	1494,159
506	228639,045	4366298,826	732,950
507	232362,750	4366745,513	805,061
508	235367,425	4368307,224	676,682
509	239233,647	4367478,256	1599,605
510	225970,999	4367995,570	871,670
511	230405,447	4368778,363	970,597
512	241161,688	4368781,329	1616,838
513	234307,441	4369553,885	703,976
514	225820,296	4369617,317	911,985
515	228768,890	4371053,923	532,125
516	233207,445	4372551,219	658,279
517	239320,170	4369541,617	1551,881
518	231389,003	4371329,725	613,854
519	235360,968	4371634,067	867,743
520	241152,441	4371577,701	1227,815
521	226894,795	4372441,877	930,627
522	228429,128	4373306,964	573,741
523	231344,353	4374188,946	582 <i>,</i> 885
524	241757,781	4374321,641	888,260
525	233301,884	4375192,169	946,380
526	228296,131	4375583,473	736,102
527	239011,860	4368557,958	1614,202
528	223935,879	4375530,024	1971,372
529	213860,484	4357849,202	1224,947
530	213600,481	4358904,426	1341,645
531	216594,244	4360484,617	304,491
532	213163,251	4361898,371	1338,734
533	217729,860	4361629,675	326,781
534	216702,065	4364315,156	349,613
535	219288,146	4364470,067	421,642
536	216097,207	4366669,291	412,980
537	213638,122	4367322,219	1035,399
538	218061,320	4369630,877	762,379

α/α	X(m)	Y(m)	Z(m)	α/α	X(m)	Y(m)	Z(m)
539	218343,882	4367758,600	555,803	584	246845,412	4391003,608	1392,570
540	211932,058	4369549,305	1336,475	585	244850,351	4391884,245	811,185
541	217687,732	4369252,034	701,904	586	250902,301	4392169,382	1921,674
542	216227,204	4371499,749	617,204	587	248972,303	4392256,800	2060,657
543	212178,105	4371313,906	1226,666	588	252712,681	4392901,893	2074,822
544	218491,456	4372045,240	793,537	589	247370,125	4393287,998	1757,780
545	214109,166	4372655,084	599,077	590	252235,435	4395134,375	2116,358
546	210865,984	4373570,169	1613,202	591	246475,108	4395403,845	1228,292
547	216984,521	4373411,977	842,791	592	244364,095	4395600,277	684,715
548	219499,235	4374339,249	929,259	593	250209,848	4395945,798	2085,141
549	215525,620	4375429,697	864,242	594	243370,380	4382613,682	1189,503
550	209577,670	4375592,873	1353,160	595	244049,996	4384030,460	1314,356
551	212365,853	4363713,340	1552,662	596	242413,686	4385499,886	1041,030
552	244427,470	4433546,276	1264,145	597	247592,635	4397152,759	1250,250
553	245557,225	4432672,485	1447,486	598	248676,047	4394480,567	2184,640
554	247965,657	4434139,323	1655,536	599	242769,550	4396080,856	523,597
555	250599,397	4435444,037	2247,707	600	246675,234	4398331,705	1302,970
556	250114,879	4438555,059	2026,546	601	242793,832	4398125,550	599,540
557	257684,388	4377227,236	2253,957	602	243695,691	4402446,075	1221,320
558	251537,362	4378270,246	1035,090	603	252810,785	4399913,898	2030,632
559	250214,877	4379466,054	863,292	604	244511,982	4397738,372	631,915
560	256197,791	4379547,832	2098,435	605	256751,682	4401161,289	1702,332
561	244831,411	4379928,467	999,393	606	252087,626	4401635,606	1642,044
562	248341,504	4380166,459	666,102	607	249160,484	4401813,712	1157,830
563	251809,675	4380089,425	841,170	608	262196,221	4402241,349	1871,289
564	255442,100	4380982,154	1879,120	609	252960,070	4397828,445	2183,495
565	259033,729	4381029,964	2298,418	610	253187,188	4402524,588	1218,618
566	250888,036	4381744,994	789,021	611	249760,428	4399009,155	1517,712
567	245725,073	4382142,130	1105,100	612	253107,936	4399277,892	2102,336
568	248699,860	4382269,161	632,963	613	248142,724	4399932,478	1015,626
569	254823,748	4383806,371	1283,861	614	259672,806	4399994,253	1741,422
570	249063,076	4384131,835	845,642	615	262150,736	4400843,278	1810,936
571	251655,827	4384318,375	1285,923	616	254127,293	4400910,402	1396,042
572	257127,501	4384940,902	1811,410	617	245300,445	4401923,891	922,749
573	246050,002	4385575,709	1004,577	618	248056,694	4403253,321	766,966
574	253616,042	4385492,153	1379,824	619	261498,817	4403111,715	1618,237
575	249866,221	4385688,069	1699,241	620	244563,151	4377890,822	1208,295
576	245100,858	4386375,998	895,693	621	259224,996	4378747,517	2428,958
577	242162,783	4388048,424	1007,220	622	253117,522	4396353,825	2293,985
578	253047,334	4387400,049	1639,930	623	226364,643	4406087,786	1324,011
579	246395,932	4387982,541	957,208	624	229853,178	4405060,853	1604,760
580	249836,837	4388530,010	2046,905	625	240715,875	4406630,199	755,313
581	254715,918	4388768,060	2035,366	626	228631,124	4405906,851	1633,944
582	252095,138	4390350,692	1702,890	627	237683,204	4405931,417	859,237
583	255202,961	4390631,115	2043,896	628	234609,143	4406680,099	665,070

α/α	X(m)	Y(m)	Z(m)
629	230757,705	4406684,884	908,932
630	221994,727	4406998,842	575,156
631	227358,506	4407731,631	1467,829
632	229004,287	4407843,852	872,173
633	232386,356	4408574,996	889,206
634	238482,186	4408613,710	899,305
635	235548,053	4408734,774	848,624
636	223996,725	4409848,389	1594,559
637	227092,443	4410008,139	919,813
638	233998,182	4411369,497	917,874
639	241676,022	4410057,500	841,224
640	222373,083	4411327,665	1467,568
641	237933,286	4411525,979	1076,670
642	230387,940	4411464,987	1003,938
643	240140,365	4411583,178	913,114
644	232754,317	4412914,828	909,457
645	225662,345	4411580,706	962,163
646	236802,863	4413158,910	1301,462
647	228074,596	4413995,813	950,274
648	224694,933	4414723,462	1040,461
649	238732,469	4414515,099	1190,486
650	241959,293	4414623,773	1013,379
651	236703,274	4414848,840	1284,814
652	229767,269	4415888,751	1069,575
653	222772,209	4416362,712	965,783
654	231364,212	4415948,972	1114,584
655	227627,777	4416611,718	992,159
656	235374,548	4416771,598	1597,497
657	237708,797	4417673,586	1491,862
658	240111,944	4417488,215	1194,985
659	224398,817	4418809,726	1045,512
660	229742,100	4418099,297	1231,010
661	231392,202	4418400,012	1283,264
662	243206,491	4419341,745	1827,254
663	234420,862	4419752,929	1621,869
664	224356,010	4420263,567	1244,775
665	227311,235	4420547,522	1198,897
666	235693,622	4420887,256	1729,492
667	238795,342	4420793,782	1652 <i>,</i> 455
668	222153,142	4421842,039	1358,092
669	229245,968	4422270,050	1254,260
670	232402,675	4422306,395	1417,395
671	239271,719	4422446,274	1743,423
672	242017,463	4422311,604	1784,072

α/α	X(m)	Y(m)	Z(m)
673	225258,930	4423116,239	1706,223
674	237168,858	4423090,864	1373,751
675	239042,143	4423727,326	1721,542
676	226846,304	4423067,651	1761,844
677	229871,727	4424249,891	1708,689
678	233916,872	4424910,098	2154,788
679	241412,739	4425232,487	1449,313
680	236491,638	4426001,351	1392,299
681	225106,548	4426796,470	2107,902
682	223023,863	4427069,686	2058,248
683	239910,550	4426173,314	1309,237
684	229005,614	4427837,648	2297,337
685	242029,216	4429306,226	1554,144
686	235677,811	4428933,916	1133,900
687	223843,157	4429151,775	2431,562
688	228677,831	4425849,641	2012,490
689	239665,053	4429645,022	1315,559
690	232191,850	4414084,805	1057,466
691	231797,676	4427531,936	2466,648
692	232864,997	4431745,870	1159,580
693	234877,467	4431179,214	1179,743
694	240830,487	4431434,447	1874,105
695	242698,093	4413504,690	1176,467
696	198956,695	4402801,160	349,614