HAROKOPIO UNIVERSITY

SCHOOL OF DIGITAL TECHNOLOGY
DEPARTMENT OF INFORMATICS AND TELEMATICS

Ph.D. DISSERTATION

Model-Based Enterprise Information System Design: A
SysML-based approach

Anargyros T. Tsadimas

ATHENS

January 2018

PHD THESIS
Model-Based Enterprise Information System Design: A SysML-based approach

Anargyros T. Tsadimas

SUPERVISOR: Maria Nikolaidou, Professor

PHD COMMITTEE:
Maria Nikolaidou, Professor
Dimosthenis Anagnostopoulos, Professor
Christos Michalakelis, Assistant Professor

EXAMINATION COMMITTEE

Maria Nikolaidou, Dimosthenis Anagnostopoulos,
Professor Professor

Informatics and Telematics Informatics and Telematics
Harokopio University Harokopio University

Christos Michalakelis, Aphrodite Tsalgatidou,

Assistant Professor Associate Professor

Informatics and Telematics Informatics and Telecommunications
Harokopio University National & Kapodistrian University of Athens
Maria Virvou, Thomas Kamalakis,

Professor Associate Professor

Informatics Informatics and Telematics
University of Piraeus Harokopio University

Iraklis Varlamis,

Assistant Professor
Informatics and Telematics
Harokopio University

Examination date: 9 January 2018

The acceptance of the Ph.D. Dissertation from the Department of In-
formatics and Telematics of Harokopio University does not imply the
acceptance of the author’s point of view.

Me, the author of this document, Anargyros T. Tsadimas, i solemnly declare that:

+ I am the owner of the copyrights of this original work and this work does not
defame any person, neither offend the copyrights of others.

+ I acept that the Library of the Harokopio University can change the contents of
this work, deliver this work in electronic format through the Institutional Repos-
itory, copy this work using to any format or media and keep more than one
copies for maintainability or security reasons.

Dedication

In memory of Triantafyllos

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Maria Nikolaidou
for the continuous support of my Ph.D study and related research, for her patience, motiva-
tion, and her continuous efforts to find funding for my research. Her guidance helped me in
all the time of research and writing of this thesis.

Besides my advisor, I would like to thank Prof. Dimosthenis Anagnostopoulos, member
of my advisory committee, for his insightful comments and encouragement, but also for the
hard questions which incented me to widen my research, especially in the research area of
simulation. Moreover, i would like to thank Asst. Prof. Christos Michalakelis, for his helpful
comments and suggestions. A special mention goes to Georgios Karabatzos, greatly missed,
that with his positive attitude to life inspired me to be a better scientist and person.

The cooperation with Dr. George-Dimitrios Kapos, Dr. Vassilis Dalakas and Christos Kotro-
nis was excellent. I would like to thank them for their valuable contribution to our common
research effort. I would also like to thank Loreta Mitsi especially for taking care of many ad-
ministrative matters throughout my academic life.

Many thanks to Dr. Georgia Dede, Alexandros Dais, Dr. Nancy Alexopoulou and Dr. Oura-
nia Hatzi because of the beautiful working environment when we shared a common office.
Also, i would like to thank Ioannis Meletakis, Christos Sardianos and Ioannis Katakis for the
excellent cooperation in our projects and their friendship.

It is a pleasure to thank my friend Dimitris Magdalinos for the experiences we shared in
our efforts to be innovative.

I would also like to thank Christos Tsolkas, George Tzoumas and Tasos Spiliotopoulos for
the endless conversations about the science and life.

I am grateful to my wife Erika, for her love and support especially at the last years of this
effort, where she helped me to prioritize this work in order to be completed. Finally, i would
like to thank my mother and sister for their support all of these years.

Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3
1.4
1.5

General
Objectives & Contribution
Overview
Research Methodology

Structure

2 Background

2.1
2.2

2.3

2.4

2.5

Outline
Information Systems Engineering
2.2.1
2.2.2 Requirements Engineering

Architecture Frameworks

Model-based System Engineering
2.3.1

2.3.2 System Models Management . .

System Evaluation
2.4.1
2.4.2 Simulation

Ssummary

3 Related Work

3.1
3.2
3.3
3.4
3.5

Outline
Rational Unified Process Methodology
SysML profiles
Simulating SysML Models

Requirements in SysML

..................

e e

Model-based System Design . .

Requirements Verification

........

........................

........................

........................

........................

16

18

31
31
32
33
35
36

3.6 SysML Requirements Verification. o L.
3.7 Whatismissing? e e e
3.8 SUMMANY . . . e e e e e e e e e e e e e e e

A MBSD Approach for EIS Architecture
4.1 Outline e e e e
4.2 Using Zachman Framework as a canvas for EIS engineering
4.2.1 Analysing Zachmanmatrix
4.2.2 NFRhandlinginZachmanmatrix
4.2.3 Utilizing Zachman Framework in EIS architecture design
4.3 Proposed Approach e e e e e e
4.3.1 A conceptual model for Information System Architecture Design
4.3.2 Supporting the proposed approach

44 SUMMANY . . o e

Designing EIS Architecture

51 0utline e e e
5.2 DesignVIiews e e e e e e e e e e e e e
5.2.1 FunctionalView
522 Topology View. e e e e
5.2.3 Network InfrastructureView
5.3 Non-Functional RequirementsView
5.3.1 Non-functional requirements classification
5.3.2 SysML ExtensiontosupportNFRs
5.3.3 NFRRepresentation
53.4 NFRDerivation e
5.3.5 NFRVerification
54 SUMMaAry . . . o o e e e e e e e e e e e e e e
Evaluating EIS Architecture
6.1 Outline e e e
6.2 EvaluationView e
6.3 The BigImage: Views Interrelation
6.4 Automating the verification Process
6.4.1 Simulationframework L
6.4.2 Generate executable simulationmodel
6.4.3 Simulation Execution. L
6.4.4 Simulationresultsincorporation o ..
6.5 Implementation e

6.6 SUMMArY o o e e e e e e e e e e e e e

69
69
70
70
73
73
76
76
80
86

88
88
89
90
92
96
99
100
103
106
108
114
117

7 A Case Study 139

7.0 0utline ... e e e 139
7.2 Description. e e e e e e e e e e 140
7.3 Challenges e e e 141
7.4 DesignMode e e e 141
7.4.1 FunctionalView e 141

7.42 Topology View e e e e e e 145

7.4.3 Network InfrastructureView 148

744 NFRVIEW o e e 152

7.5 Producing Evaluation View and Inflating Simulation Parameters 153
7.5.1 Evaluationscenario 153

7.6 Transformation to simulationcode 157
7.7 Simulation execution and results incorporation 157
7.8 Verifying Requirements e 158
7.9 Re-designSystem Model. 159
7.10 Experience Obtained e 159
71T SUMMANY . . e 160

8 Discussion 162
8.1 OVEIVIEW . . . o o e e e e e 162
8.2 Contribution e e e e 163
8.3 Limitations L e e e e e e e e 165

9 Conclusions - Future Work 167
9.1 CoNncluSIONS . . . o o e e e e e 167
9.2 Future Work o o e e e e e 168
Bibliography 171
Acronyms 184

Index 187

List of Figures

1 Eméktaon tng SysMLyla tnv umootAplENTwv MAA L. 24
APXLTEKTOVIKO HOVTEAO TWV EME o o e 25
ZUVOWN OUVELGWPOPAG + v v v v v v e 28

1.1 PhdOverview e e 34

1.2 Basic System Design Activities 34

1.3 Design Science Research Methodology 36

2.1 Aconcern-based taxonomy of requirements L. 42

2.2 OOSEM Activities and Modeling Artifacts 44

2.3 The Rational Unified Process framework 45

2.4 A Straightforward Understandingof MDA 49

25 MDA . . e 49

2.6 SysMLand UML e 51

3.1 The RUP SE architecture framework 58

3.2 SysML Requirementrepresentation, 62

4.1 The Zachman frameworkmatrix, 71

4.2 MB-EISE primary activities based on the Zachman framework 72

4.3 MB-EISE conceptualmodel 74

4.4 Basic engineering tasks performed based on each cell-related view 74

4.5 EIS Sub-Views corresponding to the System Networkcell 76

4.6 A Conceptual Model for Information System Architecture Design 77

4.7 MDA four-layer architecture. e 82

4.8 Meta Meta Models, UMLand Profiles 83

4.9 EIS Architecture Views and Corresponding Design Tasks 84

410 EIS architecturalmodel 86

5.1 EISsynthesismodel e 90

5.2 Functionalview entities 92

5.3 Topologyviewentities e 95

5.4 Network Infrastructure view entities v v v v v i i 99

5.5 Network Infrastructure view: atomic network entities 99
5.6 Requirements categorization perspectives oo oo 100
5.7 Defined NFR Requirements and their relations to other entities 102
5.8 SysML Requirementrepresentation 104
5.9 ExtendingSysMLtoexploreNFRs 105
5.10 Two kinds of requirements: performance and behavior 116

6.1 Interrelating EIS Performance Requirements, Design Entities and Evaluation

Entities o e 120
6.2 Eval-Service entity description e 121
6.3 Performance Requirement Derivation and Verification in IS Architecture De-

signiAnexample . . . L e 127
6.4 DEVS Meta-model extension 129
6.5 Outline of the EIS to DEVS model transformation 131
6.6 The DEVS suite simulationviewer, 134
6.7 Simulationresults meta-model L 135
6.8 Implementationoverview e 136
7.1 Functional View e e 143
7.2 Functional view: Validation rulesapplied 145
7.3 Functional view: Validationhandling. 145
7.4 Topology VIiew o o i e e e e e e 147
7.5 Network Infrastructureview e 150
7.6 Network Infrastructure View, Atomic Network 151
7.7 Non Functional Requirements 152
7.8 Software Architecture Evaluation Diagram 154
7.9 Hardware Architecture Evaluation Diagram 155
7.10 Hardware Architecture Evaluation Diagram, Atomic Network properties 155
7.11 Hardware Architecture Evaluation Diagram, Atomic Network 156
7.12 Importing Simulationresults L e 158
7.13 Verifyingaload requirement e 159

8.1 Contribution OVerview o o e e e e e e e e e e 164

List of Tables

2.1

3.1

4.1

5.1
5.2
5.3
54
5.5

6.1
6.2
6.3

MDA viewpointsand models o 48
A Comparative Overview of SysML Simulation Approaches 64
EISViewpoints o o e e e 80
Functional View Entities 91
Topology View Entities e 94
Network Infrastructure View Entities 97
Requirements and their relationship with other model elements 107
Non-Functional Requirements View Entities 107
Evaluation View Entities in Diagrams 122
Evaluation View Entities e 123
DEVS library components e e e 133

17

Abstract

Evidently, system architecture design is a complex process involving different stakehold-
ers and concerns. When designing Enterprise Information Systems (EISs), both software and
network infrastructure architecture should be designed in parallel, ensuring system effi-
ciency, as they are interrelated.

Systems Modeling Language (SysML), initiated by the International Council on Systems
Engineering (INCOSE) and the Object Management Group (OMG), is commonly used to sup-
port model-based system design. INCOSE is a not-for-profit membership organization that
promotes integration and interoperability of methods and tools.

Managing design requirements, when composing systems or System of Systems (SoS), is
a complex task, as they should be adapted during system evolution. A systematic review and
classification of requirements is necessary in order to reclaim them in the evaluation process.
Hence, Non-functional Requirements (NFRs), such as performance ones, should be focused
during EIS architecture design, since their key role in system efficiency.

The scope of this research is to provide a model-based approach for EIS architecture de-
sign, utilizing SysML as a modeling language. To this end, the system designer is provided
with alternative views, focusing software and hardware architecture and facilitating NFRs
verification via the definition of a corresponding EIS SysML profile.

Although SysML provides support for requirements specification, corresponding tools
lacked an automated requirements verification process. This thesis presents an integrated
design environment, not only capable of defining alternative EIS architectures, but also en-
abling architectural evaluation using simulation. Simulation results are integrated with the
system model enabling automated NFR verification process.

Finally, the proposed approach has been successfully tested in other domains such trans-
portations and cost-analysis in the cloud.

SUBJECT AREA: Systems Engineering
KEYWORDS: Model-Based System Design, SysML, Non-functional Requirements, Require-
ments Verification, Simulation, Model Transformations, MDA.

19

NepAnyn

H oxedlaon tng apxLTEKTOVLKAG TWV CUCTNHUATWY Elvat pla TToAUTIAOKN Stadikacta, otnv
ottola UTIAPXOUV TIOANOL EPTIAEKOPEVOL Kal SLAPOPETIKA BEpata evsLapépovtog. ‘Otav oxe-
Staloupe Etatpika MAnpowoplaka Tuothpata (EMY) Ba mpemel va oxedltaloupe TtapaAAnia
TNV ApXLTEKTOVLKN TOU AOYLOHLKOU KAl TOU SLKTUOU, pLag Kal oxetiovtal aueoa petagl Toug,
HE OKOTIO va SLACPAALOTEL N ATTOTEAECPATLKOTNTA TOU CUCTHHATOG,.

H SysML, n omola €xetL potabel amo tnv INCOSE kat to OMG, elvat pla eupEwg amode-
KT YAwooa povtelotoinong n omola uttootnpiel TAAPWG TN HOVTEAO-KEVTPLKN oxESLaoN
ouotnuatwv. H INCOSE sival evag pn-kepS0OKOTILKOG OPYAVLOPOG 0 oTtolog uttootnpileL Tn
SLacuvdeon Kat tn SLaAettoupylkotnta pebBdSwy kat epyaieiwy, 6oov agopd tn oxedlaon
ouoTnUATWv.

H Slaxeiplon twv amaltrioewy Katd tn cuvbeon cuoTNUATWY amoteAOUPEVA aTiO UTIO-
ouotrpata SoS, slval emiong pla ToAUTIAOKN Stadlkacia. Ol amaltroeLg CUYKEVTPWYOVTAL
KaL avampooappolovtal Katd tn SLApKELAd OAWV TwV PACEWV TNG €EEALENG TOU CUCTHUATOG
KL QUTO KAVEL akopn tio SUoKoAn tn dtadikacia tng dtaxeiplong touc. Na to Adyo autod
ATIALTELTAL PLa CUCTNHATLKA PEAETN KAl TALVOUNON TWV ATTALTHOEWY, WOTE Va Elval EQLKTA
n a&lomoinon toug katd tn dtadikacia tng amotipnong. Qg ek toutou, Kata tn oxedlaon tng
OPXLTEKTOVLKAG TOU CUCTAHATOC TIPETIEL VA SWOEL Eppacn oTLG MN-AELTOUPYLKEG ATIALTHOELG
(MAA), 6Ttwg yLa Tapadelypa auTeG TIoU OXETL{OVTAL PE TNV aTt0S00T, JLag KAl auteg tat{ouv
KaBopPLOTIKO POAO OTNV ATIOTEAECHATIKOTNTA TOU CUCTAHATOG,.

O OKOTIOG TNG TTapouoag £peuvag elval n Tapoxr HLag HOVIEAO-KEVTIPLKNAG TIPOCEYYLONG
yLa tn oxedlaon tng apxLTEKTOVLKNAG Twv EMZ aflomolwvtag oav y\wooa povtehomoinong tn
SysML. '.a to okoTtd auto, 0 o0XESLAOTHG TOU CUCTHATOC EQOSLALETAL UE EVOANAKTLKEG OPELG
TOU OUCTNHATOC, OL OTIOLEG £0TLACOUV OTNV APXLTEKTOVLKI TOU AOYLOMLKOU KaL TOU UALKOU Kal
SLEUKOAUVOULV TNV eTtaAfBguon Twv MAA. AUTO ETILTUYXAVETAL JE TOV OPLOPO €VOG TIPOPIA
EMZ otn SysML.

MapoAo Tou n SysML uttootnpldeL TNV £€vvoLa TWV ATIALTOEWY, OTA OXETLKA OXESLAOTLKA
epyalela AELTIEL VO AUTOPATOTIOLNPEVOG PNXAVLIOHOG EMTAARBEUONG TwY amattroswv. H Sla-
TPLPN Ttapouctalel eva OAOKANPWHEVO OXESLACTLKO TIEPLBAANOV, 0TO oTTIolo OXL JoVo elval
SuvaTdv va 0pLoToUV EVAANOKTLKEG APXLTEKTOVLKEG TOU CUCTAMUATOG , AAAA ETTioNG YTTOpOUV

20

va arotipnBolv xpnoLpomoLwvtag pocopoiwon. Ta anoteAéopata tng mPocopoiwong ev-
OWHATWVOVTAL OTO HOVTEAO TOU CUCTIHATOG KAl PE QUTOV TOV TPOTIO YiveTal EQLKTA N SLa-
SlKaota tng autopatomoLnpeVNG eMaAnBeuong twv MAA.

EV TEAEL, N TIPOTEWVOHEVN TIPOCEYYLON EQAPHPOCTNKE ETILTUXWG OE KAL 0 AANa TESLa OTIWG
oL HETAWOPEG Kal N avAAuon kdéotoug oto cloud.

OEMATIKH NEPIOXH: Mnxavikr ZUoTnuatwyv

NEZEIZ KAEIAIA: MoVTeAO-KEVTPLKN ZXeSlaon ZuoTtnuatwy, SysML, Mn-AeLToupyLkEG ATIALT OELG,
ErmaAnBeuon Antactrjocwy, Mpooopoilwon, Metacxnpatiopotl MovteAwy, MDA.

2 UvVOTTTLKN Mapouaciaon TG
ALdaktoplkng Atatppng

Baolko epmosLo yla TNV amodoTLKA ETILKOLVWVLA KaL TNV OAOKANPWON AVAPESA OTLG SLa-
(POPETLKEG peBoSoAOyieg kaL epyaleia TTou apopouv tn oxedlaon MANPoYopLAKWY CUCTNHA-
TwV amoteAel n uloBETnon aveEdpTNTWV POVIEAWY yLd TNV AvVATIAPACTACH TOU CUCTHHATOG.
MLa HOVTEAO-KEVTPLKE Bewpnon yla tn PEAETN TNG TEXVOAOYLAG TOU CUCTAUATOG UTIOPEL va
OUVELOWPEPEL TIPOG AUTH TNV KATEVLBUVON TIPOCPEPOVTAG VA KEVTPLKO UOVTEAO TOU CUOTHHA-
T0G, TO oTtol0 €EUTINPETEL OAEG TLG OXESLAOTLKEG SPACTNPLOTNTEG OTA SLAPOPETLKA ETLTIESA
TIOAUTIAOKOTNTAG, TIPowBwvTaG TIApAAANAA T SLOAELTOUPYLKOTNTA.

O otdx0o¢ TNG TTapouong €peuvag elval n dnuloupyila evog eVWoLOAOYLKOU POVTEAOU yLa
TNV HEAETN TNG TEXVOAOYLag TwV ETatpikwy MANpo@opLakwy Zuotnpatwy, AapBavovtag uto-
Pv kabLepwpéva Aatola kat peBodoAoyieg, OTIWG To eVPEWG Sladedopévo TAaioLo etatpl-
KNG apxLtektovikng Zachman [1] (Zachman Enterprise Architecture Framework) kat TLg apyg
Tou opiovtal oto mpotuTo 42010 [2] Tou IEEE. H tapoloa épsuva eotialel otn oxedlaon
TNG APXLTEKTOVLKAG TOU TIANPOYOPLAKOU CUCTAHATOG, AQuBAvVoVTAG UTIOYLY TLG OTITLKEG Kal
TOUG EPTIAEKOPEVOUG (0TNV TIPA&N OTNAEG Kal ypappeG Tou Tiivaka Zachman) mou opifovtat
oUPPWVA PE TO TAALOLO ETALPLKNG aPXLTEKTOVLKAG Zachman. Ztoxog tng lval:

* N ULOBETNON €VOG HOVTEAOU yLa TN oxedlaon TAr|poug cupBatou pe To TAailolo tatpt-
KNG apXLTEKTOVLKAG Zachman kat

* N EMAOYN PLA YAWOOAG JOVTEAOTIOLNONG TIOU Va TO UTtootnpileL, WOTE va XPNOLUOTIOL-
nOel amoé toug oxedSLA0TEG CUCTNHATWY

To TIPOTELVOEVO POVTEANO €EUTINPETEL OAEG TLG OXESLAOTIKEG SPACTNPLOTNTEG, OL OTIOLES
€lvaL N CUYKEVTPWON AELTOUPYLKWY KaL PN-AELTOUPYLKWY ATIALTAOEWY, N oxedlaon tng apxL-
TEKTOVLKNG TWV EQAPHOYWV KAl TOU SLKTUAKOU UTIOCTPWHATOG, N aToTipnon tng andédoong
TWV TIPOTEWVOHEVWY AUCEWV Kal BEATIWON TWV TIPOTELVOPEVWVY AUCEWV.

L0 TNV JOVTEAO-KEVTPLKN oxeSlaon cuotnuatwy, n utobetnon tng Unified Modeling Lan-
guage (UML)) tng Systems Modeling Language (SysML) w¢ yAwooag PovteAoTolnong xeL
ylveL avtikelpevo €peuvag amo TIOANOUG EpELVNTEG KAl atd SLaopeTLka Ttedla peuvag, Ta

22

omtola cuvABWG KAataAryouv o€ KATIOLoU €(60UG €MEKTAONG Toug. H uloBétnon tng SysML
yla TN PHOVTEAOTIOINON CUCTNHATWY TIPOWBOEL TNV OAOKANPWGCN TNG oxeSlaoNg CUCTNUATWY
HE AAAEG SpAOCTNPLOTNTEG, ELSLKA OTaV EPTIAEKETAL avartuén Aoyloptkou. H SysML elval pua
yAwooa povtelomoinong, n omoia uttootnpidetal amno to Object Management Group (OMG),
KaL xpnotpotoleital yla tn oxedlaon cuotnudtwy. MNapexel SLAQYOPETIKA SLaypappata yLa
va TEpLypAPeL tn Sour) TOU CUCTHHATOG KAL TA CUCTATLKA TOU, KAt yla va kaboploeL Tig mo-
ALTLIKEG avaBeong opwv (allocation policies) oL ottoleg elval onPAvTIKEG yLa Tt oxedlaon Kat
yla Tov KabopLopo twy anattioewv. H SysML uloBetrBnke wg yAwooa pJovieAoTiolnong Kat
otnv apouoa €psuva.

OL Baotkeg Spaotnpldotnteg oxedlaong Twv cuoTNPATWY lval 0 KABOPLOPOG TWV ATaLtr)-
0wV, N oUVBEON pLag AUonG, N anotipnon TNG TPOTELVOUEVNG AUCNG KAL N QVarpooappoyn
NG AUoNG €pOCOoV Sev LKAVOTIOLOUVTAL OAEG OL ATIALTACELG Katd tn Stadikacta tng amoti-
pnong. Epdoov n SysML pmopel va TipocapuUooTel yLla éva GUYKEKPLUEVO TIESLO e@appoyng
(M€ow TOU pNXaviopoU emektaong mou opiletat amod tn UML), pmopet va xpnotporotndel
amodoTIKA KATd TG §pactnpldTnTeG TO0O0 TNG oLVBECNG PLag AUoNG Kat TG avamnpooapuo-
YNG tng, 000 Kal Katd tn §Ladkacia Tou KaBopLopoU TWV AELTOUPYLKWY ATTALTHOEWV. AUTO

TIOU UTTOOTNPLCEL N CUYKEKPLUEVN EPEVUVNTLKI TIpooTIdbELa lval:

* N aTOTEAECHATLKN SLaxelpLon PN-AELTOUPYLKWY ATIALTCEWV (ELELKOTEPA TWV TIOCOTL-
KwV) Katd tn Stadlkacia tng oxedlaong kat

* TO «8€CLHO» AUTWV TWV §pacTNPLOTATWY PE TN §pactnpldTnTa TNG anotipgnong tngAu-
ong, ou cuvABwg ylvetal pe TN xpron AAAWV YAWoowv povtelotoinong kat pebodo-
AOyLWv, PE TN Xprion tg SysML a6 to oxedLlaoth yLa OAEG QUTEG TLG SpaAOTNPLOTNTEG.

MapdAo rou ot MAA Ttaiouv €va onuavtiko poAo katd tn Stadikacia tng oxedlaong, dev
uttootnpidovtat emapkwg amod tn SysML. EmunpocBeta, ta epyaleia mou uAomolouv tn SysML
S€V TIAPEYOLV VAV AUTOPATOTIOLNHEVO TPOTIO yLa TNV €MAANBEUON TWV PN-AELTOUPYLKWV
amnattiocwv. H €épguva Tou TipaypatomoLlifnke eotlace o€ pLa eméktaon tng SysML wote va
elvat e@LkTr N Teplypan Kat n emtaAnBeuon (verification) TwWV PN-AELTOUPYLKWY TTIOCOTIKWY
amattiocwv. MNa kataotel Suvatd auto, eylvav eMeKTAoELG oth SysML woTe:

* va uTtooTtnPL{oVTal CUYKEKPLUEVEG KATNYOPLEG PN-AELTOUPYLKWY ATIALTCEWY, KAl OL-
YKEKPLUEVA QUTEG TTOU Bacifovtal O€ TIOCOTIKEG TIAPAPETPOUG, Kal

* va urtootnpiletal n Stadkacia tng emMaAnBeucng Toug

H SysML TipoTelveL T Xprion Twv test cases TIPOKELPEVOU va SLamoTwOel av pla amaitnon
| €va €T amaltoswv emaAnBevovtal f OxL. ZTo test case pPTopel va oplotel 0 TPOTIOG £Ma-
AnBeguonc, o ottolog Ptopel va lval yLa mapdadelypa Eva SLaypapa CUPTIEPLYOPAS (activity
N state machine Staypappa). Ocov agopd tig MAA Tou oxetifovtal pe TNV amodoaon Kat
eotLadovtal otnv apoloa £PEUVA, AUTEC TIEPLYPAPOVTAL TOCO HPE TIOLOTLKA 000 KAl TT0CO-
TLKA XapakTnpLoTIKA. Ooov apopd Ta TTOCOTLIKA XaPaKTNPLOTLKA, PTIOPEL va xpnotpottotn el

Structure or Behavior Diagram NFR Diagram Evaluation Diagram
-] T]
Composite NFR verify Evaluation Scenario
w 1.4 0.* |-evaluationMethod
atist . -initializationProperty [1..7]
sausty requirement
D__*
i
werify
el d 3L Extended NFR » — | Evaluation Entity
gRragery [1.] -gualtativeProperty [0..%] N T |-inputProperty [1..4]
| * -guantitativeProperty [1..%] 0.+ 0 -outputProperty [1.4]
-compareMethod - -
conformto
" 0.
deriveRet 1 T
Derived NFR
-computationFormula

evaluate

Ewkova 1: Emektaon tng SysML yia tnv uttootnptén twv MAA

KATIOLa TIOCOTLKI) PEBOSOG OTIWG N TIPOCOHOLWATN, WOTE VA YIVEL EQLKT N ETAANBEUOT] TOUG.
H évvola tou test case gv uttootnpilel TTOCOTIKEG PeBOSoUG emtaAnBeuonc. Emumpdobeta, Ta
amoteAeopata tng pebdSou emainBsuong Ba TipemeL va Slatnpouvtal 6TO POVTEAD TOU OU-
otApatog. Na toug mapandvw AGyoug, TTPOTABNKE N ETEKTACH TNG £VVOLAG TWV ATIALTHOEWV
otn SysML pe ta €§Ac:

« ZUvBeteg MAA oL oTtoleg amoTeAoUVTAL ATIO ETEKTAPEVEG [N AELTOUPYLKEG ATIALTACELG
(oL oTtoleg pmopet va TtpokUPouv amd AAAEG ATIALTHOELG PE KATIOLA HaBNUATLKA OXEoN
f M€ Bdon kdamoLa eLPETLKA PEBOSO), OTLG oTToleG OpldovTal TTOLOTLKA KAl TIOCOTLKA Xa-
PAKTNPLOTIKA KABWG Kat n peBodog ouykpLong, N ottola XpnoLpoTIoLELTAL yia va KpLBel
av n amtattnon wkavotoleitat r) OxL, o€ 0XEON PE PLA OVTOTNTA TOU CUOCTHHATOG.

« Zevapla EmaAnfsuong ta omola amoteAouvTal and ovIOTNTEG TOU CUCTHHATOG OL OTIOLEG
OUPMETEXOLV oTn pEBOoSO emaAnBeuaong (cuvnbwg ipooopoiwaon) padl pe TG mapape-
TPOUG ELOOSOU, £XOVTAG ETOLHEG TLG TIATPAPETPOUG OL oTToleg Ba yeploouv e Ta amote-
Ag€opata tng mpooopoiwong.

H Ewkdva 1 tapouotadel TLg emeKTATELG TNG SysML Ttou Tipotadnkav.

H mpoomiaBela autr) katéAn&e otnv vAottoinon evog SysML profile to omolo ovopddetat
«MpowiA Etatptkwyv MANPOYoPLAKWY ZUCTNHATWY», XPNOLHOTIOLWVTAG TO OXESLAOTLKO Epya-
Aelo MagicDraw [3]. Mpokelpévou va anodelyBel n xpnotpdTnTa Tou TPoYiA, EQapPOOTNKE
o€ Eva apasdelypa xprong (case study).

Me Baon to mAaiolo Zachman kat to potuto ISO/IEC 42010 [2], TpoTdBnKaVv GUYKEKPL-
HEVEG OYPELG TOU CUOTHPATOGC, OL OTIOLEG aVTATIOKPILVOVTAL OTa TECOoEPA O0TASLA TNG SLadLka-

olag oxedlaong twv EMNZ, oL omoleg eivad:
* n'OYn tng Asttoupytkotntag (Functional View),
* n'OYn tng TomtoAoyiag (Topology View),
* n'OYn tng Yrodopng tou Atktuou (Network Infrastructure View) kat
* n'OYn twv Artattrioewv (Requirements View)

MpokeLPEVOU va uTtooTnpLxBel n Stadlkacia tng eMaANBeLONG TWV PN AELTOUPYLKWY aTtaL-
TroEwV, TIPOTABNKe n ocloTaCN PLag veag 0YngG Tou cuoTrpatog - 0OYn Artotipnong (Evaluation
View) - n ottola tnpetl () TLG TTOCOTLKEG TIAPAPETPOUG TWV PN-AELTOUPYLKWYV ATIALTOEWV padl
HE TLG AAAEG TIOPAPETPOUG TWV OVTIOTHTWVY TOU CUCTHHATOG KAl () Ta armoteAéopata tng pe-
B66ou amotipnong Tou cucTtrpatog (ta omola evowpatwvovtat Eava oTo PHOVTIEAO TOU OU-
OTNMATOG), TTOU OTNV TIPOKELPEVN TIEPLTTTWON €lval N TIPOGOPOLWON, WOTE VA KATACTEL EPLKTH
N €MaARBeLON TWV PN-AELTOUPYLKWY amattoswv. H oYn amotipnong Baocidetal kL autn o€
Sltaypappata tng SysML. H 6gn autr) BonbdeL to oxedLaotr) TapEXOVTAG TOU ELSOTIOLNOELG
yld TLG aTTALTAOELG OL oTtoleg Sev emaAnBevovtal Kabwg Kal TLg oXETL{OPEVEG OVTOTNTEG LE
QUTEG, WOTE 0 OXESLAOTNG VA KAVEV/AAPBEL TLG KATAANAEG EVEPYELEG/ATIOPATELG TIPOKELEVOU
va 08Ny oEL TO CUCTNHUA WOTE VA LKAVOTIOLAOEL OAEG TLG ATTALTAOELG.

Network Infrastructure View

evaluate allocate

satisfy

verify satisfy
NRF View Topology View

Evaluation View

satisfy
evaluate
allocate

Functional View

Elkdva 2: ApXLTEKTOVLKO POVTEAD Twy ENZ

To anotéAeopa tng SLatpLPng elvat Eva oAOKANPWHEVO OXESLAOTLKO TtEPLBAANOV TO OTIOL0
OXL HOVO ETILTPETIEL TOV OPLOPO EVOANAKTIKWY APYLTEKTOVIKWY TOU UTIO-HJEAETN OCUOTHHATOC,
OAAG TIPOCWPEPEL KaL TN SUVATOTNTA TNG EMAANBEUONG TNG EKACTOTE TIPOTELVOUEVNG APXLTE-
KTOVLKNG HECW TIpooopoiwonG. Ta amoteAeoATA TNG TIPOCOPOLWONG EVOWHATWYOVTAL 0TO
TiepLBarov oxedlaong, wote va autopatotolndetl n dtadikacia tng emaAbsuong Twv Pn
AELTOUPYLKWVY ATIALTHOEWY, TIPOCEYYLON N oTtola UAOTIOLABONKE yLa Tipwtn Ypopd ota mAaiola

NG Mapovoag EPEUVNTLKNG TIpooTtdbelag. Ta avolyta {ntipata, ou peAetOnkav oto mAal-
oLo NG SLSaktoplkng dtatplPrig cuvoyidovtal ota akdAouba:

* n pAOTACN PLaG TPOCEyyLong N otola va Baciletal o€ yvwotd TIPOTUTIA KAl TUTILKEG
YAWOOEG OTWG N SysML,

* 1 8LEUKOAUVGON TOU OXESLAOTH CUOTAPATOG OTO VA £EEPEUVA EVOANAKTLKEG OXESLAOTIKEG
AUOELG KaL oTnV amotipnon (evaluation) Tou JOVTEAO TOU GUOTAUATOG TIPLV TNV UAOTIOL-

non.

* 1) €0TLOCN OTOV OPLOKPO KAL OTLG CUCXETLOELG TWV PN-AELTOUPYLKWVY ATIALTOEWV andSo-
ONG TOU CUCTHHATOG,

* n autopatotmoinon tng Sltadlkaciag Tng EMaAnNBeuoNG TWV ATIALTHOEWY XPNOLPOTIOLW-
VTAG TUTILKEG HEBOSOUG yLa eKTipNon anddoaong, OTwG TNV Tipocopoiwon,

* TNV LAOTIONON TNG TIPOCEYYLONG OE £VA CUYKEKPLUEVO TIESLO EQApPHOYNG WOTE Va aro-
SelxBel N oKOTILUOTNTA PEOW PLAG PEAETNG TiEPITTTWONG.

Epooov 1o medio spappoyng ntav ta ENZ, évag emumpdobeTtog oTOX0G Tav n mapoxn ev-
Sel&ewv tng amattovpevng moldtntag uttnpeoiag (Quality of Service (QoS)) TwWV CUCTATIKWY
OTOLXELWV AOYLOPLKOU WOTE Va SLEUKOAUVOEL N SLavour] AOyLOHLKOU O€ UALKO. AUTO €yLVE pE
TN SLEPEUVNON TWV CUOYXETIOEWV TWV PN-AELTOUPYLKWY ATIALTAOEWY PJECW TWV CUCTATIKWY
otolxelwv AOYyLOPLKOU Kat TnG avABeonG TOUG O CUCTATLKA OTOLXELQ UALKOU, 0€ KaBopLopE-
VEG TOTIOAOYLEG SIKTUWV.

Ma tnv eniAuon TwWV avolKTwy {NTNPAtwy, £ylvav oL akOAOUBEG EVEPYELEG:

« Muwa cuotnpatikn BLBALOypagLkn €peuva Twv PeBoSoAoyLWVY TIoU apopouV ot oXedi-
aon twv ENMX [4]

* MLa POVTEAO-KEVTPLKNA TIPOCEYYLON yLa To oxeSlacpo EMZ kal o oplopog evog petapo-
VTéAoU o omolog va Baoiletal otn SysML mou va eguTinpetel To koo auto [5, 6]

« O 0pLOPOG KaL N EMAANBELON TWV PN AELTOUPYLKWY aTtattoswy anodoong [7,8]. Zuyke-
KpLUEVQ:
- 0 KaBoplopdg Kal 0 UTIOAOYLOPOG Twy Ttapayopevwy (derived) pn AELTOUPYLKWY
amalttioswyv anodoong,
- n Slaxelplon TwV PN AELTOUPYLKWY ATIALTCEWY PHECW TNG TIPOCOAKNG pLag Eexw-

pLotnG OYng Amtotipnong (Evaluation View).

* HoAokArjpwon tng OYngAmotipnong pe eva eEwtepLkod epyaleio pocopoiwong[9,10],
HEow:

- apXLKOTIOLNONG TWV EVAAANAKTLKWY OEVapilwy TIpooopoilwaong, EKTEAECNG TNG TIPO-
ocopolwong kat

- E£L0ayWYNG TWV ATMOTEAECPATWY TIPOCOHOLWaONG 0TO POVTEAOD TG SysML.

* YAottolnon evog oAokANpwEVou epyaleiou oxedlaong xpnotpomolwvtag to MagicDraw
kat tn DEVSJava [9, 11-13], péow:

- NG emAoyng evog Discrete Event Simulator, 6w to Discrete Event System Specification
(DEVS),

- TO PETAOXNMATLOPO TOU PovTeAou tnG SysML og povtého DEVS ypnotpomolwvtag
tnv Query / View / Transformation (QVT),

- TOV KaBopLopo Twv BLBALOBNKWY TIPOCOOLlWwoNG TWV OTOLXELWY TOU JOVTEAOU.

H oLVELGPOPA TNG CUYKEKPLUEVNG EPEUVNTLKIG TIPOOTIABELAC, TIEPAV TOU TIESIOU EQapPO-
YAG Tou elvat ta NMAnpoopLakd Zuotriuata, a@opd ta akoAouba:

* TN SLOXELPLON TIOCOTLKWY PN-AELTOUPYLKWVY ATIALTAOEWY WOTE va kabopilouv 1600 TN
CUMTIEPLYPOPA OO0 KAL TNV ATtOS00N EVOG CUCTIHATOG, TO TPOTIO OPLOUOU TOUG KAl TOV
KaBopLlopd Twv aAANAeTILE pAoewV PeTAEL TOUG,

* TNV KATnyopLoToinon Twv PN-AELTOUPYLKWY ATIALTACEWVY TIOU agopouv Bepata anddo-
one

* TNV TIPOoHNKN NG OYNG amotipnong N omola awevog SLEUKOAUVEL TNV emaAnBsuon
TWV PN-AELTOUPYLKWV ATIALTACEWY KAl APETEPOU ETILTPETIEL TNV THPNON LOTOPLKOU TWV
SLapopwv cevapiwy ta omola Soklpdaotnkav, oav pua Bacn yvwong n omola va SLeu-
KOAUVEL TLG ATIOWACELG TOU OXESLAOTH).

ZUPTIEPACHATLKA, UTTOKLVOUHEVOL ATIO TO YEYOVOG TNG EANELYNG ATTOTEAECPATIKWY PN)a-
VIOPWV ETTAANBELUONG TWV TIOGOTLKWV N AELTOUPYLKWY ATIALTHOEWY, OL oTtoleg opidovtal o€
SysML povtéla, S60nKE EPpacn oTtnv AETITOEPN AVATIAPACTACH TWV PN AELTOUPYLKWVY ATtaL-
TrOEWV, OL OTIOLEG PUTIOPOUV Va TIEPLYPAPOUV HE TIOCOTLKA XAPAKTNPLOTIKA KAl OTNV £TTA-
ANBgucr TOUG XPNOLUOTIOLWVTAG TIOCOTLKEG PEBOSOUG OTIWG N Tipocopoiwan. MNa To OKoTIO
auto emektadnke n SysML. H ipotelvOpevn TIpOCEYYLON EQAPUOOTNKE oto Tedio Twv ENZ,
gotialovtag otnv oxedlaon tng apXLTEKTOVLKAG TOUG KAl OTLG ATIALTAOELG anddoonG. To oAo-
KANpwpeEvo TepLBAM oV oxedlaong To oTtolo UAOTIOLNBNKE WOTE va uTtooTNPLZEL TNV CUYKE-
KPLUEVN TIPOCEYYLON, UTIOYPAUHIZEL TO POAO TWV HOVTEAWY KAl TWV TIPOTUTIWVY TIPOG TNV Ka-
TeVOUVON TIPOTELVOPEVWVY AUCEWV OL oTtoleg uTtootnpidouv TNV avtaAayr yvwong Kat tn
ouvduacopévn xpron HEBOSwVY Kal epyalelwv Wote va SLEUKOAUVOUV TOV 0XESLAOTH TOU OU-
OTAMATOG TIAPEXOVTAG TOU avatpoWodotnon yla tnv anddoon Tou cuoTAPAtog. TEAOG, oav
ETIEKTAOELG AUTNAG TNG SOUAELAG, TIAPOUCLACTNKAV EQAPHOYEG TNG PeBoSoAoyiag os SLapope-
TIKA Ttedla, OTIWG N TEXVOOLKOVOULKA avaAucn oto cloud Kat 0 opLopog EMLTES WV TIOLOTNTAG
UTINPECLAG O0TA CUCTAHATA PETAPOPWV.

SysML design model

requirements model

req
rl derivations
'._ i

analysis model
behavior ol
definition o —
_______ o —
o -

-9

RE expert System Designer Evaluation Expert

integration (analysis model

SysML design model integration

A

System Designer

requirements

Req derivation model

\A\

Ewkdva 3: Zuvon cuvelopopdg

Preface

During the period of entanglement with my MSc thesis, I had the opportunity to learn
about system engineering in a theoretical aspect. To design an information system involves
many aspects, such as collecting data from the users (user requirements), designing the ar-
chitecture, implementing the real system, testing and evolving it.

This thesis, entitled "Model-Based Enterprise Information System Design: A SysML-based
approach” deals with the architecture design of EISs. From the first moments till now, many
revisions has been done, in order to adopt contemporary trends that affect the design pro-
cess, such as modeling languages. For example, at the very first steps of this thesis, UML
was adopted as the modeling language. However, since SysML was released and became the
common language to describe systems and SoS, we consider to use SysML, as more appro-
priate to describe our approach. The reasons behind this selection are analytically described
in the following chapters.

A system designer first tries to depict the system components (subsystems) and the rela-
tions between them in a human readable format. Systems, and especially Information Sys-
tems (ISs) are implemented through software development process. This process usually is
supported by computer software tools, such as requirements definition tools, system design
tools, performance evaluation tools, etc. To evaluate a system before its implementation,
there is a necessity of a system model, that would be capable of holding all the characteris-
tics related to the evaluation.

In an introductory chapter, an overview of this thesis is presented along with the defined
objectives and the contribution. Afterwards, chapter 2 refers on concepts that concern IS
in general and especially their design. Definitions of architecture frameworks and model-
based system design methodologies are presented to provide the research background of
this thesis. By the same token, chapter 3 depicts proposed methodologies for model-based
system design, discusses SysML-based approaches, requirements and the way these are in-
volved/handled in this process. In order to clarify the novelty of this thesis, a comparison of
the related work is presented.

An overview of the proposed approach about the exploration of EIS architecture design
is presented in chapter 4. An EIS profile is defined, that adopts the model-based systems

29

engineering concepts and defines specific views according to different system perspectives
forming the stakeholders’ viewpoints. Given these points, our contribution is described in
detail, following a two phase approach: on one hand the design phase, presented in chapter
5, is dealing with the specific design views and the definition of NFRs, and on the other hand,
the evaluation phase, presented in chapter 6, is performed via the NFRs verification.

Thereupon, to prove the feasibility of the proposed approach, a case study is presented
in chapter 7. A critical view about the contribution, pros and cons of the proposed approach
is discussed in chapter 8 and finally conclusions and future directions reside in chapter 9.

Throughout this thesis, there were many times that the Ph.D. candidate was wondering
about the value of his work. This is a personal fight, through which anyone can obtain not only
technical skills but also spiritual ones. A wide range of emotions has been experienced, from
enthusiasm, e.g., when a publication was accepted to depression, e.g., when realizing that
someone else has achieved something that you are trying to solve. Of course, like everything
in life, the route traveled is worthing independently of the destination.

“You have brains in your head. You have feet in your shoes.
You can steer yourself in any direction you choose. You're
on your own. And you know what you know. You are the guy
who'll decide where to go.”

— Dr. Seuss

Chapter

Introduction

Contents
11 General e e e e e e e 31
1.2 Objectives & Contribution, 32
1.3 OVerVIEW . . . o ot e e e e e e e e e e e e e e e 33
1.4 ResearchMethodology 35
1.5 Structure o i e e e e e e e e e e e 36

1.1 General

When building large-scale ISs, focus is usually given in Systems Engineering (SysE), while
the combination of software and hardware, and the way it might affect overall system per-
formance, is often neglected. During system design, software architecture issues are usually
dealt with, as a discrete stage of the software engineering methodology applied. The man-
agement of related design decisions and the way it might be influenced by NFRs has been
explored. Though, software architecture design decisions are influenced by network design,
while NFRs, as performance requirements, can usually be satisfied by their effective combina-
tion. In practice, both software and network infrastructure architecture should be designed
in parallel, as integrated components of the overall system architecture, to efficiently explore
their interrelations and ensure NFR satisfaction.

While one can find many efforts in the related literature, the challenge to achieve a more
efficient system still remains open. Our proposal is to provide a design environment with
evaluation capabilities for EISs design. Requirements provide the means in order to evaluate
system’s performance, based on their verification. They are used as conditions that have to
be satisfied, ensuring that the system would provide the expected behavior. Requirements
Engineering (RE) not only refers to the processes of defining, documenting and maintain-
ing requirements but also to the subfields of systems and software engineering concerned
with these processes. Under those circumstances, a classification of requirements and their

31

Chapter 1. Introduction 32

extensions with quantifiable properties and verification methods is proposed.

1.2 Objectives & Contribution

In the beginning of this thesis, the following goals [12] have been identified as open is-
sues, that formed the objectives of this research:

 to propose an approach based on well-known standards such as SysML and formal
languages based on OMG's standards.

« to facilitate the system designer exploring alternative design solutions and evaluating
the system model before its implementation.

+ to focus in the definition of system requirements.

* to automate requirements verification process using formal methods for performance

evaluation, such as simulation.

+ to implement the proposed approach in a specific system domain in order to prove the
feasibility of the approach by a case study.

Since the selected domain of case study was EIS, an additional goal was to provide indi-
cations about the aggregated QoS of software components helping software-to-hardware
allocations. Therefore, to meet all these goals, the following steps were accomplished:

i. Areview of the EIS engineering methodologies in the literature [14, 15] has been pub-
lished.

ii. A model-based approach for EIS design and the corresponding metamodel have been
proposed [15-17].

iii. A SysML profile for EIS has been defined in [5, 6].

iv. A definition and the verification of NFRs and especially performance ones has been
given [15]. Specifically:

« definition and calculation of derived non-functional requirements has been achieved.

+ management of NFR verification through the proposition of a discrete view, namely
Evaluation view is feasible.

v. An integration of the so-called Evaluation view with an external simulation tool [5-7],

via:
* initialization of alternative simulation scenarios and simulation execution, and

+ the integration of the simulation results into the SysML model

has been implemented.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 1. Introduction 33

vi. Animplementation of an integrated platform supporting model-based EIS design using
MagicDraw and DEVSJava [9, 11, 13], was provided via:

* the selection of a Discrete Event Simulator, such as DEVS
+ the transformation of the SysML model into the DEVS model, using QVT

+ the definition of the simulation library components of the system model.

The contribution of this thesis will be analytically described at the next chapters.

1.3 Overview

SysE is an interdisciplinary field of engineering that focuses on the way we design and
manage complex engineering projects over their life cycles. Model-Based Systems Engineer-
ing (MBSE) is a methodology for designing systems using models. A system model is the
conceptual model that describes and represents a system [18]. MBSE implies that the models
are composed of an integrated set of representations. Tools and methodologies that support
MBSE assume that the representations of system behavior and structure are integrated in a
single multi-layer model. Each model element can be represented in many views to create a
variety of design and architectural representations.

Although UML is a standard modeling language to support MBSE ', SysML, as an ex-
tension of UML, is more appropriate when talking about systems and SoS. On MBSE uses
a graphical language to generate and record details pertaining to system'’s requirements,
design, analysis, verification and validation. Additionally, RE refers to the process of formu-
lating, documenting and maintaining software requirements and to the field of Software
Engineering (SE) concerned with this process. Specifically, software systems RE is the pro-
cess of identifying stakeholders and their needs, and documenting these in a form that is
amenable to analysis, communication, and subsequent implementation [23]. Requirements
are defined throughout phases of system development. A NFRis a requirement that specifies
criteria that can be used to judge the operation of a system, rather than specific behaviors.
NFR verification is a process that is related to system design.

As mentioned, the scope of this research is to provide a design environment that is ca-
pable of defining system architecture, evaluating the system and notify the designer about
the non verified non-functional requirements. This process should be transparent to the de-
signer in order to support him to effectively build a system architecture taking into account
the imposed hardware and software requirements. As many stakeholders (each of them be-
ing a specific engineer) are involved in the system design process, the proposed approach
provides separate views, enriched with NFRs, for each stakeholder, as instances of a common
model. Figure 1.1 presents an overview of the proposed approach, which is in accordance to
INCOSE's objective to promote integration and interoperability of methods and tools.

Tand was used in the early stages of our research [19-22]

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 1. Introduction

34

Engineers

(SRl

R

System Model

f Lxmly

» X <P .

Figure 1.1: Phd Overview

The basic tasks identified during any system design activity are requirements definition,

solution synthesis, solution evaluation and solution re-adjustment [24]. Based on predefined

requirements, the system

designer build a solution on system synthesis. In order to de-

cide if a solution is acceptable, evaluation is used. Until an accepted solution is reached,

re-adjustments are performed.

[SysML
Re-Adjustment nat valid valid |
| ® [Rew frotvale) ___ el o
|
| | I I | !
| W I I | !
| | Requirements | | | | !
| Definition F I : !
v Solution |
| A : ‘ Evaluation
| | Solution I
| | Synthesis A |
| |
I I : | |
| | [Not Synthesized Solution] v [synthesized solution] | |
/ |
| — s s s s s s S = == == = e = = = =

Figure 1.2: Basic System Design Activities

Specifically, to evaluate a system, an analytical method, e.g., mathematical equations de-

scribing system behavior, o

r simulation could be used. In the case of a complex system, such

Anargyros T. Tsadimas

Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 1. Introduction 35

as ISs, simulation is more appropriate for performance measurements. Hence, arelated issue
that is addressed also here, is the generation of simulation models based on SysML repre-
sentations [25], simulation and the incorporation of its results back into the system model.
The latter aids the illustration of potential mismatch(es) with the pre-defined requirements,
after system evaluation. Automated system evaluation is performed via the verification of
NFRs.

1.4 Research Methodology

Through this research, Design Science research methodology was used [26]. According to
it, there are six different phases that are proposed to follow in order to complete the re-
search. Research is an iterative process that begins with the problem identification and the
motivation. The next step is to define the objectives, something already presented at sec-
tion 1.2. What follows is to design and develop the artifact that supports the objectives and
demonstrates how the produced artifact would solve the problem (chapters 4, 5, 6). The eval-
uation of this research is discussed in chapter 7 with the aid of a case study. Communicating
research has been done with publications, mentioned after the references section.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 1. Introduction 36

Process Iteration

MNominal process sequence

Identify Define Design & @ Denmonstration @ Evaluation g Communication
Problem Objectives Development ® o
& Motivate of a Solution o @ ®
o m E
@ o =2 o
(=] = W 5 —
o o Co F
o v <<
© x - = &
u— o m 9 [
< = o cC [
= Ex a
=] =
T = @
2

| | | |

Paossble Research Entry Points

Figure 1.3: Design Science Research Methodology

1.5 Structure

After this shortintroductory chapter, the thesis is structured as follows. Chapter 2 presents
the background in the related research areas of ISs, MBSE and systems evaluation, where
selected definitions and standards are briefly presented. The related work, especially the
methodologies for model-based EIS design, the defined SysML profiles, the efforts about
simulating SysML models, as well as requirements engineering with emphasis on NFRs and
their verification, are discussed in chapter 3. Chapter 4 presents our approach to explore EIS
architecture design, based on the concepts of MBSE, while 5 lays out the design views, where
system designer defines the software and hardware architectures of an EIS. In addition, eval-
uation view is described in detail in chapter 6, where automated simulation code generation
is produced and execution results are incorporated into the system model. To help the reader
understand our proposal, its application is presented in chapter 7 with a case study where the
proposed approach is applied. There, the design process is given from the system designer’s
perspective, as a step-by-step procedure, in order to evaluate the designed architecture and
verify the requirements. Finally, in chapter 8 a discussion about the proposed approach is
presented while conclusions and future work reside in chapter 9.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter

Background

Contents
21 0Outline e e e e e e e e e e 38
2.2 Information Systems Engineering 38
2.2.1 Architecture Frameworks L 39
2.2.2 Requirements Engineering 41
2.3 Model-based System Engineering 42
2.3.1 Model-based SystemDesign 45
2.3.2 System Models Management. 46
24 SystemEvaluation e e 53
2.4.1 Requirements Verification. 54
242 Simulation e 54
25 SUMMAKY ittt e e et et ettt ettt e e e 55

2.1 Outline

This chapter makes an introduction on concepts that concern IS in general and espe-
cially their design. Definitions of architecture frameworks and model-based system design
methodologies are presented to familiarize the reader with the research area concepts. In-
troduction on requirements and their classification is briefly depicted. Moreover, modeling
languages such as UML and SysML are introduced.

2.2 Information Systems Engineering

A system is an artifact created by humans that consists of components or blocks that pur-
sue a common goal that cannot be achieved by each of its single elements. In the context of
IS, a block can consist of software, hardware, persons, or any other units [18]. IS is the study

38

Chapter 2. Background 39

of complementary networks of hardware and software that people and organizations use to
collect, filter, process, create and distribute data [27]. Information systems encompasses a
variety of disciplines such as:

« the analysis and design of systems,

« computer networking,

+ information security,

+ database management and

+ decision support systems.

SysE concentrates on the definition and documentation of system requirements in the
early development phase, the preparation of a system design, and the verification of the
system as to compliance with the requirements, taking the overall problem into account:
operation, time, test, creation, cost and planning, training and support, and disposal [18].
According to NASA Systems Engineering handbook [28] SysE is a methodical, disciplined ap-
proach for the design, realization, technical management, operations, and retirement of a
system. SysE integrates all disciplines and describes a structured development process, from
the concept to the production then to the operation phase and finally to the system’s dis-
posal. It examines both technical and economical aspects in order to develop a system that
meets the users’ needs. As such, systems engineering stands above specific disciplines, such
as software development, for example. This holistic line of thinking can also include solutions
to problems that emerge only as a new system is introduced.

Information Systems Engineering (ISE) is the process by which IS are designed, devel-
oped, tested, and maintained. The technical origins of information systems engineering can
be traced to conventional information systems design and development, and the field of sys-
tems engineering. Information systems engineering is by nature structured, iterative, multi-
disciplinary, and applied. It involves structured requirement analyses, functional modeling,
prototyping, software engineering, and system testing, documentation, as well as mainte-
nance [29].

2.2.1 Architecture Frameworks

An architecture framework establishes a common practice for creating, interpreting, ana-
lyzing and using architecture descriptions within a particular domain of application or stake-
holder community. Especially the domain within a company or other organization is covered
by Enterpsise Architecture Frameworks (EAFs).

Enterprise Systems (ES) are large-scale application software packages that support busi-
ness processes, information flows, reporting and data analytics in complex organizations.
While ES are generally Packaged Enterprise Application Software (PEAS) systems they can
also be pre-ordered, custom developed systems created to support a specific organization’s
needs [30].

An EIS is any kind of information system improving the business processes of an enter-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 2. Background 40

prise by integration. This typically means high quality of service, related with big data and
the capability to support some large and possibly complex organizations or enterprises. An
EIS must be used by all parts and all levels of an enterprise [31].

In general, an architecture framework provides principles and practices for creating and
using the architecture description of a system. It structures architects’ thinking by dividing
the architecture description into domains, layers or views, and offers models - typically ma-
trices and diagrams - for documenting each view [32].

An overview of Enterprise Architectures is presented at [33]. This work presents the main
characteristics of major architecture frameworks and modeling languages for model-based
systems engineering. It states that “a system modeling language such as SysML might there-
fore evolve not only as a language to describe systems on a high level of abstraction but also
as a language to glue heterogeneous models together”.

The way an enterprise architecture is created and employed is defined by an EAF. EAFs
([34],[32]) are characterized as an attempt to integrate strategies, processes, methods, mod-
els and tools towards enterprise information system engineering [35]. There are a lot of EIS
engineering methodologies in the literature [24], each of them covering specific EIS engi-
neering aspects. However, in order to integrate all of them in practice, the support of differ-
ent system models cannot be avoided. In many cases, these models are not compatible, or
even not known to others. Details will be presented in the related work chapter.

The desired integration of people, strategies, processes, methods, models and tools could
be accomplished by adopting model-based EIS engineering (MB-EISE). In such a case, a cen-
tral system model must be defined capturing all system requirements and decisions that
fulfill them at different levels of abstraction. Since the central system model serves all engi-
neering activities, it should be technology-neutral, multi-layered, modular and composite, fa-
cilitating the integration of system sub-models corresponding to different perspectives and
their progressive refinement. Relevant methodologies and tools addressing discrete engi-
neering issues may be applied to specific system sub-models.

In [36], the concept of using Zachman framework [1] as the basis for establishing a cen-
tral EIS model for Model-based Enterprise Information System Engineering (MB-EISE) was
introduced. As such, Zachman matrix serves as a canvas to integrate different concerns, is-
sues and methods towards MB-EISE, while specific methods may use parts of it as a refer-
ence point. We also identified some basic guidelines individual model-based methodologies
should fulfill, in order to be integrated into the Zachman matrix, focusing on how to estab-
lish the EIS sub-model corresponding to each of them. In an effort to practically apply these
concepts, in a large scale organization, it became clear that the process of effectively forming
the central EIS model was a complex one. In addition, a key obstacle identified was the lack
of a common understanding about the purpose of the central model by different stakehold-
ers involved in EIS engineering. This resulted in EIS sub-models, which served well individual
methods corresponding to them, but had poor interoperability since it was unclear how spe-
cific methods should be interrelated.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 2. Background 41

To further establish the perception of MB-EISE based on Zachman framework, in the fol-
lowing we identify primary EIS engineering activities and explore the way they can be sup-
ported by specific Zachman matrix rows and columns resulting in an first level approach
describing model-based EIS engineering process. To this end, we propose:

i. afirst-level descriptionidentifying the primary EIS engineering activities served by Zach-
man matrix rows.

ii. aconceptual model for MB-EISE according to ANSI/IEEE 1471 standard [37], which may
assist designers to formulate the central EIS model.

iii. a common, first-level description of MB-EISE activities performed based on each cell-
related view. Each of these activities consists of specific tasks that may be implemented
by a specific EIS engineering method.

Special attention was paid on defining EIS views and viewpoints for each cell in order to
enhance information exchange between them.

To explore the proposed concepts in practice, the System Network cell of the Zachman
matrix is used as example, already discussed in [36]. Model-based EIS architecture design
is focused in this cell. EIS architecture design activity is described based on common first-
level MB-EISE activity model proposed. Identified tasks may contribute to related individual
method and tool integration. System Network meta-model is adjusted to support individ-
ual EIS architecture design tasks and enhance inter-cell communication. The experience ob-
tained when applying the proposed concepts during the renovation of the legacy system of
a public large-scale organization is also discussed in chapter 7.

2.2.2 Requirements Engineering

A requirement specifies the user expectations concerning the behavior of the system.
Managing design requirements, when composing systems or SoS, is a complex task, as they
should be adapted during system evolution [38,39]. According to Byrne [40], a requirement
denotes a capability or a condition that should be satisfied by the system under study and
may be either functional (i.e., specifying a function that a system must perform) or non-
functional (i.e., specifying a condition that a system must achieve).

According to Wymore [41] there are six core categories of system design requirements,
most of which, such as performance or cost, are non-functional. These categories are:

+ 1/0 requirement,

+ technology requirement,

« performance requirement,

* cost requirement,

* trade-off requirement, and

* system test requirement.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 2. Background 42

Thisis evident, since most design decisions depend mainly on the conditions that a system
should operate rather than the description of its structure [42]. Thus, alternative design de-
cisions and NFRs imposed to a system should be explored in parallel [43, 44]. Furthermore,
system architectures should be evaluated [45] and properly adjusted until all imposed re-
quirements are verified in different levels of detail. For example performance requirements
may be defined for the system as a whole or for specific system components.

Requirement

| |

Project System Process
requirement requirement requirement
| P |
Functional Attribute Constraint

requirement | l |

Performance Specific quality
requirement requirement

Functionality ~ Time and “-ilities": Physical

and behavior: space bounds: Reliability Legal
Functions Timing Usability Cultural

Data Speed Security Environmental
Stimuli Volume Availability Design&im-
Reactions Throughput Portability plementation
Behavior Maintainability Interface

Figure 2.1: A concern-based taxonomy of requirements '

Requirements, as stated, are divided into two main categories: functional and non-func-
tional [40,46,47]. NFR is a broadly used term, while there are significant efforts on how to
handle them [42]; however, there is no consensus about their nature, since various classifica-
tions exist in the literature [40] [47]. NFRs play a significant role during system design, since
they depict the conditions under which specific system components should operate, lead-
ing to alternative design decisions. A concern-based taxonomy of requirements is presented
in [46] and illustrated in Figure 2.1. Non-functional requirements are often called qualities of
a system.

2.3 Model-based System Engineering

Model-Based Engineering (MBE) is about elevating models to a central and governing
role in the engineering process for the specification, design, integration, validation, and op-
eration of a system [24]. Model-Based System Design (MBSD) is supported by a number of

"This taxonomy is presented in [46]

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 2. Background 43

methodologies [24, 48] and is effectively accommodated by SysML [49]. SysML, endorsed by
OMG and INCOSE', facilitates the description of a broad range of systems and systems-of-
systems in a hierarchical fashion, while it is fully supported by most UML modeling tools.

It enables the description of allocation policies and provides a discrete diagram for re-
quirements specification. To describe specific system domains, a SysML profile should be
specified, using standard UML extension mechanisms, as stereotypes and constraints [51].

Model-based design of information systems is explored by methodologies such as the
ones presented in [4,52-54]. UML and recently SysML are adopted in all of them as the sys-
tem modeling language. As indicated in most of them, when building large-scale information
systems, software engineering is usually focused, while the combination of software and
hardware and the way it might affect overall system performance is often neglected. Design
decisions related with software architecture are influenced by network infrastructure design,
while NFRs, as performance requirements, can usually be satisfied by effective allocation of
software components to hardware. In practice, both software and network infrastructure ar-
chitecture should be designed in parallel to efficiently explore their interrelations and ensure
non-functional requirement satisfaction.

MBSE [55] provides a central system model that captures all system requirements and de-
cisions that fulfill them at different levels of abstraction. The central system model serves all
engineering activities. In such a case, a multi-level, composite and technology-neutral cen-
tral model for EIS should be defined, taking into account different perspectives and aspects
of EIS. Existing well-known frameworks may be used for such a purpose.

Leading MBSE Methodologies

Estefan [24] provides a cursory description of some of the leading MBSE methodologies
used in industry today. A brief synopsis of each methodology is described in the following
paragraphs. These are Object-Oriented Systems Engineering Method by INCOSE and Ratio-
nal Unified Process for Systems Engineering (RUP-SE) by IBM.

INCOSE Object-Oriented Systems Engineering Method (OOSEM) The Object-Oriented
Systems Engineering Method (OOSEM) integrates a top-down, model-based approach that
uses SysML to support the specification, analysis, design, and verification of systems. OOSEM
is based on object-oriented concepts in conjunction with traditional top down systems engi-
neering methods and other modeling techniques. As such, it enables the systems engineer
to precisely capture, analyze, and specify the system and its components and ensure consis-
tency among various system views. The modeling artifacts can also be refined and reused in
other applications to support product line and evolutionary development approaches. The

"The INCOSE is a not-for-profit membership organization founded to develop and disseminate the interdis-
ciplinary principles and practices that enable the realization of successful systems. Its mission is to share, pro-
mote and advance the best of systems engineering from across the globe for the benefit of humanity and the
planet [50].

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 2. Background 44

methodology part of OOSEM has since evolved into the Rational Unified Process (RUP). The
activities depicted in Figure 2.2 are consistent with typical systems engineering “Vee" process
that can be recursively and iteratively applied at each level of the system hierarchy.

«Causal analysis
A{:‘"‘:’ sMission use casesscenarios
oess *Enterprise model

Define *System use cases/scenarios
System sElaborated context
Requirements| *Req‘ts diagram

Major SE Development Activities

Define sLogical decomposition
Logical sLogical scenarios
Architecture | *Logical subsystems

Optimize &
Evaluate | «Parametric Diag
Alternatives | aTrade study

Synthesize *Node diagram
Allocated | *HW, SW, Data arch
Architecture | sSystem deployment

Validate &
Verify *Test system

System sTest cases

Common Subactivities

OOSEM Activities and Modeling Artifacts

Figure 2.2: OOSEM Activities and Modeling Artifacts

IBM Rational Unified Process for Systems Engineering (RUP SE) for Model-Driven Sys-
tems Development (MDSD) RUP is a methodology that is both a process framework and
process product from IBM Rational and it has been used extensively in government and in-
dustry to manage software development projects [56]. The RUP is an iterative and incremen-
tal development process. The Elaboration, Construction and Transition phases are divided
into a series of timeboxed iterations. (The Inception phase may also be divided into itera-
tions for a large project.) Each iteration results in an increment, which is a release of the
system that contains added or improved functionality compared with the previous release.

Although most iterations will include work in most of the process disciplines (e.g. Require-
ments, Design, Implementation, Testing) the relative effort and emphasis will change over
the course of the project. RUP-SE was created to specifically address the needs of systems
engineering projects. The main content elements of the RUP are the following:

* Roles ("WHQ") - A role defines a set of related skills, competencies, and responsibilities.

« Work Products ("WHAT") - A work product represents something resulting from a task,
including all the documents and models produced while working through the process.

* Tasks ("HOW") - A task describes a unit of work assigned to a role that provides a mean-
ingful result.

Within each iteration, the tasks are categorized into a total of nine (9) disciplines (Figure 2.3):

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 2. Background 45

Disciplines Inception : Elabor stion ' Construction | Transition

B Husiness Maodeling

g Requirements

o Analysis & Desigh

O Implementation

B Tasi

B Deployrmznt

g Configuration &
Change Marnt

B Project Management

B Environment | | |

Figure 2.3: The Rational Unified Process framework

Engineering Disciplines: Supporting Disciplines:

i. Business modeling i. Configuration and change manage-
ii. Requirements ment

iii. Analysis and design ii. Project management

iv. Implementation iii. Environment

v. Test

vi. Deployment

2.3.1 Model-based System Design

Design, as a term, provides a structure to any artifact. The idea is to decompose a system
into parts, assign responsibilities, ensure that parts fit together to achieve a global goal. De-
sign refers to both an activity and the result of the activity. An activity for example, acts as
a bridge between requirements and the implementation of the system. Moreover, it gives
a structure to the artifact e.qg., a requirements specification document must be designed.
A structure helps to better understand the goal. So a design activity refers to the decom-
position of a system to subsystems, in order to focus on specific aspects. Software design
is the process by which an agent creates a specification of a software artifact, intended to
accomplish goals, using a set of primitive components and subject to constraint [57].

There are four core activities in systems architecture design:

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 2. Background 46

i. Architectural Analysis is the process of understanding the environment in which a pro-
posed system or systems will operate and determines the system requirements. The
input or requirements to the analysis activity is derived from any number of stakehold-
ers and include items such as:

+ what the system will do when it is operational (the functional requirements)
* how well the system will perform in runtime (the NFRs)

+ development-time non-functional requirements such as maintainability and trans-
ferability

* business requirements and environmental contexts of a system that may change
over time, such as legal, social, financial, competitive, and technology concerns

ii. Architectural Synthesis or design is the process of creating an architecture. Given the
requirements determined by the analysis, the current state of the design and the results
of any evaluation activities, the design is created and improved.

iii. Architecture Evaluation is the process of determining how well the current design or
a portion of it satisfies the requirements derived during analysis. An evaluation can
occur whenever an architect is considering a design decision, it can occur after some
portion of the design has been completed, it can occur after the final design has been
completed or it can occur after the system has been constructed.

iv. Architecture Evolution is the process of maintaining and adapting an existing software
architecture to meet requirement and environmental changes. As software architecture
provides a fundamental structure of a software system, its evolution and maintenance
would necessarily impact its fundamental structure. As such, architecture evolution is
concerned with adding new functionality as well as maintaining existing functionality
and system behavior.

Moreover, architecture requires critical supporting activities. These supporting activities
take place throughout the core software architecture process. They include knowledge man-
agement and communication, design reasoning and decision making, and documentation.

2.3.2 System Models Management

MBSE, as previously stated, is based on system models. Methods and tools supporting
the design process are using viewpoints and for each viewpoint a corresponding model is
defined. This subsection presents standards methods, practices, modeling languages and
standards to manage system models.

oMG

OMG is an international, open membership, not-for-profit computer industry standards
consortium. OMG develop enterprise integration standards for a wide range of technolo-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 2. Background 47

gies and an even wider range of industries. OMG's modeling standards enable powerful vi-
sual design, execution and maintenance of software and other processes. Originally aimed
at standardizing distributed object-oriented systems, OMG focuses on modeling (programs,
systems and business processes) and model-based standards [58].

The OMG was formed to help reduce complexity, lower costs, and hasten the introduction
of new software applications. The OMG is accomplishing this goal through the introduction
of the Model Driven Architecture (MDA) architectural framework with supporting detailed
specifications.

MDA

MDA is an approach to system development, which increases the power of models in that
work. It is model-driven because it provides a means for using models to direct the course of
understanding, design, construction, deployment, operation, maintenance and modification
[59]. The architecture of a system is a specification of the parts and connectors of the system
and the rules for the interactions of the parts using the connectors. The MDA prescribes
certain kinds of models to be used, how those models may be prepared and the relationships
of the different kinds of models.

Aviewpoint on a system is a technique for abstraction using a selected set of architectural
concepts and structuring rules, in order to focus on particular concerns within that system.
Here "abstraction” is used to mean the process of suppressing selected detail to establish a
simplified model. The MDA specifies three viewpoints on a system, a computation indepen-
dent viewpoint, a platform independent viewpoint and a platform specific viewpoint. A viewpoint
model or view of a system is a representation of that system from the perspective of a cho-
sen viewpoint. A platform is a set of subsystems and technologies that provide a coherent set
of functionality through interfaces and specified usage patterns. Therefore, any supported
application by that platform could use them without concern of the platform related func-
tionality. Table 2.1 presents the three viewpoints and the corresponding models that MDA
defines.

Figure 2.4 presents the three viewpoints through the system development process, start-
ing from Computation Independent Models (CIMs) that describe business objects and ac-
tivities independently of supporting systems, to Platform Independent Models (PIMs) that
describe how business processes are supported by systems seen as functional black boxes
and finally to Platform Specific Models (PSMs) which describe system components as imple-
mented by specific technologies.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 2. Background 48

Table 2.1: MDA viewpoints and models

Concept Viewpoint Model

Focuses onthe environmentof A CIM does not show details of the
the system, and the require- structure of systems. A CIM is some-
. ments for the system; the de- times called a domain model and
Computation Independent)) .
tails of the structure and pro- a vocabulary that is familiar to the
cessing of the system are hid- practitioners of the domain in ques-

den or as yet undetermined. tion is used in its specification.

Focuses on the operation of
a system while hiding the de-
tails necessary for a particu-
lar platform. A platform inde-
pendent view shows that part

A PIM exhibits a specified degree of

of the complete specification
P P platform independence so as to be

Platform Independent that does not change from one
P 9 suitable for use with a number of dif-

platform to another. A plat- .
.) ferent platforms of similar type.

form independent view may

use a general purpose mod-

eling language, or a language

specific to the area in which

the system will be used.

Combines the platform inde- , . ,
A PSM combines the specifications in

the PIM with the details that spec-
ify how that system uses a particular

pendent viewpoint with an ad-
Platform Specific ditional focus on the detail of
the use of a specific platform

type of platform.
by a system.

Of particular importance to MDA are the notions of metamodel and model transforma-
tion. Metamodels are defined at the OMG using the Meta-Object Facility (MOF) standard. A
specific standard language for model transformation called QVT has been defined by OMG.
In that way, MOF provides the canvas in order to define meta-models in PIMs and PSMs and
the way to go over between them. MDA is about using modeling languages as programming
languages rather than merely as design languages. Programming with modeling languages
can improve the productivity, quality, and longevity outlook [60].

One of the main aims of the MDA [60] is to separate design from architecture. As the
concepts and technologies used to realize designs and architectures have changed at their
own pace, decoupling them allows system developers to choose from the best and most
fitting in both domains. The design addresses the functional requirements while architecture
provides the infrastructure through which NFRs like scalability, reliability and performance
are realized.

Tsource: https://caminao.wordpress.com/system-engineering/models-perspectives/mde/

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

https://caminao.wordpress.com/system-engineering/models-perspectives/mde/

Chapter 2. Background 49

T PSM
| PIM HE —
q . AT -
CJM| F:,? : B l,r/ | N“\
| Ir,r \‘I Pll
= = Q..F %
[—
d 2| -
i | e RS ey) -
L F&Md% W 4ol ,FI 1"| }
/" O
- R e e T " J"I- = : -ll:, |
Requirements System Components
Analysis Design Implementation

Figure 2.4: A Straightforward Understanding of MDA’

Finance

Manutacturing ‘ E-Commerce

Figure 2.5: MDA ?

A central and unique model describes aspects and properties of the system. This model
can be used to capture the design aspects and the architectural aspects, independently of
the concepts and technologies. A PIM in SE a model of a software system or business system,
that is independent of the specific technological platform used to implement it.

MDA [59] provides an open, vendor-neutral approach to the challenge of interoperabil-
ity, building upon and leveraging the value of OMG's established modeling standards: UML;
MOF; and Common Warehouse Meta-model (CWM) (depicted in the center of Figure 2.5 and
forming the first layer of MDA architecture). Platform-independent application descriptions
built using these modeling standards can be realized using any major open or proprietary
platform, including CORBA, Java, .NET, and Web-based platforms (forming the second layer).
Another standard, XML Metadata Interchange (XMI), allows communication between the pro-

2source: http://www.omg.org/mda/mda_audio/mda_rollovers/mda_left_new?2.gif

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

source: http://www.omg.org/mda/mda_audio/mda_rollovers/mda_left_new2.gif

Chapter 2. Background 50

prietary platforms. The third layer contains the services that manage events, security, direc-
tories, and transactions. The final layer offers specific frameworks in fields (Finance, Telecom-
munications, Transportation, Space, Medicine, Commerce, Manufacturing, etc).

UML

The UML is a general-purpose modeling language in the field of software engineering,
which is designed to provide a standard way to visualize the design of a system. It was cre-
ated and developed by Grady Booch, Ivar Jacobson and James Rumbaugh at Rational Soft-
ware during 1994-95, with further development led by them through 1996. In 1997, it was
adopted as a standard by the Object Management Group (OMG), and has been managed by
this organization ever since. In 2000, the Unified Modeling Language was also accepted by
the International Organization for Standardization (ISO) as an approved ISO standard. Since
then it has been periodically revised to cover the latest revision of UML. UML defines 13 types
of diagrams which are capable of modeling the static and dynamic aspects of a system.

A profile in the UML provides a generic extension mechanism for customizing UML mod-
els for particular domains and platforms. Extension mechanisms allow refining standard se-
mantics in strictly additive manner, preventing them from contradicting standard semantics.
Profiles are defined using stereotypes, tag definitions, and constraints which are applied to
specific model elements, like Classes, Attributes, Operations, and Activities. Specifically, a
profile is a collection of such extensions that collectively customize UML for a particular do-
main (e.g., aerospace, healthcare, financial) or platform (J2EE, .NET).

OoCL

Object Constraint Language (OCL) [61] is a formal specification language, part of the UML
standard. It is a declarative language for describing rules that apply to UML models. OCL is
a key component of the new OMG standard recommendation for transforming models, the
QVT specification [62]. OCL supplements UML by providing expressions that have neither the
ambiguities of a natural language nor the inherent difficulty of using complex mathematics.
OCL is also a navigation language for graph-based models.

QVT

In the model-driven architecture, QVT is a standard for model transformation defined
by the OMG. The QVT specification [62] has a hybrid declarative/imperative nature, with the
declarative part being split into a two-level architecture:

i. The user-friendly Relations metamodel and language which supports complex object
pattern matching and object template creation
ii. ACore metamodel and language is defined using minimal extensions to EMOF and OCL

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 2. Background 51

EMOF stands for Essential MOF and is the part of the MOF 2 specification that is employed
for defining simple metamodels using simple concepts.

A transformation between candidate models is specified as a set of relations that must
hold for the transformation to be successful. Using the relations transformation language we
can transform a source model to a target model. To accomplish this, the two models should
conform to MOF

SysML

Not required by SysML \
/ SysML extensions

umL2 | SysML

%

%

Reused for SysML

Figure 2.6: SysML and UML '

SysML is a general purpose visual modeling language for systems engineering appli-
cations. SysML supports the specification, analysis, design, verification and validation of a
broad range of systems and systems-of-systems. These systems may include hardware, soft-
ware, information, processes, personnel, and facilities. It was originally developed by an open
source specification project, and includes an open source license for distribution and use. In
addition, SysML is defined as an extension of a subset of the Unified Modeling Language UML
using UML's profile mechanism, as presented in Figure 2.6. Moreover, SysML offers systems
engineers several noteworthy improvements over UML, which tends to be software-centric.
These improvements include the following [63]:

+ SysML's semantics are more flexible and expressive. SysML reduces UML's software-
centric restrictions and adds two new diagram types, requirement and parametric dia-
grams. The former can be used for requirements engineering; the latter can be used for
performance analysis and quantitative analysis.

+ SysML is a smaller language that is easier to learn and apply [64]. Since SysML removes
many of UML's software-centric constructs, the overall language measures smaller both
in diagram types and total constructs.

Tsource: http://wiki.objetdirect.com/wiki/images/7/7a/RelationsSysML_UML2.jpg

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

http://wiki.objetdirect.com/wiki/images/7/7a/RelationsSysML_UML2.jpg

Chapter 2. Background 52

* SysML allocation tables support common kinds of allocations. Whereas UML provides
only limited support for tabular notations, SysML furnishes flexible allocation tables
that support requirements allocation, functional allocation, and structural allocation.
This capability facilitates automated verification and validation (V&V) and gap analysis.

+ SysML model management constructs support models, views, and viewpoints. These
constructs extend UML'’s capabilities and are architecturally aligned with IEEE Recom-
mended Practice for Architectural Description of Software Intensive Systems (IEEE-Std-
1471-2000).

SysML reuses seven of UML 2's fourteen diagrams, and adds two diagrams (requirement
and parametric diagrams) for a total of nine diagram types. SysML also supports allocation
tables, a tabular format that can be dynamically derived from SysML allocation relationships.
A table which compares SysML and UML 2 diagrams is available in the SysML FAQ [65].

The advantages of SysML over UML for systems engineering become obvious if you con-
sider a concrete example, like modeling an automotive system. With SysML you can use Re-
quirement diagrams to efficiently capture functional, performance, and interface require-
ments, whereas with UML you are subject to the limitations of Use Case Diagram to define
high-level functional requirements. Likewise, with SysML you can use Parametric diagrams to
precisely define performance and quantitative constraints like maximum acceleration, min-
imum curb weight, and total air conditioning capacity. On the contrary, UML provides no
straightforward mechanism to capture this sort of essential performance and quantitative
information.

SysML can be rendered as a domain specific modeling language. Domain specific model-
ing is a way of how system design and develop. It uses the domain specific language used to
represent the different parts of system. SysML was evolved to provide simple and effective
constructs to address modeling issues of complex system engineering problems. As SysML
reuse subset of UML, it seems to be a good approach to describe its architecture with re-
spect to UML as shown in Fig2.6, where UML and SysML are represented by two intersecting
circles [64]

The most important SysML constructs are:

« Structural:

- Blocks: the modular unit of structure in SysML that is used to define a type of sys-
tem, system component, or item that flows through the system. The block not only
has structure features like sub-blocks or attributes but also has behavior features
including states, activities and operations. A block may be composed of instances
of other blocks, called Parts.

- Ports are interaction points between a Block or a Part and the environment through
which data and signals are exchanged.Ports are Block properties. They are con-
nected with one another with connectors.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 2. Background 53

- Package, Block Definition, Internal Block Definition, Parametric Diagrams

+ Behavioral: Activities support the behavior specification. They take a set of input data
to produce a set of output data. (Activity, Sequence, State Machine, Use Case Diagrams)

+ Crosscutting:

- Allocations: Mapping of elements onto the various structures of a model

- Requirements: Properties that must be satisfied.

Requirements and SysML

Requirements in SysML are described in an abstract, qualitative manner, since they are
specified by two properties, id and text, corresponding to a simple description. However,
SysML specification suggests to use the stereotype mechanism to define additional proper-
ties for specific requirement categories. Requirements should be satisfied by entities belong-
ing to other diagrams (SysML satisfy relation). Requirements are interrelated through a large
relationship set, indicating the way they affect each other.

Last but not least, SysML [49] facilitates the description of systems or systems-of-systems
for model-based design, providing different system views serving specific design activities.
Block definition diagrams can be used to depict alternative system design views in multiple
layers of detail (for example the software and hardware architecture of an information sys-
tem). The concept of resource allocation (for example allocating a software component to
a hardware component), crucial for system design, facilitates the establishment of relations
between such views. Since SysML can be extended or restricted to describe a specific system
domain, it may be effectively serve solution synthesis and solution re-adjusted activities, en-
abling the effective modeling and design of complex systems. So it could act as a canvas for
all basic system design activities of Figure 1.2.

2.4 System Evaluation

Focus is given on evaluating systems defined by models. System evaluation is a process
that intents to ensure that a specific system meets the defined objectives of its creation and
operates as expected. Depending on the system, different evaluation criteria can be tested.
Some common criteria are the performance of the system, the security, the availability, the
usability etc. To be able to define such criteria, the concept of requirement is exploited. In this
case, a requirement denotes a condition that should be satisfied by the system under study.
Capturing system requirements is not an easy task, and it has to be accomplished by the
cooperation of many stakeholders. Requirements engineering is one of the most important
phases of the system development process [66].

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 2. Background 54

2.4.1 Requirements Verification

In order to be able to evaluate a system, the defined requirements should be verifiable.
To verify a requirement means to prove that this requirement has been satisfied. Verification
can be done by logical argument, inspection, modeling, simulation, analysis, expert review,
test or demonstration [67]. In our case, which are the IS, the verification is based on modeling
and simulation. This means that a representation of the system (a system model) will be used
to form a simulation model. Model elements satisfy requirements, so the verification process
checks that all defined requirements are verified.

The NFRs are concerned with QoS. Examples of NFRs are response time, availability and
cost. Their verification must be performed using quantitative methods, as for example simu-
lation. Simulation is a widely accepted model-based method to evaluate complex system be-
havior, especially when non-functional requirements should be verified [24]. Since NFRs (for
example performance requirements) are described using both qualitative and quantitative
properties, simulation, as a quantitative method, is very effective to produce the necessary
data for their verification.

2.4.2 Simulation

Simulation is identified as an appropriate technique for the estimation of system model’'s
performance [68]. The use of formal methods [69] could play the role for testing quantita-
tively NFRs and especially performance ones if the system model could be expressed in an
abstract mathematical model. These methods rely on performing appropriate mathemati-
cal analysis to contribute to the reliability and robustness of a design. Evaluating resource
allocations policies could rely either on real-time measurements or running simulation on a
system model.

Discrete event simulation (DES) is the process of codifying the behavior of a complex sys-
tem as an ordered sequence of well-defined events [70]. In this context, an event comprises
a specific change in the system’s state at a specific point in time. Discrete event modeling is
the process of depicting the behavior of a complex system as a series of well-defined and
ordered events and works well in virtually any process where there is variability, constrained
or limited resources or complex system interactions.

DEVS is a modular and hierarchical formalism for modeling and analyzing general sys-
tems that can be discrete event systems. The DEVS formalism describes a system as a math-
ematical expression using set theory. It is a theoretically well-defined system formalism [71].
There are two kinds of models in DEVS: atomic and coupled models. An atomic model depicts
a system as a set of input/output events and internal states along with behavior functions
regarding event consumption/production and internal state transitions. A coupled model
consists of a set of atomic models, information of message connections between the atomic
models, and input/output ports [72].

In[73,74], an integrated framework for utilizing existing SysML models and automatically

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 2. Background 55

producing executable discrete event simulation code is introduced. This approach utilizes
MDA concepts. Although this approach is not simulation-specific, DEVS was employed, due
to the similarities between SysML and DEVS, mainly in system structure description, and the
mature, yet ongoing research on expressing executable DEVS models in a simulator-neutral
manner [74]. DEVSys framework includes:

i. a SysML profile for DEVS, enabling integration of simulation capabilities into SysML
models

ii. a meta-model for DEVS, allowing the utilization of MDA concepts and tools

iii. a transformation of SysML models to DEVS models, using a standard model transfor-
mation language QVT

iv. the generation of DEVS executable code for a DEVS simulation environment with an
extensible markup language Extensible Markup Language (XML) interface

2.5 Summary

This chapter outlined the information that is required in order to define the research
area in which this thesis contributes. Definitions, architectures defined for ISs, model-based
system engineering principles and evaluation techniques were presented. In next chapter,
methodologies for model-based system design, SysML-based approaches, simulation of SysML
models and efforts on verifying NFRs are discussed.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter

Related Work

Contents
31 0utline e e e e e e e e e e 57
3.2 Rational Unified Process Methodology 57
3.3 SysMLoprofiles.0t e e e e e e 59
3.4 SimulatingSysMLModels. 60
3.5 RequirementsinSysMLttt 61
3.6 SysML Requirements Verification. 62
3.7 Whatismissing? i i ittt it ittt ettt ettt eee e 63
3.8 SUMMAKY o ittt e e e e e e e e e e e e e e 67

3.1 Outline

As related work we consider the work that has been done in proposed methodologies for
model-based system design, approaches based on SysML, efforts about simulating SysML
models and in the area of RE and especially on how NFRs are verified. Finally, a comparison to
related work is presented to make clear what is missing in order to provide an integrated en-
vironment for EIS design capable of making performance evaluation through requirements
verification.

3.2 Rational Unified Process Methodology

One related methodology for model-based EIS design is RUP-SE [75], that targets infor-
mation system engineering in RUP and was initially based on UML. During its evolution, it
adopted SysML for model-driven information system design [48]. SysML block entities may
be employed to describe software, hardware or workers within the system or systems un-
der consideration, while SysML diagrams are used to describe different viewpoints. NFRs are

57

Chapter 3. Related Work 58

defined during allocating software to hardware components. In RUP-SE this is accomplished
in the context of Joint Realization Tables (JRTs), which are associating logical and distribution
views, while NFRs are defined as properties (e.g. table columns) of each specific association.
For example, response time requirements can be defined when allocating processes to lo-
calities (distribution of enterprise resources). SysML requirement entity, while used to depict
functional requirements, is not adopted for NFR description. The description of derived NFRs
is also not emphasized. Furthermore, NFR verification is not addressed within the context of
RUP-SE.

Model Model Viewpoints
Levels Worker Logical Information Distribution Process Geometric
Context Role Use case Enterprise Domain- Domain-
definition, diagram data view dependent dependent
activity specification views views
modeling
Analysis Partitioning Product logical | Product data Product Product Layouts
of system decomposition | conceptual locality view process
schema view
Design Operator Software Product data ECM Timing MCAD
instructions component schema (electronic diagrams (mechanical
design control media computer-
design) assisted
design)
Implementation Hardware and software configuration

Figure 3.1: The RUP SE architecture framework

The RUP-SE system architecture framework is deployed in two dimensions, as shown in
Figure 3.1. The first dimension defines a set of viewpoints that represent different areas of
concern that must be addressed in the system architecture and design. Analytically, Worker
viewpoint expresses roles and responsibilities of system workers regarding the delivery of
system services. Logical viewpoint concerns the logical decomposition of the system into a
coherent set of UML subsystems that collaborate to provide the desired behavior. Physical
viewpoint regards the physical decomposition of the system and specification of physical
components. Information viewpoint focuses on the information stored and processed by the
system. Process viewpoint examines the threads of control that carry out the computation el-
ements. Lastly, Geometric viewpoint denotes the spatial relationship between physical com-
ponents.

In addition to viewpoints, building a system architecture requires levels of specification,
forming the second dimension. As the architecture is developed, it evolves from a general,
abstract specification to a more specific, detailed specification. Consistent with RUP guide-
lines, there are four architectural model levels in RUP-SE, as depicted in Figure 3.1. The level
of abstraction at which each model may be constructed, from the more general -hiding or
encapsulating detail- to the more specific -exposing more detail and explicit design deci-
sions [76]. Moving down model levels adds specificity, not accuracy, to the models. At each
level, you need to be as accurate as possible in specifying model elements, because accuracy
at each level adds to the understanding of the system and discipline of the process. Mov-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 3. Related Work 59

ing down the levels, each view is a more specific decision, resulting in configuration items at
the implementation level. It is important to note that the model elements at one level estab-
lish the requirements at the next level. Each model level (Figure 3.1) realizes requirements
discovered at a higher level. For example:

« The analysis model level shows how requirements specified in the context model level
are met.

+ The design model level shows how requirements arising from the system analysis model
level are met.

« The implementation model level meets design specifications.

3.3 SysML profiles

In the relative literature, there are many efforts that employ SysML for model-based sys-
tem design in different domains. Among these, some efforts focus on simulating SysML mod-
els [77,78], while others focus on the verification process [79, 80].

Modeling and Analysis of Real Time and Embedded systems (MARTE) UML profile by OMG
[81] supports model-based design of real-time and embedded systems. Non-Functional Prop-
erties (NFP) are introduced to specify non-functional quantitative properties (e.g., through-
put, delay, memory usage), associated to specific system design entities. MARTE profile fo-
cuses on performance and scheduling properties of real-time systems. Non-Functional con-
straints are introduced to define conditions the NFP should conform to. The Value Specifica-
tion Language (VSL) is utilized for this purpose formulating semantically well-formed alge-
braic and time expressions. Defining constraints with VSL enables their automated validation,
verification and traceability, using external tools. Requirement association and derivation
may also be depicted using NFR constraints expressed in VSL.

MARTE profile, which is based in UML, does not support the notion of requirement that
was introduced in SysML. Strategies to apply SysML and MARTE profile, in a complementary
manner, were suggested in [82] in a high-level fashion, indicating the potential to combine
NFP and VSL expressions defined in MARTE, with SysML requirements for the description of
non-functional system characteristics. In any case, NFR verification is left to external tools,
although NFR constraints can be useful in identifying the conditions that should be evaluated
for this purpose.

A similar approach for NFR description is adopted in User Requirement Notation (URN)
standard by International Telecommunication Union (ITU) [83], also supported by a UML
profile, where performance characteristics are defined as discrete entities, associated to
telecommunication system elements, and described using qualitative parameters.

Syndeia, (recently known as Systems LIfecycle Management (SLIM)) [84] is a commercial
collaborative model-based systems engineering workspace that uses SysML as the front-end

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 3. Related Work 60

for orchestrating system engineering activities from the early stages of system development.
The SysML-based system model serves as a unified, conceptual abstraction of the system in-
dependent of the specific design and analysis tools that shall be used in the development
process. It is designed to provide plugins to integrate the system model (in SysML) to a va-
riety of design and analysis tools. Until now, only the integration of SysML and other model
repositories, such as Product Lifecycle Management (PLM) tools is implemented. Integration
with MATLAB/Simulink ,Mathematica and OpenModelica is offered in a varierty of commer-
cial tools, but these tools are used as math solvers and not as a verification method of a
complete SysML model in a specific domain. The work done in the framework of this thesis
shares the vision of Syndeia, but our approach targets to transparency, hiding the analysis
tools, like the simulation environment from the designer, making possible to verify system
requirements of a SysML model, which is enhanced with a domain specific profile.

Knorreck et al. [85],introduced TEmporal Property Expression language (TEPE), a graph-
ical expression language, which is based in SysML parametric diagrams, representing func-
tional and NFP in a formal way, making them amenable to automated verification. Logical and
temporal relations between block attributes and signals. In this work, Automated Verification
of reAl Time softwARe (AVATAR) methodology is used to capture requirements, design the
system using SysML blocks and behavior described with state machines. Finally formal verifi-
cation is done. Atoolkit, called TTool supports these profiles and methodologies. TTool is inter-
faced to verification tools that implement reachability analysis and model-checking. DesIgn
sPace exLoration based on fOrmal Description teChniques, Uml and SystemC (DIPLODOCUS),
asimulation engine, is integrated in TTool, which features the animation and interactive simu-
lation of UML diagrams. This effort is applied in real-time systems. AVATAR improves SysML's
capabilities to express time-constraint systems. TTool uses UPPAAL for formal verification.
IFx toolkit3 [86] which provides simulation and timed-automata based model-checking. OCL
is used for well-formed rules. IFx toolkit3 also provides simulation capabilities within TTool
framework.

3.4 Simulating SysML Models

Modelica is a standardized general purpose systems modeling language for analyzing
the continuous and discrete time dynamics of complex systems based on solving differential
algebraic equations. SysML-Modelica Transformation, enables and specifies a standardized
bi-directional transformation between the two modeling languages that will support imple-
mentations to efficiently and automatically transfer the modeling information transfer be-
tween SysML and Modelica models without ambiguity [87].

The SysML4Modelica profile endorsed by OMG [87] enables the transformation of SysML
models to executable Modelica simulation code. To embed simulation capabilities within
SysML, ModelicaML profile is used [88]. QVT is used for the transformation of SysML models

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 3. Related Work 61

defined using ModelicaML profile to executable Modelica models. A corresponding MOF 2.0
meta-model for Modelica is defined. The overall approach is fully compatible with model-
driven engineering concepts, making it suitable of efficient SoS engineering.

In [89], manufacturing line system models are defined in SysML and transformed using
ATLAS Transformation Language (ATL) to be simulated using ARENA simulation software. With
the definition of a SysML profile, Arena-specific properties modeling manufacturing systems
are incorporated within SysML block definition and activity diagrams [90]. Corresponding
ARENA simulation libraries are incorporated with ARENA environment, and properly instan-
tiated to construct the simulation model executed within ARENA tool. As far as simulation is
concerned only system structure is defined in SysML diagrams. System simulation behavior
is defined within ARENA manufacturing system libraries. SysML-to-ARENA model transforma-
tion is performed using ATL based on model-based software engineering principles, while a
corresponding MOF-based meta-model for ARENA manufacturing system libraries is defined.
The exploitation of simulation output towards system model validation is not discussed.

There are many tools and methods suggested to simulate SysML models and integrate
SysML with different simulation languages either for continuous or discrete event simulation
[91-93].

3.5 Requirements in SysML

Requirements in SysML are described, as class stereotypes, in an abstract, qualitative
manner, since they are specified by two properties, id and text, corresponding to a simple
description. Requirements can be grouped in packages based on common characteristics,
as their category (for example functional or non-functional) or the activities they are related
to (for example software or hardware requirements) forming a multi-level hierarchy.

Regarding requirement definition, SysML provides a discrete diagram to describe require-
ments and the relations between them, while a set of predefined relations are supported.
Furthermore, requirements are explicitly related to system components, which should satisfy
them, indicating the functionality they should support or the conditions they should operate
in. Moreover, SysML includes a variety of entities to describe requirements and their relation
to system components in multiple layers of detail.

Furthermore, SysML provides the means for requirement description and the way to de-
fine how the requirements are interrelated, for example which requirement is derived but
not how this derivation happens when dealing with quantitative properties of requirements.
In [94] an extension on SysML requirements diagram is presented in order to classify and
group requirements, but it is too general and does not deal with quantitative requirements
and their interrelations with other quantitative ones.

In like manner, SysML includes specific relationships to associate requirements with other
requirements (indicating the way they affect each other) or other model elements. The con-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 3. Related Work 62

Structure or Behavior Diagram Requirement Diagram

5 — -
Model Element |_SSTY__requirement verify

* * ; test case
-property [1..4] p.* 0. :‘én 1.4 0.*

: 0.4 |_’ (_n‘..* I

cortaine deriveReqt describgs actions for the
verification process of
the requirement (activity,
state machine ar
interaction diagram)

system component
(belonging to a
system view)

Figure 3.2: SysML Requirement representation

tainment relationship, defined between requirements, indicates that the composite require-
ment is realized if and only if all the contained ones are realized. In this way, an abstract
requirement may be composed of many specific ones, or a complex requirement may be
described in a more detailed fashion. In the case of system design, the notion of composite
requirements is essential to indicate the way a requirement defined for the whole system
may be described in terms of the detailed requirements defined for system components.
The deriveReqt relationship indicates that a specific requirement is derived by others. Since
relationships do not have properties, the way derived requirements are specified is not de-
picted.

Requirements should be satisfied by model elements belonging to other diagrams (SysML
satisfy relationship). For this purpose, requirements may participate into other diagrams,
enabling the exploration of the relationship between requirements and design decisions.

Additionally, SysML provides the means to describe a set of tests, which should be per-
formed to verify whether a requirement is satisfied by system components. To depict such
an activity, the test case entity, included in Requirement diagrams, is introduced. A test case
is related to one or a set of requirements for their verification, while it is described through
a behavior diagram (for example activity or state machine diagram) corresponding to the
activity (as a set of tests) performed to verify related requirements. The way requirements
are handled in SysML is summarized in Figure 3.2.

Moreover, SysML defines constraint blocks, which provide a mechanism for integrating
engineering analysis such as performance and reliability models with other SysML models.
Constraint blocks can be used to specify a network of constraints that represent mathemat-
ical expressions.

3.6 SysML Requirements Verification

In [79], SysML extensions are proposed for information system design, which are imple-
mented within the context of a custom tool called CASSI. CASSI targets information system

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 3. Related Work 63

integration, while three different design views are supported, depicted using SysML external
and internal block diagrams. The allocation of system components between different views is
also supported. SysML requirement entity is not used to associate requirements to system el-
ements. Though, information system configurations defined using CASSI are evaluated using
simulation to verify performance and availability requirements. This is accomplished using
an external simulator. The behavior of system components is described within CASSI using
sequence diagrams, transformed to simulation model by an external transformation tool. Al-
though, NFRs can be verified, this is performed by the system designer using external tools.
Evaluation results are not integrated within the SysML system model and NFR verification is
not performed using it.

In [95] focus is given on using the SysML4Modelica profile for embedded systems engi-
neering. In the proposed profile, SysML requirement entity is extended with testable charac-
teristics. Testable stereotype may be used for quantitative NFR definition. Testable require-
ments are associated to conditions under which the requirement is verified with the use of
experiments or test cases. Verification conditions are defined as part of a test case, which
in turn may be simulated using Modelica simulation language in external simulators to en-
sure that a design alternative satisfies related requirements [80]. Requirement verification
is performed in an external modelica tool (MathModelica) through visual diagrams created
during simulation. The proposed approach succeeds in converting SysML system models to
executable simulation models and enable visual requirement verification. One limitation of
this framework is that test cases and requirement verification process are implicitly handled
by a domain-specific tool, in this case Virtual Verification of Designs against Requirements
(VWWDR) [96].

3.7 What is missing?

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

sewlpes] ‘| soJAbieuy

yoeosdde paseq-INSAS v :ubisag waisAs uopewoju] asiudiaiug paseg-|9poin

Table 3.1: A Comparative Overview of SysML Simulation Approaches

Profile

System Domain

Simulator

Profile Characteristics

Transformation language

MDA conformance Code generation

SysML model validation/ req. verification

MARTE Profile

CASSI Tool

TTool Toolkit

SysML to Arena Tools

SysML4 Modelica

DEVSys Framework

Real-Time Embedded Systems

Information Systems

Real-Time Embedded Systems

Non-Specified

Petri-Nets

Y-Chart
Timed-Automata

Manufacturing Line Systems Arena
General (emphasis on real-time systems) Modelica
General (case study: Information Systems) DEVS

Focus on performance and
time requirement description
and verification utilizing VSL

Focus on describing perfor-
mance requirements

System behavior is described
using Sequence diagrams

Focus on requirement descrip-
tion using TEPE

System behavior is described
using State Machine diagrams

Focus on the description of
the specific domain to incorpo-
rate simulation-related char-
acteristics

Focus on describing perfor-
mance requirements

System behavior under ex-
ploitation is defined as Test
Cases using Modelica ML

Focus on embedding simula-
tion output within SysML mod-
els

System behavior is described
using State Machine, Paramet-
ric and Activity diagrams

Non Specified

Non Specified

Non Specified

ATL

QT

QvT

Medium

Low

Medium

High

High

High

Non specified

Semi automated

Fully automated

Fully automated

Fully automated

Fully automated

Requirement verification performed
within SysML models (MDEReqTrace
integrates requirement verification
data from external tools within
SysML)

Requirement verification performed
by an custom external tool

Requirement verification performed
by external tools

Not Specified

Requirement verification performed
by external tools

Requirement verification performed
within SysML models

YJOM paiejay ‘¢ Jaadeyd

9

Chapter 3. Related Work 65

As already stated, to perform the requirements verification process, the system model
should be able to provide a simulation model/code in an automated manner in order to
measure the system’s performance. Having in mind existing approaches, it is evident that
there is a strong interest in simulating SysML models in an automated fashion to serve
SoS engineering and especially SoS design. Since different system domains should be effec-
tively supported, it is expected that different simulation methods and tools will be employed.
Though, it is imperative that a standardized methodology/framework, based on OMG stan-
dards, should be proposed to guide experts to develop tools targeting specific domains and
simulation environments. Most recent approaches seam to follow the same basic steps:

i. Definition of the simulation/domain specific profiles. In this process, efforts should con-
centrate on defining simulator-specific profiles that may be combined with domain spe-
cific profiles. Furthermore, the exploration of a simulator-agnostic profile is suggested
for discrete-event and continuous simulators respectively, taking into account that ex-
isting approaches utilize the same SysML diagrams.

ii. Transformation of SysML to simulation models in a standardized fashion, utilizing lan-
guages as QVT and ATL. Simulator-specific profiles should be accompanied by corre-
sponding MOF-based meta-models for the corresponding simulators. The definition of
such meta-models openly available may also promote simulator interoperability. Corre-
sponding initiatives, as those employed by Modelica and DEVS community are already
successful.

iii. Utilization of the simulation output to validate SysML models and verify correspond-
ing requirements defined in such models. In order to simplify requirement verifica-
tion process, we endorse the suggestion of Syndeia to conduct requirement verification
within SysML modeling tools, independently of the simulation methods and tools. The
incorporation of simulation results within the SysML model should be facilitated for this
purpose. Such enhancements simplify the evaluation process, allowing the system de-
signer to focus on the examination of the unverified requirements and, consequently,
the detection of the necessary solution re-adjustments.

As derived from the examination of existing approaches, depicted in Table 3.1, there are
two key issues in requirements verification during model-based system design that have not
been fully addressed:

i. the estimation of system models behavior in a generic and -at the same time- auto-
mated manner, and

ii. the designation of the requirements that have not been verified in the original system
model.

Regarding the estimation of system models behavior, SysML provides a set of diagrams
for describing a single system'’s behavior (use case, activity, sequence, state machine). How-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 3. Related Work 66

ever, each diagram focuses on a different aspect of the system’s behavior and the syntax of
SysML does not enforce a strict combination of these aspects towards a unified executable
behavioral model. On the other hand, simulation profiles for SysML focus on the semantics
and structures of specific simulation frameworks, leading to solutions that cannot be applied
in general. A systematic approach to assess these issues has not been proposed or adopted
yet.

To this end, the details of existing simulation profiles for SysML should be examined
thoroughly and processed to derive common concerns and structures. The latter should be
further explored against the inherent concepts and attributes of the behavioral SysML dia-
grams, to conclude to a set of extensions and restrictions for SysML (i.e. a profile) that would
enable the general, but conceptually precise and machine-usable definition of the behavior
of systems.

Regarding requirements specification, simulation has been identified as an appropriate
technique for the estimation of system models’ performance. Hence, the obtained simulation
results should be incorporated within the original system model and a comparison against
the predefined, performance-related, requirements should be performed within the SysML
modeling environment. However, many approaches perform requirements verification using
external tools, due to acquaintance with them and also due to the lack of quantified require-
ments handling in the SysML requirements diagram. This thesis introduces the concept of the
incorporation of the simulation results into the design environment. Next chapters describe
how we reclaim this concept.

In a similar manner as above, approaches proposing solutions for quantified require-
ments specifications should be examined in detail and in regard with the concepts of different
SysML modeling elements (e.g. blocks, states, ports, actions). This would enable the defini-
tion of a general profile, capable of defining precise and quantified requirements. Therefore,
generic and automated requirements verification within the SysML model could be enabled,
once system performance estimation has been added in the model. The proposal of a gen-
eral profile is out of the scope of this thesis, as we focus on EIS. The interested reader could
refer to [97], where a comprehensive understanding of the similarities and differences of ex-
isting approaches is presented and identifies current challenges in fully automating SysML
models simulation process.

To conclude, in order to enhance the design capabilities of a system architect, require-
ment verification should be conducted within SysML modeling environment independently
of the methods and tools adopted to evaluate alternative system designs. Furthermore, eval-
uation results should be incorporated within the SysML system model to be utilized by the
system designer in alternative design decisions.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 3. Related Work 67

3.8 Summary

This chapter presented the related work that has been conducted in the area of model-
based system design, and specifically the popular SysML profiles, efforts about simulating
SysML models and approaches utilizing verification of requirements for system validation
were discussed. Additionally, a comparison of the related work revealed the research chal-
lenges that this thesis tries to resolve. Next chapter presents our proposal for a model-based
approach for architecture design of EIS. Related work that formed the basis for our approach
is also discussed.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter

A MBSD Approach for EIS Architecture

Contents
41 Outline e e e e e e e e 69
4.2 Using Zachman Framework as a canvas for EIS engineering 70
4.2.1 Analysing Zachmanmatrix 70
4.2.2 NFRhandlingin Zachmanmatrix 73
4.2.3 Utilizing Zachman Framework in EIS architecture design 73
4.3 Proposed Approacht e 76
4.3.1 A conceptual model for Information System Architecture Design ... 76
4.3.2 Supporting the proposed approach 80
44 SUMMAKY . . ¢ v v ittt et e e o ettt et ottt t e oot o s s 86

4.1 Outline

This chapter presents an approach to explore EIS architecture design. The proposed ap-
proach is based on the concepts of MBSE as defined by INCOSE. There are numerous EIS en-
gineering methodologies in the literature, each covering different aspects. However, in order
to integrate them in an Enterprise Architecture, model-based engineering can be adopted.
In such a case, a central system model is defined supporting all engineering activities. Zach-
man’s matrix may be used as a basis for constructing such a model. Based on this assump-
tion, we propose a systematic approach for the support of model-based EIS engineering
process using Zachman matrix as EIS central model. Our approach is based on these frame-
works, showing the concepts of views and viewpoints we adopted and the stakeholders iden-
tified throughout the design process. To support the proposed approach, a SysML profile is
defined. The profile overview and the defined views are analytically presented in the follow-

ing sections.

69

Chapter 4. A MBSD Approach for EIS Architecture 70

4.2 Using Zachman Framework as a canvas for EIS engineering

Evidently, system architecture design is a complex process involving different stakehold-
ers and concerns [98, 99]. The identification of functional requirements, e.g. software and
hardware components and their capabilities [100], are not enough to ensure efficient sys-
tem operation. Since, as mentioned, NFRs [46] are critical during architecture design [101],
thus they should be emphasized. Visualization helps the involved stakeholders to understand
and utilize the architecture design decisions [102]. Proposed architecture scenarios should
be evaluated [45] and properly adjusted, to achieve an acceptable solution. Discrete architec-
ture design tasks and corresponding stakeholders are served by independent, interrelated
views. Each view focuses on a specific design concern and is defined by a corresponding
system sub-model, which is part of the overall information system model serving EIS archi-
tecture design.

4.2.1 Analysing Zachman matrix

In the following, views and corresponding viewpoints, stakeholders and concerns are de-
fined based on the principles of Institute of Electrical and Electronics Engineers (IEEE) 42010
standard [99] and the conceptual model for model-based enterprise information system en-
gineering using the Zachman framework [4]. In Zachman framework, the model focuses on
six different perspectives serving discrete primary engineering activities according to Zach-
man matrix row rationale and six different aspects according to Zachman matrix column ra-
tionale (Figure 4.1). Thus, EIS engineering framework consists of 36 EIS views, defined accord-
ing to the combination of perspectives and aspects. For each EIS view, a viewpoint is defined
serving the corresponding stakeholder’s perspective on a specific aspect. Each aspect (for ex-
ample function) is treated independently within the limits of the specific engineering activity
(for example design) based on a corresponding EIS sub-model, while specific methodologies
and tools may be applied within EIS viewpoint corresponding to each Zachman matrix cell.
For example, RUP methodology [103, 104] could be employed for application design within
System Function cell. In a similar fashion, system architecture corresponds to the Structure
aspect of Zachman framework, thus, system architecture design should be treated indepen-
dently within System Network cell.

The Zachman framework itself may provide some guidelines on the dependencies be-
tween discrete design activities. In this case, it is evident that there is a need for the ex-
change of information between software design methodologies, corresponding to System
Function cell, and software architecture design methodologies, corresponding to System Net-
work cell. The exchange of information and the transformation between EIS models serving
different activities and aspects may be feasible using the concept of external entities, defined
within each EIS model. External entities indicate the required information coming or passed
to other methodologies and facilitate EIS models integration. Inter-model consistency is ac-
complished by creating mappings between external entities of respective models. The cor-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 4. A MBSD Approach for EIS Architecture 71

What How Where Who When Why
‘ Data I Function I Network I People I Time I Motivation ‘
Seope Listof things important to List of process the List of locations in which List of organizations List of events’ cydes Lists of business goals’
acope the business business performs the business operates important to the business | | significant to the business strategies
(contextual) f:@ |ﬁ| |ﬁ| @
Pl(~u11101- Entity = Class of business Node = Major business People = Major Time = M.]Alrljuwl\‘w Ends’ means " Major
thing location organizational unit event/cycle business goals” stratesy
Bl[sjn@sg Mndcl Eg. Semantic model Eg Bu.x:‘\i:‘-lugi-hu Eg. Work flow moded Eg. Master schedule Eg. Business plan
(conceptual) IlEl =t
BE 2
Entity = Business entity -
()\N ner relationship = Business Node = Businesses location| People = Organizational unil Time = Business event End = Business object
relationship Link = Business linkage Work = Work product Cycle = Business cycle Means = Business strategy
Eg. Logical data model Eg. Applicatyor Eg. Hi Eg. Processing structune Eg. Business mle model
Gvstem Model % Logical daia mo F APy o & Processing structue & Business wie o
(logical)
- elationship = Data inction Pec Tim
Designer e 0= User vigws Work Cyele
Eg, Physical data model Eg. System design Eg. Presentatior Eg. Role design
Technology Model architecture
physical
(l‘ ¥ al) Entity = Segment/ lable/etc E
(=TT}
. - Relationship = Pointer / Time = Execule End = Condition
Builder kay ere ata Means - Actior

Detailed Representations H Tiic dwbetion FoRols speicunon

(out-of-context)

Subcontractor Bnlly =Hald

Node = Address ;spx Identity Time = Interrupt End = Sub-condition
Relationship = Addres ork = Jok

Link = Protocol Cycle = Machine cycle Means = Step

Functioning Enterprise _ _ [Network] [Organization | [Schedule | [Strategy]

Figure 4.1: The Zachman framework matrix

responding stakeholder is responsible for describing internal entities of each discrete EIS
model. Internal and external entities are adopted in order to exchange data between design
views (described in chapter 5) and Evaluation view (described in chapter 6), in our approach.
Since Zachman framework provides a holistic model of enterprise information infrastructure,
we argue that each matrix row may serve model-based implementation of a discrete primary
engineering activity, as defined in [105] and proposed by INCOSE [98], addressing the needs
of corresponding stakeholders (see Figure 4.2).

Here, a brief discussion about the Zachman framework rows and how they relate to EIS
is attempted. The first two rows, namely Scope, denoting business purpose and strategy,
and Business Model (Figure 4.1), describing enterprise functionality, are intensively business-
oriented and are expressed in business oriented vocabularies [32]. They may serve two dis-
crete primary EIS engineering activities, namely Defining Enterprise Objectives and Establishing
Enterprise Functionality respectively. Definition of Enterprise Objectives may comprise to spe-
cific activities, such as Policy Management, Enterprise Environment Management, Investment
and Risk Management, and others characterized in IEEE 15288 as enterprise processes [105].
Establishing enterprise functionality focuses on describing the provided services and cor-
responding requirements imposed by different stakeholders. The third row, namely System
Model, which describes how the system will satisfy the requirements yielding from business
objectives, may serve EIS Design (both at software and hardware level). EIS design facilitates
requirements analysis and architecture design of both applications/data and EIS architec-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 4. A MBSD Approach for EIS Architecture 72

DATA FUNCTION NETWORK PEOPLE TIME MOTIVATION
| I y I
Enterprise Objectives
Definition

SCOPE
A

\
Enterprise Functionality
Establishment

BUSINESS
MODEL
Y

& EIS Design N
22 (both Software/Hardware) % -
28 Implementation >
5=

Y
Detailed

Implementation

DETAILED
REPR/TIONS
A

(NN

Y

Support / Maintenance

| | |
) 4

O

Figure 4.2: MB-EISE primary activities based on the Zachman framework

Y

FUNCTIONING
ENTERPRISE

ture. The next two rows, namely Builder Model, representing how the system is implemented
and Out-of-Context including implementation-specific details, may serve Implementation and
Detailed Implementation respectively [98]. Finally, the last row, Operational, which is the func-
tioning system, may serve Support and Maintenance activities, also included in EIS engineering
cycle.

All primary engineering activities, as described in Figure 4.2, are interrelated and recur-
sively executed, since EIS engineering is an iterative process targeting the continuous im-
provement of EIS [98]. Model-driven implementation of these primary engineering activities
based on Zachman matrix rows, accommodates the concurrent execution of them based on
the EIS sub-model of the corresponding row, provided that they may obtain the information
needed by other Zachman matrix rows. Such an approach also facilitates the progressive
engineering of EIS in different levels of detail, performed in cumulative cycles. Rules gov-
erning the Zachman framework, as defined in [1], are applied during model-based EIS engi-
neering as well. EIS sub-models corresponding to each row are interrelated. The respective
requirements are progressively refined, starting from enterprise objectives to the functional
EIS supporting it.

Each primary engineering activity should be explored taken into account related require-
ments identified by the respective stakeholders. A requirement denotes a capability or condi-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 4. A MBSD Approach for EIS Architecture 73

tion that must (or should) be satisfied and may specify a function that a system must perform,
or a condition that a system must achieve [100]. Thus, requirements are divided into two main
categories, i.e. functional and non-functional [40], [47]. In other words, the Zachman matrix
consists of six different rows, identifying EIS different aspects, each of which reveals different
requirements related to the specific aspect.

We argue that for each primary engineering activity, these six different EIS viewpoints
should be defined, each one related to a different EIS aspect. Data aspect describes the en-
tities involved, while Function viewpoint shows how the entities are processed resulting to
application implementation. Network viewpoint indicates where the entities are located re-
sulting to EIS architecture. People viewpoint indicates users related aspects, while Time view-
point reveals the way identified entities are synchronized. All these viewpoints are used to
explore functional requirements, which are related to the functionality of the system.

4.2.2 NFR handling in Zachman matrix

Obviously, NFR is a broadly used term. Unfortunately, there is no consensus about the
nature of NFRs since various classifications of them exist in the literature [40] [47]. During
this thesis, we follow the common concept that the basic aspects of NFR can be depicted in
three sub-categories, namely performance, constraint and specific quality [46]. The Motivation
row of Zachman matrix relates to the reasons that lead to the specific functionality of an
EIS. We argue, thus, that not-functional requirements should be handled by a corresponding
viewpoint, as also suggested in [106].

4.2.3 Utilizing Zachman Framework in EIS architecture design

The conceptual model for model-based EIS engineering using Zachman matrix according
to ANSI/IEEE 1471 standard [37] is depicted in Figure 4.3. The complete software develop-
ment process is out of the scope of this research, where focus is on the architecture design.
Having this in mind, we are able to frame the latter into Zachman matrix. The activity of
designing system architecture is performed based on the EIS view corresponding to System
Network cell, which facilitates:

i. the definition of EIS architecture (e.g. a system-oriented view of distributed applica-

tions),
ii. the definition of system performance and availability requirements,
iii. the definition of system access points,
iv. the description of platform-independent distributed infrastructure (e.g. network archi-
tecture and hardware configuration) and
v. the association of software components to network nodes (resource allocation), in or-
der to ensure performance and availability requirements.
The mapping between the EIS architecture design and Zachman framework are based on the
following assumptions:

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 4. A MBSD Approach for EIS Architecture 74

described by 1 I Enterprise Architecture |
1 folows 1 EIS Engineering
described b 1 1 Rationale
influenced by - - i Fay
1 EIS Engineering i — 1
Framework E1iNe Central
Extented . o = EIS Model
Emvironment 1. idertifies
Enterprise —‘] oE
R ocusing on 1. - =
Stakeholder - Primary Activity
. EIS Engineering Rationale Compatible
is importart is seryed by Perspective to Zachman Rows
1.4
1 EIS Viewpoint consists off 1.6 EIS Aspect

" ES Aspact Rationale According to | consits of
is served by covers ! 5 I_E'S Aspect Zachman Columns
1.4 1

Concern J desgribing T = - —

& — _ _ befined according
" |to the combination

of Aspects and
COVErS refifedto 1.t 1 Perspzcti\res
1.4

+ | Theme/Specific ES Sub-model
1 \n‘iewpgint 1 defined -
relates to
q relate to
relates to
describing EIS View 1
Representation Model
Viewpoint
Library

complement

Figure 4.3: MB-EISE conceptual model

Collect
Requirements

Synthesize
Solution

Re-adjustment

Solution
Validation / Evaluation

Figure 4.4: Basic engineering tasks performed based on each cell-related view

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 4. A MBSD Approach for EIS Architecture 75

+ The basic tasks identified during the EIS architecture design activity (depicted in Figure
1.2) are in alignment with basic engineering tasks performed for each Zachman matrix
cell, as depicted in Figure 4.4

+ The Collect Requirements task is accomplished through discrete stages i.e. Functional-
ity Definition and Requirements Definition within System Network cell. The former depicts
functional requirements extracted from People, Data and Function cells (see Figure 4.1)
of the system model row. The latter concerns non functional requirements related to
EIS architecture design, extracted from the Motivation cell of System Model row. Require-
ments included in this cell are either propagated from the upper layers of Zachman
framework or specifically defined for system design and may relate to issues not rele-
vant to EIS architecture design. Only architecture design related requirements are prop-
agated within EIS System Network view.

* Solution is synthesized through two interactive steps i.e. Topology Definition and Net-
work Infrastructure Definition [107,108]. Topology Definition facilitates resource alloca-
tion and replication. This task is performed taken into account the definition of system
access points in terms of hierarchically related locations performed in upper Network
cells (Business row Network cell in particular). The term site is used to characterize any
location (i.e. a building, an office, etc.) It resembles the term /ocality from RUP-SE. As
such, a site is a composite entity which can be further analyzed into sub-sites, forming
thus a hierarchical structure.

* Network Infrastructure Definition refers to the aggregate network, described through a
hierarchical structure comprising Local Area Networks (LANs). Devices, such as servers
and workstations are associated with LANs at the lowest level of the hierarchy. Net-
work nodes are either workstations allocated to users or computers running server
processes. Topology and Network Infrastructure Definition tasks are interrelated. Both
should be performed in the same hierarchical levels of detail. At the lowest level, net-
work nodes should be related to processes/data replicas. In essence, interaction be-
tween these two tasks represents an interdependence in terms of derived require-
ments. Requirements derived during Topology Definition affect Network Infrastructure
Definition and vice versa. Therefore, Requirements Definition is performed in parallel
with Topology and Network Infrastructure Definition as well. Developing requirements
and architectural artifacts in parallel has already been addressed in the literature [109].

+ After the solution deployment, validation is performed using simulation. Solution evalu-
ation will determine whether the overall process will end in case the solution is satisfied
or readjustments will be performed through the recurrence of the previous steps.

* The Requirements Collection and Solution Synthesis tasks are described through a discrete
view. As such, four corresponding views are defined, namely:

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 4. A MBSD Approach for EIS Architecture 76

System-Network View assaciats Business-Network
View
associate llcat 4"#’3—
Technology-Network Network Inftastructure | _* " Tonoloay View]
View - - View B - pology System-People
Wiew
3 3
satisty satisfy instantiate s0ciale System-Data
¥ L J / associate View
- associate . ‘L_F'-—'-*H—
System-Motivation Requirements View | satisfy Functional View associate
View o - o M ———— System-Function
_— S View

Figure 4.5: EIS Sub-Views corresponding to the System Network cell

i. Functional view

ii. Topology view

iii. Network Infrastructure view
iv. Requirements view

These views constitute sub-views of the System Network view of Zachman framework.
Solution validation and evaluation are performed using information included in all of
them, used to build a discrete view, called Evaluation view.

+ Interrelations between corresponding tasks are reflected upon the introduced views.
These interrelations along with the dependencies between the aforementioned views
and the related models of the corresponding Zachman cells are depicted in Figure 4.5.
Dependencies with external Zachman cells are bidirectional. Functional view, obviously,
isinfluenced by and influences People, Data and Function cells of System Model row, while
Requirements view interacts with System Motivation view. Topology view is bidirectionally
related to Business Network cell, while Network Infrastructure view to Technology Network
cell. System Network views are illustrated in Figure 4.5 in a blackbox manner. A white-
box perspective of them will unfold through the description provided in the following
sections, further elucidating view interdependencies.

4.3 Proposed Approach
4.3.1 A conceptual model for Information System Architecture Design

EIS architecture design consists of the definition and optimization of a system architecture
comprised of software and hardware components, ensuring that all software components
are identified, properly allocated and that hardware components are properly combined to
support the efficient operation of software components, providing the desired performance.
A conceptual model for model-based EIS architecture design is presented in Figure 4.6, where
the model is based on the principles of IEEE 42010 [2] standard. Figure 4.6 also follows the
concept of using the Zachman matrix to progressively construct a common system model for
the integration of all EIS engineering issues (described in subsection 4.2.3) and correspond-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 4. A MBSD Approach for EIS Architecture 77

‘ described b Enterprise Architecture
1. . .
Enterprise EIS Engineering
Stakeholder

Framework defined Central
EIS Model

Logical Design P!
is congemed r
follows
1 System Model Perspective
Concern is framed

. 1. 1. .

i i describes i -
EIS Viewpoint [E1S View)ﬂ ‘Netwovk Aspect ‘ ‘ EIS Specific Model ‘

EIS Archilecl@w M1 defined ‘
System Architect EIS Architecture EIS Architecture
> Design View Design Model

is served by ‘
repregented

is framed

relates to

["EIS Archi EIS Profile
Design Viewpoint (based on SysML)

T isservedby [Functional | —f describes ﬂ i | relates to [
Topology describes [Topology ﬂ Topology | relatesto | Topology
Viewpoint View 1 View Diagram Model
Network Architect L
—‘ J i describes - i | relates to | i
Viewpoint View ’: _represented j Diagram ‘ ‘ Model
HHardware Architect | “p——— N describes N NI relates to
— Viewpoint View +represented Diagram

NFR
Viewpoint

describes

NI : Network Infrastructure

NFR: Non Functional Requirements represented

NFR
Diagram

Figure 4.6: A Conceptual Model for Information System Architecture Design

ing methodologies in order to promote interoperability [4].

EIS architecture design view is defined as an EIS view, which is part of the System Model,
e.g. the perspective serving the designer as a stakeholder, and focuses on Network aspect
emphasizing Structure rational. To promote interoperability and integration, it is crucial to
provide a typical definition of the meta-model describing each EIS view. Thus a correspond-
ing EIS architecture design model is defined for EIS architecture design view. This model is a part
of the overall system model (indicated in the Figure 4.6 as Central EIS Model) and is further
decomposed to sub-models corresponding to any sub-views defined for EIS architecture de-
sign. For each EIS view, a corresponding representation model should be defined, along with
the necessary mappings to EIS view sub-model. A SysML profile, named EIS profile, is defined
as a representation model for EIS architecture design view and is described analytically in
chapters 5 and 6.

As already stated, for each EIS view, a viewpoint is defined serving the corresponding
stakeholder’s perspective on a specific concern [110]. Thus EIS architecture design viewpoint
describes EIS architecture design view serving system architect as a stakeholder, concerned
with EIS architecture design. Since EIS architecture design is a complex concept, it should be
decomposed into more specific concerns dealt with by experts with specific experience, char-
acterized as system architects. Thus, the system architect as a stakeholder should be conceived
more as role than a specific person responsible for system architecture design.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 4. A MBSD Approach for EIS Architecture 78

The term architect implies that the specific role will be involved in the description of the
structure of the information system in some way, though one expert may obtain all these
roles, or, more frequently, these roles may be played by experts, for example a software
engineer, which are responsible for other tasks as well. As EIS architecture design is decom-
posed into more specific concerns, corresponding viewpoints forming the overall EIS archi-
tecture design viewpoint are explored. In practice, many different experts may contribute
in EIS architecture design tasks, as software architects, network architects and hardware archi-
tects. Software architect's main responsibilities are:

to limit the choices available during development,

recognize potential reuse in the organization or in the application,

subdivide a complex application,

understand the interactions and dependencies among components and

* communicate these concepts to developers
Network architect is responsible for the design of the distributed architecture of the organi-
zation's network. Hardware architect is responsible for interfacing with enterprise architect or
client stakeholders, to determine their needs to be realized in hardware. He/she is generating
the highest level of hardware requirements.

Views supporting system design activity tasks

As shown above, the basic tasks identified during any system design activity are Require-
ment definition, Solution synthesis, Solution evaluation and Solution re-adjustment [24] (shown
in Figure 4.4). Based on predefined requirements, the system designer build a solution on
system synthesis. In order to decide if a solution is acceptable, evaluation is used. Until an
accepted solution is reached, re-adjustments are performed.

Inthe case of EIS architecture design, solution synthesis encompasses Functionality, Topol-
ogy and Network Infrastructure definitions [4]. Functionality definition focuses on software ar-
chitecture design, Topology definition on software allocation process and Network Infrastruc-
ture definition on hardware architecture design. For each of these concerns, a corresponding
viewpoint is defined to explore functional requirements and corresponding design decisions.
The software architect stakeholder concerned with software architecture design and software
allocation is served by Functional and Topology viewpoints to contribute in the construction
of EIS architecture. In a similar fashion, hardware architect is contributing to hardware con-
figuration using Network Infrastructure view and the network architect builds the network ar-
chitecture based on Topology and Network Infrastructure viewpoints. In case more than one
stakeholders are served by a specific viewpoint, this is an indication that their cooperation is
needed.

NFR definition should also be independently treated, since the conditions, under which
the system should operate, play a significant role in design decisions. For each of these defi-
nitions, a corresponding NFR viewpoint has been defined. In this manner, any of the system

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 4. A MBSD Approach for EIS Architecture 79

architects (for example software architect) is enabled to realize the affect of specific design
decisions (for example the allocation of software to hardware resource) to NFRs imposed to
them (for example performance) and vise-versa. Using the corresponding NFR view, the sys-
tem designer is enabled to explore non-functional requirements relationships, while, using
other views, the relationship between non-functional requirements and design decisions is
explored [8]. Our approach supports the progressive and independent execution of EIS ar-
chitecture composition tasks in parallel, while the impact of design decisions is expressed in
terms of NFRs.

Furthermore, EIS architecture evaluation should be performed. In order to evaluate the
designed solution, NFRs definition is used, focusing on system performance and availability
requirements essential for EIS architecture design. Then, solution evaluation is performed
and evaluation results are used to check whether NFRs are satisfied. If not, then EIS architec-
ture readjustment is performed until an acceptable EIS architecture synthesis is identified.
To manage the evaluation process and maintain evaluation results a discrete Evaluation view-
point is defined.

All the aforementioned viewpoints related to EIS architecture design, the corresponding
concerns and stakeholders are summarized in Table 4.1. They are characterized as internal
viewpoints and are typed using italics. Each of these viewpoints is associated with external
viewpoints, not concerned with EIS Architecture design, but explicitly or implicitly related to
it. Thus information exchange or synchronization between corresponding views of internal
and external viewpoints is necessary.

Functional viewpoint serves software architect in order to facilitate him/her to design the
software architecture. External viewpoints that are related to Functional viewpoint include:

i. Application Design viewpoint which serves software designer, which is responsible for
the design of a specific application of the organization, and is the person that will com-
municate his/her ideas with developers.

ii. Logical Data Model viewpoint which serves information designer to design the data
model and

ili. Human Interface Design viewpoint which serves information system analyst to design
the human interfaces.

Topology viewpoint serves network and software architects in order to do the resource
allocation. Topology viewpoint is related to Business Offices viewpoint, in order to serve enter-
prise architect to define the access points of the system. Enterprise architect is responsible for
having a holistic view of the organization’s strategy, processes, information and information
technology assets. His/her role is to take this knowledge and ensure that the business and
IT are in alignment.

Network Infrastructure viewpoint serves network and hardware architects to design the net-
work infrastructure architecture. They co-operate with solutions architects who compose the
solution based on available technology, which is defined on EIS Technology Architecture view-
point. A solutions architect is a very experienced architect with cross-domain, cross-functional

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 4. A MBSD Approach for EIS Architecture 80

and cross-industry expertise. He/she outlines solution architecture descriptions (mainly in
Functional analysis), then monitors and governs the implementation.

NFR viewpoint serves network, hardware and software architects to define NFRs of EIS ar-
chitecture. They could co-operate with business analyst, which is served by Design Require-
ments viewpoint to define the design of the requirements. Business analyst assess business
models and their integration with technology.

Evaluation viewpoint serves network, software and hardware architects to evaluate the so-
lution that has been composed using all other EIS architecture design viewpoints. They de-
cide if the solution is accepted or not, so as re-adjustments to be done.

Table 4.1: EIS Viewpoints

Internal Viewpoints External Viewpoints Concern Stakeholder
Functional Software Architecture Design Software Architect
Logical Data Model Data Model Design Information Designer
Application Design Software Design Software Designer
Human Interface Design Human Interface Design IS Analyst
Topology Resource Allocation Network Architect
Software Architect
Business Offices Access Points Definition Enterprise Architect
Network Infrastructure Net. Infra. Architecture Design Network Architect
Hardware Architect
EIS Technology Architecture Solution Composition Solutions Architect
(based on available technol-
ogy)
NFR EIS Architecture NFR Defini- Network Architect
tion
Hardware Architect
Software Architect
Design Requirements Design Requirements Defini- Business Analyst
tion
Evaluation Solution Evaluation Network Architect

Software Architect
Hardware Architect

4.3.2 Supporting the proposed approach

In EIS architecture design, each stakeholder would like to interact with his specific view,
showing him the appropriate entities to facilitate him in order to make design decisions. To
have a consistent model, an appropriate modeling language should be selected.

As previously stated, SysML supports the specification, analysis, design, verification and
validation of a broad range of systems and SoS [64]. It also supports the concepts of require-
ment definition, requirements management, systems composition and communication and
resource allocation, which are vital to depict EIS architecture design activities [64]. Moreover,
SysML as part of OMG along with QVT and OCL could be used to define constraints and model
transformations, so as to be able to verify a system model using formal validation methods,
such as simulation. A large number of modeling tools, (open source, like Eclipse [111], Pa-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 4. A MBSD Approach for EIS Architecture 81

pyrus UML[112] and Modelio [113] and enterprise, like Magicdraw [3], Visual Paradigm [114]
and Enterprise Architect [115]) support SysML. Moreover, SysML supports many kinds of di-
agrams like Block and Internal Block Definition diagrams, to describe complex systems (SoS)
and Requirements diagram to handle requirements and their relationships.

Moreover, in a survey about what industry needs from architectural languages [116], UML
is by far the most preferred modeling language for architectural description, but the architec-
ture description languages have Insufficient expressiveness for non-functional properties.

Blocks are modular units of system description. Each block defines a collection of features
to describe a system or other element of interest. These may include both structural and be-
havioral features, such as properties and operations, to represent the state of the system
and behavior that the system may exhibit [64]. Thus, blocks are suitable to describe systems
such as IS consisting of software and hardware blocks. The Block Definition Diagram in SysML
defines features of blocks and relationships between blocks such as associations, general-
izations, and dependencies. It captures the definition of blocks in terms of properties and
operations, and relationships such as a system hierarchy or a system classification tree. The
Internal Block Diagram in SysML captures the internal structure of a block in terms of prop-
erties and connectors between properties [64]. Internal Block Diagrams are convenient to
describe internal network architectures, such as LANs.

What's more, SysML makes use of a number of stereotyped dependencies, particularly
in the requirement diagram and use case diagram [117]. Allocations define a basic allocation
relationship that can be used to allocate a set of model elements to another, such as allo-
cating behavior to structure or allocating logical to physical components. A requirement is
related to other key modeling artefacts via a set of stereotyped dependencies. The deriveReqt
and satisfy dependencies describe the derivation of requirements from other requirements
and the satisfaction of requirements by design entities, respectively. The verify dependency
shows the link from a test case to the requirement or requirements it verifies. In addition, the
UML refine dependency is used to indicate that an SysML model element is a refinement of a
textual requirement, and a copy relationship is used to show reuse of a requirement within
a different requirement hierarchy. The rationale concept can be used to annotate any model
element to identify supporting rationale including analysis and trade studies for a derived
requirement, a design or some other decision.

Proposed views and viewpoints should be supported by a modeling tool. To follow the
standards of MBSE, the formal way is to extend a standard metamodel, as INCOSE promotes
the integration and interoperability of methods and tools. MOF profile mechanism can be
used to extend UML meta-model, to support any domain specific languages. In our case,
SysML, as an extension of UML is chosen for extension, as it effectively describes systems
and SoS. Although SysML is the preferred modeling language for system engineering, an
extension is necessary in order to describe EIS architecture. The next chapter (chapter 5)
explains why SysML needs extension to effectively support the non-functional requirements
definition, their derivation and a way to be verified. Stereotype mechanism is used for this

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 4. A MBSD Approach for EIS Architecture 82

purpose and a profile, called EIS profile, has been implemented as an extension of SysML.

The proposed approach consists of the profile definition, which include the extensions of
SysML to support NFRs and the definition of a performance evaluation method. Moreover,
it includes the use of methods and tools, such as model transformations and simulation ex-
ecution of a well established simulation environment. These processes are supported by a
corresponding extension mechanism of a broad used modeling tool.

MOF Extension Mechanism

MOF M3 Layer
meta-metamodel

K\
]

c |
o |
[& I
= |) ! '
bT UML UML Custom M2 Layer
Hm metamodel| | Profile metamodel » metamode]
= | |]
x | 3 |
\ : M1 Layer
1
I UML models Models based on ‘ mode|
I".\ cuslom metamodel
L MO Layer
The Real World reality

Figure 4.7: MDA four-layer architecture '

As stated earlier, to support the proposed approach, extensions should be done to exist-
ing modeling languages as SysML. There is a formal way to support extensions. MOF 2.0[118]
states that in order to create models using a specific language, an appropriate metamodel
should be defined. The following paragraphs explain the extension mechanism that is pro-
vided by MOF.

MOF is designed as a four-layered architecture (see Figure 4.7). It provides a meta-meta
model at the top layer, called the M3 layer. This M3-model is the language used by MOF to
build metamodels, called M2-models. The most prominent example of a Layer 2 MOF model
is the UML metamodel, the model that describes the UML itself. These M2-models describe
elements of the M1-layer, and thus M1-models. These would be, for example, models written
in UML. The last layer is the MO-layer or data layer. It is used to describe real-world objects.
Another OMG foundation standard XMI, which defines mapping from MOF-defined meta-
models to XML documents and schemas. XML enables meta-metamodel, metamodel and
model sharing through XMI.

Tsource: http://www.jot.fm/issues/issue_2006_11/article4/

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

http://www.jot.fm/issues/issue_2006_11/article4/

Chapter 4. A MBSD Approach for EIS Architecture 83

For UML, the metamodeling approach means that "a metamodel is used to specify the
model that comprises UML". OMG states that the meta-metamodeling layer forms the foun-
dation of the metamodeling hierarchy. The primary responsibility of this layer is to define
the language for specifying a metamodel [119]. The layer is often referred to as M3, and
MOF is an example of a meta-metamodel. MOF is used as the meta-metamodel not only for
UML, but also for other languages, such as CWM. The UML Superstructure metamodel [120]
is specified by the UML package on the diagram in Figure 4.8. UML is defined as a model that
is based on MOF. Each model element of UML is an instance of exactly one model element in
MOF. A model is an instance of a metamodel. UML is a language specification (metamodel)
from which users can define their own models.

UML Infrastructure
- - - 7 7 /7777 /007 == \
| M3 | I
: 1 : Primitive L tm_por_t”
| emetamodel» | 4L Types ‘:
| MOF | : I
I I I
I i AN I : |
| ; ~ N | | Infrastructure Library |
N e __ e M 4 | |
e 4o N |
¢) N - I
\ |
| M2 winstanceOf» # winstanceOfs ~ | [= |
s, 4
: L — i st = A i
| wmetamodels UML «metamodels o f\
I cowm T I I
| : | | umerges
| 1
[
| Profiles | [T~~~ —-—-——————-— |
| F=——fF——————————————— = === =1 Profiles
| «mergen |
I I
| /S |
N |
— - ——= —: I Ee e 7
m———————— - i e e il N
oo | | T T T T T T T T T T T |
! ' [| ! |
| winstanceOfs | «instanceOfs | winstanceOfs I |
| fmm 1 P S] | wreferences |
I I I I !
|
[I I 1 11 I 1 1 |
| |
| «model» «model» amodel» waml] aprofiles wprofiles I
| | usermodel1 User Model 2 User Models | _ _"“PPW* . | Domain Profile 1 Domain Profile 2 :
|
I !

Figure 4.8: Meta Meta Models, UML and Profiles

The Profiles package of the Infrastructure Library contains mechanisms that allow meta-
classes from existing metamodels to be extended to adapt them for different purposes, e.g.
to adapt the UML metamodel for different platforms (such as JEE or .NET) or domains. As
such, it could be considered at the same meta-metalevel as MOF - one level higher than the
UML metamodel. The Profiles package of the UML Superstructure (from Auxiliary Constructs)
merges Profiles package of the Infrastructure library. A profile is a restricted form of a meta-
model that must always extend some reference metamodel that was created from MOF, such
as UML or CWM. So, a profile can be defined as a set of stereotypes and tag values customized
for particular domain modeling.

Stereotype is a profile class which defines how an existing metaclass may be extended as
part of a profile. It enables the use of a platform or domain specific terminology or notation
in place of, or in addition to, the ones used for the extended metaclass. When a stereotype is

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 4. A MBSD Approach for EIS Architecture 84

applied to a model element, the values of its properties may be referred to as tagged values.

EIS Profile Overview

To define the structure of the proposed profile, we should tabulate the basic tasks identi-

fied during EIS architecture design (characterized as viewpoints in section 4.3.1), which are:

Functionality definition, consisting software architecture description (e.g. a system-orien-
ted view of applications). In practice, Functionality definition consists of the description
of functional requirements (e.g. application and data architecture, user behavior and
application requirements).

Topology definition, consisting of the description of system access points. It facilitates
user, application and data allocation to system access points.

Network Infrastructure definition, consisting of the description of platform- independent
distributed infrastructure (e.g. network architecture and hardware configuration) and
the association of software components to network nodes (resource allocation).

NFR definition, consisting of the description of non functional requirements, focusing on
system performance and availability requirements essential for EIS architecture design.

EIS architecture evaluation, consisting of these model elements that participate in the
performance evaluation process along with the requirements that should be verified.

..

Functional View

Topology View

Figure 4.9: EIS Architecture Views and Corresponding Design Tasks

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 4. A MBSD Approach for EIS Architecture 85

According to the basic processes that are identified during the design activity (presented
in Chapter 1.3, Figure 1.2), solution synthesis encompasses Functionality, Topology and Net-
work Infrastructure definitions. Functionality definition focuses on software architecture de-
sign, Topology definition on software allocation process and Network Infrastructure definition
on hardware architecture design. For each of these concerns, a corresponding view is defined
to explore non functional requirements and related design decisions. The system designer,
concerned with software architecture design and software allocation, is served by Functional
and Topology views to contribute in the construction of EIS architecture. In a similar fashion,
the designer is contributing to hardware configuration using Network Infrastructure View. A
complementary view, called Evaluation view is proposed to serve system evaluation activity
and manage evaluation results and requirements verification. This view incorporates entities
from other views and stores all the required attributes for each model element, in order to
facilitate the requirements verification process. Specifically, evaluation view facilitates:

i. the definition of the conditions under which the system will be evaluated;

ii. theincorporation of the evaluation results;
iii. the requirement verification, informing the system designers for inconsistencies.
EIS architecture views and corresponding design tasks are presented in Figure 4.9.

Itis evident that all aforementioned tasks are interrelated, since none of them can be com-
pleted independently, while in most cases tasks are performed in parallel, and often repeat-
edly by the system architect in order to reach an EIS architecture satisfying both functional
(identified during Functionality definition and partly during Topology and Network Infrastruc-
ture definition) and NFRs (identified during NFR definition). NFR definition is performed in
parallel with Functionality, Topology and Network Infrastructure definition. Developing re-
quirements and architectural artifacts in parallel has already been addressed in section 4.2.2.

After the definition of EIS architecture, an evaluation phase follows, most commonly using
simulation, if it is about performance issues. Solution evaluation will determine whether the
proposed solution is satisfying all functional and non functional requirements, or the system
designer should improve the proposed architecture or readjust requirements by repeating
definition tasks. Adopting a model-based approach for EIS architecture design should pro-
vide the system architect with a common system model to support all design tasks and en-
able him/her to perform each design task in an independent fashion taking into account the
restrictions imposed by other tasks.

As depicted in Figure 4.10, the aforementioned views are associated with relations such
as satisfy, verify, allocate and evaluate. These relations are supported by SysML [64]. A satisfy
relationship is a dependency between a requirement and a model element that fulfills the
requirement [64]. Satisfy relates system elements in Functional, Topology and Network Infras-
tructure views with their corresponding requirements. A verify relationship is a dependency
between a requirement and a test case or other model element that can determine whether
a system fulfills the requirement [64]. In EIS profile, Verify relates requirements that are veri-
fied by elements from evaluation view. SysML also includes an allocation relationship to rep-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 4. A MBSD Approach for EIS Architecture 86

Network Infrastructure View

evaluate allocate
satisfy
verify satisfy
Evaluation View —F —— NRF View TopaETRU o
satisfy
evaluate
allocate

Functional View

Figure 4.10: EIS architectural model

resent various types of allocation, including allocation of functions to components, logical to
physical components, and software to hardware. In our case, allocate relates entities from
Functional or Topology views that are allocated to entities from Network Infrastructure view,
supporting the software to hardware allocation and users allocation (system access points).
Finally, evaluate relates entities from evaluation view that are evaluating entities from the
other views (design views). Evaluate relation defined as an extension of SysML relations.

The next two chapters present the defined views, which are categorized as design views
(chapter 5), that are functional, topology, network infrastructure and NFR view and evaluation
view (chapter 6).

4.4 Summary

This chapter presented an approach based on the concepts of MBSE as defined by INCOSE
to explore EIS architecture design. The proposed approach is based on Zachman framework,
showing the concepts of views and viewpoints we adopted and the stakeholders identified
throughout the design process. To this end, a SysML profile was defined. Next chapter ex-
tensively presents two parts of the proposed approach: the design phase and related views
and the handling of NFRs.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter

Designing EIS Architecture

Contents
5.1 0Outline i e e e e 88
5.2 DesignViews i i i ittt e e e e e 89
5.2.1 FunctionalView 90
522 Topology View. e 92
5.2.3 Network InfrastructureView 96
5.3 Non-Functional RequirementsView 99
5.3.1 Non-functional requirements classification 100
5.3.2 SysML ExtensiontosupportNFRs 103
5.3.3 NFRRepresentation, 106
5.3.4 NFRDerivation e 108
5.3.5 NFRVerification 114
54 SUMMAKY o i ittt et et ettt e ettt ettt 117

5.1 Outline

This and the next chapter present EIS profile views, grouped in three categories:

* Design Views. Within these views, system designer defines the software and hardware
architectures of the system.

* NFR View. Here, non functional requirements are defined for model elements of the
design views.

* Evaluation View. Since design and NFR views are complete and consistent, evaluation
view collects these entities from design views that are participating in the evaluation
process, initiates the evaluation process and maintains the results to validate system
against NFRs.

88

Chapter 5. Designing EIS Architecture 89

Design views provide the appropriate diagrams to define the applications software archi-
tecture, to set system access points and to define network architecture.

NFR view, in practice is not an autonomous view. Requirements are defined in design
views, each of them satisfying design entities, and are interrelated in many ways:

* requirements are derived from other requirements

* requirements satisfy design entities

* requirements are verified from evaluation entities

Evaluation view encompasses the appropriate design entities along with their require-
ments in order to clarify which of them could be verified so as to inform the designer about
the non-verified ones.

5.2 Design Views

As design views we could consider the Functional, Topology and Network Infrastructure
views, where system designer defines software and hardware architecture and makes the
appropriate allocations (users and software allocations).

Specific extensions, as supported by OMG, provided the desired functionality. A view in
EIS profile is depicted as a discrete diagram. The stereotype mechanism provided by UML
and SysML is employed to customize SysML functionality to depict EIS Architecture views.
Functional, Topology and Network Infrastructure views are described using hierarchical block-
definition diagrams. SysML blocks can be used throughout all phases of system specification
and design, and can be applied to many different kinds of systems. These include modeling
either the logical or physical decomposition of a system, and the specification of software,
hardware, or human elements.

An overview of the synthesis model (i.e., the model elements participating in design views)
is presented in Figure 5.1. Their connections with NFRs and the allocations between them are
presented with dashed lines. The allocate relation between design views indicate that enti-
ties defined in Functional view and more specifically software modules, data entities and users
modeled as roles are allocated in system access points, called sites, defined in the Topology
view. The allocation of modules, roles and data entities to sites corresponds to software ar-
chitecture design. The allocation relation between Topology and Network Infrastructure views
indicates that each site defined in Topology view is served by a network defined in Network
Infrastructure view. When a site is allocated to a network, Functional view entities allocated
to this site must be specifically allocated to hardware nodes belonging to this network. Fig-
ure 5.1 also illustrates the requirements which are referenced by design views model ele-
ments. Section 5.3 analyzes the role and the relationships between requirements and model
elements belonging to other views.

For each of the aforementioned views, a corresponding table summarizes the elements
participating in each view. So the defined stereotype, the SysML/UML extended element, the

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 90

[Functional View

-incoming -target
-target1 -incoming| Service -outgoing _source | Invoke
Initiate 1
/ \
Application | -Source , / \
\
/ \
/ \
/ satisfy
satisfy \
leBehavi Re /

outgoin roleBehavior Req \ 1 Service Description

going i resp ime req serviceQoS req

Role 7
7 7 satisfy
e el AHoeatien—————————————‘
I
| Module [T~~~ — =~ ===~ =~ ==~ === == Afloeation— — — — — — — = |
| T T T~ -safisfy : |
| | RS |
. - |
I / Data Em“y moduleQoS req | I
Alldcation ! I ‘
| | . 7 !
| AIIo;:;atlon § . : |
| i Y | !
: ' T
Topology View:) Allgcation Network Infrastructure View \ |
T oo esasy ode

~
~
~)
~ _ satisfy V;
>~ /
~

/
————— Aliocation —!— T —| Atomic Network | " { Network J 9

Vs
A _ s
; —
Site traffic req _ satisfy \

| ’ satfe fy
- - i satls
“satisfy > load req | A\ s 59
\ 7y
| 7/
|
|

satisfy /

\ /
\ /sétisfy ;
/ N\ /

***** Aftocation— + — — Composite Network /
|
/
/7

/
/7

satis / 7
Server Workstation

Figure 5.1: EIS synthesis model

Composite Site <

tagged values, the constraints and the type of the entity are presented at the columns of the
table. Each model element, belonging to a view, can have one of the following types:

* internal, focusing on the specific view

« external, facilitating the integration with entities belonging to other views

5.2.1 Functional View

Functional view depicts functional requirements related to software components and re-
lated data, as well as EIS users. It also includes design decisions related to software archi-
tecture. Entities that are participating in Functional view are briefly described here. Roles are
used to depict the behavior of different user groups while modules (client & server) are appli-
cation tiers (supporting multi-layered applications) that consist of services. Each role initiates
services that belong to client modules, and each service may invoke other services that be-
long to other modules, depending on the complexity of the application. Data Entities are used
to represent portions of stored data. Main entities of Functional view, along with their type
(external or internal, see 4.3.1) and the SysML base class they extend, are presented in Table

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 91

5.1. Entities participating in Functional view are related to entities participating in all other
diagrams to implement the relations depicted in Figure 4.10. These relations are discussed
in the following paragraphs as the rest of the views are presented.

Table 5.1 presents the complete definition of the stereotypes belonging to Functional view,
where the properties (tagged values) of each stereotype and the constraints are depicted.

Table 5.1: Functional View Entities

Stereotype

Base Class

Properties

Constraints

Type

Functional View

Role

Service

Server-Module

Client-Module

Data Entity

Initiate
Invoke

Module-Invoke

Block Def. Diag.

Actor

Block

Block

Block

Block

Dependency
Dependency

Dependency

StartTime
EndTime
NumOfOccurs

Size
Type
Repl. Policy

Percentage

Only FV stereotypes participate in it and all defined
constraints must be validated

Values must be defined for all attributes

Initiates at least one service

Total of related service initiations percentage must be
100%

Satisfies a Behavior Requirement

Allocated to an Atomic-Site

Satisfies a Response-Time Requirement
Satisfies a Service-QoS Requirement
Belongs to one Module

Includes at least one service
Satisfies a Module-QoS Requirement
Allocated to an Atomic-Site

Includes at least one service
Satisfies a Module-QoS Requirement
Allocated to an Atomic-Site

Invoked by a service
Allocated to an Atomic-Site

Defined between a Role and a service, belonging in a
Client-Module

Defined between Services

Defined between Modules and created automatically

External

External

External

External

External

Internal

Internal

External

Satisfies a Module-QoS Requirement

Let us examine this view from the designer’s perspective. Using Functional view, system
designer has to define the applications and the users of the system. To describe an appli-
cation, all tiers, starting from the user invocation of a specific operation (through the ap-
propriate interface) to the remote services or database operations should be described. Ap-
plications, either web-based or not, are composed of many software components that are
communicating and exchanging data. In Functional view the architecture of the distributed
software components is described.

A user is stated as a role, where specific attributes define his behavior: StartTime, EndTime
to declare his daily working hours and NumOfOccurs to declare how many users of that role are
existing intheIS. Note that roles are aggregations of users having the same working behavior
and dealing with the same applications. The next step is to define the user interfaces (called
client-modules, stereotypes of Block SysML entity), through which users are interacting with
applications. Applications are complex, constituting of many tiers (a set of client modules and

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 92

server-modules). Each module that is not invoked by a role, is considered as server-module
and is a stereotype of SysML Block entity.

Roles initiate operations of applications (called services, which are also stereotypes of
Block) belonging to client-modules. We can imagine services and modules as operations of
web-services. The communication between services belonging to different tiers of applica-
tions is defined with invoke relations, which are stereotypes of UML Dependency relationship.

A user can interact with different user interfaces and call a set of operations in the dura-
tion of his working time. So, a percentage attribute describes the percentage of time a user
is interacting with each specific operation. For that reason a constraint defined to this model
element is that the sum of percentage attributes of initiate relations starting from a specific
role, should be 100%. UML defines the constraint as “a restriction or a condition that should
be applied”. Data entities are modeling application’s files that store data.

Table 5.1 presents the specific constraints that entities of Functional view should satisfy.
For example, a role satisfies a behavior requirement. This means that a role could behave
differently under certain circumstances, e.g. on a heavy load day. Section 5.3 presents the
defined requirements and how they relate to other elements.

A conceptual representation of Functional view entities is presented in Figure 5.2. Please
note that a Module-Invoke relation is defined between two Modules. This relation is auto-
created and is associated with a module-QoS requirement, that holds the amount of process-
ing, storage and traffic (networking) requirements of the communicating services of these

Modules.
- — k
«Data-Entity, s I
<
«Invoke» -~
service» «|nvoke»
«Role» .. GEIVIEER | CIIVORE S }
«Initiate» o TP SR
3 hammd - | qdule_invoke»
. «|nvoke»

«client-Module» «server-Module»

Figure 5.2: Functional view entities

5.2.2 Topology View

Topology view act like a bridge between Functional view and Network Infrastructure view,
facilitating the hierarchical allocation of software entities (such as software modules) and
users to hardware elements (such as networks and nodes). It acts as an intermediate step,

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 93

that provide information to the designer in order to facilitate him to make the appropri-
ate allocations. Moreover, in Topology view, software component replicas can be defined, to
support distributed architectures. This means that many instances of roles, software compo-
nents and nodes are supported in EIS profile. The allocation is enhanced with the definition of
derived requirements that capture the load that software components and user interactions
produce to hardware components.

Topology view facilitates the description of system access points in terms of hierarchically
related locations, called sites. Sites may be atomic or composite (meaning that are composed
of other sites). The Site entity is an extension of SysML Block entity. Topology view is a Block
Definition diagram that comprises the aforementioned entities. Topology view entities are
presented in Table 5.2. Entities defined in other views (e.g. Functional view) may also partici-
pate in this diagram, in order to describe Topology view interrelation with other diagrams, as
defined in Figure 4.10. Software Allocation is used to describe the allocation of software mod-
ules (client or server) to atomic sites, while Usage Allocation refers to roles that are allocated
to atomic sites. Sites satisfy traffic requirements, indicating the amount of information ex-
change between the modules allocated to them. A traffic requirement is described in terms
of traffic coming in, going out and exchanged within each site. Traffic requirements are en-
tities defined in NFR view.

Constraints were used in two ways:

* to constraint SysML functionality, for example only modules may be software-allocated
to sites or atomic sites are allocated only to atomic networks and composite sites or
networks have to own at least one atomic element and

+ to compute values of derived entity attributes, for example, traffic requirements at-
tributes of a specific site are automatically computed from module-Qos requirements
attributes of modules allocated to this site.

Table 5.2 presents the entities of the Topology view, and for each entity the attributes and
the constraints are depicted.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 94

Table 5.2: Topology View Entities

Stereotype Base Class Properties Constraints Type

TV stereotypes and Roles, Client-Modules and Server-
Topology View Block Def. Diag. Modules from FV participate in it and all defined con-
straints must be validated
Range
Instances

Site Block External

Atomic-Site Block External
Composite-Site Block Comprised of other Sites External

)) Defined between Modules/Data Entities and Atomic
Software-Allocation Allocation Instances sit Internal
ites

Usage-Allocation Allocation Instances Defined between Roles and Atomic Sites Internal

Autocreated from a Client-Module

A Client-Module can have one or many Client-Module-

Replicas

Client-Modules from Topology view are migrating to
Client-Module-Replica Block Topology view, to make replicas of them Internal

When arole is allocated to a site, for every service that

this role initiates, for the corresponding client mod-

ule a replica is created and is allocated to the same

atomic-site

Autocreated from a Server-Module

A Server-Module can have one or many Server-
Module-Replicas

Server-Modules from Topology view are migrating to
Topology view, to make replicas of them

Server-Module-Replica Block Internal

Allocated with Software-Allocation to Atomic-Sites

Replica-of Realization Defined between Modules and their Replicas Internal

Two kinds of allocation are defined in Topology view: Software and Usage. The first is de-
fined between software component instances (module-replicas) and atomic-sites and the lat-
ter to users allocation to atomic sites, defining the system access points to users. Roles, client-
modules and server-modules are derived from Functional view and are appeared to Topology
view, so as to give the ability to the designer to make instances (replicas) of them.

A major constraint defined in Topology view is the following: when a role is allocated
to an atomic-site, for each client-module that the role initiates services from it, a replica is
auto-created and auto-allocated to this atomic-site. Figure 5.3 presents software-allocation
of client-module-replicas in gray color, meaning that these allocations are automatically cre-
ated, when a role is allocated to a site. Client and server modules are presented in blue, to
identify that these entities are coming from Functional view. Note that atomic sites may be
hierarchically contained in composite sites with the containment relationship of UML.

Section 5.3 presents the requirements defined in Topology view. Furthermore, the deriva-
tion of the complex requirements is provided there. For example, in Functional view, each
service is related with a service-QoS requirement, indicating the required processing, storage
and networking resources that this service needs in order to be executed (i.e., three types
of service-QoS are defined: proc-service-QoS, stor-service-QoS and traffic-service-QoS). The mod-
ule that contains these services, gathers all requirements of services in a requirement called

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 95

module-QoS requirement (also three types of module-QoS are defined: proc-module-QoS, stor-
module-QoS and traffic-module-QoS). In order to estimate the gathered processing and stor-
age requirements for the module-QoS, a simple aggregation is enough. For the traffic type of
module-QoS, this should be defined for each module-invoke relation between modules. This
derivation is produced in Topology view, where module-replicas are defined. The derivation
of module-QoS requirements is presented in section 5.3.4.

C
«composite-Site»
«Role» «containment» T
;} «Usage-Allocation»
1O «Software-Allocation» .
= «Software-Allocation»
«client-Module-Replica»
e «replica-of» «server-Module-Replica»
* 4—‘ o «replica-of»
5 0
«replica-of»
wclient-Module-Replica»
«client-Module» «server-Modulep

Figure 5.3: Topology view entities

From the system designer’s perspective, a usual scenario would be the following. Starting
with sites definition, a reasonable hierarchy could be done taking into account the geographi-
cal distribution (e.g regions or buildings) of the information system. Sites could be considered
as hosts of users and software components.

As stated, roles, client-modules and server-modules defined in Functional view participate
also in Topology view. Validation rules are applied to system model to ensure this. In a next
step, roles are allocated to atomic-sites. Each role in Functional view initiates services. These ser-
vices belong to client-modules. For that reason, according to the aforementioned constrains,
when a role is allocated to an atomic-site and for each client-module that this role initiates, a
client-module-replica is also automatically allocated to the same atomic-site. This process is
automated to help the designer to define the allocation policy.

Afterwards, the designer decides how many replicas should be defined for each of the
server-modules and allocates them to atomic-sites. Another validation rule checks all modules
in order to ensure that are allocated to an atomic-site. If this is not valid, the system designer
is notified about the non-allocated modules. The final step is to estimate the traffic that soft-
ware allocated modules produce in a site. This helps the designer to define the allocation

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 96

policy, based on the load imposed to sites.

A conceptual representation of topology view entities is presented in Figure 5.3. Firstly,
roles, client-modules and server-modules are derived from Functional view (noted as @®). Then
the role has been allocated to an atomic-site (noted as ®), and as a result of the automa-
tion, the appropriate client-module-replicas are created and allocated to the same atomic-site
(noted as ©).

5.2.3 Network Infrastructure View

Network Infrastructure view refers to the aggregate network, described through a hierar-
chical structure comprising simple and composite networks. It is represented using a hierar-
chy of Block Definition diagrams. Hardware components and configurations are also defined
using this view (servers, workstations and network devices). Networks could inter-connected
with PTP-connections (i.e., point-to-point connections, the simplest topology with a perma-
nent link between two endpoints) or could belong to other networks, which is defined with
the usage of UML containment relationship. Consider a LAN where smaller networks could
be defined (e.g. Virtual Local Area Networks (VLANs)) with different configurations for each
of them.

Sites are allocated to networks using Structural Allocation relation. Each atomic network is
a custom diagram (based also on Block Definition diagram), called atomic network diagram,
which encompasses all hardware elements that belong to that network. Network Infrastruc-
ture view entities are presented in Table 5.3. Most of them are characterized as external enti-
ties, since they should be further refined during network implementation by the system con-
structor. Existing network infrastructure is depicted using constraint requirements defined in
NFR view and associated to appropriate network components in Network Infrastructure view.
Elements of Functional, Topology and NFR views may also participate in Network Infrastructure
view to represent inter-view relations.

To depict the usage of Network Infrastructure view, consider a network architect designing
an information system’s network using this view. Network architecture is defined taken into

account:

i. the system access points, called sites, defined in the Topology view,
ii. the traffic performance indications for the information exchange within and between
sites, and
iii. existing network infrastructure restrictions.

Network architecture is defined in a hierarchical fashion, constituting of atomic networks,
which depict local networks that connecting hardware elements, such as workstations and
servers, where eventually software components are allocated. Atomic networks are intercon-
nected through networks either private or public.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 97

Table 5.3: Network Infrastructure View Entities

Stereotype Base Class Properties Constraints Type

ProtocolStack

Throughput

Network Block Type External
NumOfMaxNode

Atomic-Network Block External

. Composite-Network must contain at least one Atomic
Composite-Network Block) External
or Composite Network

Atomic Diagram must be associated to an Atomic Net-

Atomic-Network-Diagram Block Def. Diag. External
work
Memory
OperatingSysterr
Server System StorageUnit External

ProcessingUnit

Memory
OperatingSysterr

Workstation System StorageUnit External
ProcessingUnit

Cores

Processing-Unit System External

ProcPower
. Capacity

Storage-Unit System External
StorageSpeed
Usptream

Connection Association P External
Downstream

. o ProtocolStack
PTP-Connection Association External

Speed

. . Atomic and Composite Sites are allocated to Atomic
Structural-Allocation Abstraction Instances . Internal
and Composite Networks

. . Client and Server Modules are Allocated to Servers
Software-Allocation Abstraction Instances . Internal
and Workstations

Usage-Allocation Abstraction Instances Roles are Allocated to Workstations and Servers Internal

Three kinds of allocations are defined in this view:

* Structural allocation defines the allocation between sites and networks. Allowed alloca-
tions are between the same type of elements: i.e. atomic sites can be allocated to atomic
networks.

* Usage allocation defines the allocation of users to nodes.

* Software allocation defines the allocation of software components to nodes, responsible
for their execution.

Servers and workstations are comprised of three units: processing, storage and network
(in accordance with the three types of requirements in service-QoS and module-QoS require-
ments). Processing unit has tagged-values to define the processingpower and the cores of the
CPU. Storage unit has tagged-values that correspond to diskcapacity and speed (defined in
rpm). Network entity has the following entities: type, which corresponds to network type (eth-
ernet, wifi, bluetooth), throughput (depicted in Mbps), protocolStack which corresponds to the

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 98

supported protocols by this network (e.g. TCP, UDP) and numOfMaxNodes, a constraint to de-
fine the maximum number of connected devices to this network.

The allocation relation between Topology and Network Infrastructure views indicates that
each site defined in the Topology view is served by a network defined in Network Infrastructure
view. When a site is allocated to a network, Functional view entities allocated to this site must
be specifically allocated to network nodes belonging to this network. This task is assigned
to system designer/network architect. A validation rule ensures that there are no elements
(roles and module-replicas) non-allocated to networks.

Network Infrastructure view is multi-level. At the first level atomic and composite networks
along with their hierarchy and their connections are defined. The next step is to gather the
atomic and composite sites from the Topology view. Each of them has to be structural-allocated
to a network. A constraint applied here is that an atomic-site has to be allocated to atomic
network and a composite site to a composite network. Of course, many atomic-sites can be
allocated to one atomic network. Figure 5.4 presents a sample of a Network Infrastructure
diagram: Sites are allocated to atomic networks, and for each atomic-network, a corresponding
block definition diagram is defined.

In a second level of allocations, for each atomic-network a corresponding atomic-network
diagram is created. To accommodate the designer, in an atomic-network diagram, all allo-
cated elements (roles and module-replicas) to sites that are allocated to this atomic-network,
are automatically created. The remaining task for the designer is to define the servers and
workstations that should accommodate them. Afterwards, in the atomic-network diagram, the
system designer has to allocate roles and module-replicas to these workstations and servers.
Figure 5.5 presents a simple atomic-network diagram, where a role and client-module-replica
are allocated to a workstation and a server-module-replica is allocated to a server. A constraint
that is applied here is that since a role is allocated to a node, the corresponding invoked
client-module-replicas should be also allocated to the same node. To facilitate the designer,
the allocation of client-module-replicas is automated. The reader will notice that in an atomic-
network diagram the connections between the nodes are not presented. We could take into
account the following considerations:

+ hardware elements inside an atomic-network diagram, are connected through a LAN
connection and the properties of the connection are defined in the atomic-network el-
ement

+ the amount of information that has to be exchanged between nodes is estimated with
the help of the module-QoS requirements of the module-invoke relations that has been
defined in Topology view. There are three types of traffic: in, out and inout. Refer to 5.3.4
for the process of the estimation of the derived requirements.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 99

® «composite-network»

@

«containment»

«containment»

«atomic-network»

®

«atomic-network>»

° «PTP-connection» .\‘
-~ @ -
«Structural—&tlocatmn» .. «Structural-Allocation» /{1-1}
Atomic
Network
Diagram

Figure 5.4: Network Infrastructure view entities

«Servers»
«Role»
«client-Module-Replica» —
0 e
3 ; il
«Usage-Allocation» : «Software-Allocation» '-,_<.<Software—Allocation»

«workstation» .
«server-Module-Replica»

Figure 5.5: Network Infrastructure view: atomic network entities

5.3 Non-Functional Requirements View

NFR view consists of all NFRs that should be satisfied by entities belonging in the three
aforementioned -design- views. These requirements are progressively defined during model-
based EIS architecture design. Performance requirements are emphasized, since they are
essential in EIS architecture design. The utilization of NFR view is not to present all require-
ments from design views, but relates to the distribution of the requirements to other views.
Of course, if a designer wants to see all defined requirements, EIS profile gives him the oppor-
tunity to gather all requirements in a single NFR diagram. NFR view bridges the gap between
design views and Evaluation view, since the NFRs are the mean through which the evaluation
can be performed. Thanks to requirements verification, a system model described in design
views can be evaluated against the defined requirements.

A classification of NFRs is necessary to help us discover the requirements interrelations.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 100

Two kinds of NFRs are defined: simple and derived. Simple requirements have attributes that
system designer is responsible to provide values. Derived requirements have attributes that
their values are depending on values of other requirements. This derivation can be described
either with a mathematical expression or can be estimated by a derivation formula such as an
algorithm. In the latter case an implementation of this algorithm in a programming language
is necessary to be incorporated in the modeling tool that the designer uses.

There are three main perspectives (Figure 5.6 presents them conceptually) to help us cat-
egorize NFRs, as far as the scope of this thesis defines:

i. Behavior description. Requirements belonging at this category are used in order to de-
scribe specific user behavior, e.g. user behavior variations under different circumstances.
They are usually used as input parameters to evaluation process.

ii. Performance description. These requirements are used to dictate specific performance
that should be guaranteed by the system components, e.g. response time require-
ments.

iii. Load indications. These kind of requirements are used as specific indicators about the
aggregated required resources from the hardware components that the software com-
ponents impose to them. They help system designer to make allocation policies.

derived

>

Load

conform to verify

Behavior Performance

simple

Figure 5.6: Requirements categorization perspectives

5.3.1 Non-functional requirements classification

Requirements could have qualitative and/or quantitative characteristics. Handling them
from the performance perspective, any qualitative characteristic should be translated to
quantitative, so as to be validated against any formal verification method.

NFR view comprises NFRs relevant to EIS architecture design. They are progressively de-
fined during model-based EIS architecture design tasks. Three main categories are supported:

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 101

performance, physical and specific quality [46]. Performance requirements are emphasized,
since they are substantial in EISs architecture design.

Performance requirements are further decomposed to behavior, load and utilization [8].
Utilization requirements are associated with Network Infrastructure view and regard the pro-
portion of network infrastructure resources used by applications during normal operation
or extreme conditions.

Behavior requirements deal with service behavior and are time-related (e.g. response
times). They affect Functional view. Two of them are defined, namely responseTime, indicating
the time interval within which a service should complete its execution, and Behavior, indicat-
ing activation patterns for roles defined within Functional view.

Load requirements concern the load imposed to other EIS resources by EIS components
allocated to them. Load requirements are defined in all views. Most of them are derived
requirements, calculated using properties of other load requirements. Four different load
requirements are defined, namely service-QoS, module-QoS, traffic-Load and load.

Regarding physical requirements, indicating constraints imposed on design decisions by
existing hardware resources, we focus on those concerning capacity. Capacity, indicating lim-
itations of the hardware and their impact to the system, is related to Network Infrastructure
view.

Regarding specific quality requirements, we consider only availability requirements. They
are associated with Network Infrastructure view, where availability deals with hardware as-
pects. Availability requirements may also be defined for software components within Func-
tional View.

NFRs and the way they are interrelated to each other as well as to other entities belonging
in Functional, Topology and Network Infrastructure views are depicted in Figure 5.7. In the
following, NFRs are analytically presented grouped by EIS architecture view they are satisfied
by.

Functional Requirements: Behavior requirement describes alternate user behavior, e.g.,
when the user is active, or with which probability and how frequent a user initiates ser-
vices. A role initiates services, while each service satisfies a responseTime requirement. The
response time defined here is the accepted time while the user waits for or is informed for
the execution of the operation that he is interacting with. The service requires EIS resources
for its effective execution, expressed in terms of QoS it should receive from the underly-
ing infrastructure. The service-QoS requirement indicates the amount of processed, stored
or transferred information a service requires during its execution. Consequently, the service-
QoS properties are average and maximum estimations of traffic, processing and storage QoS
needed for the service execution. The QoS for each service is defined by the system architect,
taking into account that it should satisfy corresponding responseTime requirement. Module-
QoS requirement describes the QoS needed for the module execution. It bears the same
properties as service-QoS and is apparently derived by the service-QoS requirements belong-
ing in the same module. Moreover, module-QoS requirement properties are calculated as the

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture

102

«satisfun «deri » |«reguirement»
- _sajlsfy_f — sjerequirement» CHL Ci_grl_\{el?_ecg - Traffic Network
istvs /. «deriveReqt -0
“saustye s waernver~eqi: . -~ |
= , Y d wsatisfy» _ -~ - .
«requirement» P \ - - l
«requwemerjt» Service-QoS wderiveReqt»~ , / \ - L7 |
ResponseTime TN i - £ - |
VN P Site «reguirements -
-
. - Load
7 “deriveReqty | - . s !
) / | P e . - I \ P - |
| wsatisfy» |) - h - | |
’ s «deriveReqts \ } i
wsatisfyn y L~ Cj -~ Eatisfy» [|
| ’ «requirements | — — — 7 PR csatisfy» |
| 1
' 4 Module-QoS e \ ! '
C - \ / :
| «satlsfy» , \«Sat\ sfiyn P \ , .
W {{SatISan ~ ! .
! |
Module Invoke - -~ ; lsatisfy»
_ - \ ~ .
5 ~ / |
/ - 5 ~o |
| «Satlsfy» - s asatisfy» Ty |
- i Y f
wsatisfyb " f\l / - - \ fA !
jesatisfy» - - : [)
| - - PTP-Connection - N § 4 \csatisfy»
N - ST csaish NIV !
| /7 o Tasalisfyn = 7 \ch-atls{y» = — — sJareguirement» | |
T atishy - Connection| . — — — — — — — — %~ — — = — — :?; Constraint | * ‘
W ke kT yeatichyn e . - E \
«requirement» £ ~ — — ~ ~) - - “53tl_5f¥2’ e \ I
ekl = : Il _ ¥ _usatisfy» \
Availability |- _ «safisfy» P -~ - - iy \
T - wsatisfyn — =< . ' RN \ !
— N - - — _ «satisfy» ~ N \
~ - - - - ~
. wsatisfy» S - e T - "~ vl
N v - T = — _ _«satisfy» ~ - ~ -
~ —_ - - T~ T~
~ - - - - _ _ -) - W
Network-Device _ _ _ _ _ _ _ «satisfy» - - é«rﬁg}l{lrertrjent»
—————————— - - 2 ilization

Figure 5.7: Defined NFR Requirements and their relations to other entities

aggregation of the values of the corresponding service-QoS requirement properties. Subsec-
tion 5.3.4 presents such an estimation.

Topology Requirements: Sites satisfy traffic requirements, indicating the amount of infor-
mation exchange between the allocated modules. Traffic requirement is described in terms
of incoming, outgoing and exchanged traffic. Maximum and average values are estimated. It
is derived from module-QoS and behavior performance requirements as indicated in Figure
5.7 and it is estimated each time there is a change in allocations performed within Topology
View. Subsection 5.3.4 presents this computation.

Network Infrastructure Requirements: Networks and network nodes are characterized by
capacity indications, for example throughput, storage, speed or processing power. Their def-
inition by the system architect must take into account constraints applied by existing infras-
tructure, availability, utilization and load requirements, as indicated in Figure 5.7. Load re-
quirements are estimated based on module-QoS and traffic requirement properties satisfied
by entities allocated to the specific network infrastructure component (for example modules

allocated to a specific network node). Subsection 5.3.4 presents an algorithm to calculate the
derived attributes of traffic requirements.

In order to effectively define EIS architecture, the system architect should ensure that all
performance requirements are fulfilled. In SysML a test case determines whether the system
meets specifications placed by requirements. A test case is a set of conditions or variables

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 103

which will be tested to ensure requirements are met. Next chapter will explain the equivalent
of the SysML test case that we are using to verify the defined requirements.

5.3.2 SysML Extension to support NFRs

Requirements in SysML are described, as stereotypes of Class, in an abstract, qualitative
manner, since they are specified by two properties, id and text, corresponding to a simple
description. However, SysML specification suggests to use the stereotype mechanism to de-
fine additional properties for specific requirement types. Requirements can be grouped in
packages based on common characteristics, such as their category (for example functional
or non-functional) or the activities they are related to (for example software or hardware
requirements) forming a multi-level hierarchy.

SysML includes specific relationships to relate requirements with other requirements (in-
dicating the way they affect each other) or other model elements. The containment relation-
ship, defined between requirements, indicates that the composite requirement is realized
if and only if all the contained ones are realized. In this way, an abstract requirement may
be composed of more specific ones, or a complex requirement may be described in a more
detailed fashion. In the case of system design, the notion of composite requirements is es-
sential to indicate the way a requirement defined for the system as a whole may be described
in terms of the detailed requirements defined for system components. The SysML deriveReqt
relationship indicates that a specific requirement is derived by others. However, the way re-
quirements are specified is not depicted.

Requirements should be satisfied by model elements belonging to other diagrams (us-
ing SysML satisfy relationship). For this purpose, requirements may participate into other
diagrams, enabling the exploration of the relationship between requirements and design
decisions.

SysML provides the means to describe a set of tests, which should be performed to verify
whether a requirement is satisfied by system components. To depict such an activity, the test
case entity, included in requirement diagrams, is introduced. A test case is related to one or
a set of requirements to handle their verification, while it is described through a behavior
diagram (for example activity or state machine diagram) corresponding to the activity (as a
set of tests) performed to verify related requirements. The way requirements are handled in
SysML is summarized in Figure 5.8.

Since NFRs (for example performance requirements) are described using both qualitative
and quantitative properties, a quantitative method, such as simulation, should be employed
to produce the necessary data for their verification. In the related work (Chapter 3), tools and
methods about simulating SysML models were discussed. The concept of the test case is not
supported by any of them. In such case, the way system evaluation is performed, conforms to
the corresponding simulation method. Thus, the definition of test cases is of less importance,
since they could only be used to specify the conditions under which the system should be

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 104

Structure or Behavior Diagram Requirement Diagram

) T 2]

Model Element | S#SV_jrequirement | verity
! . 0. 0. |+id 7 0.+ est case
-property [1..%] et . .
0.4 0.
| ‘—‘ I
| . .
contains deriveReqt describes actions for the

verification process of
the requirement (activity,
state machine or
interaction diagram)

systemn component
(belonging to a
system view)

Figure 5.8: SysML Requirement representation

evaluated and not the evaluation method itself [95]. Furthermore, the results of the tests
performed either by a test case or using simulation to verify requirement satisfaction are
not included in SysML models. Such information is crucial for the system engineer to adjust
system design or relax imposed requirements.

When SysML is utilized for system design, as for example in EIS architecture model-based
design, NFRs are emphasized. To be accurately defined, NFRs should be described using
quantitative properties, in a similar fashion as the non-functional properties defined in MARTE
profile [81]. Since, NFRs may not always be described in an exact fashion, value deviation of
quantitative properties should be allowed, to indicate for example that the response time
for a specific service should be 4 to 5 seconds. In the same rational, maximum, minimum or
average values should be described. Thus, more than one properties should be available for
their description.

Furthermore, derived quantitative properties of NFRs should be automatically estimated.
The deriveRqt relationship indicates only the fact that the derived requirement is related to
one or more others. It does not provide any information about the way the requirement may
be derived. The derivation may be depicted by indicating the way its quantitative properties
are estimated, and this estimation is based on properties of the corresponding requirements.
Thus, a computation formula property should be defined. The computation formulas may
involve heuristics and become complicated. SysML requirement entity must be extended to:

i. effectively represent the quantitative aspects of requirements and

ii. define the way derived requirements should be computed.
Constraints, specific purpose languages as VSL [82] or scripts can be applied to derived re-
quirements to enforce the automatic computation of derived properties, while computation
algorithms must also be integrated in the SysML model. It should be noted that the specifica-
tion of computation formulas is meaningful only if it is actually executed and corresponding
quantitative properties are calculated.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 105

Structure or Behavior Diagram NFR Diagram Evaluation Diagram
-] T -]
Composite NFR verify Evaluation Scenario
w 1.k 0.* |-evaluationMethod
atist . -initializationProperty [1..7]
sausty requirement
0.* -
0.s T
werify
el AL Extended NFR Evaluation Entity
-property [1..4] " = 1.* 0 = "
-gualtativeProperty [0..] -inputProperty [1..%]
1w -guantitativeProperty [1..%] . . |-outputProperty [1..4]
N -comparemethoc 0. 0.
conformto
" Fa 0.*
deriveRet 1 -‘V
Derived NFR

-computationFormula

evaluate

Figure 5.9: Extending SysML to explore NFRs

NFRs must be satisfied by system components included in any of the system design dia-
grams. In such case, in order to decide whether a NFR is verified, the designer may have to
explore if the value of a quantitative property is satisfied by the related system components.
To perform such a task, the comparison of specific evaluation results for each system com-
ponent and related requirements properties should be performed, leading to the necessity
of integrating evaluation data into the system model.

The SysML test case, as a concept, is focused on depicting how to evaluate model element
satisfying a specific requirement, while integrating evaluation results into the system model
is not considered. In the case of system design, NFRs are verified in a quantitative fashion by
evaluation scenarios instead of test cases. An evaluation scenario should facilitate both:

+ the definition of the conditions under which the system will be evaluated (probably

using simulation) and

+ the depiction of the evaluation results, so that the system engineer may be directly

informed of requirement verification.

An evaluation scenario comprises of evaluation entities, used to evaluate model elements, to
verify the corresponding requirement or requirements and can be described with block def-
inition diagrams. Since an evaluation scenario is introduced to specify the conditions under
which the system design should be explored, itinvolves the evaluation of all model elements,
thusitis used to verify a composite, abstract NFR (for example the system performance must
be high), constituting of specific ones (e.g., service time should be between 3 to 5 seconds).
When an evaluation scenario verifies a composite requirement or a set of requirements, it
should be used to verify all the included requirements.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 106

Regardless of the method used to perform system evaluation, evaluation elements have
input properties, related to evaluated model elements, and output properties, depicting eval-
uation data. Based on the value of output properties, requirements are verified. In the case
of NFRs described in a quantitative fashion, an appropriate comparison method should be
defined for the specific requirement, based on the output properties of all related evalua-
tion entities. Such a method could be defined for example using a SysML Parametric diagram
or executable scripts, associating requirement quantitative properties to evaluation entity
output properties.

As already mentioned, to simulate a SysML model using a specific simulation method,
simulation-specific characteristics should be included in the model. Such properties may be
incorporated into evaluation entities, thus evaluation specific information does not have to
be included in a system model designed by the system engineer, promoting discrete activity
independence.

During system design, NFRs may also used to depict specific behavior forced on system
components (for example the way a traffic generator may behave under heavy traffic con-
ditions). In such a case, there is no point in verifying the requirements. The corresponding
evaluation entity may conform to them, since they specify conditions under which the system
design should be evaluated. The same requirement or requirements may be verified more
than once, by evolving evaluation scenarios, as the system design is re-adjusted. Evaluation
data and conditions included in them should be integrated in the SysML model. Thus, eval-
uation scenarios should be grouped into a distinct diagram, named Evaluation Diagram. The
way basic SysML concepts are extended to handled NFRs for system design is summarized
in Figure 5.9.

5.3.3 NFR Representation

As seen in Figure 4.10, NFR view comprises requirements that are satisfied by entities
of the three aforementioned views (called design views) and are verified by elements of the
Evaluation View. Table 5.4 presents these requirements and the related entities that satisfy
them. All requirements are defined as stereotypes of SysML requirement entity, while addi-
tional stereotype attributes are defined to accommodate specific requirement properties.
Requirements may be derived from other requirements, while all of them are treated as in-
ternal entities, since they are defined on the context of EIS architecture design. As stated
earlier, requirements in SysML are described in an abstract, qualitative manner, since they
are defined using a name and a description. In the case of EIS architecture design, NFRs
should be more accurately descriptive using quantitative properties. Furthermore, derived
requirement properties should be automatically computed by combining specific attributes
of requirements and allocation entities. Though, SysML supports NFRs description, SysML
requirement entity was heavily extended to effectively represent the quantitative aspects of
requirements and the way they derive from each other.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 107

Table 5.4: Requirements and their relationship with other model elements

EIS Profile entity Associated Elements Derived from
Load-Req (derived) Network, Server, Workstation Traffic-Req
Availability-Req Server, Workstation
Traffic-Load-Req (derived) Site Module-QoS-Req
Utilization-Req Network, Server, Workstation
Service-QoS-Req Service
Module-QoS-Req (derived) Module Service-QoS-Req
Response-Time-Req Service
Behaviour-Req Role
Constraint-Req Network, Node, Connection, External-WAN, PTP-Connection

Table 5.5 presents the entities that extend the SysML requirement entity with their attributes
and the corresponding constraints.

Table 5.5: Non-Functional Requirements View Entities

Stereotype Base Class Properties Satisfied by Constraints
NFR View Reqts. Diag. Only NFRV stereotypes participate in it and all defined
constraints must be validated
Type Types are: Processing, Storage, Traffic
Service-QoS Reqt yp Service s . . 2
Value Value must be defined for all types
) Value . I)
Response-Time Reqt o Service Value and deviation must be defined
Deviation
type
max-value M | .)
LI Types are: Processing, Storage, Traffic
Module-QoS Reqt avg-value Module-Invoke))) :
o Derived by corresponding Service-QoS requirements
deviation
comp. form
ActDistrF . .
. ctoistrrunc Attributes are obligatory
Behavior Reqt Mean Role) .
o One Behaviour requirement per Role
StdDeviation
type
max-value Types are: in,out,within
Traffic-Load Reqt avg-value Site Derived by allocated modules Module-QoS require-
deviation ments
comp. form.
type
max-value) o
Types are: in,out,within
Load Reqt avg-value Network . .
o Derived by allocated sites
deviation
comp. form.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 108

5.3.4 NFR Derivation

SysML includes specific relationships to associate requirements with other requirements
(indicating the way they affect each other) or other model elements. The containment re-
lationship, defined between requirements, indicates that the composite requirement is re-
alized if and only if all the contained ones are realized. In UML, realization is defined as a
specialized abstraction relationship between two sets of model elements, one representing
a specification (the supplier) and the other represents an implementation of the latter (the
client). In this way, an abstract requirement may be composed of more specific ones, or a
complex requirement may be described in a more detailed fashion. In the case of system
design, the notion of composite requirements is essential to indicate the way a requirement
defined for the system as a whole may be described in terms of the detailed requirements
defined for system components. The deriveReqt relationship indicates that a specific require-
ment is derived by others. Since relationships do not have properties, the way derived re-
quirements are specified is not depicted.

Derived requirements have attributes that their values are related to values of other, in-
terrelated requirements. A derive relationship between a derived requirement and a source
requirement is based on analysis. A derive relationship often shows relationships between
requirements at different levels of the specification hierarchy. There are many ways to define
the derivation. OCL could be used to describe the derivation. If the derivation formula is com-
plex, an algorithm (or a heuristic method) could be used to define the derived attributes. The
implementation of the algorithm could be done in any programming language that a design
tool could support, even with a call to external program.

Derived requirements are used in order to provide indications to system designer about
the required resources (storage, processing and traffic). They could be considered as estima-
tions where specific QoS requirements are calculated to help the designer to define allocation
policies. In the case of EIS profile, the implementation language is the Java language, as it is
supported by the MagicDraw [3] modeling tool, that was used for the profile definition and
implementation.

The following subsection present the derivation algorithms for the following derived re-
quirements:

* Processing Module-QoS requirement: the derived attributes are the avg — value and

max — value.
+ Traffic Module-QoS requirement: the derived attributes are avg—value and max —value.

+ Traffic-Load requirement: the derived attributes are avg — value and max — value.

Derivation of processing & storage module-QoS requirement

Processing and storage module-QoS requirements are defined for each module. These re-
quirement capture the average and maximum values of the processing and storage resources

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 109

that are required from the services that are belonging to a module.

1: for i =1to m (where m is the number of modules in {mod}) do
2 for j = 1 to s (where s is the number of services in {srv};) do
3 for k = 1 to r (where r is the number of roles in {role};) do
4 for t = 0 to 23 (where tis an hour of a day) do
5: if StartTimey <t < EndTimey then
6 SRj[k, t] = numberOfOccurencesy
7 SRavg;j[k, t] = numberOfOccurencesy * percentagey;
8: else
9: SRj[k,t] =0
10: SRavg;[k,t] =0
11: fort=1to23do
12: Smax;[t] = ¥y, SRj[k t]
13: fort=1to 23 do
14: Savg;[t] = X_, SRavg;[k,]
15: fort=1to 23 do
16: Sproc;[t] = Smax;[t] * procg
17: Sstorj[t] = Smax;[t] * storg
18: Savgproc;[t] = Savg;[t] * procg
19: Savgstor;j[t] = Savgj[t] storg
20: fort=1to 23 do
21: Mproc;[t] = X;_, Sprog;[t]
22: Mstor;[t] = Zle Sstor;[t]
23: Mavgproc;[t] = st=1 Savgprog;[t]
24: Mavgstor;[t] = ¥_, Savgstor;]t]
25: proc; = maxZ3; Mproc;][t]
26: stor; = max?3, Mstor;[t]
27: avgproc; = w where x the number of Mavgproc;[t] # 0
28: avgstor; = w where x the number of Mavgstorc;[t] # 0

Algorithm 1: Calculating the max-value and avg-value attributes of the processing and
storage Module-QoS-requirement

A module is comprised of services. Each service satisfies a Service-QoS requirement, which
is composed of three types: processing, storage and traffic. A module-QoS requirement also
is composed of the same three types. To estimate the corresponding processing module-
QoS requirement, we have to estimate the average and the maximum values of the required
processing power and the storage capacity. The maximun value is estimated if all the services
concurrently require processing power and storage for their active time.

Module-QoS requirement is defined for each Module-Replica in Topology view. The derived
attributes are the maximum and the average processing power and storage that the services
belonging to this module require.

For each module replica participating in Topology view which is replica of a corresponding
module defined in Functional view ({mod}), maximum and average processing power and
storage requirements are estimated as described in the following steps:

i. For each service belonging to the module {srv},,, the roles initiating it, either directly or
indirectly, are gathered in {role}; list.

ii. Maximun concurrent instances of each role initiating this service, called SR, are esti-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 110

Vi.

Vii.

viil.

Xi.

Xii.

mated, based upon StartTime, EndTime and numberOfOccurences properties of this role
on a daily basis (using 24 time-intervals lasting an hour).

Average concurrent instances of each role initiating this service , called SRavg, are esti-
mated on a daily basis (using 24 time-intervals lasting an hour), based upon StartTime,
EndTime and numberOfOccurences properties of this role and the percentage property of
initiation entities associating the role (either directly or indirectly) to the service .

Maximum concurrent role instances initiating the service, called Smax;, are estimated
for each time-interval.

Average concurrent role instances initiating the service, called Savg;, are estimated for
each time-interval.

Maximum processing power requirements imposed by the invocation of each specific
service, called Sprocs, are estimated for each time-interval, based upon corresponding
service-QoS requirement properties and maximum concurrent role instances initiating

the service.

Maximum storage requirements imposed by the invocation of each specific service,
called Sstorcg, are estimated for each time-interval, based upon corresponding service-
QoS requirement properties and maximum concurrent role instances initiating the ser-

vice.

Maximum processing module-QoS requirement, called proc,,, is estimated as the maxi-
mum value of the sums of the maximum processing power requirements imposed by
the invocation of each specific service it belongs to, computed for each time-interval
(called Mproc).

Maximum storage module-QoS requirement, called stor,,, is estimated as the maximum
value of the sums of the maximum storage requirements imposed by the invocation of
each specific service it belongs to, computed for each time-interval (called Mstor).

Average processing power requirements imposed by the invocation of each specific ser-
vice, called Savgproc, are estimated for each time-interval, based upon corresponding
service-QoS requirement properties and average concurrent role instances initiating the

service.

Average storage requirements imposed by the invocation of each specific service, called
Savgstorg, are estimated for each time-interval, based upon corresponding service-QoS
requirement properties and average concurrent role instances initiating the service.

Average processing module-QoS requirement, called avgproc,,, is estimated as the aver-
age value of the sums of the average processing power requirements imposed by the
invocation of each specific service it belongs to, computed for each time-interval (called

Mavgproc).

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 111

xiii. Average storage module-QoS requirement, called avgstory,, is estimated as the average
value of the sums of the average storage requirements imposed by the invocation of
each specific service it belongs to, computed for each time-interval (called Mavgstor)

Algorithm 1 describes this computation process. The same algorithm calculates and the
storage-module-QoS requirement.

Derivation of Traffic Module-QoS requirement

Traffic-module-QoS requirement is defined for each module-invoke relationship defined in
Topology view, which is also derived from the services relations defined in Functional view.
This requirement captures the average and maximum values of the networking resources
that are required from the communicating services of these two module-replicas.

In order to find the maximum traffic between a module A and a module B, the following
steps are performed ':

i. for each service belonging to module A, called srvy,
ii. for each service belonging to module B, called srvg,

iii. if aservice of the module A (srv,) invokes a service of module B (srvg), we add this traffic
to the total_traffic(A — B)

iv. in order to find the maximum traffic that is exchanged between srv, and srvg (srv,
invokes srvg) hourly , we multiply the value of the traffic service-QoS requirement that
is satisfied by the srvg (trafficQoSreqg,,,) with the maximum instances of the roles that
initiate this srv, for each specific hour

v. the maximum traffic for the module invoke between module A and B (max(traffic —
module — QoS,_3)), is the maximum value of total_traffic(A —» B) matrix

vi. in order to find the average traffic that is exchanged between srv, and srvg in a hourly
basis, we multiply the value of the traffic service-QoS requirement that is satisfied by the
srvg with the average concurrent instances of the roles that initiate srvg for each hour

vii. to find the average traffic requirement for the exchange between modules A and B, we
get the average traffic requirement from all hours

The way that the derived traffic module-QoS requirement is estimated, is presented in
Algorithm 3. The input, output and temporary data for this estimation are presented in Al-
gorithm 2.

Load requirements concern the load imposed to EIS resources by EIS components allo-
cated to them. They provide an indication for the system designer so as to have an estimation

TWe have adopted the following assumption: a role ia active by calling services at specific hours a day, which
are defined in startTime and endTime attributes

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 112

Input: {mod}: a list of Client and Server Modules of Functional View
Input: {smod}: a list of Server Modules of Functional View
Input: S;: a list of the services that belong to a specific Module i
Data: Smax: a Table created for each service s holding the maximun number of all role
instances responsible for the invocation of the service a specific hour of the day.
It is assumed that all the associated roles invoke the service at the same time.
Data: Savg: a Table created for each service s holding the average number of all role
instances responsible for the invocation of the service a specific hour of the day.
Data: invokes(S;, S;): returns true if service S; invokes service S; otherwise returns false
Data: Mtmaxy, ., : @ Table created for each pair of modules m1, m2 holding the
maximum traffic that module m1 invokes to module m2 each hour of the day
Data: Mtavg, .m,: a Table created for each pair of modules m1, m2 holding the average
traffic that module m1 invokes to module m2 each hour of the day
Output: maxtraffy, ., : the value of maximun traffic requirement between modules ;1
and m;. It is stored in the max-value attribute of the traffic
Module-QoS-requirement associated to invokation m; — m;
Output: avgtraffy, ., : the value of average traffic requirement between modules ;1
and m;. It is stored in the avg-value attribute of the traffic

Module-QoS-requirement associated to invokation m; — m;

Algorithm 2: Input, Output and Temporary Data Structures

1: for i = 1 to m (where m is the number of modules in {mod}) dO
2 for j = 1 to MS (where ms is the number of server modules in {smod}) do

3 ifi #j then

4 fork=1toS;,1=1toS;

5 (where s; is the number of services in {srv}; and S; the number of services to {srv};) do
6: if invokes(S;x,S;) then

7 Mtmaxy, m,+ = Smax(S;y) * traffic(S;;)

8 Mtavgy, om + = Savg(Sjy) * traffic(S;;)

9 maxtraffy, m, = max{2; Mtmaxmy, m,[t]

Y3 Mtavgm, om [t
10: avgtraffy, m = 2o M8mem)\ here x the number of Mtavg p, -, [t] # 0

Algorithm 3: Calculating traffic Module-QoS-requirements

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 113

of the software components that require resources. Similarly to service-QoS and module-QoS
requirements, three types of load requirements are defined: processing, storage and traffic.
The first two types are derived straightforward from the corresponding types of module-QoS
requirements. Traffic-load requirements derivation is more complex, since it is based on the
network communication of software components, which are allocated to nodes across the
network.

Derivation of processing and storage Load requirement

Processing load requirements are defined for each node that is defined in atomic-network
diagrams. In nodes there are allocated module-replicas, which have specific processing re-
quirements that are derived from the services that are composed of. Two values are calcu-
lated for each processing load requirement: average and maximum value. Average value is
calculated as the sum of the average values of the module-replicas that are allocated to each
specific node. Maximum value is the sum of the maximum values of the module-replicas,
accordingly.

Derivation of traffic-Load and Load requirements

Performance requirements are defined as extended NFRs. Besides id and text properties,
quantitative properties are also defined. Maximum and average values are defined for utiliza-
tion requirement and minimum and average values are defined for availability requirement,
while the accepted deviation of values is also defined. The load requirement is described
by maximum value, average value, deviation and measurement unit quantitative properties.
Availability and utilization requirements are defined by the network designer. The /oad re-
quirement, though, is a derived one, as shown by the corresponding stereotype. Thus, it is
described by computational formula additional property. In practice, it is an estimation of the
aggregated QoS parameters of the module replicas they serve as system resources. There
are three types of load requirement: processing, storage, satisfied by nodes, and traffic sat-
isfied by networks. Traffic-load requirement is related to site-to-network allocation decisions,
and is derived by corresponding traffic requirements, which in turn are derived by traffic-
Module-QoS requirement of module-replicas allocated to sites. More than one sites may be
allocated to a network. When a site is allocated to a network, the module-replicas allocated to
it, must be specifically allocated to network nodes belonging to this network. When changes
are made to site allocation or network architecture (e.g., new sites are allocated/removed
to/from a network), module-replica allocation to network nodes is also adjusted and the re-
estimation load requirements is needed, to ensure that hardware elements composing the
network architecture provide the requested quality of service to the software components.

The maximum and average value properties of traffic-load requirement are derived from
corresponding traffic requirements properties, defined for each site that is allocated to the
network satisfying this requirement. Traffic requirements, which are defined for each site, in-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 114

dicate throughput requirements concerning the information flowing from this site to others
and within the site. Traffic-load requirement is described by similar quantitative properties as
the load requirement. The destination property is defined to indicate the site the information
is flowing to.

To determine the traffic between two sites, named source and target, the following process
is proposed:

i. get all modules of source site

ii. getall modules of target site

iii. for each module belonging to source site, if there is a module-replica-invoke relationship
and the target module belongs to target site, then add the max and avg traffic values of
the traffic requirement of this module-invoke relation to the corresponding values of the
traffic requirement.

The computation formula of the maximum and average value of the traffic-load require-
ment, is a complex process defined by a heuristic algorithm presented in algorithm 4. In
practice, it was integrated in corresponding MagicDraw plugin. The algorithm 4 estimates
traffic-Load values in a recursive fashion, starting with traffic-load computation for atomic
networks, based on atomic site traffic requirement values allocated to the specific network.
To this end, matrix A is estimated based on traffic requirements between all atomic sites
(trafficg, s in STEP1). STEP 2 consists of traffic-load computation for all atomic networks. Since
composite networks consist of other networks, a traffic-load requirement is estimated for a
composite network, if and only if the traffic-load requirement has been estimated for all the
networks belonging in the composite network. Thus, in STEP 3 traffic-load is estimated for all
composite networks consisting only of atomic ones, and in STEP 4 traffic-load is estimated for
all the rest composite networks. In STEP 5, traffic-load is estimated for all network connec-
tions defined in the Network Infrastructure view. As shown in algorithm 4, the traffic traveling
through a network consists of internal traffic, exchanged between the sites allocated to it,
and external traffic, propagated to other networks. In the case of a composite network, the
traffic imposed to it may be estimated based on the external traffic of all the networks be-
longing to it. Since the computation of a network’s internal traffic can be performed more
efficiently, the network traffic is estimated using the total and internal traffic of its compo-
nents.

5.3.5 NFR Verification

System designer uses design views to define software and hardware architecture and
NFR view to impose performance requirements to model elements. The intension is to eval-
uate the proposed system synthesis and this is possible if an appropriate evaluation method is
chosen and if all the defined requirements are finally verified by their corresponding system
elements. There are two sets of requirements: the first set is providing input information for
evaluation process, for example the service-QoS requirement defining the required resources

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 115

for its execution and the second set is used as the validation rule, to check if a specific evalua-

tion process output is between a range defined in this requirement (Figure 5.10). In order to

facilitate the evaluation process, a specific view that matches the input and output properties

of each model entity and defines the evaluation configuration data is introduced.

Since this thesis emphasizes on performance NFRs, which are described using both qual-

itative and quantitative properties, a simulation, as a quantitative method, is employed to

produce the necessary data for their verification. In such case, the way system evaluation is

performed, conforms to the corresponding simulation method. A specific view that serve the

evaluation process is introduced, to separate the system model from the verification process.

Evaluation view serves the following aspects:

AwWwN=

10:
11:
12:

13:
14:
15:
16:

17:
18:
19:

20:

let S = {sq,s1,*,Sn} be the set of all atomic-sites
STEP 1:
create a (n? x 3) matrix A = A[i,j] , where n = |S|, |S] stands for the number of elements of the set S, as follows:

Sk k=li/n},j=0
Al j] = 1sy, l=imodn,j=1

traffics, s, k=[i/n],l=imodn,j=2.

where sy, s; €S,

traffics, g is the aggregated traffic between sites Sy and S,

STEP 2:

let P be the set of all atomic-networks

Vp € P: S, Sy, © S be the set of sites allocated to atomic-network p
Vp € P:

totalTraffic, = ¥ A[x, 2], {x : A[x,0] V A[x,1] € Sp}

inTraffic, = ¥ Aly, 2], {y : Aly,0] A Aly, 1] € Sp}

remove(A[y, <I{y : Aly, 0] AA[y, 1] € 5,})

. STEP 3:
let C be the set of all composite-networks that are comprised only of atomic-networks
V¢, c € C, let Q. be the set of atomic-networks belonging to ¢, n = |Q]|

Ve, c € C, let S¢ be the set of sites allocated to atomic-networks belonging in Q.

V¢, c € C: totalTraffic, = Zg=1 totalTrafficq — inTrafficg, q € Q. — inTraffic.

inTrafficc = Y Aly, 2], {y : Aly, 0] AAly, 1] € S¢}

remove(Aly, *]{y : Aly,0] AAly, 1] € Sc})

STEP 4:

let R be the set of all composite-networks that are comprised of networks for which traffic is calculated
vr,r € R, let Q, be the set of networks belongingtor, n = |Q,|

vr,r € R, let S, be the set of sites allocated to networks belonging in Q,

vr,reR:

totalTraffic, = Zgzl totalTrafficq — inTrafficg, q € Q, — inTraffic,

inTraffic, = Y Aly, 2], {y : A[y, 0] AAly, 1] € S;}

remove(Aly, *]{y : Aly,0] AA[y,1] € S;})

repeat step 4 until R' =

STEP 5:

let T be the set of all network-connections

vt t € T,let ny, n, be the two connected networks and S;, S, the sets of sites allocated to ny, n, respectively
VLteT:

trafficc = Y Aly, 2], {y : Aly,0] AAly, 1] € S; US,}

Algorithm 4: Estimating the load requirement for networks

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 116

Evaluation Scenario DEVS Simulation Model

generates——»

Performance Requirement I

S

verifies Evaluation Entity DEVS EIS Library Component
1 .
input property nitialize initialization property
output property result property

conforms to

/

Behaviour Requirement |

Figure 5.10: Two kinds of requirements: performance and behavior

+ evaluation view is automatically created when an evaluation method is applied to sys-
tem model;

+ design data are separated from evaluation data;

+ each evaluation method require specific configuration data, which can are differenti-
ated per simulation scenario;

+ a history of the evaluation scenarios facilitates the designer to explore alternative solu-
tions;

+ each evaluation scenario is a snapshot of the architecture design.

Algorithm 5 presents the process of requirements verification when the simulation results

are incorporated into the system model.

1: STEP 1:

2: Gather simulation results and populate output attributes of evaluation entities

3: STEP 2:

4: If an evaluation entity satisfies a requirement, a validation rule is applied. Values of outpout attributes are checked against
the defined values for the corresponding NFR. For all NFRs, a satisfying value is required, but there are cases where a
range of values is more appropriate. Let s be a value of an output attribute of an evaluation entity, r be the value of the
corresponding requirement and d be the deviation of this value. Then the following equation should be valid:

se[r—dr+d]
5: STEP 3:

6: Ifs ¢ [r—d,r+d], this means that the validation rules failed, so the specific requirement is not verified. The user is notified
for this event, by annotating the evaluation and the design entity.

Algorithm 5: NFR Verification

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 5. Designing EIS Architecture 117

5.4 Summary

In this chapter the views concerning the design phase, where software and hardware ar-
chitecture are specified, were analytically presented. Furthermore, the organization of NFRs
was discussed, as well as, the estimation of derived requirements was presented with specific
algorithms. Next section presents the Evaluation view in detail.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter

Evaluating EIS Architecture

Contents

6.1 OUtline it e

6.2 Evaluation View. i i i i it it it it it e e e e e e e e

6.3 The Big Image: Views Interrelation.

6.4 Automating the verificationProcess

6.4.1 Simulation framework

6.4.2 Generate executable simulationmodel

6.4.3 Simulation Execution. e e e e

6.4.4 Simulationresultsincorporation

6.5 Implementation e

6.6 SUMMANY ittt it ettt ettt e et et ottt o nnneesen

6.1 Outline

This chapter describes the Evaluation view. This view is introduced to enhance the defini-

tion specific EIS architecture configurations, which should be evaluated, as well as, to store

the evaluation results of different configuration scenarios. Using these results, NFRs verifi-

cation is done. Finally, performance evaluation is enabled via requirements verification.

6.2 Evaluation View

In order to effectively define EIS architecture, the system architect should ensure that all

NFRs are fulfilled. Evaluation view is used to verify these requirements. System performance

varies because of the ability to define different EIS architecture configurations in Functional

and Network Infrastructure views. In practice, Evaluation view determines whether the pro-

posed (current) architecture meets specifications placed by NFRs. Since EIS architecture de-

119

Chapter 6. Evaluating EIS Architecture 120

sign process may require to evaluate and properly adjust the proposed architecture more
than once, Evaluation view consists of multiple evaluation scenarios, in order to evaluate al-
ternative solutions. Since simulation is employed to evaluate the architecture design, these
scenarios are specific simulation experiments.

Evaluation View B‘_ _Evaluatlon Scenario Functional / Topology / Metwork Infrastructure B}
Wiew
Y evaluates - -
evaluation entity design entity
-in_property& 0 — — —|-Property [
_________ —in_propertyE

-out_property

9 satisfies

verifies | behavior requirement

-req_property g

|
|
|
| |performance requirement
 [-req_property E

-

T) satisfies /

F

- =
MFR Wiew

Figure 6.1: Interrelating EIS Performance Requirements, Design Entities and Evaluation En-

tities

An evaluation scenario is a set of conditions or variables which will be tested (simulated)
to ensure that requirements are met. As indicated in Figure 6.1, an evaluation scenario is
conducted to evaluate design decisions depicted in Functional, Topology and Network Infras-
tructure views, while its results are used to verify requirements defined in NFR view. When
conflicts are discovered, changes are made to the system configuration by the system archi-
tect (e.q. Functional, Topology, Network Infrastructure or even NFR view) and a new evaluation
scenario is initiated by the system architect until a satisfiable solution is reached.

The entities participating in a evaluation scenario and the way they are interrelated to with
entities belonging to design views are depicted in Figure 5.1. An evaluation scenario evaluates
network topology and network elements. For each design entity that will be evaluated, a cor-
responding evaluation entity is created (noted with Eval prefix). As such, Eval-Node entity eval-
uates workstation and server elements from Network Infrastructure view. An atomic network
is represented as Eval-Atomic-Network and a composite network as Eval-Composite-Network. In-
terrelations between network evaluation entities have a direct mapping to interrelations of
corresponding entities in Network Infrastructure view. Roles and modules defined in Functional
view are allocated to nodes in Network Infrastructure view. Since allocation decisions are part
of the EIS architecture, these entities should also be represented within a evaluation scenario
by Eval-Role and Eval-Module entities. Furthermore, the Eval-Service entity is included corre-
sponding to a service defined in Functional view, since it contains the necessary information
for the execution of specific services grouped within a module.

Each entity in Evaluation view is created in order to evaluate a specific EIS architecture

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 6. Evaluating EIS Architecture 121

Service
From Functional — — — — _]-processingq _
Wiew -storage o
-network

evaluates/ 1=
Eval-Service

| I
| I
I
| I
B N — — — — — — — —— =y 'L |
) improcessing C Lo
FI:GIII Evaluation —lin:storage . — = — = e satizfizs
Wiew in:network B s e |

outresponseTimes]f — — — — — — — — — — — — —

|
verifies |
|
|

responselime
From MFR Wiew — — —-responseTime F - - - — — —

Figure 6.2: Eval-Service entity description

entity. Thus, NFRs related to the entity that the system designer wishes to verify, should also
be related to the evaluation entity. An Evaluation view entity can only be related to require-
ments that the corresponding design entity should satisfy. For example, a service satisfies a
responseTime requirement indicating maximum execution time. This requirement is verified
by Eval-Service entity. Figure 6.2 illustrates this example.

Evaluation entities have input and output attributes. Input attributes correspond to at-
tributes describing corresponding design entity. Output attributes indicate simulation re-
sults. To verify a requirement, the system designer (better yet, the design environment) should
compare output attributes to corresponding requirement attributes, to check if there is a
conflict. Asindicated in Figure 6.2 for example, Eval-Service has as input attributes the amounts
of processed, stored or transferred information that a service requires during its execution.
These attributes are inherited from Service entity belonging to Functional view. Moreover,
Eval-Service has as output attribute the average responseTime, which is computed when the
evaluation scenario is executed. ResponseTime attribute of Eval-Service is compared to respon-
seTime requirement that this Service has to satisfy. If a conflict has been identified, the sys-
tem designer should alter the system design (e.g. modify the network architecture or the
requirement itself) using Functional and NFR views and conduct a new evaluation scenario.
The Evaluation view entities are presented in Table 6.1, where the specific evaluation diagram
that they are participating is defined, while Table 6.2 illustrates them along with the defined
constraints.

It is important to enable the system designer to maintain all performed evaluation sce-
narios in order to reach an acceptable solution, since they are part of the information used
to make design decisions. Even if a acceptable solution is reached, information contained
within evaluation scenarios may be used to pursue alternative solutions. This is facilitated by
the fact that output attributes are directly compared to corresponding NFR attributes. There

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 6. Evaluating EIS Architecture 122

Table 6.1: Evaluation View Entities in Diagrams

EIS Profile entity SysML Entity Part Of

Evaluation View Block Definition diagram -

Evaluation Scenario Class -

Software Architecture Diagram Block Definition diagram -

Hardware Architecture Diagram Block Definition diagram -

Eval-Service Block Software Architecture Diagram
Eval-Service-Replica Block Hardware Architecture Diagram
Eval-Server-Module Block Software Architecture Diagram
Eval-Client-Module Block Software Architecture Diagram
Eval-Server-Module-Replica Block Hardware Architecture Diagram
Eval-Client-Module-Replica Block Hardware Architecture Diagram
Eval-Role Block Software & Hardware Architecture Diagram
Eval-Workstation System Hardware Architecture Diagram
Eval-Server System Hardware Architecture Diagram
Eval-Node System Hardware Architecture Diagram
Eval-Connection System Hardware Architecture Diagram
Eval-PTP-Connection System Hardware Architecture Diagram
Eval-Network (Atomic & Composite) Block Definition diagram Hardware Architecture Diagram
Eval-Usage-Allocation Allocation Hardware Architecture Diagram

are two kinds of requirements: qualitative and quantitative. In the case of quantitative require-
ments, the exact comparison between arithmetic values is not always appropriate. Thus, an
appropriate comparison method should be defined for a specific requirement.

The system designer may choose to evaluate the whole EIS architecture or a part of it.
Conditions, under which the EIS architecture is evaluated, are defined by behavior require-
ments associated to eval-Roles, since they are used to represent different behavior of the
same role, e.g. when a user initiate services, with what probability and how frequent.

Each evaluation entity is created in order to evaluate a specific EIS architecture entity and
verify corresponding requirements. During system design, NFRs may also be used to depict
specific behavior forced on system components (e.g., the way a traffic generator may behave
under heavy traffic conditions). In this case, the corresponding evaluation entity should con-
form to them, providing input that could be used for the generation of the simulation model.
The relation between design and evaluation entities, as well as corresponding requirements
is depicted in Figure 6.1. To generalize this, it could be stated that a design entity satisfies two
NFRs: performance requirement (depicting system performance restrictions) and behavior
requirement (depicting system behavior). Only the first requirement must be verified by an
eval-entity, since the second provides input properties to the evaluation entity, indicating the
conditions under which the evaluation should be done.

Each evaluation scenario consists of two sub-views (diagrams), focusing on software and
hardware architecture design respectively.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 6. Evaluating EIS Architecture 123

Table 6.2: Evaluation View Entities

Stereotype Base Class Properties Constraints Diagram
Evaluation View Block Def. Diag. contains one or more evaluation scenarios
Evaluation Scenario Block Def. Diag. contains all evaluation entities

in:activDistrFunct) ’
evaluates Role entity and conforms to Behavior re-

in:mean)
X quirement
Eval-Role Block in:numberOfOccurences)) . HA. &S.A.
.) for each role in an evaluation scenario only one be-
in:startTime)))
. . havior req is defined
in:endtime

in:QoS-traffic
in:QoS-processing
in:QoS-storage . . - .
. evaluates service entity and verifies ResponseTime &
Eval-Service Block out:max-) S.A.
) conforms to Service-QoS reqts
ResponseTime
out:avg-
ResponseTime

evaluates module entity and verifies Module-QoS req.
avg-QoS-processing is computed as the average of

in:numberOfOccurences
in:list-of-services
out:avg-QoS-

processing .) '
Eval-Module Block corresponding module replicas attribute S.A.

out:max-QoS- .
avg-QoS-storage is computed as the average of cor-
responding module replicas attribute
max-QoS-storage is computed as the maximum of

corresponding module replicas attribute
max-QoS-processing is computed as the maximum of

processing
out:avg-QoS-storag

out:max-QoS-storage K . X
corresponding module replicas attribute

defined between Eval-Modules

in:invoking-Eval-
s evaluates Module-Invoke entity and verifies traffic

Module i
o . Module-QoS requirement
in:invoking-Eval- .
Eval-Module-Invoke Dependency — avg-QoS-traffic is computed as the average of corre- SA.
odule

sponding module replicas attribute
max-QoS-traffic is computed as the maximum of cor-
responding module replicas attribute

out:avg-QoS-traffic
out:max-QoS-traffic

Eval-Initiate Dependency in:percentage defined between an Eval-Role and an Eval-Service S.A.

in:instances
in:list-of-services

out:avg-QoS-
. processing evaluates Module-Replica entity and verifies Module-
Eval-Module-Replica Block H.A.
out:max-QoS- QoS req.
processing

out:avg-QoS-storage
out:max-QoS-storage

. . . defined between an Eval-Role and an Eval-
Eval-Usage-Allocation Allocation in:instances . H.A.
Workstation

. . o defined between an Eval-Module-Replica and an Eval-
Eval-Software-Allocation Allocation in:instances - H.A.
ode

Software Architecture Diagram The entities participating in software architecture diagram
correspond to entities from Functional view and are used to define the behavior of the soft-
ware components during the evaluation of the proposed EIS architecture design; evaluate
the corresponding functional view entity and verify the requirements that should be satis-
fied. Technically, it is a simple block definition diagram, resembling the Functional View.

Hardware Architecture Diagram Hardware architecture diagram entities correspond to
entities from Topology and Network Infrastructure views, and are used to initialize an appro-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 6. Evaluating EIS Architecture 124

priate simulation model instance and evaluate the design entity and verify the corresponding
requirements. Hardware architecture diagram consists of a network diagram, presenting the
evaluation equivalent entities of Network Infrastructure view, and for each atomic network, a
block definition diagram exists, having the evaluation entities of the corresponding atomic-
network diagram of Network Infrastructure view.

Software architecture diagram defines the software architecture of replicas defined and
distributed in hardware architecture diagram. Their combination is able to build an executable
simulation model.

During the automated construction of software and hardware diagrams, validation rules
are applied to model elements to ensure that the appropriate simulation input data exist
and are valid. As soon as the simulation is performed and the results are incorporated, spe-
cific validation rules are performed to check the verification of all requirements, as stated in
Section 5.3.5.

6.3 The Big Image: Views Interrelation

This section describes the interconnections of model elements: how a design entity is
related to an evaluation entity and how is connected with requirements, in order to verify,
satisfy or conform to them. Furthermore, requirements derivations and allocations are also
depicted. All defined views are depicted in an abstract fashion, to show how they are inter-
connected through their containing elements connections.

To be able to track the interrelations of the model elements, we should place all model
elements in a figure. This would explain how the allocations, replications, evaluations and ver-
ification are defined between design entities and evaluation entities, as they were presented
in Figure. 4.10.

Focusing on Network Infrastructure view, in Figure 6.3, networks A:atomic-network and
B:atomic-network are interconnected through a point-to-point connection. Network architec-
ture design decisions are aiming to the allocation of sites to networks supporting them in
order to minimize network traffic. In Figure 6.3, sites S1:site and S2:site are allocated to net-
work A:atomic-network. To take such a decision, the network architect is based on the Traffic
requirements of the information exchange within and between sites. For that reason, a Load
requirement, satisfied by networks, is defined. In practice this requirement represents a per-
formance QoS indication imposed to the network system resource. It depends on site alloca-
tion decisions and it is derived by corresponding sites Traffic requirements. It is recomputed
each time a new network is added or deleted or a site allocation decision is made, while its
computation is not trivial, since a heuristic computation algorithm should be applied.

Network configuration is performed taking into account, besides load, utilization and avail-
ability requirements defined in Network Infrastructure view, as well as existing network infras-
tructure restrictions, represented as constraint requirements.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 6. Evaluating EIS Architecture 125

Focusing on the Topology view, traffic requirements, associated to sites, depend on soft-
ware allocation decisions. Software components, called modules, are defined in Functional
view. Each of them contains services initiated by roles, or invoked by other services. Each
service satisfies a responseTime requirement and impose specific requirements about the
needed QoS from processing, storage and networking resources for its execution.

Based on service-QoS requirements, module-QoS requirements associated to each module
are derived. Modules communication is described by a Module_Invoke relation, as shown in
Figure 6.3 between modules M7 and M2.

A traffic-module-QoS requirement indicates the QoS needed from the network resources
to effectively perform data-exchange within acceptable time, e.g. so as all corresponding
services have an acceptable response time. Based on this, the software designer decides on
alternative software allocation polices, by

i. allocating one or multiple module-replicas for each module in different sites

ii. decidingwhich module-replica to use in module communication (depicted by the module-
replica-inkove relation).

For example, in Figure 6.3, two replicas of module M7 (M1R1 and M2Rz2) are allocated to
site S7:site. Both of them are invoking the single replica of module M2, called M2R1 allocated
to site S2:site. Traffic performance requirement depends on module replica allocation deci-
sions and is derived by module-Qos requirements associated to module-replica-inkove relation.

Module-replicas are allocated to nodes (either workstation or server) belonging in an
atomic network. In Figure 6.3, the module replica M1R1 is allocated to W1:workstation, which
satisfies the W17: Pro Load processing-Load requirement. This requirement is derived by the
corresponding Proc Module-QoS requirements (e.g., M1R1 : ProcModule — QoS) of all the mod-
ule replicas running on that workstation (the software components that are executing on
that node).

As shown in Figure 6.3, the load requirement for a network (A:Load), defined by the net-
work designer in Network Infrastructure view, is derived by a set of traffic-Module-QoS require-
ments defined by the software designer in Functional view (M1M2 : TraffModule — QoS). This
means that A:Load is derived by the communication of software components that are allo-
cated to nodes that are belonging to that network. Paragraph Derivation of traffic-Load and
Load requirements analyzes this derivation. Analyzing this dependency is not evident, thus
a number of discrete views and an enhance performance requirement description mecha-
nisms, emphasizing requirement derivation and their association with specific design deci-
sion is needed to effectively design the system architecture.

In order to evaluate the proposed architecture design, Evaluation view is utilized. Evalua-
tion view consists of two sub-views, focusing on software and hardware design respectively
(as shown in the right part of Figure 6.3). The entities participating in software architecture
diagram view correspond to Functional view entities and are used:

i. to define the behavior of the software components during the simulation of the pro-

posed architecture design and

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 6. Evaluating EIS Architecture 126

ii. toevaluate the corresponding Functional View entities (for example the Eval-Module M2
evaluates the M2 module and verifies the requirements that are satisfied by M2, based
on the behavior of all of its replicas).

Hardware architecture diagram entities correspond to Topology (module replicas) and Net-
work Infrastructure view entities, are used:

i. toinitialize a corresponding simulation model instance and

ii. to evaluate the corresponding design view entities.

For example, the properties of W1: Eval-Workstation entity are used to verify the processing-
Load requirement that the corresponding design entity W1: workstation satisfies (W1: Proc
Load).

When the evaluation process is completed, evaluation results (simulation results) are in-
corporated into evaluation entities. In that way, evaluation entities are checked against de-
fined validation rules. If incorporated results are not in accordance with all related require-
ments that this entity verifies, this means that the defined requirements are not verified.
System designer has to change the architecture so as to re-evaluate the new system archi-

tecture until all requirements to be verified.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

sewlipes] ‘| soJAbieuy

yoeoudde paseq-JINSAS Vv :UBIsag WaisAS uoiewou] asiidiaiug paseg-|lapon

FUNCTIONAL VIEW :

Y M1M2:Traff Module-QcS
Module_Invoke
satisf)_(i'

N

_ =
M2 Sﬁt'sti_'/"fv‘IE:Pru-c Module-Qo5 EVALUATION VIEW

replica_of

replica_of SOFTWARE ARCHITECTURE VIEW

M1:Prec Module-QoS

TOPOLOGY VIEW |

replica_of

:M1R1:Proc Medule-QoS

req M1R1 M2 M1

'E_'“j,-(—IEM -

Eval-Module_Invoke

allocate

satisfy " X!
AE‘:!te ;
Iil y satisfy

derive Rqt derive_Rqt
S1: Site \ satisfy

M1R1IMZR1:Traff Module-Qo!

Module Replica_lnvoke

allocate :

replica_of

51 Tra ic allocate HARDWARE ARCHITECTURE VIEW

derive Rat | "derive_Rat

allocate | req I

satisfy';-ﬁ'pc Load

| = IR (22)
X - B: Load at'SfY B: E"a_l'fwt'c"je_t“rk Eval-PTP Connecticn \\ Al Eual-awmlc-m‘tmrk /I
7~ f? \ f ! ™ evaluate —

ETWORK INFRASTRUCTURE VIEW Verity

8 f‘?ﬂmt'wﬂb: PTP-Connection \B'ﬂk}m ic-network/
A: ATOMIC-NETWORK - A: EVAL-ATOMIC-NETWORK
MI1R1 | M1
satisfy allocate - i allocate —
e i
[rea | == [0 M) O i
" !
WL Prec Load W1:worl tatmn | W1: Eval-workstation -
= /""—:77
Verify

@ (,\E.é.?—;glk) — (M (M- e

requirement atomic-site atomic-network workstation module module-replica eval-module-replica

Figure 6.3: Performance Requirement Derivation and Verification in IS Architecture Design: An example

24n1291Yd.4y SI3 Bunenjeas -9 usadeyd

LCL

Chapter 6. Evaluating EIS Architecture 128

6.4 Automating the verification Process

To evaluate the performance of an EIS architectural design, system designer would like
to have an integrated design environment that would support performance evaluation. This
means that ideally the designer would not like to be involved in the evaluation process, for
example he/she could perform evaluation without knowing the background processes such
as model transformations, simulation framework initialization and simulation execution. To
manage this, an automated evaluation process is presented in this section.

The steps required to accomplish the automation of the verification process, are:

+ simulation framework selection

+ simulation code generation

+ simulation execution

« simulation results incorporation

6.4.1 Simulation framework

In the case of EIS, simulation frameworks supporting discrete time simulation are well
suited, as users and software services generate requests on other services. The requests
generate specific traffic on the network and processing and I/0 load on the site of service.
Stochastic functions may be used to define random behavior of specific parts of the system,
like time handling and type of requests made by users.

Regarding the requirement for MDA compliance, the selected simulation framework must
provide a standards-based specification for input simulation models, i.e. a MOF meta-model.
This enables the definition and execution of standards-based transformations of EIS models
(UML meta-model) to simulation models. Modelica and DEVS simulation frameworks both
provide MOF meta-models for simulation models specification, in the notion described above.
DEVS is appropriate for discrete time simulation by definition. Modelica is better suited for
simulating systems with continuous behavior, but it can also be used for discrete time sim-
ulation. As stated in 2.4.2, an extension of DEVS was introduced, making possible to define
simulation capabilities in a SysML model. From this work, the DEVS metamodel is utilized, as
we have already defined a SysML profile for our model.

DEVS is a formalism allowing a hierarchical and modular description of the models. In
the classic DEVS formalism, atomic DEVS captures the system behavior, while coupled DEVS
describes the structure of system. DEVS coupled elements enable the definition of composite
models in a way similar to SysML components and contain ports (input and output), other
DEVS (Atomic or Coupled) elements and couplings (e.g., port inter-connections).

In this thesis, focus was given on defining behavior of DEVS atomic models and combining
them in DEVS coupled models, rather than using existing simulation components. Therefore,
the DEVS meta-model, proposed there, did not feature provisioning for this case. However,
in the case of EIS, models are composed of large amounts of interconnected components of
specific types (e.g. nodes, services, etc.). As simplification of the verification activity is one of

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 6. Evaluating EIS Architecture 129

our main goals, there is no need for EIS engineers to define each component’s behavior, us-
ing yet another (than the EIS) simulation specific profile. Therefore, the required simulation
components where analyzed and implemented during the application of the approach for
EIS, while initialization, composition and interconnection of the components emerge from
the EIS model during the verification execution. The missing feature was introduced in the
DEVS meta-model by extending it, as illustrated in Figure 6.4. In the previous version of the
DEVS meta-model, component references of DEVS coupled components could only be ref-
erences to other DEVS components, defined in the simulation model. In the revised version
of the meta-model, they may also be references to existing simulation library components,
in which case, required initialization parameters must be specified. The parameters may be
single values, multiple values or other simulation library components.

MODEL DEVS_ATOMIC COMPONENT_REFERENCE_LIST

0. % -model_name : String

1
DEVS_COUPLED 0.*

o _* |-model_name : String COMPONENT_REFERENCE
-text : String

1
0.1
LIBRARY _COMPONENT

-package : String
-class : String

1

0.%
INIT_PARAMS

INIT_PARAM
-name : String

i

VALUE_INIT_PARAM COMPONENT_INIT_PARAM ARRAY_INIT_PARAM
T VALUE . LIBRARY_COMPOMNENT © INIT_PARAMS

e

L

Figure 6.4: DEVS Meta-model extension

6.4.2 Generate executable simulation model

Avalid executable simulation model should conform to the DEVS meta-model, mentioned
in Figure 6.4 [74]. Thus, executable simulation model generation is performed with the trans-
formation of the EIS model to the respective DEVS model.

This requires that a DEVS execution environment supporting the DEVS meta-model is se-
lected. If no such environment is available, existing environments must be configured or
extended, so that they can handle DEVS models as input. In our case, DEVS)Java [121] was se-
lected and extended with a transformation layer that translates complex DEVS models, that
conform to the aforementioned meta-model, to DEVSJava executable code.

Regarding the generation of DEVS models from EIS models, the structure and relation-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 6. Evaluating EIS Architecture 130

ships of the latter were analyzed. The main model entities that affect overall performance
were identified in both hardware and software architecture diagrams (that are included in the
Evaluation view), like Eval-Network, Eval-Node etc.

Although, for EIS design purposes, it is better to define different aspects of EIS elements
using distinct diagrams/views, the simulation model should capture the structure and at-
tributes of a given concrete system each time. Additionally, verification and effectiveness of
the simulation largely depends on the simplicity of the simulation model. Apparently, model
structure and model element attributes and dependencies exist and can be used in the trans-
formation independently of the diagrams they appear in, which are more useful for organi-
zation/presentation purposes. Therefore, a set of simulation components were defined as
an equivalent to EIS software and hardware elements, as they could be combined in the con-
text of a given evaluation scenario. This is coarsely depicted in Figure 6.5, where EIS model
elements reside on the left side of the Figure and the respective DEVS model elements on
the right.

Moreover, Figure 6.5 illustrates the high-level patterns of the conceptual mapping be-
tween EIS model elements and DEVS model elements. However, these patterns can be ap-
plied on large and complex configurations of EIS, with several hundreds of nodes.

It is clearly illustrated that simulation elements usually derive from the combination of
more than one EIS model elements, with the exception of DEVS_Simulation_Controller. The
latter was decided to be defined independently from the DEVS_Scenario, in order to separate
simulation model structure from simulation execution context, like simulation duration or
number of simulation executions.

The EIS part of Figure 6.5 includes the main entities of the hardware architecture diagram
(Eval-Network, Eval-Node, Eval-Module-Replica-Invoke), the main entities of the software ar-
chitecture diagram (Eval-Role, Eval-Module, Eval-Service) and their associations and depen-
dencies. Also, the Eval-Scenario block provides information regarding the context of the eval-
uation that is used for the generation of the respective, top-most DEVS_Scenario and the
DEVS_Simulation_Controller elements. These EIS entities are utilized for the generation of the
respective DEVS elements (DEVS_Network, DEVS_Node, etc.), while associations and dependen-
cies mostly indicate how DEVS model elements should be interconnected. In EIS, elements
are organized under diagrams, which are combined with a scenario. On the contrary, DEVS
elements are organized in a more strict hierarchy. The DEVS_Scenario is the root of the model
containing the DEVS_Simulation_Controller, a set of interconnected DEVS_Network elements
and a set of DEVS_Nodes. Each DEVS_Node is composed of a DEVS_Processor, a DEVS_Storage, a
DEVS_Network_Interface and a set of DEVS_Modules, containing sets of DEVS_Services. Addition-
aly, the DEVS_Roles using each node are specified, as well as the DEVS_Network, where each
node belongs.

In a lower level of this transformation scheme, EIS entities were further analyzed to iden-
tify their key attributes that determine the performance of the system. Equivalent attributes
were defined in the respective simulation elements. The transformation handles their proper

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 6. Evaluating EIS Architecture

131

«block»
Eval-Scenario

T

«DEVS Coupled»
> DEVS_Scenario

«LibraryComponent»

DEVS_Simulation_Controller

«Diagram» ‘
Hardware Evaluation
- *

interconnection

1%
\ «LibraryComponent»

DEVS_Network

1 1.7

«Diagram»
Software Evaluation

«block»
Eval-Network
{type=atomic 1.* 1.*
«Dependency» «block» s

T Eval-Module-Invoke Eval-Role «LibraryComponents | _J
DEVS_Role |0.*

|

«Dependency» !
Eval-Initiate L

connection
1+

«LibraryComponent»
DEVS_Node

Eval-Node

allocated to

«Dependency»
Eval-Module-Replica-Invoke

\ 0..*

«LibraryComponent»
DEVS_Module

«LibraryComponent»
DEVS_Storage
«LibraryComponent»

DEVS_Processor

«LibraryComponent»
DEVS_Network_Interface

«block»
Eval-Module |1 =

«block»
Eval-Module-Replica

1.*

«LibraryComponent»
DEVS_Service

DEVS

,,

Figure 6.5: Outline of the EIS to DEVS model transformation

initialization, based on the values of the respective attributes of EIS elements. The possible
entity interconnection schemes were also examined. Additional information derived from the
combination with other EIS model elements, like the Eval-Initiate dependencies that indicate
which services are initiated by each user role. Actually, a large set of attributes and associa-
tions of the EIS model, that cannot be depicted in the high level representation of Figure 6.5,
are utilized in the implemented transformation.

DEVS_Scenario, DEVS_Node and DEVS_Module were implemented as DEVS Coupled compo-
nents that are composed of other components. All other leaf elements were implemented as
DEVS Atomic components with the expected behavior. The interested reader may refer to the
source code of the aforementioned library components, in [122]. Each library componentis a
Java class that extends DEVSJava basic classes ViewableAtomic or ViewableDigraph. Simulation
execution can be inspected via SimView, a free GUI framework for DEVSJava [121]. In View-
ableAtomic classes, the behavior of the simulation component is defined as determined by
the component state as affected by the reaction of the external events, with internal function-
ality. In ViewableDigraph classes, composite simulation components are defined, containing
other interconnecting components. The behavior of ViewableDigraph components is defined
by the composition of the behaviors of the contained components.

The fact that both meta-models (SysML and DEVS) are MOF-based, enables the use of
standard transformation languages, like QVT. Therefore, the appropriate QVT relations were
defined for the generation and interconnection of DEVS model elements from the respective

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 6. Evaluating EIS Architecture 132

EIS model elements. The first relation of the EIS to DEVS QVT transformation is displayed in
listing 6.1.

Listing 6.1: EIS to DEVS QVT transformation

transformation eis2devsMM(eis:uml, devs:Devs) {
top relation eisScenario2DevsModel {
scenarioName: String;
checkonly domain eis scenario : uml::Class { name = scenarioName };
enforce domain devs model : Devs::MODEL {
DEVS_COUPLED = devsCoupled : Devs::DEVS_COUPLED {
MODEL_NAME = modelName : Devs::T_Model_Name { text = scenarioName },
COMPONENT_REFERENCE_LIST =
componentReferenceList : Devs::T_Component_Reference_List { },
INTERNAL_COUPLING = internalCoupling : Devs::T_Internal_Coupling { } } };
when { scenario.getAppliedStereotype('EvaluationView::Evaluation Scenario’)->notEmpty(); }
where {
eisSimulationAttributes2ComponentReference(scenario, componentReferencelist,
internalCoupling);
eisEvalNetwork2ComponentReference(scenario, componentReferencelist,internalCoupling);
eisIncludes2InternalCoupling(scenario.getModel(), internalCoupling);
eisIncludesRev2InternalCoupling(scenario.getModel (), internalCoupling);
eisEvalPTPConnection2InternalCoupling(scenario.getModel(), internalCoupling); } }

Executable simulation models contain all the information required, indicating the impor-
tance of their automated generation from system models, without the need for human in-
terference. A part of a generated DEVS simulation model is presented in the listing 6.2. In
this listing a DEVS Coupled scenario contains a SimController DEVS library component and
a Network DEVS library component. Initialization parameters, derived from the EIS SysML
model, are in the simulation model.

Listing 6.2: DEVS simulation model

<?xml version="1.0" encoding="UTF-8"?>
<Devs:MODEL xmlins:xsi="http://ww.w3.0rg/2001/XMLSchema-instance”
xmlins:Devs="urn:DEVS_MM . ecore”
xsi:schemalocation="urn:DEVS_MM. ecore platform:/resource/Eis2DevsMM/metamodel/DEVS_ MM. ecore”>
<DEVS_COUPLED>
<MODEL_ NAME text="aScenario”/>
<COMPONENT_REFERENCE_LIST>
<COMPONENT_REFERENCE xsi:type="Devs:T_Component_Reference” text="SimulationController”>
<LIBRARY_COMPONENT class="SimController” package="eis.library”>
<INIT_PARAMS>
<INIT_PARAM xsi:type="Devs:T_Value_Init_Param” name="simulationTime">
<VALUE type="Real” value="3600"/>
</INIT_PARAM>
<INIT_PARAM xsi:type="Devs:T_Value_Init_Param” name="simulationRuns"”>
<VALUE type="Integer” value="1"/>
</INIT_PARAM>
</INIT_PARAMS>
</LIBRARY_COMPONENT>
</COMPONENT_REFERENCE>
<COMPONENT_REFERENCE xsi:type="Devs:T_Component_Reference”
text="Composite—Network regional office 1 net evaluation”>
<LIBRARY_COMPONENT class="Network” package="eis">
<INIT_PARAMS>
<INIT_PARAM xsi:type="Devs:T_Value_Init_Param” name="throughput”>
<VALUE type="Real” value="100"/>
</INIT_PARAM>
<INIT_PARAM xsi:type="Devs:T_Array_Init_Param” name="nodes">
<INIT_PARAMS/>
</INIT_PARAM>
<INIT_PARAM xsi:type="Devs:T_Array_Init_Param” name="networks">
<INIT_PARAMS>
<INIT_PARAM xsi:type="Devs:T_Value_Init_Param” name="network">

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 6. Evaluating EIS Architecture 133

<VALUE type="String” value="Atomic—Network registry office 1 net evaluation”/>
</INIT_PARAM>
<INIT_PARAM xsi:type="Devs:T_Value_Init_Param” name="network">
<VALUE type="String” value="Atomic—Network datatacenter 1 net evaluation”/>
</INIT_PARAM>
</INIT_PARAMS>
</INIT_PARAM>
</INIT_PARAMS>
</LIBRARY_COMPONENT>
</COMPONENT_REFERENCE>

</DEVS_COUPLED>
</Devs:MODEL>

Given that the required simulation components are already implemented in DEVSJava, the
essential information contained in the generated DEVS model is the initialization, intercon-
nection and configuration of such components. Therefore, as far as the DEVS meta-model
compatible environment is concerned, we decided to implement a transformation of DEVS
models (XMI) to the respective DEVSJava configuration class that instantiates and configures
all EIS-related DEVSJava components, forming, this way, the executable DEVSJava code. This
transformation was defined using EXtensible Stylesheet Language Transformations (XSLT),
as itis basically a syntactic transformation that exploits initialization information in the DEVS
model and creates the respective Java declarations and statements. Therefore, the gener-
ated DEVS simulation models are executed in the DEVSJava environment after an automated
transformation.

To be able to execute the simulation, the corresponding library components were de-
veloped [122]. Table 6.3 presents them along with the corresponding EIS entities that they

implement.
Table 6.3: DEVS library components

Library Type EIS model element
Module Coupled Client-Module, Server-Module
Network Atomic Composite Network
NetworkInt Atomic Atomic-Network
Node Coupled Server, Workstation
Processor Atomic Processing Unit
Role Atomic Role
Service Atomic Service
Storage Atomic Storage Unit

SimController Atomic

6.4.3 Simulation Execution

Having produced the DEVSjava simulation code, the simulation is executed and anyone
can watch the progress through the DEVS]ava simulation viewer (Figure 6.6).

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 6. Evaluating EIS Architecture 134

L DEVS-Suite Ver 2,10 ol ===
File Options Controls Help
Model Viewer :
[apt2 opt2
(ho
e
Oyt in ionn] T p2
] busy = -
[n2 e g nens ® g =100.000
start @ active - out
stop @ @ = 10.000
av - p
TL: 10.0 -~ busy & out
™: 15.0 1 nen= @ g = 5,000
Phase: busy r
SGTE Sl result @]
Input Ports:
“P - . il HE stop ar + . TA
Inject.. in & active @ Thru
solved € 0 =200.000 & vut

v| always show couplings

Simulator Control

-

Fun Step Console
Step(n)
Reset Enable Governor

Real Time Factor: 1.0E-4

Animation Speed: 9.0

Time View Update Speed: 20.0

Simulator State: Pause
Time of Last Ewvent: 10.0
Time of Hext Ewent: 13.0

wefore [TERATI 2 time:10.0

Figure 6.6: The DEVS suite simulation viewer

Simulation results are stored in XML format, so as to be able to be incorporated into the
design environment.

6.4.4 Simulation results incorporation

Having generated the executable simulation model, simulation may be executed and the
simulation results must be incorporated in the EIS model. Thus, requirement verification
through the profile, independent from the simulation environment is possible.

To exploit simulation results and import them in the EIS model via standards-based model
manipulation approaches, they should be provided in a standard representation, i.e. accord-
ing to a MOF meta-model. A simple meta-model for the representation of performance esti-
mation, was defined for that purpose, as illustrated in Figure 6.7.

For each EIS model element there are two recorded properties: one holding information
related with the identification of the model element, such as the name, the stereotype name
and a unique identifier and the second holding information related with the simulation results
for that model element, such as a key-value pair for each attribute of the model element
that will be imported to the system model. Having such a representation, the incorporation
renders to one step procedure.

Having the simulation results imported in the system model, the only thing that the sys-
tem designer should do is to run validation rules. Validation rules are utilized to indicate the
evaluation entities associated to non-verified requirements. Evaluation entities not verifying

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 6. Evaluating EIS Architecture 135

Result
o | id - String Eeiue
0. .* [-stereoctype . String -name : String
-name : String alue : double
-count : int

Figure 6.7: Simulation results meta-model

amodel constraint are marked with red color, and the designer is able, by clicking on them, to
identify the non-verified requirement. The verification process have been described in detail
in Section 5.3.5

All these tasks require expertise in several technologies and standards, as SysML, DEVS,
QVT, Java and the EIS domain. However, once implemented, the benefits from their combined
use are available for multiple uses by numerous, interested EIS engineers.

6.5 Implementation

The following steps were accomplished in order to implement the proposed approach:

i. EIS metamodel definition
ii. Implementation of EIS profile in MagicDraw [3] modeling tool, which was accomplished
in two steps:
+ profile definition, extending SysML entities [123]. EIS profile is a set of diagrams,
each of them holding the corresponding stereotypes with their tagged-values
+ validation rules and constraints implementation, using the plugin extension mech-
anism of MagicDraw [124], writing Java code
iii. definition of the DEVS metamodel
iv. definition of the QVT transformation to produce the DEVS model from the system model
v. generation of DEVS)Java simulation code from the DEVS model
vi. implementation of the EIS library components [122] using the DEVSJava [125] simulator
vii. incorporation of the simulation results into the system model
viii. verification of the requirements, which is based on the simulation results
Many software tools were exploited throughout this thesis. The selection criteria were to
use open source software when possible or widely accepted commercial ones. A key issue
was to select a modeling environment that would support the SysML, as officially specified
my OMG. The complete list of software that was used, follows.

+ MagicDraw [3] and SysML plugin [123] for MagicDraw, to define the EIS profile which is
supported by the EIS plugin

* Netbeans [126], as IDE for the development of EIS plugin

« Medini QVT [127] eclipse plugin, for the transformation of EIS model to DEVS model

+ Java Architecture for XML Binding (JAXB), for the incorporation of simulation results

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 6. Evaluating EIS Architecture 136

« DEVSJava [121], to execute the simulation

A
2 DEVS
e
- © e
® O [
A\ | 1
2% lavr!
By e
Evaluatiol L XSLT | '
valuation i i
View \@ simulation :__?‘f_l'_-'_-__:
: model
/ ;
P DEVSJava
a3
MagicDraw 5 ac
i HEe
°© Sg
EIS plugin
_ ,
7 S
4 | JAVA |
P e R i

Figure 6.8: Implementation overview

Effort was given in order to provide an automated environment to system designer (see
Figure 6.8). The design environment is based on a well-known commercial product, Magic-
Draw (Academic Standalone Edition) with SysML plugin, which provides an open API [124] to
encourage programmers to implement custom plugins for their specific domain. From the
designer’s perspective, the evaluation process is transparent (he is not involved in the sim-
ulation code generation, execution and incorporation of results). Especially, the EIS plugin,
incorporated the following functionality:

+ Custom diagrams to support EIS profile views. Each diagram has a toolbar with the cor-
responding view elements (enhanced with diagram constraints). These diagrams are:
Functional View

Topology View
Network Infrastructure View

Atomic Network Diagram
NFR View
Evaluation View

Software Architecture Diagram

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 6. Evaluating EIS Architecture 137

- Hardware Infrastructure Diagram
- Evaluation View Atomic Network Diagram

Validation rules to ensure model consistency
+ Constraints implementation in EIS plugin.

+ Auto-generation of evaluation scenarios

* Invocation of shell scripts

+ Invocation of model transformations

+ Incorporation of simulation results

* Requirements verification

6.6 Summary

This chapter presented the evaluation phase of the proposed approach. Evaluation view
was analytically described. An abstract overview of the approach, involving all defined views
with their interrelations was presented, to help the reader understand how we manage to
produce simulation executable code from SysML models. Finally, implementation issues were
discussed, to prove that the approach was based on the integration of standards and tools,
in accordance in INCOSE. The next chapter presents an extensive case study, showing the
design and evaluation process from the perspective of the system environment, using the
implemented design tool.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter

A Case Study

Contents

70 Outline i e e e e e e e 139
7.2 Description e e e e e e e e e 140
73 Challenges i i it ittt e e e e e e e e e e 141
7.4 DesignMode e e 141

7.4.1 FunctionalView e 141

7.42 Topology View. oot i e e e 145

7.4.3 Network InfrastructureViewo ... 148

744 NFRVIEWo 152
7.5 Producing Evaluation View and Inflating Simulation Parameters 153

7.5.1 Evaluationscenario 153
7.6 Transformation to simulationcode. 157
7.7 Simulation execution and results incorporation. 157
7.8 VerifyingRequirements.t 158
7.9 Re-designSystemModel 159
7.10 Experience Obtained 159
ZATSUMMAKY . & . vt ittt et e e e e o et et oottt s oot o n e s 160

7.1 Outline

This chapter presents a case study, to prove the feasibility of the proposed approach.
Here, we will show how the system designer could use the proposed views to define the
architecture design of an EIS. Furthermore, the evaluation process will be described step-by-
step and the potential re-adjustments are discussed.

139

Chapter 7. A Case Study 140

7.2 Description

In the following we discuss the case of renovating a legacy information system supporting
a large-scale public organization. The organization supports more than 350 interconnected
regional offices and its main purpose is to provide services to the public. Regional offices
are technologically supported by a central IT Center responsible for IT diffusion and man-
agement. More than 15.000 employees work in the organization having on-line access to
the legacy system, while there are more than 300 different services provided to the public.
Regional offices are divided into three categories according to their size, structure and per-
sonnel (large, medium and small). Each category is treaded differently in terms of network
infrastructure requirements. All of them have the same structure consisting of seven differ-
ent departments reflecting independent operation, while all departments provide services
to the citizens.

Existing system architecture is based on client-server model. All application logic is pro-
grammed within the client platform, while data are distributed in local database servers
located in each regional office. A central database is supported in the IT Center for data
synchronization and lookup purposes. Client programs access the local database to store
data, while they access the central database mostly for lookup purposes. Local data are asyn-
chronously replicated in the central database using a transaction management system (TMS).
The IT Center and all regional offices participate in a private TCP/IP network to facilitate effi-
cient data replication.

To enhance the level of service provided by the organization, over the last decade an e-
government portal was established. The main target of the portal is to provide easy access to
citizens twenty four hours per day, seven days per week and to minimize the need for citizen’s
presence in regional offices. The portal facilitates on-line transactional services and ensures
on-line access to the databases of the legacy information system, serving almost one third
of requests processed by the legacy system on a daily basis.

Since hardware supporting the legacy system was obsolete, the IT Center obtained the
necessary funds to replace it. Though, since almost one third of the citizens request are ser-
viced through the portal, it was decided to explore the renovation of the legacy information
system by adopting modern technological trends, such server-based computing and thin
clients to minimize maintenance cost. Hardware consolidation in the IT Center was consid-
ered instead of supporting local servers in regional offices, as well as changes in the database
architecture by supporting one central database to avoid synchronization. Legacy system
architecture modification should be considered without any changes to existing application
code. The model-based EIS Architecture design approach presented in Chapter 4 was applied
to explore alternative architectures and their implications to the network infrastructure. One
of the main objectives of legacy system architecture re-design was to enhance application
performance without rewriting the applications themselves.

One of the main objectives of legacy system architecture re-design was to enhance ap-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 7. A Case Study 141

plication performance, without major rewriting of the applications themselves. Alternative
software architectures and their implications to hardware/network infrastructure were eval-
uated. Since performance plays a significant role, the application of the EIS profile explored
related design decisions and evaluated them. The scenario to be explored is to support the
existing distributed database architecture and try to consolidate the hardware in order to im-
prove the overall performance. A set of different architectural designs were proposed form-
ing the corresponding evaluation scenarios. To measure the overall performance, specific

non-functional requirements, such as response times were defined.

7.3 Challenges

To measure the performance of a system, specific quantitative parameters are required.
Our first challenge was to define these parameters. The identification of the requirements
for thr software components was not a straightforward procedure, since NFRs were not
recorded, indicating the lack of Enterprise Architecture perception in the organization.

Another challenging issue was the fact that neither the software maintenance or admin-
istration personnel were able to provide accurate NFR information regarding response time
or other performance-related requirements for the software and hardware components.

To overcome these challenges, the response time requirements were finally defined by
software designers of the organization, while the QoS requirements were obtained via man-
ual auditing application functionally in the current version of the system. To obtain the re-
quired resources (processing, storage and networking) of a software component, the Con-
structive Cost Model (COCOMO)II[128], as a procedural software cost estimation model, was
utilized. Using Functional Point Analysis technique it is possible to quantify the functions con-
tained within software in terms that are meaningful to the software users. Function points
are a standard unit of measure that represent the functional size of a software application.
Using these methods we were able to calculate the function points of each software compo-
nent (service) and transform them to countable processing instructions.

As a result, the accurate definition of service-QoS was essential for the effective explo-
ration of application performance based on alternative architecture scenarios.

7.4 Design Mode
7.4.1 Functional View

Functional View describes software architecture of legacy system. Seven independent
applications are supported, each one perceived as a different module, while a total of 300
on-line services are provided by them. According to legacy application design, each appli-
cation reflects the operation of a specific department of regional office. Since application

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 7. A Case Study 142

functionality is well-known, the identification of software architecture and performance re-
quirements was perceived as a trivial task. To obtain this information, the system designer
had to communicate with application maintenance personnel in the corresponding depart-
ment of the IT Center. RUP methodology ([103], [75]) was used for software development,
thus application description models were developed within Rational Rose platform. Appli-
cation description (e.g. applications, modules and services) as well as data structures were
manually extracted from corresponding Rational Rose [129] files. Though the process was
not automated, the provision of Functional View meta-model, enabled the system architect
to easily obtain the necessary information. Unfortunately, the identification of service per-
formance requirements was not a straightforward procedure, since software maintenance
personnel was not able to accurate provide either response time or service QoS information.
Response time requirements were finally defined by system architects, while service QoS in-
formation were obtain after monitoring application functionally during working hours by sys-
tem administration personnel in the current version of the system. Service QoS requirement
accurate definition was essential for the effective exploration of application performance
based on alternative architecture scenarios.

A snapshot of the Functional view corresponding to a distributed architecture scenario of
the system under consideration is depicted in Figure 7.1. All application logic is programmed
within clients running on users' workstations, while data are distributed in local database
servers located in each regional office.

A central database is supported in the IT Center for data synchronization and lookup pur-
poses. Client programs access the local database to store data, which are asynchronously
replicated in the central database using a transaction management system (TMS). The IT
Center and all regional offices participate in a private TCP/IP network to facilitate efficient
data replication.

As an example, an excerpt of Functional view focusing on manage citizens application
is depicted in Figure 7.1. This application, named regqistry application, is composed of four
services:

+ add taxation registry

 update taxation entity

+ deactivate taxation entity

* check data

The application is used by two different user roles, the registry staff and the registry man-
ager. Registry staff perform all these operations (services) while registry manager cannot up-
date registry data. These interactions are shown as special relations between role and ser-
vice, called initiate, indicating the fact that a user perform a specific operation in the system.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

sewlpes] ‘| soJAbieuy

ubisag waisAs uonew.our asudiaiul paseg-|apon

yoeoudde paseq-JINSAS v

«ResponseTime-Reqs
«Behaviour-Regs modify rt
officer behavior avg-value ="30" «ResponseTime-Regz
«Behaviour-Reds actDistFunc = Poisson d="4" localdb execute rt
small regional office officer lef="2" max- va\ue ="G0" e
L avg-valug ="5
behavior Mean="500" Text= " g= g
actDistFunc = Poisson StandﬁrIF!Deviation ="100" unit="sec" maxvalue =" 0"
Id="3" Text= sService-Q0S-Reqs Text
Mean:“?.ﬂﬂ"_] T transfer data unit="sec"
StandardDeviation ="100" s Eu A
Text="" P /' -
™ asatisfys -
csstys | esalisfys - Clert-Moclgs —* 7 o = esatistys
’ . PR - ¥
registry apphisation ! asatisfys - ~ 7 vale="1" G P =ResponseTime-Regs
I 4 !y L > - localdb select rt
4} y v ; o - P local database | ;
= - —m” avg-value =
<, Vd m«sgﬁg*vxjj esatistys_ P - s {maxConcOceurs = 0} o7
<lntiates - —F = D — - o <lnvokes maxvalue ="3"
<Roles e add taxation entity / Py i =
registry staff — __ {pelcentage 15" —— P — i .
_ - = Initiates {initiatorRoles = "re gistry manager "} VB A =-=2 eServices
{EndTime =15, ~ - £ 4 ¥ . r anvoke . — > o _
. ~ — - ~ z T === — — “'modify registry record
NumOfOccurs = 10, ~ ~{percentage ="30 - =2 7 ~n =] o~ e, N
StarTime = 7} T T o = = «Serviced, / = FE wsatisfys 7~ - - \ ™
~ - «ll'"t\ﬁ‘ea update taxation e ~ anvokes - — esgtistys >
(percontage =P = P potityfie T . TF T anvokes \ o
P e - {\m(\a(wﬂoles:"ra \st‘wslaﬁf,"}" A~ - - -
aniiates - ™ _anitjates ~ ~ _/ /] < ~ & 4 T — L anvokes T — AR N ~
& — i . ~
- {pEseemtagegs ST £ty - L, = - ~ _ e ~ . _
- ~ _; 4~ eServices \ o ~ ~ gl R N ~ - ffallsf\p
P - ~ deactivate taxation e‘(m}y 4 - Tr r_\, — e ——— —_ | Z== \ o - -~
N - |- " " -~ ~ S n ~ -
- P dnfiates _ — — r {initiatorRoles= "re regwaaﬂ regist r;age. I~ _ o _ R _>WIB;?:;|CE, ™ 2 BN
- - satis - H— istry ™ - -
w -~ - " [percentage = "20" « Vs s \ b=~ - ~ v \ — xl‘rwoke» -
 eRoles - ainitiates B ﬁﬂ,s“,l IS | cServiges * ', caatisty =~ _ dnvokes ™~ ~ . \ ~ -5 ‘{sai\sfys
registry manager ; /] checkda{l \ }y - = \ “ - ~ - -
{EndTime = 15, initiatoroles = "registry staff reghstry manager | N et ~ .
NumCOfoceurs = 2, / / J i s e 2 aﬁfj;} - \ e WV satistys
StartTime =7} / /! |gsatistyb A\ ¢SS‘ISW» o o == \ — \ - esatitys
«#ResponseTime-Regz T e A —
«, esatistys / p / gsatlsfv»/ /i | xsﬁ{lﬁf\r» >y select rt sServices | asatisfyz .
AN , ,
M /\ 8 , | | 5 W avgvaluz =" 20" synchronize regl*%r!&rsf“ sa}‘ . ~
ugn a > 2
«Behaviour-Reqs “ N ¢ | | NS ld="5 ! V. [~ <satigty sResponseTime-Reqs
manager behavior 4 eService-0oS-Reqs - |esatistys RN max-value ="60" g LN = localdb sync rt
Ci g
actDistFunc = Normal olient storage | W =] ~ \|avgevalug =7 €Sl
N ="gec" ' ~ g b
d="1" TP . unit="sec ld="g
Mean ="620" Toxt="" ! AN o atistys- A S | macvaie = o
StandardDeviation = "1 50" Type = storage | » i \ N V|Text="t
ik unit ”59" 5 I «Service-QoS-Reqs / \ g =HE
valug ="430 v elient modify proc ! W \ esatistys
=Service-QoS-Regz d="12" I =Service-QoS-Regz ANRN
client select proc w dbregistry select W ~
n - proc ~
Id="13 rocessing aSer il e \ ~
Text="" unit="KB" dbregistry syne ld="18 \ ~ ’
Type = processing 995" proc Text) \ ~
unit="Kp" ld="17" Type = processing .
value = "525" Text="" unit="KB = y = Rv:.
- value ="191" =Service-QoS-Regs
Tvpte = processing dbregistry modify
unI\ proc
value
Id="18"
Text=""
Type = processing
unit B"
value ="487"

Figure 7.1: Functional View

«ResponseTime-Regs
central execute rt
avg-value = "5"
ld="10"
max-value ="10"
. ATent=""
- unit="gec"

N atisfy
\asatistys

«Server-Modules
cehtral db Q
A

aServices
;7mndi|'y registry record

A
¢sat|sé»
raa N .
I
! N

v
«Sprvice-Q0S-Reqs \
db registry \ asatisfys
transfer N

Sy |

Text="" ;
Type = traffic
unit="Kg" I
valug ="96" i

!
v

«Service-QoS-Regs
“~ dbregistry modify
stor

Sld="18"
Text=
Type = storage
unit="KB"
value="107"

~ «Service-QoS-Regz
dbregistry select
stor

Id="19"

~ xServic_e—QoS—Req: Typ
dbregistry sync
stor

Text=""
storage
unit="KB"
value = "36"

d="20"

Apms ased v £ usrdeyd

vl

Chapter 7. A Case Study 144

This kind of relation contains additional data: a percentage variable. To explain the role
of percentage, let us consider a role in his everyday interaction with the system and the appli-
cation performing some operations. The percentage indicates how often the role uses these
specific services. We consider that a registry staff calls operation add taxation entity by 15% ,
while he/she makes updates to existing entities by 30% , deactivates entities by 5% and the
rest 50% is about checking specific records of the entities (e.g., readonly database opera-
tions).

Each service (belonging to a client-module) that a user initiates, in order to be executed
requires the invocation of other services, either belonging to this regional office or to a re-
mote datacenter, constituting a distributed environment. For example, the service update
taxation entity invokes modify registry record, select registry data and synchronize registry of
a local database server module. Afterwards, the synchronize registry invokes modify registry
record of a remote server module belonging to the datacenter of the organization.

The software designer may use a behavior requirements to model role behavior. Here, the
registry staff role may satisfy two different behavior requirements corresponding to normal
and heavy workload. Later, on Evaluation view, two different evaluation scenarios are en-
abled for execution, each of them according to these behavior aspects.

Each service could be related to specific requirements: e.g., one kind is service-QoS re-
quirement, storing the required resources for execution. This is roughly an estimation about
the processing power, storage and networking resources that this service requires in order
to execute. Consequently, there are three QoS requirements for each service. For each of
them, a max-value and an average value is estimated. These values were acquired using the
COCOMO 1I [128] methodology. According to our proposal, the relation between a service
and a service-QoS requirement is satisfy. For a specific module, all service-QoS requirements
constitute a module-QoS requirement, which is a derived requirement, that gathers the re-
quired resources of all services belonging in this module.

Another requirement related to services is the responseTime requirement. This defines
the maximum execution time that a user could wait for this operation to accomplish. In the
case that this service would invoke other services, this particular time includes the responses
of all the invoked services. During the evaluation process, the response time of a service
is estimated and the estimated value should verify this predefined time. From the system
designer perspective, the following steps are required to work on Functional view:

+ Userroles creation. Arole groups users interacting with the same applications and have

similar behavior.

« application access points definition. Usually this is the front-end environment of the

applications, providing specific operations to users.

+ Definition of the identical operations that are performed for each application. These

operations, called services, are grouped into modules.

+ Service invocations architecture definition; for each service the calling services should

be defined, in order to provide the complete software architecture of the application

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 7. A Case Study

145

under consideration.

In parallel, a set of validation rules are performed to ensure that the model is in accor-
dance with the defined EIS profile, as depicted in Table 5.1. Consider the percentage of all
services initiations from a role summing up to 100%. When a violation in a validation rule
occurs, the designer is notified.

Figure 7.2 presents the application of validation rules to model. A specific role produces
several violations: In our case, one of them, the summing up to 100%, for the percentage
attribute of services initiations, of this role, is not valid. The design environment identifies
possible problems and suggests alternatives(Figure 7.3).

File Edit View Layout
DeEDa& -5 -9
| system Engineer -
B cont. |& Stru. |2 Inher.

1 piag

v E[E 8

<> Mode

Diagrams Options Tools Analyze Teamwork Window Help EIS-Profile

fhome...ryExampleMarl3-test.. ¥

B

qCg agc]

stry office 2 net di

datacenter 2 net diagram small regional net diagr.

oftwareDiagram Har

Containm et T o ox ‘h - Bk ae AU S o EEEG ST AaEER A Qo i@
. < B £ Common R R R R R R
OMPOSTE et BACROSTE e T o | [Note o <ResponseTimeRegs
(2 56 FTP-connection req «Behaviour-Reg» modify rt
sbe Text Box - officer beh
- & transfer data . . icer behavior avgvalue = "30°
B Anchor - " o
= 7 localdb select rt B . «Behaviour-Reqs actDistFunc = Poisson |~ Id="4’
i f localdb execure it ¥ Comtainment v small regiona office officer Id="2" max-value = "60"
= 7 localdb sync rt " Dependency behavior Mean = "500"
EHIE ascenario Bl im e Shape actDistFunc = Poisson StandardDeviation = "100" unit = "sec
L&) softumareDiagram d="3" Text=""
LB i rdmaren: ---- Separator - O (Y B
i8] HardwareDiagram Msan = "300" -
' Role registry manager evaluation Functional StandardDsviation = "100" P T
- Role registry staff evaluation = Class sBehaviour-Regls [a] Texio " ”
£ Server-Module central db evaluation Gl 5 . "' R
A Module_Invake x* asatisfy» ./ .
#.% Server-Module local database evaluatio - ety | csatistys :
E-g Client-Module registry application eval 3 satisfy esatisfys - o EHEER o0 -
Service add taxation entity evaluatiol A Derivereqt . Pl registry ammgn satisfys _|— ¢
Service update taxation entity evalus_|) - / / - T
Servite deactivate taxation entity evj=|| = ResPanseTime-Req A | [- PR
[»] || = Benaviour-req o (e =ity s o
4 @ role-cmr-smr-hardware-alloc b This should be allocated to a hardvare elemert " 7 |-
B Documentation Properties] service-req «Roles _ T
o =] Module-Req registry staff A\ role-init-percentage) e sfys -] g
x o . . isfys -
O o S " Endtine =15, TF - A\ siteAliozation y Selectin Validation Results) 22
e ~ - !
£ server-Module Numofoceurs=10 , A\ usagealioc-Roles SN 2 ”
L StartTine =7 } = = T esatisfyd /
= Service El Bl (3) Actor and Usecase » LS i e i
- [- e update taxation @ntity -
* Role -4
® Validation Results
Validation Results
BUmEAOFO Bk o =debug - [=aL> - <AL
Element | Severir | Abbreviation | Message
Service select registry data evaluation [a5cenariosserver-Module ocal database evaluation) @ error EvalservReqViol Response-Time req not verified
Service check data evaluation @ error EvalServReqyiol Response-Time req nat verified
Service synchranize registry evaluation [aScenario Server-Module local database evaluation] @ error EvalServReqiol Response-Time req not verified
Service deactivate taxation entity evaluation [aScenario:Client-Madule registry application evaluation] @ error EvalServReqViol Response-Time req not verified
Service modify registry record evaluation [a5cenarion Server-Module lacal database evaluation) @ error EvalServReqiiol Response-Time req not verified
Service update taxation entity ewaluation [a5cenario Clisnt-Module registry application swalustion] @ error EvalServReqiol Response-Time req not verified
Service add taxation entity evaluation [ascenario:Client-Module registry application evaluation) error EvalservReqViol Response-Time req not verified
o Extension[esxtension_Verifysy sl Profilz:Requirem ents: Merify - base_AbstractionUML Standard Frofile:UMLE Metam odelCl. (@ info MitlsDef Multiplicity for Association is not specified. Default o
A FTP-connection[small regional net - backbone net] D infa MitisDer Mukiplicity for Association is not specified. Default o
o Extension[extension_unnamed1:MD Customization for SysMLimairix tem plates: Verify Matrix menu - base_Element:UbL Stan.. (@) info WitisDef Multiplicity for Association is not specified. Default o
o Extension[extension_DeriveRequsyshL Frofile:Requiremerts: DerlveReqt - base_Abstraction:UML Standard Profile:UML2 Meta |G info MitlsDet Multiplicity for Association is not specified. Default o

Ready

Figure 7.2: Functional view: Validation rules applied

) S e s
: : registry apﬁﬂgﬂﬂ?n ! s atis
b V4 / o —
- p [B
il : : : : : aSatighy » zsatis
7 Q role-cmr-smr-hardware-alloc kb &Services f o
“aRoles P -~
- — = M role-init-percentage b PRole initiates percentage sum must be 100
e ry staff - S i
EndTime =15, < /i siteAllocation » lagnore k
g;anl?.fpccu;s;}:m , ,_ﬁ usageAlloc-Roles y SelectinValidation Results - ~
.. nTime=7 3 ... | ... Ed ;)
i (i) Actor and Usecase » «Ser\leei / i T
pdate taxation éntity L4

{percentase

—

finftiatorRoles = "reqistr staff "}~

Figure 7.3: Functional view: Validation handling

7.4.2 Topology View

Topology view is exploited to specify the system access points and define the software

replicas. Three model elements are participating in this view:

Anargyros T. Tsadimas

Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 7. A Case Study 146

* Roles (derived from Functional view) are automatically imported.
+ Client and Server modules (according to Functional view again) are also auto-imported.

- Sites (system access points). There are two kind of sites, atomic and composite '. Sites
are defined by system designer to gather geographically or conceptually the roles and
modules.

As stated, roles, client and server modules are auto-derived from Functional view. To the
designer remains he allocation of roles and modules to sites and then, via Network Infras-
tructure view, to workstations and servers. Since EIS are complex and distributed information
systems, there are many replica software components. For that reason, the system designer
should make replicas of he server modules and allocate them to sites, e.g. local or remote
datacenters. This is achieve by right-clicking on a server module, and the new created model
element is related with replica of relationship to source element.

Next step deals with the allocation of roles to sites. This is accomplished by defining a
usage allocation relationship between the role and the site. When roles are allocated to sites,
then an automation could be applied to allocate the initiating client-modules to the same site
from the application menu. The logic is simple; when a role is allocated to a site, the client
modules that contain services initiated by this role are auto-allocated with software allocation
relationship to the same site. In practice, a client-module replica is created and allocated to
the same site. This has to do about our ability to define many users sharing a specific role
(defined with the attribute NumberOfOccurs of role entity). This step has been implemented
as part of the EIS plugin, facilitating the system designer and ensuring model consistency,
according to EIS profile. Thus, we cannot have a role allocated to a site without the called
services of this role to do not belong to the same site.

There are some additionally constraints that our model should obey to. Usage allocations
and software allocations should be applied to atomic sites, which are the leafs of the sites hi-
erarchy. Atomic sites are contained in composite sites using the containement relationship of
UML. Validation rules ensure the compliance of our system model according to constraints
defined in Table 5.2. For example, a validation rule checks if there is a role defined in Func-
tional view that has not been allocated to a site in Topology view. The same applies to client
and software modules; all modules have replicas allocated to atomic sites.

As shown earlier, service-QoS requirements have been defined to services in Functional
view. Two of them (processing and storage) are estimated for the modules that the services
belong to. The other one, traffic service-QoS is meaningless to be defined in relation to a
module. What makes sense is to de defined in the case of communicating services between
modules. For that reason, traffic service-QoS are automatically created and their values are es-
timated according to the Algorithm 3 presented in subsection 5.3.4. The module-QoS derived
requirements are related to the Module Replica Invoke relations between the communicating
module replicas.

Tcomprised of other sites to formulate a site hierarchy

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

sewpes] ‘| soJAbieuy

ubisa@ wa1sAs uonewJou] asudiaiul paseg-|apon

yoeosdde paseq-TINSAS ¥

<Composte-Sttes
small regional office

Atomic-Sites.
datacenter
F

aMiodule-QoS-Reqs
plica local database Replica

07687_12527 > Replica central db

Repl

«SoftwateAlocations
-1

«ServerModuie> {7}
central db

<Composite-Sitex

<Composte-Sttes
regional office 2

Mocule-Q0S-Reqs
Replica local database Replic:

14819215565 - Replica certral o Replica

35530, 12489 traffic

avg-value ="326.40000000000003"

1d="43"

max-value ="672.0"

Type = traffic

avg-valus L >
241" Server-Module-Replicas «Server-Modules _ a e
wAtomic-Sites Maxvalue = "96.0° central db Replica 85530_12499 _ sAtomic-Sites e = <Atomic-Site» S e
small regional datacenter B regional datacenter 1 il regional datacenter 2 Replica registry staff
~ Tyne = traffic 7 T T Iy {maxConcOccurs = 0} - A registry application
esatistys _ registry office 2 ->
! | | | ! — | Replica local database
| | | | | | L - [:S@WEVEAJOCWU”» Replica 48192 _12565
! 7 | | | ! | -7 ! avg-value="1152.0"
! \esatistys | | | ! | | Id = "45"
| \ o 2 _ _ _ cModue Replcasnvokes | L _ _ _ _ _ | max-value ="1728.0"
«<SoftwareAllocations y ! ! SottwarEAlGeafion B Type = traffic
/ aModule_Replica_nvokes | <hloguiz_Repica_nvokes | | | !
I K | |
| | | |
I | e R S i I [I ’
I | ’ | | | | ’
4 |ereplica-ofs esatisfy» / lareplica-ofs |ereplica-ofs i
| | | ; | ! | | | ! P
] | ’ | | | ! ’
«Server-Module-Replicas O ’ «Server-Module-Replicas Q «Server-Module-Replicas Q etist
local database Replica 07687 _12527 B local database Replica 03329_12584 local database Replica 43192_12565 eslistys
smallregistry office i T = & sAtoniic-Sites «Atomic-Stes s s
A i L ™ registry office 1 registry office 2 T 7 /s
Replica local abase Replica
! ! | 03329_12584 -> Replica central db Re | | R R | | s
| | | 85530_12499 traffic | | [[| o _ _ ,J __________ ellodule. f EEP“_CE dnvokes
b | g lue = 112 3500935856503% | | L N e) !
! ! | max-value = "384.0" | | | | / !
| | | Typs = traffic | | [[L ok Raiabe . |
[[| ’ |
! ! | | | «Seftwarealkcation: |
| | | | | [I e | I |
| | [[aUsage Allocations | | h i
| | e i
«Soft llocations dinstandes = 1} |
[| | | L e, | | o |
! ! | | | Usage Auncdﬂmﬁsﬁw Allgeggions o !
| | |eModuie_Replica_invokes | \xMudu\e_Rephca_lnvuke: [imtamoss = 31 Dinstances =) : : | , / | |
! ! h «Usage Allocations | N J‘ ! 5“"‘”5'9""‘“”““’4’ | ! | !
e ™ | 1=r = ! | ! ! | esalistys , | |
\ ‘ [T | | | |) | |
| S i [T | ! [| | , | |
\ 7 \ | ! | | | / |
’ | | | \ | 1 | , |
| L2 | ’ L e m e oo [| | | | |
It ! ’ ! | [! [! ! ! !
| asatistys / | [! \esatistys by 1 / |
| | | L) | |
L - [[
ry staff registry application small registry office registry staff registry applicatinfregistry office 1 registry manager registry application registry office 1 o) ¥ ! registry staff registry application registry offige 2 registry manager registry application registry office 2
(initRole =*_16_8_14d00da_1351672000351_488331_3017", {initRole="_16_8_14d00da 1%51972094945 280218_3067", P <Roles | {inftRele ="_16_8_14d00da_1351872000351_488331_3017", {initRole ="_16_8_14d00da_1351872004845_280218_3057",
numefUsers=1) numefUsers=1) i numOfsers = 6} numOfUsers= 1)
registry staff registry manager /
{EndTime = 15, {EndTime = 15. 7
! ’ \ NumOfOceurs = 10. NumOfOceurs = 2, ,
/ ’ StaTime =7} StaTime =7}

aModue-QoS-Reds
Replica registry staft
registry application
small registry office

«Modue-QoS-Rets
Rej

Type = trafiic

-> Replica loc:

database Replica

07687_12527 traffic L= M:ultg 125“5
avgvalue ="192.0° avgvalue = "576.0°
Id 1d="45"
max-value = "288.0° maxvalug = "654.0"

86:
Type = traffic

<Modle-QoS-Res
registry manager regis !Iry
applmmnn registry

loca) database Repliea 03329 msa e

aug-value = "172.79999999999998"
Id="39"

max-value ="288.0"

Type = traffic

Figure 7.4: Topo

logy View

Module-QoS-Reds
ca registry manager registry
ication registry office 2 -> Replica
Iocar database heplica 48192, 12565 raffic

avg-value ="172.75999999999998"
1d = "40"

max-value = "288.0"
Type = traffic

Apms ased v 'z Jadeyd

Lyl

Chapter 7. A Case Study 148

In Topology view diagram (Figure 7.4) and in accordance with Functional view diagram, the
registry staff role is allocated to three different sites: small regional office, registry office 1 and
registry office 2 atomic sites. To these sites are also allocated module replicas ' of the registry
application (namely registry staff registry application small registry office, registry manage reg-
istry application registry office 1 and registry manage registry application registry office 2). Ten
discrete role instances are allocated to sites with the following occurrences: one of them is
allocated to small regional office, four to regional office 1 and the remaining six to regional
office 2.

7.4.3 Network Infrastructure View

Network Infrastructure view is utilized to design the network architecture of the EIS. Each
network is either an atomic or composite 2 network. For atomic networks, the specific hard-
ware elements that belonging to that network are presented in a special atomic network
diagram. In that way, Network Infrastructure View is composed of:

« an overall network diagram where network hierarchy and interconnections to other
external networks are presented

+ a complementary diagram associated with each atomic network presenting the roles,
the software components and the hardware elements connected to that specific net-
work. Specifically:

- Roles and software components that have been defined in Functional and Topology
views, and have been allocated to sites.

- Hardware components that are defined in atomic networks.

- Roles and software allocations that are also take place in atomic network diagrams.

To help the designer with allocations, in network infrastructure main diagram, sites are
auto imported from the Topology view, and what remains to the designer is to allocate them
to networks. Validation rules ensure the consistence with the EIS profile: e.g., every site
should be allocated to a coresponding network 3 (see Table 5.3 for the set of the defined
constraints).

Figure 7.5 presents the network architecture of the EIS under consideration. In most cases
sites are allocated to networks with structural allocation relationships in a one-to-one fashion.
Depending on the load requirements (see subsection 5.3.1) the system designer may decide
to allocate multiple sites to a network or vice-versa. Certainly, if a composite network is allo-
cated to a network, all the contained sites should also be allocated to the same network’s or
subnetworks' hierarchy. Validation rules ensure this compliance.

the names are auto-produced by the combination of the role name, the module name and the site name
2if it interconnects other networks
3an atomic site has to be allocated to an atomic network

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 7. A Case Study 149

Requirements are also presented in this diagram. For each network a load requirement is
estimated as the result of the demanding networking resources of all software components
that are allocated to this network and is produced by specific roles’ behavior. The way these
requirements are derived is described in the Algorithm 5.3.4 of the subsection 5.3.4. Load
requirements provides a quantity indicator of the networking load imposed to networks.
System designer can reclaim site allocation policy to increase/reduce load to networks.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

sewlpes] ‘| soJAbieuy

ubisa@ wa1sAs uonewJou] asudiaiul paseg-|opon

yoeosdde paseq-TINSAS ¥

sLoad-Regz
Atomic-Network
datacenter 2 net req

_ o «Load-Regs
avg'ya“je ="1651.2 Composite-Network
Id="47 regional office 2 net req
.Ir_r;?;‘ia#":m_c L avg-value ="1651.2"
esatistys ld="53"
e g n "
«load-Regs [X} _rrr;‘:);‘?lg;ﬂc A
. - =
d‘:::";:":n{sﬁl";?:: aAtomic-Networks
il datacenter 2 net
avg-ralee ="556.8 {ProtocalStack = TCPIIP, T
ld="50 Thraughput = "100", |
max-value ="1142.0" type = Switched-Ethemet} esatistys
Type = traffic . M |
L asalisfy> g |
® . . |
.) .
eAtomic-Networks |=StjucturalAllocations ..‘ - | &
datacenter net | @ =C MNetworks .. =
sLoad-Regs {numOfaxNodes = 10, | regional office 2 net «Atomic-Networks
Composite-Hetwork ProtocolStack= TCR/IP, {ProtocolStack= TCRIIP, registry office 2 net
regional office 1 netreq Thraughput = "100", Throughput = "100", {ProtocolStack= TCRIIP,
avg-value ="931 2" type = EtherrfT\et} type = Switc*ed-Ethernet} Throughput="100",
=54 . zAtomic-Stes type = Sw\tched-Ethelnet?
i o " |«S‘tructuramllocaﬁnegiunal datacenter 2 |
T VB S ALy | |eStiucturalAliocations |) |
Type = traffic «StructuralAllocation= asatisfys
regional datacenter 1 | | | |
asatisfys
i | | I
I | <« Atomic-Sites eComposite-Sitex L T
s . o sLoad-Regs
I I datacenter L fessonal office & ‘“‘?mm'c'srte» Atomic-Hetwork
lestructuralanbeations L registry office 2 registry office 2 netreq
-
- | " & aComposite-Metworks avg-value ="1324.8"
R —ugqn
.. ® | » backbone net J ld="51
Atomic-Networks «Co_mposlte-Network» ————— ®numOfMaxNodes = 500, max-value = "2016.0"
datatacenter 1net < — | Tegionaloffice 1net PratocolStack= TCPIP, Type = traffic
[ProtocolStack = TGRIP, {ProtocolStack = TCR/IP, Throughput = "1000",
Thioughput="100", Throughput = "100" «Structural Allocati type = Ethemnet}
type = Switehed-Ethemet; type = Switched-Ethemet} = | <RIB.connectichn
eComposite-Sites dawiet st
I regional office 1 I«Sﬁﬁsﬁf» dowstieam ssalys aLoad-Reqs

ProtocolStack = TEPIP,

PTP-connection req

avg-value ="47.99999509995999"

sComposite-Stes

asatisfys upstream = "2"} e
| |
Id="58"
| W wgE "
v aLoad-Regp max-value ="46.0
«Load-Regs ‘® - Composit jcbackhonenet req pe= el
-
Atomic-Network datatacenter 1 net req «Atom?c-Neiwork» avg-value = "556.8000000000002" . .
avg-valus ="931.1999999999999" , registry office fnet < — Id) I" . Atomic-Networks
ld ="49" {ProtocolStack = TCPIIP, WAL ‘ia ha= . small regional net
max-value ="1536.0" IThroughput = "100", | Rt g inumOfaxhiodes = 20, |
Type = traffic |type = Switched-Ethemet} | <BlictiralAliocstions ProtocolStack= TCPIIP, |
esatistys | Throughput = "100". |
fT‘VPE = 1y _eStiucturalfllocations

i
zLoad-Regs
Atomic-Network

registry office 1 netreq sAtomic-Stes

avg-value ="748.8" registry office 1
ld="52"

max-value ="1152.0"

Type = traffic

|
aAtomic-Sites

| I
|=Structural Alocations |
|

|

| «Atomic-Sites

ashtisfys

small registry office

Figure 7.5: Network Infrastructure view

small regional office

| small regional datacenter

zload-Regs
Atomic-Hetwork
small regional net req

avg-value ="240.0"
1 ="4gn

max-valug = "384.0"
Type = traffic

Apms ased v £ usrdeyd

0S5l

Chapter 7. A Case Study 151

Figure 7.6 presents such an atomic network diagram for the regional office 2 network, as
presented at Figure 7.5. Roles and software components are auto imported from Functional
and Topology views. The designer should only add the hardware nodes where the roles and
the software will be allocated to. For each of them, a number of instances could be defined,
describing many users allocated to workstations with similar hardware and software capa-
bilities. For each node, a number of attributes could be defined (see Table 5.3), categorized
as follows:

Quantity

Operating System
« Memory

Processing Unit
- Processing Power
- Cores
- Number of processors
+ Storage Unit
- Number of disks
- Storage speed
- Capacity (per disk)

We consider that in regional office 2 network, there are 2 registry managers ir front of
a workstation and 10 registry staff, eh one having one workstation For each of them the
working hours are providing, as defined in Functional view.

T
«Roles
registry manager
{EndTime = 15, «lsage Allocations
NumOfOceus =2,

_________________________ >
=) [instances= 1}
anTime = 7
<\Workstations
registry manager 2 wis
Jeapacity = "300",

cores=1,
NumberOfDisks = 1,
registry manager registry application registry office 2 NumberOfFrocessars= 1,
{initRole ="_16_8_14d00da_1351872094845_280218_3057", P'°°':_:Ywe'1= 2048,
_ quantity =1,
numOflsers =1} aSoftwar ionz S st d = "1500")
R

reqistry staff registry application registry office 2
{initRole="_16_8_14d00da_1351872000351_488331_317, | — — — — — — — — —
numofUsers = f}

3 = |
= sUsage Allocations «i:Works‘tanon»
gRoles = T T T T T ettt e e = registry staff 2 wis
registry staff {instances = G} {eapacity = "200",

S comes=1,

{EnETime = 15, NumberQfbisks = 1,

HumOfQecurs= 10,

et NumberOfProcessors = 1,
anTime = 7} ProcPower = "2048",

quantity =8,

StorageSpeed ="500"}

Figure 7.6: Network Infrastructure View, Atomic Network

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 7. A Case Study

152

7.4.4 NFR View

NFR view is a complementary view where all the requirements from other views are gath-
ered. Figure 7.7 presents an excerpt of the NFR view, where the requirements defined in

all design views are illustrated. Requirement’s expert or a system designer are able to see
or define the requirements relationships and derivations. Starting from generic, qualitative
text-based requirements, we could end up to specific quantitative requirements, in order to
be used as simulation input or evaluation conditions. From the perspective of the system

designer, this view is not mandatory for the completion of his work. It is more useful in the

early stage of system analysis.

eModule-QoS-Regs
Replica registry manager registry
application registry office 2 ->
Replica local database Replica
48192_12565 traffic

sModule-QoS-Reqs
Replica registry manager registry
application registry office 1 >
Replica local database Replica
03329_12584 traffic

avg-value ="172.79909090099998"
Id="40"

max-value ="268.0"

Type = traffic

avg-value ="172.79888909599393"
Id="39"

max-valug = "288.0"

Type = traffic

sModule-QoS-Regs
Replica registry
staff registry
application registry
office 2 -> Replica
local database
Replica 48192_12565
raffic

sModule-QoS-Reqs
Replica registry
staff registry
application small
registry office ->
Replica local
database Replica
OTGBT_12527 traffic

avg-value="1152.0"
ld="45"

max-value ="1728.0"
Type = traffic

avg-value ="182.0"
Id="42"

max-value ="288.0"
Type = trafiic

sModule-QoS-Reqs
Replica registry
staff registry
application registry
office 1 -> Replica
local database
Replica
03329_12584 traffic

avg-value ="576.0"
Id="48"

max-value ="864.0"
Type = traffic

eModule-QoS-Reqs
Replica local database Replica
48192_12565 -> Replica central db
Replica 85530_12499 traffic

sModule-Q0oS-Reqz
Replica local database Replica
03329_12584 -> Replica central db
Replica 85530_12499 traffic

eModule-QoS-Regs

sBehaviour-Regz

sLoad-Regs

Replica local database Replica
0T637_12527 -> Replica central db
Replica 85530_12499 traffic

small regional office
officer behavior

k
netreq

actDistFunc = Poissan

avg-value ="556.8000000000002"

avg-value ="326.40000000000003" avg-value ="182.393999999995593" avg-value ="47.99353999999395" ld="3" ld="55"
Id="43" ld="44 Id="41" Mean = "300" max-valug ="1152.0"
max-value ="672.0" max-value = "334.0" max-value = "96.0" StandardDeviation="100" Type = traffic
Type = traffic Type = traffic Type = traffic Text=""
aload-Reqz «zLoad-Regz aService-QoS-Reqs «Service-QoS-Regs aBehaviour-Regs «Service-QoS-Regs «Service-Qo5-Regs
C n i k C n i k dbregistry modify dbregistry manager behavior dbregistry select dbregistry sync
regmnnlrnefgl:e 1 net reglnnal;f‘l;n:e 2 net proc modify stor actDistFunc = Mormal proc proc
ld="18" ld="1" ld="15" Id="17"

avg-value ="931.2" avg-value ="1651.2" Text="" Mean="620" Text="" Text=""
la="54" d lg="53") Type = pracessing Type = storage StandardDeviation = "1 50" Type = processing Type = processing
max-value ="1536.0 max-value = "2688.0 unit="KB" unit= "KB" Text="" unit="Kg" unit="Kg"
Type = traffic Type = traffic valug = "487" valug =" 07" value ="191" value = "96"
«Service-QoS-Regs «Service-QoS-Regs «Service-QoS-Regs zlLoad-Regs «lLoad-Regs zLoad-Reqs zLoad-Regs
dbregistry sync db registry dbregistry select Atomic-Hetwork datatacenter 1 Atomic-Network Atomic-Network Atomic-Hetwork

stor transfer stor netreq datacenter netreq registry office 2 net datacenter 2 net req
Id="20" Id="14" ld="1g" avg-value ="931.1999995933895" avg-value ="556.8" req" n avg-value = "1651.2"
Text="" Text="" Text="" o ="4g" o ="50" avg-value="1324 .8 ld="47"
Type = storage Type = traffic Type = storage max-value = "1536.0" max-valug ="1152.0" ld="51 .) max-value ="2683.0"
unit="Kg" unit="KB" Type = traffic Type = traffic max-valug = "2016.0 Type = traffic
value ="1" value ="96" Type = traffic

zLoad-Reqz sLoad-Regs =Behaviour-Regz «ResponseTime-Regs «ResponseTime-Regsz «ResponseTime-Regz «ResponseTime-Regs

Atomic-Hetwork Atomic-Hetwork officer behavior localdb sync rt modify rt localdb select rt localdb execute rt

registry office 1 net small regional net q q =0 ey op P
req req IadctD"l;IFunc = Poisson ‘a;fg-r;!ue =g ‘a;g-r:jue ="30 ‘al;g-rTal!ue =T E‘vg-l‘lfsal!ue s74

avg-:raltie:"?ds & avg-:raILllle:"Zdﬂ 0y Mean="500" max-value ="20" max-value ="60" max-value ="3" max-value ="10"

BSF) WS StandardDaviation = "100" Text= Text="" Text="" Text=""

2 yEluElSgls2.0 EBEIES LA Text="" unit="sec" unit="se¢" unit="se¢" unit="sec"

Type = traffic Type = traffic

=ResponseTime-Reqs =ResponseTime-Regz eService-QoS-Regs aService-QoS-Regs «Service-Qo5-Regs «Service-Qo5-Regs zLoad-Regs

central execute rt selectrt client modify proec client select proc transfer data client storage PTP-connection req

avg-value ="5" avg-value ="20" ld="12" ld="11" avg-value = "47.99999999999999"

ld="10" ld="5" Text="" Text="" ld="56"

max-value ="10" max-value = "60" Type = processing Type = processing Type = traffic Type = storage max-value ="96.0"

Text="" Text="" unit="KB" unit="KB" unit="KB" unit="KB" Type = traffic

unit="sec" unit="sec" value ="995" value ="525" value ="1" value ="430"

Figure 7.7: Non Functional Requirements

Anargyros T. Tsadimas

Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 7. A Case Study 153

7.5 Producing Evaluation View and Inflating Simulation Parameters

As the design phase is performed and after the validation rules have been applied to sys-
tem model in order to check its consistency and completeness, we could proceed to evalua-
tion phase. The first step is to create an evaluation diagram and an a corresponding scenario.
An evaluation scenario is comprised of two specific diagrams:

+ a software architecture diagram: a replica of Functional view where only evaluation spe-
cific elements are presented

+ a hardware architecture diagram: a multi-level diagram in accordance with Network In-
frastructure view, where also only evaluation specific elements participating.

The reason that we have different evaluation diagrams is that we want to record the dif-
ferent scenarios under consideration. Evaluating a snapshot of the architecture enables the
ability to make comparisons and peruse the influence of changes in the overall performance
of the system.

During the evaluation process, requirements act as behavior descriptors or performance
ones (see section 5.3 and Figures 6.2 and 6.1). Behavior requirements are used as simulation
input while among performance ones are responseTime, availability and utilization require-
ments.

7.5.1 Evaluation scenario

As already stated, an evaluation scenario is a snapshot of the system. Evaluation scenar-
ios comprise of evaluation entities used to evaluate design entities and verify corresponding
requirements (Figures 4.10 and 6.3). It is important to notice that evaluation scenarios are
auto-created from the design phase and this process does not require human interaction.
Of course, if the design phase diagrams are inconsistent or not completed, notification mes-
sages inform the designer about the imposed problem.

Software Architecture Diagram

The entities participating in a software architecture diagram correspond to Functional
view entities and are used to:

+ define the behavior of the software components during the evaluation of the proposed
EIS architecture design

+ verify the appropriate requirements of software components (e.g. services response-
time)

As we can see in Figure 7.8, roles and modules are presented. For each role, there are Eval-
Initiate relationships to each module, so many times as the number of the calling services.
Notice that each element has an attribute named simid, namely a unique identifier used in
order to handle the corresponding simulation results.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 7. A Case Study

154

«Eval-Initiatez
deactivate taxation ertity _

~ [Percentage="5"}

ﬁ = sEval-Initiates

b

- ~
&
«Eval-Client-Macules - B Eheik data . ~
Client-Module registry application evaluation < = T T 7 [Percentage = "S0"}- "
~

e e X X i ~
[sevices="Sewice add taxation entity <EvalInitistes - N
Sewice update taxation entity “ - - 3
Serwvice deactivate taxation entity - - _L!pd_a_ie taxation entity . ~

Sewice check data",
simid="_16_8_14d00da_1386132335507_579702_14200"}
b =

[Percentage = "30"} T —

«Eval-Rolez
Role registry staff evaluation
{EndTime = 15,

! \ L1 - initiations = "Client-Module registry application Service add taxation entity 15
\ _gEvakInitiste= Client-Module registry application Service update taxation entity 30
| N “~ acld taxation entity Client-Module registry application Service deactivate taxation entity 5
/ | s _ — ~ClientMadule registry application Senice check data 50",
X N {Percentage ="15} - NumOfQOeeurs = 10,
l i

|zEval-nitiates N
(adld taxation entity A

«Eval-intiate= [Percentage = "20"}
|

deactivate t/axation entity “ aEval-nitiates

“check data
{Pelcentags ="20"} |

{Percentage = 60"}
A

StartTime = 7}

N | sEval-Server-Modules
hY \ A Server-Module central db evaluation
N | A {services="Service modify registry record",
“ ; \ simid = "_16_8_14d00da_1366132330042_123114_14182"}
\ | \
N - P
\ = .-
«Eval-Roles

Role registry manager evaluation
{EndTime = 15,
par e

eEval-Server-Modules
Server-Module local datab

= "ClientModule registry application Sewvice add taxation entity 20
Client-Module registry application Sewvice deactivate taxation entity 20
Client-Module registry application Sewice check data 60",

NumOfDceurs=2,

StatTime =7}

services = "Senvice synchronize registry

Service modify registry recard

Semice select registry data",

simid = "_16_8_14d00da_1356132332564_016452_14214"}

Figure 7.8: Software Architecture Evaluation Diagram

Hardware Architecture Diagram

Hardware architecture diagram entities correspond to Topology (module replicas) and
Network Infrastructure view entities, and are used to:

* to initialize a corresponding simulation model instance

* to evaluate the design entity and

+ verify the corresponding requirements.

Hardware architecture diagram (Figure 7.9) is like a network infrastructure diagram where
no load requirements are presented. Load requirements are used in the early stages of the
design, to help the network architect allocate sites to networks. Each network has input and
output attributes, where input attributes (Figure 7.10) are used as simulation parameters
(passed as initialization parameters to a constructor of a network class). Output parameters
will be filled with values when the simulation results will be incorporated to system model.

Network hierarchy is built using include relations between networks. For each atomic net-
work a specific diagram presents roles, software components and nodes. Figure 7.11 is pro-
duced from the corresponding atomic network diagram from the design phase, presented
in Figure 7.6. The obvious difference is that in the evaluation phase diagram, behavior re-
quirements are presented. These requirements are derived from Functional view (see Figure

7.1) and help the designer to select specific behavior for the roles (in case there are many
behavior requirements specified).

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 7. A Case Study 155

-
® -
-
«Eval-Atomic-Metworks
Atomic-Network registry office 1 net evaluation

{ProtocolStack = TCPIIP,
Throughput = "100",
type ESwitched-Ethernet}

N
- hY
. - N gincludess
- A
sEval-Atomic-Networks: N
Atomic. k datacenter 2 net i N
'{ProtocolStack= TCR/IP, N
/ Throughput = "100", .
! frpe = Switehed-Ethemett «E\ral—Con‘mos'rte—Network»
il Composite-Network regional office 1 net evaluation
! [ANetworks = "Atamic-Natwotk datatacenter 1 net evaluation
! Atomic-Network registry office 1 net evaluation”, -
i ! ProtocolStack = TCPIIP,
«lncludes»r\ Thraughput="100", =~ dincludess ® .
! type = Switched-Ethemet} = 3 -
| M «Eval-Atomic-Metworks
.'. / Atomic K 1net i
. FrotocolStack = TCPIIP,
sincludesz | El'hroughput oo,

| ! type = Switched-Ethemet}
f
f -, s’

i Il
sEval-Composte-Networks

. Composil K net
eEval-Composite-Network: { ="Atomic-Network d 1 net evaluation
Composite-Network regional office 2 net evaluation Atamic-Network registry office 1 net evaluation
= " atammicoNetwar d 2 net evaluation - Atomic-Metwork datacenter 2 net evaluation e
2 " G- i i i Eval-PTP-Connection:
Atamic-Network registry office 2 net svalustion’, Atomic-Network registry office 2 net evaluation <l =

. -
<Iﬂ€|UdESj - Atamic-Network datacenter net evaluation”,

ProtocolStack = TCRIIP,

® -
e

OfiaxNodes = 500
Thioughput="100", - num ' upstream =
19ugnpy -~ ProtocalStack= TCP/IP, ?]
type = Switched-Ethemet} : e Thraughput="1000" «Eval-Atomic-Metworks
\ type = Ethemet} Atomic-Hetwork small regional net evaluation
N | {numOfiMaxNades = 20,

\ Throughput="100"}
A
incluces: 1
N]
\ leincludess

3\ |
A\ |

ym
® -
-
«BEval-Atomic-Metwork:

Atomic-Network registry office 2 net evaluation

{ProtocolStack = TCPIIP,
Throughput="100",
type = Switched-Ethemet}

- k net i
{numOfiaxNodes = 10,
ProtocolStack = TCP/IP,
Throughput="100",
type = Ethemet}

Figure 7.9: Hardware Architecture Evaluation Diagram

Eval-Atomic-Network - Atomic-Network datacenter 2 net evaluation

Atomic-Metwiork datacenter 2 net evaluation [25cenario] W |

Atomic-Network datacenter 2 net evaluation

8 Bf B Properties| Standard ¥ |9 Customize

Bl Eval-Atomic-Network
Mame Atomic-Network datacenter 2 net evaluation
Size 40
Owner E ascenario

e~ Eval-Atomic-Metwork [Class, Diagram) [ElSprofile: Evaluationien:Harc
Applied Sterectype

¥ classtest [Class] [ElSprofile:Functionaliend
EBase Classifier

Realized Imerface

Visibility public
Is Abstract [] false
ToDo
Min-avail
Language Properties Source ID _16_8_14d00da_1363975517633_360334_13640
Hin
Type Switched-Ethernet
Throughput 100
Protocal Stack TCR/IP
Mum Of Max Modes 40
B out
Avg-avail
Avg-util

Avg-load-traf
Max-load-traf
Max-util

(Name)
(Description)

1=
o

Figure 7.10: Hardware Architecture Evaluation Diagram, Atomic Network properties

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 7. A Case Study

156

=

«Eval-Workstations

Workstation registry manager 2 w/s evaluation
{capacity = "300",
cares="
instances="1",
NumberOfDisks
NumberOfProcessa
ProcPower = "2048",
simid = "_16_8_14d00da_1366132303267_540047_15582",
StorageSpeed = "1500"}

lsEval-Software Allocations
|

«Eval-Usage Allocations

{instances = 1}
|
|
4

<
«Eval-Rolex

Role registry manager evaluation

0

«Eval-Client-Module-Replicas
registry manager registry application registry office 2 evaluation
{ModuleName = "CI registry applicat luation",
numOfUsers = 1,
service ervice add taxation entity
Service add taxation entity
Service update taxation entity
Sewice update taxation entity
Service deactivate taxation entity
Service deactivate taxation entity
Service check data
Service check data",
simid = "_16_8_14d00da_1366132363852_982301_15700",
targetModuleReplicas ="local database Replica 48192_12585 evaluation"}

tModul

{actDistFunc = "Nomal",
EndTim
hean
NumOfOeeurs = 2,
StandardDeviation = "150",
StartTime =7}

|
|
i

aconform tos

=

«Eval-Workstations
‘Workstation registry staff 2 w/s evaluation

{capacity = "200!
cores="
instances = "8",

NumberOfDisks = "
NumberOfPracesso
ProcPower = "2048",
simid = "_16_t
St?r\rageSpee ="500"}

_14d00da_1366132365032_755761_15803",

M
|

|«Eval-Usage Allocations |

|linstances = 6}
|

4

<
«Eval-Roles

Role registry staff evaluation
{actDistFunc = "Poisson”,
EndTime = 15,
Mean = "500",
NumOfOecurs = 10,
StandardDeviation = "100",
StartTime = 7}

=Behaviour-Regz
manager behavior

actDistFunc = Normal
d="1"

Mean ="620"
StandardDeviation="150"
Text=""

|econform toz

|«Eval-Software Allocations

I <
«Eval-Client-Module-Replicas
registry staff registry application registry office 2 evaluation
{ModuleName = "Client Module registry application evaluation”,
numOfUsers = 8,
service = "Service add taxation entity
Service add taxation entity
Senice update taxation entity
Semvice update taxation entity
Service deactivate taxation entity
Senice deactivate taxation entity
Semice check data
Service check data",
simid ="_16_8_14d00da_1366132365114_979426_15848",
targetModuleReplicas = "local database Replica 48192_12585 evaluation"}

«Behaviour-Reqs
officer behavior

«Behaviour-Regs
small regional office officer
behavior

actDistFunc = Poisson

ld="2"

Mean ="500"
StandardDeviation ="100"
Text=

actDistFunc = Poisson
ld="3"

Mean = "300"
StandardDeviation ="100"
Text=""

Figure 7.11: Hardware Architecture Evaluation Diagram, Atomic Network

Anargyros T. Tsadimas

Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 7. A Case Study 157

7.6 Transformation to simulation code

Simulation model should represent a concrete system, which is described in many views.
For that reason model transformation is inevitable. The transformation formula has been
described in Figure 6.5. In an EIS model, elements are presented in different views, which
are described in an evaluation scenario. Here, the selected simulation framework is DEVS.
In a DEVS model there is a strict model hierarchy, due to the necessity of executable simu-
lation code. To transform the system model to a corresponding DEVS simulation model, the
following steps are required:

i. exportthe system model in XML format, using XMI specification [130]. Magicdraw mod-
eling tool supports the export of a model in XMI format (Eclipse UML2 v2.x XMI file).

ii. import the XMI file in Medini QVT [127] tool, and apply the QVT transformation (the qvt
file in repository [122]). The resulting model is also in XML format corresponding to a
DEVS model.

iii. apply an XSLT transformation to obtain DEVSJava executable code from the xported
XML file.

In [25] the interested reader can find details about the model transformations in order to
produce the simulation code.

7.7 Simulation execution and results incorporation

DEVSJava simulation environment has to be extended with the appropriate simulation
library components due to the lack of the description of the behavior (explained in section
6.4.1) . The source code of library components is presented in [122]. Simulation time and
the number of simulation runs should be defined, in order to have reliable results. After the
simulation execution, an XML file is produced containing simulation results, according to
Figure 6.7. Listing 7.1 presents an excerpt of these results.

Listing 7.1: Simulation results

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<results>
<result
stereotype="Eval-Atomic—Network::Eval-Service—Replica”
name="synchronize registry”
id="_16_8_14d00da_1366132358008_45445_15160"
count="1">
<value
value="0.00008364964640774856"
name="avg—ResponseTime” />
<value
value="0.00039550217238502227701246738433837890625"
name="max—ResponseTime” />
</result>
<result

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 7. A Case Study

158

stereotype="Eval-Atomic—Network::Eval-Service—Replica”

name="synchronize registry”
id="_16_8_14d00da_1366132358005_661866_15146"
count="1">
<value
value="-0.00000860113645457735"
name="avg—ResponseTime" />
<value

value="0.00057738729261473054066300392150878906250"

name="max—ResponseTime"” />
</result>

</results>

The incorporation of the simulation results is a simple task, since it has been implemented

in EIS plugin. Figure 7.12 presents how this could be achieved.

MagicDraw UML 16.8 - TaxationRe

¢ File Edit View Layout Diagrams Options Tools Analyze Teamwork Window Help EIS-Profil
A=) DG 8 -~-<a-e>-iP ’ Jhome. ryExampleMarl 3-test V|
[rmnmener i@ v EEOEEERBER 25V

Cont % Stru.. | &y Inher.. {;ﬂ Diag.. |<> Mode..| | registry office 2 net ev

Containment o ox i;‘?‘i &
glujglaly = £ Common
=] ¥ localdb sync it ‘ﬂ =4 Note
New Element » TextBox
New Diagram » Anchor
MNew Relation b Containment
Qpenin New Tab Dependency
Specification Enter Image Shape
Separator
CoTo p uation View
Refactor » Evaluation Scenario
Selectin Structure Tree -~
Selectin Inheritance Tree
i Related Elements L3
Stereotype »
g Rename F2
M Copy ctrl-C
1 Capy URL
| @
oL Cut Ctri-x
[
: Delete Delete
[B N
1 e Create Symbal Ctri+5hift-v
L)
Generate Code Framework Ctrl-G
@5 zoom | B Check Syntax

Zoom Cenerate Report.

Reverse from Classpath
ElSProfile

Create Instance...
-
¥ Messages Window

Messages Window

L3

L3

m-. datacenter 2 net ev

R]

Load Simulation Results

Run Simulation

L3

G - B

- aEvaluat
package Data|

Figure 7.12: Importing Simulation results

7.8 Verifying Requirements

Having the results incorporated to our system model, the out tagged values of all evalua-
tion entities (e.g. out values of Figure 7.10) are filled. Afterwards, a validation rule that checks

the out values with the corresponding requirements values is applied. Figure 7.13 presents

the case where an atomic network fails to verify a load requirement: the requirement has an
average value of 2.7Mbps with 0.2 deviation and the simulation reported an average load of
3.1Mbps. Since this value does not belong to the interval [2.5,2.9], the corresponding valida-
tion rule fails and the designer is being notified with a red annotation (see Figure 7.13).

Anargyros T. Tsadimas

Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 7. A Case Study 159

¢ File Edit View Layout Diagrams Options Tools Analyze Teamwork Window Help EIS-Profile

.
BERSE AV SB0 B0 Qv [nnee]

g & e
hEeEDba E
Bc. B st | & |20 D0 [M. [7o) & an o datacenter network evalu... | - buildingl network evaluza.. | - buildingz 4 b B
Containment O o ox :_q-?-i 2 : Ll B 2
Bughy 5 3 Common [=
= = | = Note = Q Load req not verified
] 2 manager-beh =)
Ignore
accounting department sbc Text Box ¥ by _
= Availability-req B Anchor 2 { Select in Validation Results
B v
qascenier & Containment * LR o
= Eval-Metwork - o
HRM department - Dependency «Eval-Atomic-Networks [«Load-Reqs
= Load-reg B imiage SHape Atomic-Network datacenter network Evall:atinn ’{‘
"o Local Office Netwark : s {avg-avail ="0.82", st avg-value = "2 7 a
8 Local Offices el B aug-load-traf = '30%, |27 B devianion = *0.2"
= Metwork Hardware Architect ;"g;_“l‘u‘ad:_[rar {' Id ="14" . - @
Sales department :.. Eval-Atomic-MNe... max_util = o max-valug = "4 o
f2 scenariol B i min-avail = "0.90", Vd Type = "amf sEval-Atomic-Networke
.,Eeﬂ scenariol: Hardware Archit f_ N & F‘f\ﬂlﬂiﬂlSta(k=TCPHF] d/ unit = "Mbps Atomic-Network buildingl network evaluation
|2 scenariol: Software Architec|_|| . Eval-Compasite T =7 {PratocalStack = TCP/IFt
L i rolez x| Eval-PPT-Conn) o -
] V| 5 evar-atomic-ne «Eval-PTP-Connec_Ans o
&5 Zoom |B Documenta. Properties A \ = o <
wincludess .~
Zoom 0 o x \ il 5
-
A -)
7 X -
- 1 -
ot - @ -
.- i N ®
o dncludess _ . — » «Eval-Atomic-Networles
o _ _ - --- Atomic-Network building2 network evaluation
{ProtocolStack = TCR/IF}
®
+Eval-Com posite-Netwarle |
|- Composite-Network Local Office Network evaluation |
1 1]

Figure 7.13: Verifying a load requirement

7.9 Re-design System Model

Depending on the nature of the non-verified NFR, system designer has to adapt the sys-
tem model. This can be done with one of the following:

 in case of a load NFR, a solution is to alter the software to hardware allocations so as to
increase/decrease the imposed load

* in case of a response-time NFR, either reducing the complexity of software architecture
(e.g., decreasing software tiers) or providing hardware with additional capabilities (e.g.
processing power or memory)

* in case of availability and utilization NFRs via improving either the hardware and/or the
network.

7.10 Experience Obtained

System designers that tested the tool in the case study, appreciated the fact that all the
information related to requirement verification was presented in a single view. The Load
requirement derivation mechanism, enable the designer to accurately define network archi-
tecture. For example a suggestion was that more DB servers were required in Large Offices.
They also found useful that all different experiment results were maintained, as evaluation
scenarios, and could be used when making modification in architecture design. In fact, they
ranked it as the most important feature of the proposed SysML extensions, since it enabled
them to keep track of all redesign decisions and the reasons leading to them. Derived require-
ment computation was considered useful, but also a bit confusing for some of the experts

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 7. A Case Study 160

using the tool. Furthermore, most of them also suggested that the tool could propose al-
ternatives on system architecture modifications to satisfy imposed requirements. Using the
tool, it was estimated that software performance was improved almost by one third by the
second scenario suggesting a Central Database Architecture, while the network architecture,
interconnecting regional offices and the IT Center, remained the same. Thus, the communi-
cation cost was not much bigger.

The outcome of this experience proved that it was feasible to achieve desired perfor-
mance adopting alternative system designs without any application re-writing. The proposed
approach enabled the suggestion of alternative designs for local databases that result in im-
proved performance. Initial service response time requirements were not verified, because
of limited network bandwidth in the initial private network design. Requirements derivation
enhanced the private network design. Load requirements were estimated and they revealed
that in heavy load circumstances, network bandwidth requirements was not adequately de-
fined.

7.11 Summary

This chapter presented a detailed case study concerning the application of the proposed
approach as this is conceived and realized from the designer’s perceptive. Design mode of
the EIS plugin has been explained by exposing its facilities in a sequential manner. Each one
of the provided views and diagrams has been depicted and explained to help the reader
understand their capabilities. Next chapter presents a critical view about the contribution as
well as the shortcomings of the proposed approach.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter

Discussion

Contents
81 OVerVIeW o i it e e e e e e e e e e e e 162
8.2 Contribution e e 163
83 Limitations e e e 165

8.1 Overview

A SysML-based approach about model-based EIS architecture design was presented. The
related background was reviewed in chapter 2. To reveal the research challenges that influ-
enced the elaboration of this thesis, the related approaches were discussed in chapter 3. Dur-
ing this thesis, two main research areas were exploited: the model-based systems engineering
and the requirements engineering. The literature review revealed the following shortcomings:

* regarding system architecture design, there are many stakeholders that each one wants
his own perspective. A model-based approach, based on the literature, ensuring model

consistency, supports this feature.

* requirements play a significant role in systems design and their verification is vital
when talking about system performance. Regarding requirements verification, simu-
lation has been identified as an appropriate technique for the estimation of system
models’ performance.

« simulation results should be incorporated within the original system model and a com-
parison against the predefined, performance-related, requirements should be performed
within the SysML modeling environment.

« automated requirements verification within the SysML model could be enabled, once
system performance estimation has been added in the model.

162

Chapter 8. Discussion 163

Afterwards, the contribution of this thesis was presented in three parts: the proposed
approach described and documented by related work, the design phase of the proposed ap-
proach along with the definition and the handling of NFRs and finally the evaluation process
through the NFR verification.

This thesis had two complementary objectives that concern an EIS: to provide auto-derived
NFRs in order to act as indicators about the load of the software to hardware allocations and
to propose an automation process of NFRs verification. To this end, focus was given on EIS
architecture design. The same concepts described here, could be applied to other domains
equally, with the corresponding customizations. In addition, EIS profile can be extended to
include modern aspects of the web based applications development, such as cloud com-
puting issues. In spite of the fact that the modules and services of Functional view resemble
Software as a Service (SaaS), the concepts are more general and could be applied to Platform
as a Service (PaaS) and Infrastructure as a Service (IaaS) as well.

8.2 Contribution

As the application domain of this thesis was the EIS, the contribution could be considered
as domain-specific. Though, during this research, some aspects were proposed that could be
applied in general for the design of systems, and not necessarily only IS. Hence, as domain
specific contribution, we consider the following:

« a domain specific profile for the design of EIS based on SysML and

+ a design environment with:

- enhanced model validation rules

- auto-derived requirements

- automated evaluation process
At the same time, the following aspects are domain agnostic and could be applied in systems
design process:

+ exploitation of requirements to define the behavior and the performance of the system

and a way to be verified

« NFRs categorization focused on performance requirements

+ an additional view dealing with the evaluation, enabling the existence of an evaluation

scenario history

A key contribution of this thesis was the proposition of a way to measure the performance
of a designed EIS, based on defined NFRs and constraints. As a result, system designer be-
came evaluation-agnostic. After the definition of software and hardware architectures (at
design phase views), the evaluation phase is auto-generated and a snapshot of the system
modelis able to be simulated, following specific guidelines. In any stage of the system design,

validation rules ensure the conformance to the EIS metamodel.

As NFRs are critical in systems design process, this approach provides a systematic re-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 8. Discussion 164

view and a categorization of NFRs. Emphasis was given on performance issues and related
requirements. Issues such as auto-derivation of requirements were resolved. To this end,
quantitative characteristics have to be defined as attributes to NFRs and a derivation for-
mula is applied. The integration of the derivation process inside the modeling environment
supports the decision making process.

In early stages of software to hardware allocations, specific requirements provide the
required information about the imposed load to hardware elements, helping the designer
to define his allocation policy. To handle the user behavior, a new kind of requirement was
introduced: behavioral requirements. These requirements can be associated with the user
roles to describe their behavior, in terms of traffic generators, providing distributions and
their parameters. Throughout this thesis, OMG standards were exploited in order to define a
SysML profile and the corresponding QVT relations to transform system model to simulation
model. These standards facilitated the interoperability between methods and tools of the
proposed approach.

SysML design model

requirements model

req
r. derivations
'I— e

analysis model

behavior ol
definition o

_______ > —
o —

=9

|
& A

RE expert System Designer Evaluation Expert

integration (analysis model

SysML design model Bmegraugn

—

System Designer

requirements

Req derivation model

Figure 8.1: Contribution Overview

The overall contribution of this thesis is summarized in Figure 8.1. Until now, many stake-
holders should use their own tools in order to design an information system. These tools
could not effectively exchange data because each of them has its own data structures. An in-
tegrated design environment is provided so as the stakeholders participating in the design
of an information system can be synchronized in order to effective design and evaluate the

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 8. Discussion 165

actual information system. The knowledge of a requirements engineer expert, an analysis
model expert and a system designer were utilized to constitute this environment, which is
capable of executing model analysis to verify the imposed requirements, and this process is
transparent to the system designer.

8.3 Limitations

As the intention of this thesis was to propose an approach for EIS architecture design,
some bottlenecks arose, when someone tries to apply this approach to other domains. First
of all, a domain expert is needed in order to implement simulation library components corre-
sponding to the SysML model. Moreover, the selection of an appropriate evaluation method
e.g., different simulation environments remains an open issue. As oftentimes stated, many
stakeholders are involved in the design process of an EIS. Practically not all of them are prop-
erly communicating during this process.

Another key issue that was not addressed here, is the derivation of quantitative NFRs
from generic described requirements using natural language. Maybe a query based system,
domain specific and knowledge-based could contribute towards this direction.

Last but not least, the responsibility of the system designer to ensure requirements veri-
fication by alterations of the system model, remains open. A recommendation system would
be useful to act as a self-healing system. Take as an example, an efficient recommendation
system based on previous knowledge that could suggest auto-adjustments.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter

Conclusions - Future Work

Contents
9.1 CoNnClUSIONS i i it s it e 167
9.2 FULUre WOrKK v i s i s e e e e e e e e e e et e e et et e e e 168

9.1 Conclusions

The process of EIS design is challenging, as itinvolves specialist from many domains, such
as system designers, network architects, requirements engineers, simulation experts etc. All
of them need a common canvas to be able to communicate. The proposed approach provides
this particular canvas and the required tools in order to have a central model that could be
used from anyone participating to this process and that is consistent and able to reflect the
changes from one perspective to other perspectives.

The main objective of this research was the proposition of an MBSD approach for EIS
architecture design using SysML. Motivated by the lack of efficient mechanisms for the veri-
fication of quantitative NFRs defined in SysML models, focus was given on the detailed repre-
sentation of quantitative NFRs in SysML and their verification using quantitative methods. To
this end, SysML was properly extended, while automated and efficient verification of SysML
requirements via simulation was explored. Proposed concepts were applied in the informa-
tion system domain, focusing on the design of EIS architectures, while performance require-
ments were focused.

The integrated framework, implemented to support the proposed approach, illuminates
the role of models and standards towards solutions that enforce knowledge exchange and
combined use of diverse proprietary tools. It aims to facilitate the system designer providing
feedback about the performance of the system.

To explore the effectiveness, the proposed approach was applied to a complex case study.
Chapter 7 presented a case study where an EIS was designed, evaluated and re-adjusted fol-
lowing the proposed approach. The transformation of system model to executable simula-

167

Chapter 9. Conclusions - Future Work 168

tion code was successful and the simulation results were incorporated to system model in
order to verify the NFRs. The design environment informed the system designer about the
non-verified NFRs, giving him the opportunity to make decisions to improve the performance
of the system.

9.2 Future Work

This research put emphasis on the evaluation of performance requirements. Performance
is a critical issue that a designer should examine when building a large scale EIS. Of course
there are other issues such as security, safety, usability, legal and many others [46]. A forth-
coming research direction could be to explore more types of NFRs, as there is a lot of interest
in the literature [131, 132].

Moreover, research interest also exists in order to analyze existing requirements for reg-
ulatory compliance [133]. The cost of noncompliance is high, including fines, cost of court
representation, government audits, and workforce training. Ensuring compliance to laws,
regulations, and standards in a constantly changing business and compliance environment
is one of the major challenges companies face today. As a result, compliance in EIS is an issue
of major importance.

Additionally to the fact that the system designer is notified about the non-verified require-
ments, a complementary recommendation system, that would rely on existing and obtained
knowledge, could make the evaluation process to act as a self-healing system. Utilizing the
automation, on a non verified requirement occurrence, a set of running tasks/operations
could be defined so as to support the concept of self-organizing networks in systems engi-
neering. This presupposes that a knowledge base is available in order to decide the specific
tasks that would make the requirement satisfiable again, ensuring that there are no other
unverified requirements.

As a forthcoming research challenge, the application of the proposed approach on other
system domains such as transportation and communications are already under investigation
and partially implementation [134].

Moreover, the incorporation of techo-economic analysis during the design process it could
be explored. Cost is one of the major factor that anyone should take into consideration when
developing information systems. Into this context, a model-driven techno-economic target-
ing the estimation of economic parameters of cloud service deployment, which is able to as-
sist decision support procedures for cloud users, cloud providers and cloud brokers. SysML
could be adopted as a modeling language for describing cloud architectures as SoS, empha-
sizing cost properties. As an example, the Total Cost of Ownership (TCO) for cloud infrastruc-
ture and services could be explored [135].

Last but not least, due to the rise of cloud computing and the extensive use of web ser-
vices, the proposed approach could fit the needs of any modern information system running

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Chapter 9. Conclusions - Future Work 169

in the cloud and communicating with other software components via web services. A set
of cloud computing specific non-functional requirements are necessary to support this cus-
tomization.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

B

—_

10.

11.

12.

13.

ibliography

. J.F.Sowa and]. A. Zachman, “Extending and Formalizing the Framework for Information Systems
Architecture,” IBM Systems Journal, vol. 31, no. 3, pp. 590-616, 1992.

. IEEE, “IEEE System and Software Engineering - Architectural Description: Std 42010,” Tech. Rep.,
May 2009.

. “MagicDraw UML.” [Online]. Available: http://www.magicdraw.com/

. M. Nikolaidou, A. Tsadimas, N. Alexopoulou, and D. Anagnostopoulos, “Employing Zachman
Enterprise Architecture Framework to systematically perform Model-Based System Engineering
Activities,” in HICSS-42, 2009, pp. 1-10. [Online]. Available: http://dx.doi.org/10.1109/HICSS.
2009.189

. A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, “Extending sysml to explore non-
functional requirements: the case of information system design,” in Proceedings of the 27th
Annual ACM Symposium on Applied Computing, ser. SAC'12. New York, NY, USA: ACM, 2012, pp.
1057-1062. [Online]. Available: http://doi.acm.org/10.1145/2231936.2231941

. M. Nikolaidou, A. Tsadimas, and D. Anagnostopoulos, “Model-based enterprise information sys-
tem architecture design using SysML,” in IEEE Systems Conference 2010, April 2010.

. A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, “Evaluating software architecture in a
model-based approach for enterprise information system design,” in SHARK '10. New York,
USA: ACM, 2010, pp. 72-79.

. ——, "Handling non-functional requirements in information system architecture design,” in IC-

SEA 09, 2009, pp. 59-64.

. A. Tsadimas, G.-D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopoulos, “Integrating sim-

ulation capabilities into sysml for enterprise information system design,” in System of Systems
Engineering (SOSE), 2014 9th International Conference on. 1EEE, 2014, pp. 272-277.

M. Nikolaidou, G.-D. Kapos, A. Tsadimas, V. Dalakas, and D. Anagnostopoulos, “Simulating sysml
models: Overview and challenges,” in System of Systems Engineering Conference (SoSE), 2015 10th.
IEEE, 2015, pp. 328-333.

A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, Formal Languages for Computer Simulation:
Transdisciplinary Models and Applications. 1GI Global, 2013, ch. 8: Model-Based System Design
Using SysML: The Role of the Evaluation Diagram, pp. 236-266.

A. Tsadimas, “Model-based enterprise information system architectural design with sysml,” in
Research Challenges in Information Science (RCIS), 2015 IEEE 9th International Conference on. IEEE,
2015, pp. 492-497.

G.-D. Kapos, V. Dalakas, A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, “Model-based sys-

171

http://www.magicdraw.com/
http://dx.doi.org/10.1109/HICSS.2009.189
http://dx.doi.org/10.1109/HICSS.2009.189
http://doi.acm.org/10.1145/2231936.2231941

Bibliography 172

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
20.

30.

tem engineering using SysML: Deriving executable simulation models with QVT,” in SysCon. IEEE
International Systems Conference, 2014.

M. Nikolaidou, N. Alexopoulou, A. Tsadimas, A. Dais, and D. Anagnostopoulos, “A consistent
framework for enterprise information system engineering,” in EDOC. IEEE Computer Society,
2006, pp. 492-496. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/EDOC.2006.
6

M. Nikolaidou, A. Tsadimas, N. Alexopoulou, and D. Anagnostopoulos, “Employing zachman en-
terprise architecture framework to systematically perform model-based system engineering ac-
tivities,” in HICSS, 2009, pp. 1-10.

M. Nikolaidou, N. Alexopoulou, A. Tsadimas, A. Dais, and D. Anagnostopoulos, “Using UML to
model distributed system architectures,” in CAINE. 1SCA, 2005, pp. 91-96.

M. Nikolaidou, A. Tsadimas, N. Alexopoulou, A. Dais, and D. Anagnostopoulos, “A UML profile
utilizing enterprise information system configuration,” in ICECCS. IEEE Computer Society, 2006,
pp. 77-88. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/ICECCS.2006.48
INCOSE, Systems Engineering Handbook, version 3.2.2 ed. San Diego, CA, USA: International
Council on Systems Engineering, 2012.

M. Nikolaidou, N. Alexopoulou, A. Tsadimas, A. Dais, and D. Anagnostopoulos, “Extending UML
2.0 to augment control over enterprise information system engineering process,” in ICSEA.
IEEE Computer Society, 2006, p. 10. [Online]. Available: http://doi.ieeecomputersociety.org/10.
1109/ICSEA.2006.41

N. Alexopoulou, A. Tsadimas, M. Nikolaidou, A. Dais, and D. Anagnostopoulos, “Introducing a
UML profile for distributed system configuration,” in ICEIS: Databases and Information Systems
Integration, Paphos, Cyprus, May 23-27, 2006, 2006, pp. 542-545.

M. Nikolaidou, N. Alexopoulou, A. Tsadimas, A. Dais, and D. Anagnostopoulos, “Facilitating en-
terprise information system engineering through a UML 2.0 profile: A case study,” Information
Resource Management Association (IRMA 2007), Vancouver, British Columbia, Canada, 2007.

——, “Accommodating EIS UML 2.0 profile using a standard UML modeling tool,” in Software
Engineering Advances, 2007. ICSEA 2007. International Conference on. 1EEE, 2007, pp. 26-26.

B. Nuseibeh and S. Easterbrook, “Requirements engineering: A roadmap,” in Proceedings of the
Conference on The Future of Software Engineering, ser. ICSE '00. New York, NY, USA: ACM, 2000,
pp. 35-46. [Online]. Available: http://doi.acm.org/10.1145/336512.336523

J. A. Estefan, “Survey of model-based systems engineering (MBSE) methodologies,” vol. 25, pp.
1-80, May 2008.

S. Kapos, Georgios-Dimitrios, “Model-oriented approach for automating sysml system models
simulation,” Ph.D. dissertation, Harokopio University of Athens, 70, El. Venizelou Str, Kallithea,
09 2016.

R.H.von Alan, S. T. March, J. Park, and S. Ram, “Design science in information systems research,”
MIS quarterly, vol. 28, no. 1, pp. 75-105, 2004.

L. M. Jessup and J. S. Valacich, Information systems today. Prentice Hall Professional Technical
Reference, 2002.

S.). Kapurch, NASA Systems Engineering Handbook. DIANE Publishing, 2010.

Definition of information system engineering. [Online]. Available: http://www.accessscience.
com/content/information-systems-engineering/343950

Definition of enterprise system. [Online]. Available: http://en.wikipedia.org/wiki/Enterprise_
system

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

http://doi.ieeecomputersociety.org/10.1109/EDOC.2006.6
http://doi.ieeecomputersociety.org/10.1109/EDOC.2006.6
http://doi.ieeecomputersociety.org/10.1109/ICECCS.2006.48
http://doi.ieeecomputersociety.org/10.1109/ICSEA.2006.41
http://doi.ieeecomputersociety.org/10.1109/ICSEA.2006.41
http://doi.acm.org/10.1145/336512.336523
http://www.accessscience.com/content/information-systems-engineering/343950
http://www.accessscience.com/content/information-systems-engineering/343950
http://en.wikipedia.org/wiki/Enterprise_system
http://en.wikipedia.org/wiki/Enterprise_system

173

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.
50.

. D. L. Olson and S. Kesharwani, Enterprise information systems: contemporary trends and issues.
World Scientific, 2010.

J. Schekkerman, How to Survive in the Jungle of Enterprise Architecture Frameworks: Creating or
Choosing an Enterprise Architecture Framework. Trafford, 2003.

A. Reichwein and C. . Paredis, “Overview of architecture frameworks and modeling languages
for model-based systems engineering,” in ASME 2011 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference. American Society of Me-
chanical Engineers, 2011, pp. 1341-1349.

S. Leist and G. Zellner, “Evaluation of current architecture frameworks,” in SAC, H. Haddad, Ed.
ACM, 2006, pp. 1546-1553. [Online]. Available: http://doi.acm.org/10.1145/1141277.1141635
“Institute For Enterprise Architecture Developments.” [Online]. Available: http://www.
enterprise-architecture.info/

M. Nikolaidou and N. Alexopoulou, “Enterprise Information System Engineering: A Model-Based
Approach Based on the Zachman Framework,” in HICSS'08. IEEE Computer Society, 2008.
[Online]. Available: http://doi.ieeecomputersociety.org/10.1109/HICSS.2008.148

I. P1471, "IEEE Recommended Practice for Architectural Description of Software-intensive
Systems--Std. 1471-2000,” New York, NY, USA, 2000.

M. Jarke, P. Loucopoulos, K. Lyytinen, J. Mylopoulos, and W. N. Robinson, “The brave new world
of design requirements,” Inf. Syst., vol. 36, no. 7, pp. 992-1008, 2011.

M. Fonoage, I. Cardei, and R. Shankar, “Mechanisms for requirements driven component selec-
tion and design automation,” Systems Journal, IEEE, vol. 4, no. 3, pp. 396 -403, sept. 2010.

E. R. Byrne, “IEEE Standard 830: Recommended Practice for Software Requirements Specifica-
tions,” 1998.

A. W. Wymore, Model-Based Systems Engineering, 1st ed. Boca Raton, FL, USA: CRC Press, Inc.,
1993.

J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using non-functional requirements:
A process-oriented approach,” IEEE Transactions on Software Engineering, vol. 18, pp. 483-497,
1992.

L. Zhu and L. Gorton, “UML profiles for design decisions and non-functional requirements,” in
SHARK-ADI '07. Washington, DC, USA: IEEE Computer Society, 2007, p. 8.

R.Jain, A. Chandrasekaran, G. Elias, and R. Cloutier, “Exploring the impact of systems architecture
and systems requirements on systems integration complexity,” Systems Journal, IEEE, vol. 2, no. 2,
pp. 209 -223, june 2008.

M. H. Kacem, M. Jmaiel, A. H. Kacem, and K. Drira, “A UML-based approach for validation of
software architecture descriptions,” in TEAA, 2006, pp. 158-171.

M. Glinz, “On non-functional Requirements.” 15th IEEE International Requirements Engineering
Conference, 2007.

A.v. Lamsweerde, “Goal-Oriented Requirements Engineering: A Guided Tour,” in Fifth IEEE Inter-
national Symposium on Requirements Engineering (RE'01), aug 2001, p. 249.

L. Balmelli, D. Brown, M. Cantor, and M. Mott, “Model-driven systems development,” IBM Systems
Journal, vol. 45, no. 3, pp. 569 -585, 2006.

0. M. G. Inc, “Systems Modeling Language (SYSML) Specification, Version 1.2,” June 2010.
International Council on Systems Engineering. INCOSE. [Online]. Available: http://www.incose.
org/

51. 0. M. G. Inc, “UML Superstructure Specification, Version 2.1.2,” November 2007.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

http://doi.acm.org/10.1145/1141277.1141635
http://www.enterprise-architecture.info/
http://www.enterprise-architecture.info/
http://doi.ieeecomputersociety.org/10.1109/HICSS.2008.148
http://www.incose.org/
http://www.incose.org/

Bibliography 174

52

53.

54.

55.

56.
57.

58.
59.

60.

61.

62.

63.
64.

65.
66.

67.

68.

69.

70.

71.

72.

73.

. B. Nolan, B. Brown, L. Balmelli, T. Bohn, and U. Wahli, Model Driven Systems Development with
Rational Products, IBM Red Book, 2008.

ISO, “Information technology -- open distributed processing -- use of UML for ODP system
specifications,” october 2009. [Online]. Available: ISO/IECCD19793

S. Izukura, K. Yanoo, T. Osaki, H. Sakaki, D. Kimura, and J. Xiang, “Applying a model-based
approach to IT systems development using SysML extension,” in MoDELS, ser. Lecture
Notes in Computer Science, vol. 6981. Springer, 2011, pp. 563-577. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-24485-8

“INCOSE System Enineering Terms Glossary,” INCOSE, October 1998. [Online]. Available:
http://www.incose.org/ProductsPubs/techresourcecenter.aspx

P. Kruchten, The rational unified process: an introduction. Addison-Wesley Professional, 2004.
P. Ralph and Y. Wand, “A proposal for a formal definition of the design concept,” in Design re-
quirements engineering: A ten-year perspective. Springer, 2009, pp. 103-136.

Object Management Group. OMG. [Online]. Available: http://www.omg.org/

OMG, “Model Driven Architecture. Version 1.0.1,” June 2003. [Online]l. Available:
Availableonlineviahttp://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

F. S. David, Model driven architecture: applying MDA to enterprise computing. Wiley publishing,
Inc. USA, 2003.

Object Constraint Language Specification, version 2.0, Object Modeling Group, jun 2005. [Online].
Available: http://www.omg.org/technology/documents/formal/ocl.htm

OMG, “Meta obiject facility (MOF) 2.0 Query/View/Transformation specification,” Transformation,
no. April, pp. 1-230, 2008. [Online]. Available: http://www.omg.org/spec/QVT/1.0/PDF/
“Sysmlforum.” [Online]. Available: http://www.sysmlforum.com/

O. M. G. Inc, Systems Modeling Language (SYSML) Specification, Version 1.3, Std., June 2012.
[Online]. Available: http://www.omg.org/spec/SysML/1.3/PDF

“SysML-faq.” [Online]. Available: http://sysmliforum.com/sysml-faq/

J. Siddigi and M. C. Shekaran, “Requirements engineering: The emerging wisdom,"” IEEE Software,
vol. 13, no. 2, pp. 15-19, 1996.

A. Terry Bahill and S.). Henderson, “Requirements development, verification, and validation
exhibited in famous failures,” Syst. Eng., vol. 8, no. 1, pp. 1-14, Mar. 2005. [Online]. Available:
http://dx.doi.org/10.1002/sys.v8:1

A.Law, Simulation modeling and analysis, 4th ed., ser. McGraw-Hill series in industrial engineering
and management science. McGraw-Hill, 2006.

U. Herzog, “Formal methods for performance evaluation,” in Lectures on Formal Methods and
PerformanceAnalysis, ser. Lecture Notes in Computer Science, E. Brinksma, H. Hermanns, and
J.-P. Katoen, Eds. Springer Berlin Heidelberg, 2001, vol. 2090, pp. 1-37. [Online]. Available:
http://dx.doi.org/10.1007/3-540-44667-2_1

G. Fishman, Discrete-event simulation: modeling, programming, and analysis. Springer Science &
Business Media, 2013.

B. P. Zeigler, H. Praehofer, and T. Kim, Theory of Modeling and Simulation, 2nd ed. Academic
Press, 2000.

C. Seo and B. Zeigler, “Devs namespace for interoperable devs/soa,” in Simulation Conference
(WSC), Proceedings of the 2009 Winter, Dec 2009, pp. 1311-1322.

G.-D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopoulos, Formal Languages for Computer
Simulation: Transdisciplinary Models and Applications. 1GI Global, 2013, ch. 10: An Integrated

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

ISO/IEC CD 19793
http://dx.doi.org/10.1007/978-3-642-24485-8
http://www.incose.org/ProductsPubs/techresourcecenter.aspx
http://www.omg.org/
Available online via http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/spec/QVT/1.0/PDF/
http://www.sysmlforum.com/
http://www.omg.org/spec/SysML/1.3/PDF
http://sysmlforum.com/sysml-faq/
http://dx.doi.org/10.1002/sys.v8:1
http://dx.doi.org/10.1007/3-540-44667-2_1

175

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90

Framework to Simulate SysML Models Using DEVS Simulators, pp. 305-332.

——, “An integrated framework for automated simulation of SysML models using DEVS,"” Simu-
lation, vol. 90, no. 6, pp. 717-744, 2014.

M. Cantor, Rational Unified Process for Systems Engineering, RUP SE Version 2.0, IBM Rational Soft-
ware white paper, IBM Corporation, May 2003.

——, “Rational Unified Process for Systems Engineering Part II: System Architecture,” The Ratio-
nal Edge, 2003.

E. Huang, R. Ramamurthy, and L. F. McGinnis, “System and simulation modeling using SysML,”
in WSC '07: Proceedings of the 39th conference on Winter simulation. Piscataway, NJ, USA: IEEE
Press, 2007, pp. 796-803.

O. Schonherr and O. Rose, “First steps towards a general SysML model for discrete processes
in production systems,” in Proceedings of the 2009 Winter Simulation Conference, Austin, TE, USA,
December 2009, pp. 1711-1718.

D. Kimura, T. Osaki, K. Yanoo, S. Izukura, H. Sakaki, and A. Kobayashi, “Evaluation of it systems
considering characteristics as system of systems,” in System of Systems Engineering (SoSE), 2011
6th International Conference on, june 2011, pp. 43 -48.

W. Schamai, P. Helle, P. Fritzson, and C. J. J. Paredis, “Virtual verification of system designs
against system requirements,” in Proceedings of the 2010 international conference on Models in
software engineering, ser. MODELS'10. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 75-89.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2008503.2008514

O. M. G. Inc, “UML profile for MARTE: Modeling and analysis of real-time embedded systems
specification, version 1.0,” November 2009.

H. Espinoza, D. Cancila, B. Selic, and S. Gérard, “Challenges in combining SysML and
MARTE for model-based design of embedded systems,” in ECMDA-FA, ser. Lecture Notes
in Computer Science, vol. 5562. Springer, 2009, pp. 98-113. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-02674-4

ITU, “User requirements notation URN - language definition,” ITU, ITU-T Reccomendation Z.151,
Nov. 2008.

M. Bajaj, D. Zwemer, R. Peak, A. Phung, A. Scott, and M. Wilson, “Slim: collaborative model-based
systems engineering workspace for next-generation complex systems,” in Aerospace Conference,
2011 IEEE, 2011, pp. 1-15.

D. Knorreck, L. Apvrille, and P. de Saqui-Sannes, “Tepe: A sysml language for time-constrained
property modeling and formal verification,” SIGSOFT Softw. Eng. Notes, vol. 36, no. 1, pp. 1-8,
Jan. 2011. [Online]. Available: http://doi.acm.org/10.1145/1921532.1921556

I. Ober, S. Graf, and L. Ober, “Validating timed UML models by simulation and verification,”
International Journal on Software Tools for Technology Transfer, vol. 8, no. 2, pp. 128-145, 2006.
[Online]. Available: http://dx.doi.org/10.1007/s10009-005-0205-x

OMG, SysML-Modelica Transformation (SyM), Nov. 2012. [Online]. Available: http://www.omg.org/
spec/SyM/1.0/PDF/

W. Schamai, “Modelica Modeling Language (ModelicaML): A UML Profile for Modelica,” Tech.
Rep., 2009. [Online]. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-20553

O. Batarseh and L. F. McGinnis, “System modeling in sysml and system analysis in arena,” in
Proceedings of the Winter Simulation Conference, ser. WSC "12. Winter Simulation Conference,
2012, pp. 258:1-258:12. [Online]. Available: http://dl.acm.org/citation.cfm?id=2429759.2430107
. L. McGinnis, E. Huang, K. S. Kwon, and V. Ustun, “Ontologies and simulation: a practical ap-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

http://dl.acm.org/citation.cfm?id=2008503.2008514
http://dx.doi.org/10.1007/978-3-642-02674-4
http://dx.doi.org/10.1007/978-3-642-02674-4
http://doi.acm.org/10.1145/1921532.1921556
http://dx.doi.org/10.1007/s10009-005-0205-x
http://www.omg.org/spec/SyM/1.0/PDF/
http://www.omg.org/spec/SyM/1.0/PDF/
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-20553
http://dl.acm.org/citation.cfm?id=2429759.2430107

Bibliography 176

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.
101.

102.

103.
104.

105.

106.

107.

108.

109.

110.

proach,” Journal of Simulation, vol. 5, no. 3, pp. 190-201, 2011.

R. Peak, R. Burkhart, S. Friedenthal, M. Wilson, M. Bajaj, and I. Kim, “Simulation-based design
using SysML part 1: A parametrics primer,” in INCOSE Intl. Symposium, San Diego, CA, USA, 2007,
pp. 1-20.

L. McGinnis and V. Ustun, “A simple example of SysML-driven simulation,” in Winter Simulation
Conference (WSC), Proceedings of the 2009. IEEE, 2009, pp. 1703-1710.

R. Wang and C. Dagli, “An executable system architecture approach to discrete events system
modeling using SysML in conjunction with colored petri nets,” in IEEE Systems Conference 2008.
Montreal: IEEE Computer Press, April 2008, pp. 1-8.

M. dos Santos Soares and J. L. M. Vrancken, “Model-driven user requirements specification using
SysML,” JSW, vol. 3, no. 6, pp. 57-68, 2008.

A. A. Kerzhner, J. M. Jobe, and C. J. J. Paredis, “A formal framework for capturing knowledge to
transform structural models into analysis models,” J. Simulation, vol. 5, no. 3, pp. 202-216, 2011.
W. Schamai, “Model-based verification of dynamic system behavior against requirements:
Method, language, and tool,” Ph.D. dissertation, Linképing University, SE-581 83 Linképing, Swe-
den, 10 2013.

M. Nikolaidou, G.-D. Kapos, A. Tsadimas, V. Dalakas, and D. Anagnostopoulos, “Challenges in
sysml model simulation,” Advances in Computer Science: an International Journal, vol. 5, no. 4, pp.
49-56, 2016.

“INCOSE Handbook SE Process Model,” INCOSE, September 2003. [Online]. Available: http:
//g2sebok.incose.org/

M. W. Maier, D. Emery, and R. Hilliard, “Ansi/ieee 1471 and systems engineering,” Systems Engi-
neering, vol. 7, no. 3, pp. 257-270, 2004.

A. Aurum and C. Wohlin, Engineering and Managing Software Requirements. Springer, 2005.
C.-W. Ho, L. Williams, and B. Robinson, “Examining the relationships between performance re-
quirements and "not a problem” defect reports,” in RE ‘08: Proceedings of the 2008 16th IEEE In-
ternational Requirements Engineering Conference. Washington, DC, USA: IEEE Computer Society,
2008, pp. 135-144.

L. Lee and P. Kruchten, “Visualizing software architectural design decisions,” in ECSA, 2008, pp.
359-362.

P. Kruchten, Rational Unified Process: an Introduction. Reading/MA: Addison-Wesley, 1998.

D. Brown and J. Densmore, “The new, improved RUP SE Architecture Framework,” 2005, iBM
Rational Edge.

IEEE Std 15288 -2004, Systems Engineering -System Life Cycle Processes, Institute for Electrical and
Electronic Engineers, June 2005.

A. Fatolahi and F. Shams, “An investigation into applying UML to the Zachman Framework,”
Information Systems Frontiers, vol. 8, no. 2, pp. 133-143, 2006. [Online]. Available: http:
//dx.doi.org/10.1007/s10796-006-7977-8

D.J. de Villiers, Using the Zachman Framework to assess RUP, Rational Edge, 2001.

H.-P. Hoffmann, Harmony-SE/SysML Deskbook: Model-Based Systems Engineering with Rhapsodly,
Rev. 1.51, Telelogic/I-Logix white paper, Telelogic AB, May 2006.

K. Pohl and E. Sikora, “Supporting the Co-Design of Requirements and Architectural Artifacts,”
in 15th IEEE International Requirements Engineering Conference (RE'07), India Habitat Center, New
Delhi, 2007, pp. 258-261.

D. E. Emery and R. Hilliard, “Every architecture description needs a framework: Expressing archi-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

http://g2sebok.incose.org/
http://g2sebok.incose.org/
http://dx.doi.org/10.1007/s10796-006-7977-8
http://dx.doi.org/10.1007/s10796-006-7977-8

177

111.
112.
113.
114.
115.
116.

117.

118.

119.

120.
121.

122.

123.
124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

tecture frameworks using ISO/IEC 42010,"” in WICSA/ECSA, 2009, pp. 31-40.

“Eclipse Integrated Development Environment.” [Online]. Available: https://eclipse.org

“Eclipse Papyrus Open Source UML tool.” [Online]. Available: https://eclipse.org/papyrus/
“Modelio Open Source UML tool.” [Online]. Available: https://www.modelio.org/

“Visual Paradigm.” [Online]. Available: http://www.visual-paradigm.com/

“Enterprise Architect.” [Online]. Available: http://www.sparxsystems.com/products/ea.html

I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What industry needs from architec-
tural languages: A survey,” IEEE Transactions on Software Engineering, vol. 39, no. 6, pp. 869-891,
2013.

J. Holt and S. Perry, SysML for Systems Engineering. 2nd Edition: A Model-Based Approach, ser.
Computing and Networks Series. Institution of Engineering and Technology, 2013. [Online].
Available: https://books.google.gr/books?id=JIRHAGAAQBAJ

O. M. Group, “Meta object facility (MOF) 2.0 core final adopted specification,” Object
Management Group, Tech. Rep., 2004. [Online]. Available: http://www.omg.org/cgi-bin/doc?
ptc/03-10-04

——, "OMG meta object facility (MOF) core specification,” Object Management Group, Tech.
Rep., 2013. [Online]. Available: http://www.omg.org/spec/MOF/2.4.1/PDF/

O. M. G. Inc, “UML Superstructure Specification, Version 2.1.2,” November 2007.

J. Mather, “The devsjava simulation viewer: A modular gui that visualizes the structure and be-
havior of hierarchical devs models,” Ph.D. dissertation, UNIVERSITY OF ARIZONA, 2003.

“EIS DEVSjava Library Components,” Bitbucket, 2014. [Online]. Available: https://bitbucket.org/
anargyros_tsadimas/eis-devsjava

MG, SysML Plugin for Magic Draw, 2007.

“MagicDraw Open API User Guide,” No Magic Inc, 2013. [Online]. Available: http://www.
nomagic.com/files/manuals/MagicDraw%200penAPI1%20UserGuide.pdf

B. P. Zeigler and H. S. Sarjoughian, Introduction to DEVS Modeling and Simulation with
JAVA. DEVSJAVA Manual, 2003. [Online]. Available: www.acims.arizona.edu/PUBLICATIONS/
publications.shtml

“Netbeans.” [Online]. Available: https://netbeans.org/

“medini QVT,” ikv++ technologies ag, 2013. [Online]. Available: http://projects.ikv.de/qvt

B. W. Boehm, R. Madachy, B. Steece et al., Software cost estimation with Cocomo II with Cdrom.
Prentice Hall PTR, 2000.

D. Brown, J. Densmore, and S. J. Vaughan-Nichols, “Web services,” pp. 18-21, 2002, IBM Rational
Edge.

“XML Metadata Interchange (XMI), v2.1.1,” 2007. [Online]. Available: http://www.omg.org/spec/
XMI/2.1.1/PDF/index.htm

J.-F. Pétin, D. Evrot, G. Morel, and P. Lamy, “Combining SysML and formal methods for
safety requirements verification,” in 22nd International Conference on Software & Systems
Engineering and their Applications, Paris, France, Dec. 2010, p. CDROM. [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00533311

G. Pedroza, L. Apvrille, and D. Knorreck, “Avatar: A sysml environment for the formal verification
of safety and security properties,” in New Technologies of Distributed Systems (NOTERE), 2011 11th
Annual International Conference on. 1EEE, 2011, pp. 1-10.

J. C. Maxwell, A. Anton et al., “Checking existing requirements for compliance with law using a
production rule model,” in Requirements Engineering and Law (RELAW), 2009 Second International

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

https://eclipse.org
https://eclipse.org/papyrus/
https://www.modelio.org/
http://www.visual-paradigm.com/
http://www.sparxsystems.com/products/ ea.html
https://books.google.gr/books?id=JlRHAgAAQBAJ
http://www.omg.org/cgi-bin/doc?ptc/03-10-04
http://www.omg.org/cgi-bin/doc?ptc/03-10-04
http://www.omg.org/spec/MOF/2.4.1/PDF/
https://bitbucket.org/anargyros_tsadimas/eis-devsjava
https://bitbucket.org/anargyros_tsadimas/eis-devsjava
http://www.nomagic.com/files/manuals/MagicDraw%20OpenAPI%20UserGuide.pdf
http://www.nomagic.com/files/manuals/MagicDraw%20OpenAPI%20UserGuide.pdf
www.acims.arizona.edu/PUBLICATIONS/publications.shtml
www.acims.arizona.edu/PUBLICATIONS/publications.shtml
https://netbeans.org/
http://projects.ikv.de/qvt
http://www.omg.org/spec/XMI/2.1.1/PDF/index.htm
http://www.omg.org/spec/XMI/2.1.1/PDF/index.htm
http://hal.archives-ouvertes.fr/hal-00533311

Bibliography 178

Workshop on. 1EEE, 2009, pp. 1-6.

134. C. Kotronis, A. Tsadimas, G. D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopoulos, “Sim-
ulating sysml transportation models,” in 2016 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), Oct 2016, pp. 001 674-001 679.

135. E. Filiopoulou, P. Mitropoulou, A. Tsadimas, C. Michalakelis, M. Nikolaidou, and D. Anagnos-
topoulos, “Integrating cost analysis in the cloud: A sos approach,” in 2015 11th International Con-
ference on Innovations in Information Technology (IIT), Nov 2015, pp. 278-283.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Publications

This chapter presents the publications that were produced throughout this research work,

that started from my M.Sc. thesis.

Book Chapters

B1. A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, Formal Languages for Computer
Simulation: Transdisciplinary Models and Applications. 1GI Global, ch. 8: Model-Based Sys-
tem Design Using SysML: The Role of the Evaluation Diagram, pp. 236-266.

Journal Papers with Review

J1. M. Nikolaidou, G.-D. Kapos, A. Tsadimas, V. Dalakas, and D. Anagnostopoulos, “Challenges
in sysml model simulation,” Advances in Computer Science: an International Journal, vol. 5,
no. 4, pp. 49-56, 2016.

J2. A. Tsadimas, G.-D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopoulos,
“Simulating simulation-agnostic sysml models for enterprise information systems via
devs,” Simulation Modelling Practice and Theory, vol. 66, pp. 243 - 259, 2016. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1569190X16300259

Conferences Papers

C1. C. Kotronis, A. Tsadimas, G. D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopou-
los, “Simulating sysml transportation models,” in 2076 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), Oct 2016, pp. 001 674-001 679.

C2. E. Filiopoulou, P. Mitropoulou, A. Tsadimas, C. Michalakelis, M. Nikolaidou, and D. Anag-
nostopoulos, “Integrating cost analysis in the cloud: A sos approach,”in 2015 11th Inter-
national Conference on Innovations in Information Technology (IIT), Nov 2015, pp. 278-283.

C3. A. Tsadimas, “Model-based enterprise information system architectural design with

179

http://www.sciencedirect.com/science/article/pii/S1569190X16300259

Conferences Papers 180

Cc4.

C5.

ce.

C7.

Cs.

co.

c10.

C11.

c12.

C13.

C14.

C15.

SysML,” in Research Challenges in Information Science (RCIS), 2015 IEEE 9th International
Conference on. IEEE, 2015, pp. 492-497.

M. Nikolaidou, G.-D. Kapos, A. Tsadimas, V. Dalakas, and D. Anagnostopoulos, “Simulat-
ing SysML models: Overview and challenges,” in System of Systems Engineering Confer-
ence (SoSE), 2015 10th. IEEE, 2015, pp. 328-333.

A. Tsadimas, G.-D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopoulos, “Inte-
grating simulation capabilities into SysML for enterprise information system design,” in
System of Systems Engineering (SOSE), 2014 9th International Conference on. IEEE, 2014,
pp. 272-277.

G.-D. Kapos, V. Dalakas, A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, “Model-
based system engineering using SysML: Deriving executable simulation models with
QVT,” in SysCon. IEEE International Systems Conference, 2014.

A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, “Extending SysML to explore
non-functional requirements: the case of information system design,” in Proceedings
of the 27th Annual ACM Symposium on Applied Computing, ser. SAC "12. New York,
NY, USA: ACM, 2012, pp. 1057-1062. [Online]. Available: http://doi.acm.org/10.1145/
2231936.2231941

M. Nikolaidou, A. Tsadimas, and D. Anagnostopoulos, “Model-based enterprise infor-
mation system architecture design using SysML,” in IEEE Systems Conference 2010, April
2010.

A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, “Evaluating software architecture
in @ model-based approach for enterprise information system design,” in SHARK ‘10.
New York, USA: ACM, 2010, pp. 72-79.

——, “Handling non-functional requirements in information system architecture de-
sign,” in ICSEA 09, 2009, pp. 59-64.

M. Nikolaidou, A. Tsadimas, N. Alexopoulou, and D. Anagnostopoulos, “Employing
Zachman Enterprise Architecture Framework to systematically perform Model-Based
System Engineering Activities,” in HICSS-42, 2009, pp. 1-10. [Online]. Available:
http://dx.doi.org/10.1109/HICSS.2009.189

M. Nikolaidou, N. Alexopoulou, A. Tsadimas, A. Dais, and D. Anagnostopoulos, “Accom-
modating EIS UML 2.0 profile using a standard UML modeling tool,” in Software Engi-
neering Advances, 2007. ICSEA 2007. International Conference on. 1EEE, 2007, pp. 26-26.
——, “Facilitating enterprise information system engineering through a UML 2.0 pro-
file: A case study,” Information Resource Management Association (IRMA 2007), Vancouver,
British Columbia, Canada, 2007.

N. Alexopoulou, A. Tsadimas, M. Nikolaidou, A. Dais, and D. Anagnostopoulos, “Intro-
ducing a UML profile for distributed system configuration,” in ICEIS: Databases and In-
formation Systems Integration, Paphos, Cyprus, May 23-27, 2006, 2006, pp. 542-545.

M. Nikolaidou, N. Alexopoulou, A. Tsadimas, A. Dais, and D. Anagnostopoulos,
“Extending UML 2.0 to augment control over enterprise information system engi-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

http://doi.acm.org/10.1145/2231936.2231941
http://doi.acm.org/10.1145/2231936.2231941
http://dx.doi.org/10.1109/HICSS.2009.189

181

neering process,” in ICSEA. IEEE Computer Society, 2006, p. 10. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/ICSEA.2006.41

C16. ——, “A consistent framework for enterprise information system engineering,”
in EDOC. IEEE Computer Society, 2006, pp. 492-496. [Online]. Available: http:
//doi.ieeecomputersociety.org/10.1109/EDOC.2006.6

C17. M. Nikolaidou, A. Tsadimas, N. Alexopoulou, A. Dais, and D. Anagnostopoulos, “A
UML profile utilizing enterprise information system configuration,” in ICECCS. IEEE
Computer Society, 2006, pp. 77-88. [Online]. Available: http://doi.ieeecomputersociety.
org/10.1109/ICECCS.2006.48

C18. M. Nikolaidou, N. Alexopoulou, A. Tsadimas, A. Dais, and D. Anagnostopoulos, “Using
uml to model distributed system architectures,” in CAINE. ISCA, 2005, pp. 91-96.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

http://doi.ieeecomputersociety.org/10.1109/ICSEA.2006.41
http://doi.ieeecomputersociety.org/10.1109/EDOC.2006.6
http://doi.ieeecomputersociety.org/10.1109/EDOC.2006.6
http://doi.ieeecomputersociety.org/10.1109/ICECCS.2006.48
http://doi.ieeecomputersociety.org/10.1109/ICECCS.2006.48

Short Bio

Anargyros Tsadimas was born in Lamia on 22 October 1979. Since 2004 is working at the
Harokopio University as a research associate where is currently Technical Laboratory Staff at
the Department of Informatics & Telematics.

He received his B.Sc. in Applied Informatics from the University of Macedonia in 2002 and
his MSc in Advanced Information Systems from the Department of Informatics & Telecommu-
nications of the National and Kapodistrian University of Athens in 2005.

Since 2008 he is adjunct lecturer at the Department of Informatics & Telematics, teach-
ing the laboratories part of the courses: Operating Systems, Distributed Systems, System
Analysis and Software Technology.

His research interests lie in the field of Modeling & Simulation of Systems, Distributed
Systems and Enterprise Information Systems Engineering. He has several publications in in-
ternational conference proceedings and he has been participated in numerous R&D projects.

Last but not least, he is open source enthusiast. Since 2007 he has entangled with web
applications development and systems administration tasks, mainly administering UNIX and

Solaris operating systems.

182

183

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Acronyms

ATL ATLAS Transformation Language.
AVATAR Automated Verification of reAl Time softwARe.

CIM Computation Independent Model.
COCOMO Constructive Cost Model.
CWM Common Warehouse Meta-model.

DES Discrete event simulation.

DEVS DEVS abbreviating Discrete Event System Specification is a modular and hierarchical formalism for model-
ing and analyzing general systems that can be discrete event systems which might be described by state tran-
sition tables, and continuous state systems which might be described by differential equations, and hybrid con-
tinuous state and discrete event systems. DEVS is a timed event system.

DIPLODOCUS DesIgn sPace exLoration based on fOrmal Description teChniques, Uml and SystemC.

EAF Enterpsise Architecture Framework.
EIS Enterprise Information System.
ES Enterprise Systems.

Iaas$ Infrastructure as a Service.

IEEE Institute of Electrical and Electronics Engineers.

IEEE-Std-1471-2000 IEEE Recommended Practice for Architectural Description of Software Intensive Systems.
INCOSE International Council on Systems Engineering.

IS Information System.

ISE Information Systems Engineering.

ISO International Organization for Standardization.

ITU International Telecommunication Union.

JAXB Java Architecture for XML Binding.
JRT Joint Realization Table.

LAN Local Area Network.

MARTE Modeling and Analysis of Real Time and Embedded systems.
MB-EISE Model-based Enterprise Information System Engineering.
MBE Model-Based Engineering.

MBSD Model-Based System Design.

MBSE Model-Based Systems Engineering.

MDA Model Driven Architecture.

MOF Meta-Obiject Facility.

184

185

NFP Non-Functional Properties.

NFR In systems engineering and requirements engineering, a non-functional requirement is a requirement that
specifies criteria that can be used to judge the operation of a system, rather than specific behaviors. This should
be contrasted with functional requirements that define specific behavior or functions. The plan for implementing
functional requirements is detailed in the system design. The plan for implementing non-functional requirements
is detailed in the system architecture.

OCL Object Constraint Language.
OMG Object Management Group.
OOSEM Object-Oriented Systems Engineering Method.

Paas Platform as a Service.

PEAS Packaged Enterprise Application Software.

PIM A Platform-Independent Model is a model of a system that does not have any technology-specific imple-
mentation informationshortplural.

PLM Product Lifecycle Management.

PSM A Platform-Specific Model is a model of a system that has technology-specific implementation information

shortplural.

QoS Quiality of Service.
QVT Query / View / Transformation.

RE Requirements Engineering.
RUP Rational Unified Process.
RUP-SE Rational Unified Process for Systems Engineering.

Saas Software as a Service.

SE Software Engineering.

SLIM Systems LIfecycle Management.

SoS System of Systems.

SysE Systems Engineering.

SysML The Systems Modeling Language (SysML) is a general-purpose modeling language for systems engineer-
ing applications. It supports the specification, analysis, design, verification and validation of a broad range of
systems and systems-of-systems.

TCO Total cost of ownership is a financial estimate intended to help buyers and owners determine the direct
and indirect costs of a product or system. It is a management accounting concept that can be used in full cost
accounting or even ecological economics where it includes social costs.

TEPE TEmporal Property Expression language.

UML Unified Modeling Language.
URN User Requirement Notation.

VLAN Virtual Local Area Network.

VSL VSLis a textual language defined in MARTE. It specifies expressions for constraints, properties and stereotype
attributes. It enables the value specification, at model level, in tagged values, body of constrainst and in any UML
element.

VVDR Virtual Verification of Designs against Requirements.

XMI XML Metadata Interchange.
XML Extensible Markup Language.
XSLT EXtensible Stylesheet Language Transformations.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Acronyms 186

ENZ Etalpikd MAnpoopLakd Tuotrpata.
MAA Mn-AELTOUPYLKEG OTIALTAOELG.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

Index

ATL, 61, 65
AVATAR, 60

CIM, 47, 48
COCOMO, 141, 144
CWM, 49, 83

DES, 54
DEVS, 27, 33, 54, 55, 65, 128-133, 135, 157
DIPLODOCUS, 60

EAF, 39, 40

EIS, 19, 29, 31-33, 36, 39-41, 43, 57, 66, 67, 69-73,
75-82, 84-86, 88-90, 93, 99-102, 104, 106,
108, 111, 119, 120, 122, 123, 128-137, 139,
141,145, 146, 148, 153, 157, 158, 160, 162,
163, 165, 167, 168

ES, 39

Iaas, 163

IEEE, 70, 71, 73,76

IEEE-Std-1471-2000, 52

INCOSE, 19, 20, 33, 43, 69, 71, 81, 86, 137
IS, 29, 31, 35, 36, 38, 39, 54, 55, 81, 91, 163
ISE, 39

ISO, 50

ITY, 59

JAXB, 135
JRT, 58

LAN, 75, 81, 96, 98

MARTE, 59, 104

MB-EISE, 40, 41

MBE, 42

MBSD, 42, 167

MBSE, 33, 36, 43, 46, 69, 81, 86

MDA, 47-49, 55, 128

MOF, 48, 49, 51, 61, 81-83, 128, 131, 134

NFP, 59, 60
NFR, 19, 30-33, 35, 36, 42, 43, 46, 48, 54, 55, 57-59,
63,70, 73, 78-80, 82, 84-86, 88, 89, 93, 96,

99-101, 103-106, 113-117, 119, 121, 122,
141, 152, 159, 163-165, 167, 168

OCL, 50, 60, 80, 108

OMG, 19, 20, 23, 32, 43, 46-50, 59, 60, 65, 80, 82, 83,
89, 135, 164

OOSEM, 43, 44

Paas, 163
PEAS, 39
PIM, 47-49
PLM, 60
PSM, 47, 48

QoS, 26, 32, 54, 101, 108, 113, 124, 125, 141, 144
QVT, 27, 33, 48, 50, 55, 60, 65, 80, 131, 132, 135, 157,
164

RE, 31, 33,57
RUP, 44, 57, 58, 70
RUP-SE, 43, 44, 57, 58, 75

Saas, 163

SE, 33, 49

SLIM, 59

SoS, 19, 20, 29, 33, 41, 61, 65, 80, 81, 168

SysE, 31, 33, 39

SysML, 19, 20, 22-27, 29, 32, 33, 35, 36, 38, 40, 43,
51-55, 57-63, 65-67, 69, 77, 80-82, 85, 86,
89-93, 102-106, 108, 128, 131, 132, 135-
137,159, 162-165, 167, 168

TCO, 168
TEPE, 60

UML, 22, 23, 29, 33, 38, 43, 49-52, 57-60, 81-83, 89,
92, 94, 96, 108, 128, 146
URN, 59

VLAN, 96
VSL, 59, 104
VVDR, 63

XML, 49, 82, 133, 157

Index 188

XML, 55, 82, 134, 157
XSLT, 133, 157

EMZ, 20, 25-27
MAA, 20, 21, 23, 24

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

189

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

	List of Figures
	List of Tables
	Introduction
	General
	Objectives & Contribution
	Overview
	Research Methodology
	Structure

	Background
	Outline
	Information Systems Engineering
	Architecture Frameworks
	Requirements Engineering

	Model-based System Engineering
	Model-based System Design
	System Models Management

	System Evaluation
	Requirements Verification
	Simulation

	Summary

	Related Work
	Outline
	Rational Unified Process Methodology
	SysML profiles
	Simulating SysML Models
	Requirements in SysML
	SysML Requirements Verification
	What is missing?
	Summary

	A MBSD Approach for EIS Architecture
	Outline
	Using Zachman Framework as a canvas for EIS engineering
	Analysing Zachman matrix
	NFR handling in Zachman matrix
	Utilizing Zachman Framework in EIS architecture design

	Proposed Approach
	A conceptual model for Information System Architecture Design
	Supporting the proposed approach

	Summary

	Designing EIS Architecture
	Outline
	Design Views
	Functional View
	Topology View
	Network Infrastructure View

	Non-Functional Requirements View
	Non-functional requirements classification
	SysML Extension to support NFRs
	NFR Representation
	NFR Derivation
	NFR Verification

	Summary

	Evaluating EIS Architecture
	Outline
	Evaluation View
	The Big Image: Views Interrelation
	Automating the verification Process
	Simulation framework
	Generate executable simulation model
	Simulation Execution
	Simulation results incorporation

	Implementation
	Summary

	A Case Study
	Outline
	Description
	Challenges
	Design Mode
	Functional View
	Topology View
	Network Infrastructure View
	NFR View

	Producing Evaluation View and Inflating Simulation Parameters
	Evaluation scenario

	Transformation to simulation code
	Simulation execution and results incorporation
	Verifying Requirements
	Re-design System Model
	Experience Obtained
	Summary

	Discussion
	Overview
	Contribution
	Limitations

	Conclusions - Future Work
	Conclusions
	Future Work

	Bibliography
	Acronyms
	Index

