
HAROKOPIO UNIVERSITY

SCHOOL OF DIGITAL TECHNOLOGY

DEPARTMENT OF INFORMATICS AND TELEMATICS

Ph.D. DISSERTATION

Model-Based Enterprise Information System Design: A
SysML-based approach

Anargyros T. Tsadimas

ATHENS

January 2018





PHD THESIS

Model-Based Enterprise Information System Design: A SysML-based approach

Anargyros T. Tsadimas

SUPERVISOR: Maria Nikolaidou, Professor

PHD COMMITTEE:
Maria Nikolaidou, Professor
Dimosthenis Anagnostopoulos, Professor
Christos Michalakelis, Assistant Professor

EXAMINATION COMMITTEE

Maria Nikolaidou, Dimosthenis Anagnostopoulos,
Professor Professor
Informatics and Telematics Informatics and Telematics
Harokopio University Harokopio University

Christos Michalakelis, Aphrodite Tsalgatidou,
Assistant Professor Associate Professor
Informatics and Telematics Informatics and Telecommunications
Harokopio University National & Kapodistrian University of Athens

Maria Virvou, Thomas Kamalakis,
Professor Associate Professor
Informatics Informatics and Telematics
University of Piraeus Harokopio University

Iraklis Varlamis,
Assistant Professor
Informatics and Telematics
Harokopio University

Examination date: 9 January 2018



The acceptance of the Ph.D. Dissertation from the Department of In-
formatics and Telematics of Harokopio University does not imply the
acceptance of the author’s point of view.



Me, the author of this document, Anargyros T. Tsadimas, i solemnly declare that:

• I am the owner of the copyrights of this original work and this work does not
defame any person, neither offend the copyrights of others.

• I acept that the Library of the Harokopio University can change the contents of
this work, deliver this work in electronic format through the Institutional Repos-
itory, copy this work using to any format or media and keep more than one
copies for maintainability or security reasons.





Dedication

In memory of Triantafyllos

7





Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Maria Nikolaidou

for the continuous support of my Ph.D study and related research, for her patience, motiva-

tion, and her continuous efforts to find funding for my research. Her guidance helped me in

all the time of research and writing of this thesis.

Besides my advisor, I would like to thank Prof. Dimosthenis Anagnostopoulos, member

of my advisory committee, for his insightful comments and encouragement, but also for the

hard questions which incented me to widen my research, especially in the research area of

simulation. Moreover, i would like to thank Asst. Prof. Christos Michalakelis, for his helpful

comments and suggestions. A special mention goes to Georgios Karabatzos, greatly missed,

that with his positive attitude to life inspired me to be a better scientist and person.

The cooperationwith Dr. George-Dimitrios Kapos, Dr. Vassilis Dalakas and Christos Kotro-

nis was excellent. I would like to thank them for their valuable contribution to our common

research effort. I would also like to thank Loreta Mitsi especially for taking care of many ad-

ministrative matters throughout my academic life.

Many thanks to Dr. Georgia Dede, Alexandros Dais, Dr. Nancy Alexopoulou and Dr. Oura-

nia Hatzi because of the beautiful working environment when we shared a common office.

Also, i would like to thank Ioannis Meletakis, Christos Sardianos and Ioannis Katakis for the

excellent cooperation in our projects and their friendship.

It is a pleasure to thank my friend Dimitris Magdalinos for the experiences we shared in

our efforts to be innovative.

I would also like to thank Christos Tsolkas, George Tzoumas and Tasos Spiliotopoulos for

the endless conversations about the science and life.

I am grateful to my wife Erika, for her love and support especially at the last years of this

effort, where she helped me to prioritize this work in order to be completed. Finally, i would

like to thank my mother and sister for their support all of these years.

9





Contents

List of Figures 16

List of Tables 18

1 Introduction 31

1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2 Objectives & Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Background 38

2.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Information Systems Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1 Architecture Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.2 Requirements Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Model-based System Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1 Model-based System Design . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.2 System Models Management . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.1 Requirements Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Related Work 57

3.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Rational Unified Process Methodology . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 SysML profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Simulating SysML Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Requirements in SysML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

11



3.6 SysML Requirements Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 What is missing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 A MBSD Approach for EIS Architecture 69

4.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Using Zachman Framework as a canvas for EIS engineering . . . . . . . . . . . 70

4.2.1 Analysing Zachman matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2 NFR handling in Zachman matrix . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.3 Utilizing Zachman Framework in EIS architecture design . . . . . . . . . 73

4.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 A conceptual model for Information System Architecture Design . . . . 76

4.3.2 Supporting the proposed approach . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Designing EIS Architecture 88

5.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Design Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Functional View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.2 Topology View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.3 Network Infrastructure View . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Non-Functional Requirements View . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.1 Non-functional requirements classification . . . . . . . . . . . . . . . . . 100

5.3.2 SysML Extension to support NFRs . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.3 NFR Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.4 NFR Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.5 NFR Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Evaluating EIS Architecture 119

6.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Evaluation View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 The Big Image: Views Interrelation . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Automating the verification Process . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4.1 Simulation framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4.2 Generate executable simulation model . . . . . . . . . . . . . . . . . . . . 129

6.4.3 Simulation Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4.4 Simulation results incorporation . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



7 A Case Study 139
7.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.4 Design Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.4.1 Functional View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.4.2 Topology View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.4.3 Network Infrastructure View . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.4.4 NFR View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.5 Producing Evaluation View and Inflating Simulation Parameters . . . . . . . . . 153

7.5.1 Evaluation scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.6 Transformation to simulation code . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.7 Simulation execution and results incorporation . . . . . . . . . . . . . . . . . . . 157

7.8 Verifying Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.9 Re-design System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.10 Experience Obtained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8 Discussion 162
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9 Conclusions - Future Work 167
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Bibliography 171

Acronyms 184

Index 187





List of Figures

1 Επέκταση της SysML για την υποστήριξη των ΜΛΑ . . . . . . . . . . . . . . . . . 24

2 Αρχιτεκτονικό μοντέλο των ΕΠΣ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Σύνοψη συνεισφοράς . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.1 Phd Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.2 Basic System Design Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3 Design Science Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1 A concern-based taxonomy of requirements . . . . . . . . . . . . . . . . . . . . . 42

2.2 OOSEM Activities and Modeling Artifacts . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 The Rational Unified Process framework . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 A Straightforward Understanding of MDA . . . . . . . . . . . . . . . . . . . . . . 49

2.5 MDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 SysML and UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 The RUP SE architecture framework . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 SysML Requirement representation . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 The Zachman framework matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 MB-EISE primary activities based on the Zachman framework . . . . . . . . . . 72

4.3 MB-EISE conceptual model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Basic engineering tasks performed based on each cell-related view . . . . . . . 74

4.5 EIS Sub-Views corresponding to the System Network cell . . . . . . . . . . . . . 76

4.6 A Conceptual Model for Information System Architecture Design . . . . . . . . 77

4.7 MDA four-layer architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.8 Meta Meta Models, UML and Profiles . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 EIS Architecture Views and Corresponding Design Tasks . . . . . . . . . . . . . . 84

4.10 EIS architectural model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 EIS synthesis model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Functional view entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Topology view entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

15



5.4 Network Infrastructure view entities . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Network Infrastructure view: atomic network entities . . . . . . . . . . . . . . . 99

5.6 Requirements categorization perspectives . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Defined NFR Requirements and their relations to other entities . . . . . . . . . 102

5.8 SysML Requirement representation . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.9 Extending SysML to explore NFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.10 Two kinds of requirements: performance and behavior . . . . . . . . . . . . . . . 116

6.1 Interrelating EIS Performance Requirements, Design Entities and Evaluation

Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Eval-Service entity description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3 Performance Requirement Derivation and Verification in IS Architecture De-

sign: An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4 DEVS Meta-model extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5 Outline of the EIS to DEVS model transformation . . . . . . . . . . . . . . . . . . 131

6.6 The DEVS suite simulation viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.7 Simulation results meta-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.8 Implementation overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.1 Functional View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2 Functional view: Validation rules applied . . . . . . . . . . . . . . . . . . . . . . . 145

7.3 Functional view: Validation handling . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.4 Topology View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.5 Network Infrastructure view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.6 Network Infrastructure View, Atomic Network . . . . . . . . . . . . . . . . . . . . 151

7.7 Non Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.8 Software Architecture Evaluation Diagram . . . . . . . . . . . . . . . . . . . . . . 154

7.9 Hardware Architecture Evaluation Diagram . . . . . . . . . . . . . . . . . . . . . 155

7.10 Hardware Architecture Evaluation Diagram, Atomic Network properties . . . . 155

7.11 Hardware Architecture Evaluation Diagram, Atomic Network . . . . . . . . . . . 156

7.12 Importing Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.13 Verifying a load requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.1 Contribution Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



List of Tables

2.1 MDA viewpoints and models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 A Comparative Overview of SysML Simulation Approaches . . . . . . . . . . . . 64

4.1 EIS Viewpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Functional View Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Topology View Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Network Infrastructure View Entities . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Requirements and their relationship with other model elements . . . . . . . . . 107

5.5 Non-Functional Requirements View Entities . . . . . . . . . . . . . . . . . . . . . 107

6.1 Evaluation View Entities in Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Evaluation View Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 DEVS library components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

17





Abstract

Evidently, system architecture design is a complex process involving different stakehold-

ers and concerns. When designing Enterprise Information Systems (EISs), both software and

network infrastructure architecture should be designed in parallel, ensuring system effi-

ciency, as they are interrelated.

Systems Modeling Language (SysML), initiated by the International Council on Systems

Engineering (INCOSE) and the Object Management Group (OMG), is commonly used to sup-

port model-based system design. INCOSE is a not-for-profit membership organization that

promotes integration and interoperability of methods and tools.

Managing design requirements, when composing systems or System of Systems (SoS), is

a complex task, as they should be adapted during system evolution. A systematic review and

classification of requirements is necessary in order to reclaim them in the evaluation process.

Hence, Non-functional Requirements (NFRs), such as performance ones, should be focused

during EIS architecture design, since their key role in system efficiency.

The scope of this research is to provide a model-based approach for EIS architecture de-

sign, utilizing SysML as a modeling language. To this end, the system designer is provided

with alternative views, focusing software and hardware architecture and facilitating NFRs

verification via the definition of a corresponding EIS SysML profile.

Although SysML provides support for requirements specification, corresponding tools

lacked an automated requirements verification process. This thesis presents an integrated

design environment, not only capable of defining alternative EIS architectures, but also en-

abling architectural evaluation using simulation. Simulation results are integrated with the

system model enabling automated NFR verification process.

Finally, the proposed approach has been successfully tested in other domains such trans-

portations and cost-analysis in the cloud.

SUBJECT AREA: Systems Engineering

KEYWORDS: Model-Based System Design, SysML, Non-functional Requirements, Require-

ments Verification, Simulation, Model Transformations, MDA.

19



Περίληψη

Η σχεδίαση της αρχιτεκτονικής των συστημάτων είναι μια πολύπλοκη διαδικασία, στην

οποία υπάρχουν πολλοί εμπλεκόμενοι και διάφορετικά θέματα ενδιαφέροντος. Όταν σχε-

διάζουμε Εταιρικά Πληροφοριακά Συστήματα (ΕΠΣ) θα πρέπει να σχεδιάζουμε παράλληλα

την αρχιτεκτονική του λογισμικού και του δικτύου, μιας και σχετίζονται άμεσα μεταξύ τους,

με σκοπό να διασφαλιστεί η αποτελεσματικότητα του συστήματος.

Η SysML, η οποία έχει προταθεί από την INCOSE και το OMG, είναι μια ευρέως αποδε-

κτή γλώσσα μοντελοποίησης η οποία υποστηρίζει πλήρως τη μοντελο-κεντρική σχεδίαση

συστημάτων. Η INCOSE είναι ένας μη-κερδοσκοπικός οργανισμός ο οποίος υποστηρίζει τη

διασύνδεση και τη διαλειτουργικότητα μεθόδων και εργαλείων, όσον αφορά τη σχεδίαση

συστημάτων.

Η διαχείριση των απαιτήσεων κατά τη σύνθεση συστημάτων αποτελούμενα από υπο-

συστήματα SoS, είναι επίσης μια πολύπλοκη διαδικασία. Οι απαιτήσεις συγκεντρώνονται

και αναπροσαρμόζονται κατά τη διάρκεια όλων των φάσεων της εξέλιξης του συστήματος

κι αυτό κάνει ακόμη πιο δύσκολη τη διαδικασία της διαχείρισής τους. Για το λόγο αυτό

απαιτείται μια συστηματική μελέτη και ταξινόμηση των απαιτήσεων, ώστε να είναι εφικτή

η αξιοποίησή τους κατά τη διαδικασία της αποτίμησης. Ως εκ τούτου, κατα τη σχεδίαση της

αρχιτεκτονικής του συστήματος πρέπει να δωθεί έμφαση στις Μη-Λειτουργικές απαιτήσεις

(ΜΛΑ), όπως για παράδειγμα αυτές που σχετίζονται με την απόδοση, μιας και αυτές παίζουν

καθοριστικό ρόλο στην αποτελεσματικότητα του συστήματος.

Ο σκοπός της παρούσας έρευνας είναι η παροχή μιας μοντελο-κεντρικής προσέγγισης

για τη σχεδίαση της αρχιτεκτονικής των ΕΠΣ αξιοποιώντας σαν γλώσσα μοντελοποίησης τη

SysML. Για το σκοπό αυτό, ο σχεδιαστής του συστήματος εφοδιάζεται με εναλλακτικές όψεις

του συστήματος, οι οποίες εστιάζουν στην αρχιτεκτονική του λογισμικού και του υλικού και

διευκολύνουν την επαλήθευση των ΜΛΑ. Αυτό επιτυγχάνεται με τον ορισμό ενός προφιλ

ΕΠΣ στη SysML.

Παρόλο που η SysML υποστηρίζει την έννοια των απαιτήσεων, στα σχετικά σχεδιαστικά

εργαλεία λείπει ένας αυτοματοποιημένος μηχανισμός επαλήθευσης των απαιτήσεων. Η δια-

τριβή παρουσιάζει ένα ολοκληρωμένο σχεδιαστικό περιβάλλον, στο οποίο όχι μόνο είναι

δυνατόν να οριστούν εναλλακτικές αρχιτεκτονικές του συστήματος , αλλά επίσης μπορούν

20



να αποτιμηθούν χρησιμοποιώντας προσομοίωση. Τα αποτελέσματα της προσομοίωσης εν-

σωματώνονται στο μοντέλο του συστήματος και με αυτόν τον τρόπο γίνεται εφικτή η δια-

δικασία της αυτοματοποιημένης επαλήθευσης των ΜΛΑ.

Εν τέλει, η προτεινόμενη προσέγγιση εφαρμόστηκε επιτυχώς σε και σε άλλα πεδία όπως

οι μεταφορές και η ανάλυση κόστους στο cloud.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μηχανική Συστημάτων

ΛΕΞΕΙΣΚΛΕΙΔΙΑ:Μοντελο-κεντρική ΣχεδίασηΣυστημάτων, SysML,Μη-Λειτουργικές Απαιτήσεις,

Επαλήθευση Απαιτήσεων, Προσομοίωση, Μετασχηματισμοί Μοντέλων, MDA.



Συνοπτική Παρουσίαση της
Διδακτορικής Διατριβής

Βασικό εμπόδιο για την αποδοτική επικοινωνία και την ολοκλήρωση ανάμεσα στις δια-

φορετικές μεθοδολογίες και εργαλεία που αφορούν τη σχεδίαση Πληροφοριακών συστημά-

των αποτελεί η υιοθέτηση ανεξάρτητων μοντέλων για την αναπαράσταση του συστήματος.

Μια μοντελο-κεντρική θεώρηση για τη μελέτη της τεχνολογίας του συστήματος μπορεί να

συνεισφέρει προς αυτή την κατεύθυνση προσφέροντας ένα κεντρικό μοντέλο του συστήμα-

τος, το οποίο εξυπηρετεί όλες τις σχεδιαστικές δραστηριότητες στα διαφορετικά επίπεδα

πολυπλοκότητας, προωθώντας παράλληλα τη διαλειτουργικότητα.

Ο στόχος της παρούσης έρευνας είναι η δημιουργία ενός εννοιολογικού μοντέλου για

τηνμελέτη της τεχνολογίας των ΕταιρικώνΠληροφοριακώνΣυστημάτων, λαμβάνοντας υπό-

ψιν καθιερωμένα πλαίσια και μεθοδολογίες, όπως το ευρέως διαδεδομένο πλαίσιο εταιρι-

κής αρχιτεκτονικής Zachman [1] (Zachman Enterprise Architecture Framework) και τις αρχές

που ορίζονται στο πρότυπο 42010 [2] του IEEE. Η παρούσα έρευνα εστιάζει στη σχεδίαση

της αρχιτεκτονικής του πληροφοριακού συστήματος, λαμβάνοντας υπόψιν τις οπτικές και

τους εμπλεκόμενους (στην πράξη στήλες και γραμμές του πίνακα Zachman) που ορίζονται

σύμφωνα με το πλαίσιο εταιρικής αρχιτεκτονικής Zachman. Στόχος της είναι:

• η υιοθέτηση ενός μοντέλου για τη σχεδίαση πλήρους συμβατού με το πλαίσιο εταιρι-

κής αρχιτεκτονικής Zachman και

• η επιλογή μια γλώσσας μοντελοποίησης που να το υποστηρίζει, ώστε να χρησιμοποι-

ηθεί από τους σχεδιαστές συστημάτων

Το προτεινόμενο μοντέλο εξυπηρετεί όλες τις σχεδιαστικές δραστηριότητες, οι οποίες

είναι η συγκέντρωση λειτουργικών και μη-λειτουργικών απαιτήσεων, η σχεδίαση της αρχι-

τεκτονικής των εφαρμογών και του δικτυακού υποστρώματος, η αποτίμηση της απόδοσης

των προτεινόμενων λύσεων και βελτίωση των προτεινόμενων λύσεων.

Για την μοντελο-κεντρική σχεδίαση συστημάτων, η υιοθέτηση της UnifiedModeling Lan-

guage (UML) ή της Systems Modeling Language (SysML) ως γλώσσας μοντελοποίησης έχει

γίνει αντικείμενο έρευνας από πολλούς ερευνητές και από διαφορετικά πεδία έρευνας, τα

22



οποία συνήθως καταλήγουν σε κάποιου είδους επέκτασής τους. Η υιοθέτηση της SysML

για τη μοντελοποίηση συστημάτων προωθεί την ολοκλήρωση της σχεδίασης συστημάτων

με άλλες δραστηριότητες, ειδικά όταν εμπλέκεται ανάπτυξη λογισμικού. Η SysML είναι μια

γλώσσα μοντελοποίησης, η οποία υποστηρίζεται από το Object Management Group (OMG),

και χρησιμοποιείται για τη σχεδίαση συστημάτων. Παρέχει διαφορετικά διαγράμματα για

να περιγράψει τη δομή του συστήματος και τα συστατικά του, και για να καθορίσει τις πο-

λιτικές ανάθεσης πόρων (allocation policies) οι οποίες είναι σημαντικές για τη σχεδίαση και

για τον καθορισμό των απαιτήσεων. Η SysML υιοθετήθηκε ως γλώσσα μοντελοποίησης και

στην παρούσα έρευνα.

Οι βασικές δραστηριότητες σχεδίασης των συστημάτων είναι ο καθορισμός των απαιτή-

σεων, η σύνθεση μιας λύσης, η αποτίμηση της προτεινόμενης λύσης και η αναπροσαρμογή

της λύσης εφόσον δεν ικανοποιούνται όλες οι απαιτήσεις κατά τη διαδικασία της αποτί-

μησης. Εφόσον η SysML μπορεί να προσαρμοστεί για ένα συγκεκριμένο πεδίο εφαρμογής

(μέσω του μηχανισμού επέκτασης που ορίζεται από τη UML), μπορεί να χρησιμοποιηθεί

αποδοτικά κατά τις δραστηριότητες τόσο της σύνθεσης μιας λύσης και της αναπροσαρμο-

γής της, όσο και κατά τη διαδικασία του καθορισμού των λειτουργικών απαιτήσεων. Αυτό

που υποστηρίζει η συγκεκριμένη ερευνητική προσπάθεια είναι:

• η αποτελεσματική διαχείριση μη-λειτουργικών απαιτήσεων (ειδικότερα των ποσοτι-

κών) κατά τη διαδικασία της σχεδίασης και

• το «δέσιμο» αυτών των δραστηριοτήτων με τη δραστηριότητα της αποτίμησης της λύ-

σης, που συνήθως γίνεται με τη χρήση άλλων γλωσσών μοντελοποίησης και μεθοδο-

λογιών, με τη χρήση της SysML από το σχεδιαστή για όλες αυτές τις δραστηριότητες.

Παρόλο που οι ΜΛΑ παίζουν ένα σημαντικό ρόλο κατά τη διαδικασία της σχεδίασης, δεν

υποστηρίζονται επαρκώς από τη SysML. Επιπρόσθετα, τα εργαλεία που υλοποιούν τη SysML

δεν παρέχουν έναν αυτοματοποιημένο τρόπο για την επαλήθευση των μη-λειτουργικών

απαιτήσεων. Η έρευνα που πραγματοποιήθηκε εστίασε σε μια επέκταση της SysML ώστε να

είναι εφικτή η περιγραφή και η επαλήθευση (verification) των μη-λειτουργικών ποσοτικών

απαιτήσεων. Για καταστεί δυνατό αυτό, έγιναν επεκτάσεις στη SysML ώστε:

• να υποστηρίζονται συγκεκριμένες κατηγορίες μη-λειτουργικών απαιτήσεων, και συ-

γκεκριμένα αυτές που βασίζονται σε ποσοτικές παραμέτρους, και

• να υποστηρίζεται η διαδικασία της επαλήθευσής τους

Η SysMLπροτείνει τη χρήση των test cases προκειμένου να διαπιστωθεί αν μια απαίτηση

ή ένα σετ απαιτήσεων επαληθεύονται ή όχι. Στο test case μπορεί να οριστεί ο τρόπος επα-

λήθευσης, ο οποίος μπορεί να είναι για παράδειγμα ένα διάγραμμα συμπεριφοράς (activity

ή state machine διάγραμμα). Όσον αφορά τις ΜΛΑ που σχετίζονται με την απόδοση και

εστιάζονται στην παρούσα έρευνα, αυτές περιγράφονται τόσο με ποιοτικά όσο και ποσο-

τικά χαρακτηριστικά. Όσον αφορά τα ποσοτικά χαρακτηριστικά, μπορεί να χρησιμοποιηθεί



Εικόνα 1: Επέκταση της SysML για την υποστήριξη των ΜΛΑ

κάποια ποσοτική μέθοδος όπως η προσομοίωση, ώστε να γίνει εφικτή η επαλήθευσή τους.

Η έννοια του test case δεν υποστηρίζει ποσοτικές μεθόδους επαλήθευσης. Επιπρόσθετα, τα

αποτελέσματα της μεθόδου επαλήθευσης θα πρέπει να διατηρούνται στο μοντέλο του συ-

στήματος. Για τους παραπάνω λόγους, προτάθηκε η επέκταση της έννοιας των απαιτήσεων

στη SysML με τα εξής:

• Σύνθετες ΜΛΑ οι οποίες αποτελούνται από επεκταμένες μη λειτουργικές απαιτήσεις

(οι οποίες μπορεί να προκύψουν από άλλες απαιτήσεις με κάποια μαθηματική σχέση

ή με βάση κάποια ευρετική μέθοδο), στις οποίες ορίζονται ποιοτικά και ποσοτικά χα-

ρακτηριστικά καθώς και η μέθοδος σύγκρισης, η οποία χρησιμοποιείται για να κριθεί

αν η απαίτηση ικανοποιείται ή όχι, σε σχέση με μια οντότητα του συστήματος.

• Σενάρια Επαλήθευσης τα οποία αποτελούνται από οντότητες του συστήματος οι οποίες
συμμετέχουν στη μέθοδο επαλήθευσης (συνηθως προσομοίωση) μαζί με τις παραμέ-

τρους εισόδου, έχοντας έτοιμες τις πατραμέτρους οι οποίες θα γεμίσουν με τα αποτε-

λέσματα της προσομοίωσης.

Η Εικόνα 1 παρουσιάζει τις επεκτάσεις της SysML που προτάθηκαν.

Η προσπάθεια αυτή κατέληξε στην υλοποίηση ενός SysML profile το οποίο ονομάζεται

«Προφίλ Εταιρικών Πληροφοριακών Συστημάτων», χρησιμοποιώντας το σχεδιαστικό εργα-

λείο MagicDraw [3]. Προκειμένου να αποδειχθεί η χρησιμότητα του προφίλ, εφαρμόστηκε

σε ένα παράδειγμα χρήσης (case study).

Με βάση το πλαίσιο Zachman και το πρότυπο ISO/IEC 42010 [2], προτάθηκαν συγκεκρι-

μένες όψεις του συστήματος, οι οποίες ανταποκρίνονται στα τέσσερα στάδια της διαδικα-



σίας σχεδίασης των ΕΠΣ, οι οποίες είναι:

• η Όψη της Λειτουργικότητας (Functional View),

• η Όψη της Τοπολογίας (Topology View),

• η Όψη της Υποδομής του Δικτύου (Network Infrastructure View) και

• η Όψη των Απαιτήσεων (Requirements View)

Προκειμένου ναυποστηριχθεί η διαδικασία της επαλήθευσης τωνμηλειτουργικώναπαι-

τήσεων, προτάθηκε ησύστασημιας νέας όψης τουσυστήματος -ΌψηΑποτίμησης (Evaluation

View) - η οποία τηρεί (α) τις ποσοτικές παραμέτρους των μη-λειτουργικών απαιτήσεων μαζί

με τις άλλες παραμέτρους των οντοτήτων του συστήματος και (β) τα αποτελέσματα της με-

θόδου αποτίμησης του συστήματος (τα οποία ενσωματώνονται ξανά στο μοντέλο του συ-

στήματος), που στην προκείμενη περίπτωση είναι η προσομοίωση, ώστε να καταστεί εφικτή

η επαλήθευση των μη-λειτουργικών απαιτήσεων. Η όψη αποτίμησης βασίζεται κι αυτή σε

διαγράμματα της SysML. Η όψη αυτή βοηθάει το σχεδιαστή παρέχοντάς του ειδοποιήσεις

για τις απαιτήσεις οι οποίες δεν επαληθεύονται καθώς και τις σχετιζόμενες οντότητες με

αυτές, ώστε ο σχεδιαστής να κάνει/λάβει τις κατάλληλες ενέργειες/αποφάσεις προκειμένου

να οδηγήσει το σύστημα ώστε να ικανοποιήσει όλες τις απαιτήσεις.

Εικόνα 2: Αρχιτεκτονικό μοντέλο των ΕΠΣ

Το αποτέλεσμα της διατριβής είναι ένα ολοκληρωμένο σχεδιαστικό περιβάλλον το οποίο

όχι μόνο επιτρέπει τον ορισμό εναλλακτικών αρχιτεκτονικών του υπο-μελέτη συστήματος,

αλλά προσφέρει και τη δυνατότητα της επαλήθευσης της εκάστοτε προτεινόμενης αρχιτε-

κτονικής μέσω προσομοίωσης. Τα αποτελέσματα της προσομοίωσης ενσωματώνονται στο

περιβάλλον σχεδίασης, ώστε να αυτοματοποιηθεί η διαδικασία της επαλήθευσης των μη

λειτουργικών απαιτήσεων, προσέγγιση η οποία υλοποιήθηκε για πρώτη φορά στα πλαίσια



της παρούσας ερευνητικής προσπάθειας. Τα ανοιχτά ζητήματα, που μελετήθηκαν στο πλαί-

σιο της διδακτορικής διατριβής συνοψίζονται στα ακόλουθα:

• η πρόταση μιας προσέγγισης η οποία να βασίζεται σε γνωστά πρότυπα και τυπικές

γλώσσες όπως η SysML,

• η διευκόλυνση του σχεδιαστή συστήματος στο να εξερευνά εναλλακτικές σχεδιαστικές

λύσεις και στην αποτίμηση (evaluation) του μοντέλο του συστήματος πριν την υλοποί-

ηση,

• η εστίαση στον ορισμό και στις συσχετίσεις των μη-λειτουργικών απαιτήσεων απόδο-

σης του συστήματος,

• η αυτοματοποίηση της διαδικασίας της επαλήθευσης των απαιτήσεων χρησιμοποιώ-

ντας τυπικές μεθόδους για εκτίμηση απόδοσης, όπως την προσομοίωση,

• την υλοποίηση της προσέγγισης σε ένα συγκεκριμένο πεδίο εφαρμογής ώστε να απο-

δειχθεί η σκοπιμότητα μέσω μιας μελέτης περίπτωσης.

Εφόσον το πεδίο εφαρμογής ήταν τα ΕΠΣ, ένας επιπρόσθετος στόχος ήταν η παροχή εν-

δείξεων της απαιτούμενης ποιότητας υπηρεσίας (Quality of Service (QoS)) των συστατικών

στοιχείων λογισμικού ώστε να διευκολυνθεί η διανομή λογισμικού σε υλικό. Αυτό έγινε με

τη διερεύνηση των συσχετίσεων των μη-λειτουργικών απαιτήσεων μέσω των συστατικών

στοιχείων λογισμικού και της ανάθεσής τους σε συστατικά στοιχεία υλικού, σε καθορισμέ-

νες τοπολογίες δικτύων.

Για την επίλυση των ανοικτών ζητημάτων, έγιναν οι ακόλουθες ενέργειες:

• Μια συστηματική βιβλιογραφική έρευνα των μεθοδολογιών που αφορούν στη σχεδί-

αση των ΕΠΣ [4]

• Μια μοντελο-κεντρική προσέγγιση για το σχεδιασμό ΕΠΣ και ο ορισμός ενός μεταμο-

ντέλου ο οποίος να βασίζεται στη SysML που να εξυπηρετεί το σκοπό αυτό [5,6]

• Ο ορισμός και η επαλήθευση των μη λειτουργικών απαιτήσεων απόδοσης [7,8]. Συγκε-

κριμένα:

– ο καθορισμός και ο υπολογισμός των παραγόμενων (derived) μη λειτουργικών

απαιτήσεων απόδοσης,

– η διαχείριση των μη λειτουργικών απαιτήσεων μέσω της προσθήκης μιας ξεχω-

ριστής Όψης Αποτίμησης (Evaluation View).

• Η ολοκλήρωση τηςΌψηςΑποτίμησης με ένα εξωτερικό εργαλείο προσομοίωσης [9,10],

μέσω:

– αρχικοποίησης των εναλλακτικών σεναρίων προσομοίωσης, εκτέλεσης της προ-

σομοίωσης και



– εισαγωγής των αποτελεσμάτων προσομοίωσης στο μοντέλο της SysML.

• Υλοποίηση ενός ολοκληρωμένου εργαλείουσχεδίασης χρησιμοποιώντας τοMagicDraw

και τη DEVSJava [9,11–13], μέσω:

– της επιλογής ενόςDiscrete Event Simulator, όπως τοDiscrete Event SystemSpecification

(DEVS),

– το μετασχηματισμό του μοντέλου της SysML σε μοντέλο DEVS χρησιμοποιώντας

την Query / View / Transformation (QVT),

– τον καθορισμό των βιβλιοθηκών προσομοίωσης των στοιχείων του μοντέλου.

Η συνεισφορά της συγκεκριμένης ερευνητικής προσπάθειας, πέραν του πεδίου εφαρμο-

γής που είναι τα Πληροφοριακά Συστήματα, αφορά τα ακόλουθα:

• τη διαχείριση ποσοτικών μη-λειτουργικών απαιτήσεων ώστε να καθορίζουν τόσο τη

συμπεριφορά όσο και την απόδοση ενός συστήματος, το τρόπο ορισμού τους και τον

καθορισμό των αλληλεπιδράσεων μεταξύ τους,

• την κατηγοριοποίηση των μη-λειτουργικών απαιτήσεων που αφορούν θέματα απόδο-

σης,

• την προσθήκη της όψης αποτίμησης, η οποία αφενός διευκολύνει την επαλήθευση

των μη-λειτουργικών απαιτήσεων και αφετέρου επιτρέπει την τήρηση ιστορικού των

διαφόρων σεναρίων τα οποία δοκιμάστηκαν, σαν μια βάση γνώσης η οποία να διευ-

κολύνει τις αποφάσεις του σχεδιαστή.

Συμπερασματικά, υποκινούμενοι από το γεγονός της έλλειψης αποτελεσματικών μηχα-

νισμών επαλήθευσης των ποσοτικών μη λειτουργικών απαιτήσεων, οι οποίες ορίζονται σε

SysML μοντέλα, δόθηκε έμφαση στην λεπτομερή αναπαράσταση των μη λειτουργικών απαι-

τήσεων, οι οποίες μπορούν να περιγραφούν με ποσοτικά χαρακτηριστικά και στην επα-

λήθευσή τους χρησιμοποιώντας ποσοτικές μεθόδους όπως η προσομοίωση. Για το σκοπό

αυτό επεκτάθηκε η SysML. Η προτεινόμενη προσέγγιση εφαρμόστηκε στο πεδίο των ΕΠΣ,

εστιάζοντας στην σχεδίαση της αρχιτεκτονικής τους και στις απαιτήσεις απόδοσης. Το ολο-

κληρωμένο περιβάλλον σχεδίασης το οποίο υλοποιήθηκε ώστε να υποστηρίζει την συγκε-

κριμένη προσέγγιση, υπογραμμίζει το ρόλο των μοντέλων και των προτύπων προς την κα-

τεύθυνση προτεινόμενων λύσεων οι οποίες υποστηρίζουν την ανταλλαγή γνώσης και τη

συνδυασμένη χρήση μεθόδων και εργαλείων ώστε να διευκολύνουν τον σχεδιαστή του συ-

στήματος παρέχοντάς του ανατροφοδότηση για την απόδοση του συστήματος. Τέλος, σαν

επεκτάσεις αυτής της δουλειάς, παρουσιάστηκαν εφαρμογές της μεθοδολογίας σε διαφορε-

τικά πεδία, όπως η τεχνοοικονομική ανάλυση στο cloud και ο ορισμός επιπέδων ποιότητας

υπηρεσίας στα συστήματα μεταφορών.



Εικόνα 3: Σύνοψη συνεισφοράς



Preface

During the period of entanglement with my MSc thesis, I had the opportunity to learn

about system engineering in a theoretical aspect. To design an information system involves

many aspects, such as collecting data from the users (user requirements), designing the ar-

chitecture, implementing the real system, testing and evolving it.

This thesis, entitled ”Model-Based Enterprise Information System Design: A SysML-based

approach” deals with the architecture design of EISs. From the first moments till now, many

revisions has been done, in order to adopt contemporary trends that affect the design pro-

cess, such as modeling languages. For example, at the very first steps of this thesis, UML

was adopted as themodeling language. However, since SysMLwas released and became the

common language to describe systems and SoS, we consider to use SysML, as more appro-

priate to describe our approach. The reasons behind this selection are analytically described

in the following chapters.

A system designer first tries to depict the system components (subsystems) and the rela-

tions between them in a human readable format. Systems, and especially Information Sys-

tems (ISs) are implemented through software development process. This process usually is

supported by computer software tools, such as requirements definition tools, system design

tools, performance evaluation tools, etc. To evaluate a system before its implementation,

there is a necessity of a system model, that would be capable of holding all the characteris-

tics related to the evaluation.

In an introductory chapter, an overview of this thesis is presented along with the defined

objectives and the contribution. Afterwards, chapter 2 refers on concepts that concern IS

in general and especially their design. Definitions of architecture frameworks and model-

based system design methodologies are presented to provide the research background of

this thesis. By the same token, chapter 3 depicts proposed methodologies for model-based

system design, discusses SysML-based approaches, requirements and the way these are in-

volved/handled in this process. In order to clarify the novelty of this thesis, a comparison of

the related work is presented.

An overview of the proposed approach about the exploration of EIS architecture design

is presented in chapter 4. An EIS profile is defined, that adopts the model-based systems

29



engineering concepts and defines specific views according to different system perspectives

forming the stakeholders’ viewpoints. Given these points, our contribution is described in

detail, following a two phase approach: on one hand the design phase, presented in chapter

5, is dealing with the specific design views and the definition of NFRs, and on the other hand,

the evaluation phase, presented in chapter 6, is performed via the NFRs verification.

Thereupon, to prove the feasibility of the proposed approach, a case study is presented

in chapter 7. A critical view about the contribution, pros and cons of the proposed approach

is discussed in chapter 8 and finally conclusions and future directions reside in chapter 9.

Throughout this thesis, there were many times that the Ph.D. candidate was wondering

about the value of hiswork. This is a personal fight, throughwhich anyone canobtain not only

technical skills but also spiritual ones. A wide range of emotions has been experienced, from

enthusiasm, e.g., when a publication was accepted to depression, e.g., when realizing that

someone else has achieved something that you are trying to solve. Of course, like everything

in life, the route traveled is worthing independently of the destination.

“You have brains in your head. You have feet in your shoes.
You can steer yourself in any direction you choose. You’re
on your own. And you know what you know. You are the guy
who’ll decide where to go.“

— Dr. Seuss



Chapter 1
Introduction

Contents
1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2 Objectives & Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.1 General

When building large-scale ISs, focus is usually given in Systems Engineering (SysE), while

the combination of software and hardware, and the way it might affect overall system per-

formance, is often neglected. During system design, software architecture issues are usually

dealt with, as a discrete stage of the software engineering methodology applied. The man-

agement of related design decisions and the way it might be influenced by NFRs has been

explored. Though, software architecture design decisions are influenced by network design,

whileNFRs, as performance requirements, can usually be satisfied by their effective combina-

tion. In practice, both software and network infrastructure architecture should be designed

in parallel, as integrated components of the overall system architecture, to efficiently explore

their interrelations and ensure NFR satisfaction.

While one can find many efforts in the related literature, the challenge to achieve a more

efficient system still remains open. Our proposal is to provide a design environment with

evaluation capabilities for EISs design. Requirements provide the means in order to evaluate

system’s performance, based on their verification. They are used as conditions that have to

be satisfied, ensuring that the system would provide the expected behavior. Requirements

Engineering (RE) not only refers to the processes of defining, documenting and maintain-

ing requirements but also to the subfields of systems and software engineering concerned

with these processes. Under those circumstances, a classification of requirements and their

31



Chapter 1. Introduction 32

extensions with quantifiable properties and verification methods is proposed.

1.2 Objectives & Contribution

In the beginning of this thesis, the following goals [12] have been identified as open is-

sues, that formed the objectives of this research:

• to propose an approach based on well-known standards such as SysML and formal

languages based on OMG’s standards.

• to facilitate the system designer exploring alternative design solutions and evaluating

the system model before its implementation.

• to focus in the definition of system requirements.

• to automate requirements verification process using formal methods for performance

evaluation, such as simulation.

• to implement the proposed approach in a specific system domain in order to prove the

feasibility of the approach by a case study.

Since the selected domain of case study was EIS, an additional goal was to provide indi-

cations about the aggregated QoS of software components helping software-to-hardware

allocations. Therefore, to meet all these goals, the following steps were accomplished:

i. A review of the EIS engineering methodologies in the literature [14,15] has been pub-

lished.

ii. A model-based approach for EIS design and the corresponding metamodel have been

proposed [15–17].

iii. A SysML profile for EIS has been defined in [5,6].

iv. A definition and the verification of NFRs and especially performance ones has been

given [15]. Specifically:

• definition and calculation of derivednon-functional requirements has been achieved.

• management ofNFR verification through theproposition of a discrete view, namely

Evaluation view is feasible.

v. An integration of the so-called Evaluation view with an external simulation tool [5–7],

via:

• initialization of alternative simulation scenarios and simulation execution, and

• the integration of the simulation results into the SysML model

has been implemented.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 1. Introduction 33

vi. An implementation of an integrated platform supportingmodel-based EIS design using

MagicDraw and DEVSJava [9,11,13], was provided via:

• the selection of a Discrete Event Simulator, such as DEVS

• the transformation of the SysML model into the DEVS model, using QVT

• the definition of the simulation library components of the system model.

The contribution of this thesis will be analytically described at the next chapters.

1.3 Overview

SysE is an interdisciplinary field of engineering that focuses on the way we design and

manage complex engineering projects over their life cycles. Model-Based Systems Engineer-

ing (MBSE) is a methodology for designing systems using models. A system model is the

conceptual model that describes and represents a system [18]. MBSE implies that themodels

are composed of an integrated set of representations. Tools andmethodologies that support

MBSE assume that the representations of system behavior and structure are integrated in a

single multi-layer model. Each model element can be represented in many views to create a

variety of design and architectural representations.

Although UML is a standard modeling language to support MBSE 1, SysML, as an ex-

tension of UML, is more appropriate when talking about systems and SoS. On MBSE uses

a graphical language to generate and record details pertaining to system’s requirements,

design, analysis, verification and validation. Additionally, RE refers to the process of formu-

lating, documenting and maintaining software requirements and to the field of Software

Engineering (SE) concerned with this process. Specifically, software systems RE is the pro-

cess of identifying stakeholders and their needs, and documenting these in a form that is

amenable to analysis, communication, and subsequent implementation [23]. Requirements

are defined throughout phases of system development. A NFR is a requirement that specifies

criteria that can be used to judge the operation of a system, rather than specific behaviors.

NFR verification is a process that is related to system design.

As mentioned, the scope of this research is to provide a design environment that is ca-

pable of defining system architecture, evaluating the system and notify the designer about

the non verified non-functional requirements. This process should be transparent to the de-

signer in order to support him to effectively build a system architecture taking into account

the imposed hardware and software requirements. As many stakeholders (each of them be-

ing a specific engineer) are involved in the system design process, the proposed approach

provides separate views, enrichedwith NFRs, for each stakeholder, as instances of a common

model. Figure 1.1 presents an overview of the proposed approach, which is in accordance to

INCOSE’s objective to promote integration and interoperability of methods and tools.
1and was used in the early stages of our research [19–22]

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 1. Introduction 34

Figure 1.1: Phd Overview

The basic tasks identified during any system design activity are requirements definition,
solution synthesis, solution evaluation and solution re-adjustment [24]. Based on predefined

requirements, the system designer build a solution on system synthesis. In order to de-

cide if a solution is acceptable, evaluation is used. Until an accepted solution is reached,

re-adjustments are performed.

Figure 1.2: Basic System Design Activities

Specifically, to evaluate a system, an analytical method, e.g., mathematical equations de-

scribing system behavior, or simulation could be used. In the case of a complex system, such

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 1. Introduction 35

as ISs, simulation ismore appropriate for performancemeasurements. Hence, a related issue

that is addressed also here, is the generation of simulation models based on SysML repre-

sentations [25], simulation and the incorporation of its results back into the system model.

The latter aids the illustration of potential mismatch(es) with the pre-defined requirements,

after system evaluation. Automated system evaluation is performed via the verification of

NFRs.

1.4 Research Methodology

Through this research, Design Science research methodology was used [26]. According to

it, there are six different phases that are proposed to follow in order to complete the re-

search. Research is an iterative process that begins with the problem identification and the

motivation. The next step is to define the objectives, something already presented at sec-

tion 1.2. What follows is to design and develop the artifact that supports the objectives and

demonstrates how the produced artifact would solve the problem (chapters 4, 5, 6). The eval-

uation of this research is discussed in chapter 7 with the aid of a case study. Communicating

research has been done with publications, mentioned after the references section.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 1. Introduction 36

Figure 1.3: Design Science Research Methodology

1.5 Structure

After this short introductory chapter, the thesis is structured as follows. Chapter 2 presents

the background in the related research areas of ISs, MBSE and systems evaluation, where

selected definitions and standards are briefly presented. The related work, especially the

methodologies for model-based EIS design, the defined SysML profiles, the efforts about

simulating SysML models, as well as requirements engineering with emphasis on NFRs and

their verification, are discussed in chapter 3. Chapter 4 presents our approach to explore EIS

architecture design, based on the concepts of MBSE, while 5 lays out the design views, where

system designer defines the software and hardware architectures of an EIS. In addition, eval-

uation view is described in detail in chapter 6, where automated simulation code generation

is produced and execution results are incorporated into the systemmodel. To help the reader

understand our proposal, its application is presented in chapter 7with a case studywhere the

proposed approach is applied. There, the design process is given from the system designer’s

perspective, as a step-by-step procedure, in order to evaluate the designed architecture and

verify the requirements. Finally, in chapter 8 a discussion about the proposed approach is

presented while conclusions and future work reside in chapter 9.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach





Chapter 2
Background

Contents
2.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Information Systems Engineering . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1 Architecture Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.2 Requirements Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Model-based System Engineering . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1 Model-based System Design . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.2 System Models Management . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.1 Requirements Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.1 Outline

This chapter makes an introduction on concepts that concern IS in general and espe-

cially their design. Definitions of architecture frameworks and model-based system design

methodologies are presented to familiarize the reader with the research area concepts. In-

troduction on requirements and their classification is briefly depicted. Moreover, modeling

languages such as UML and SysML are introduced.

2.2 Information Systems Engineering

A system is an artifact created by humans that consists of components or blocks that pur-

sue a common goal that cannot be achieved by each of its single elements. In the context of

IS, a block can consist of software, hardware, persons, or any other units [18]. IS is the study

38



Chapter 2. Background 39

of complementary networks of hardware and software that people and organizations use to

collect, filter, process, create and distribute data [27]. Information systems encompasses a

variety of disciplines such as:

• the analysis and design of systems,

• computer networking,

• information security,

• database management and

• decision support systems.

SysE concentrates on the definition and documentation of system requirements in the

early development phase, the preparation of a system design, and the verification of the

system as to compliance with the requirements, taking the overall problem into account:

operation, time, test, creation, cost and planning, training and support, and disposal [18].

According to NASA Systems Engineering handbook [28] SysE is a methodical, disciplined ap-

proach for the design, realization, technical management, operations, and retirement of a

system. SysE integrates all disciplines and describes a structured development process, from

the concept to the production then to the operation phase and finally to the system’s dis-

posal. It examines both technical and economical aspects in order to develop a system that

meets the users’ needs. As such, systems engineering stands above specific disciplines, such

as software development, for example. This holistic line of thinking can also include solutions

to problems that emerge only as a new system is introduced.

Information Systems Engineering (ISE) is the process by which IS are designed, devel-

oped, tested, and maintained. The technical origins of information systems engineering can

be traced to conventional information systems design and development, and the field of sys-

tems engineering. Information systems engineering is by nature structured, iterative, multi-

disciplinary, and applied. It involves structured requirement analyses, functional modeling,

prototyping, software engineering, and system testing, documentation, as well as mainte-

nance [29].

2.2.1 Architecture Frameworks

An architecture framework establishes a common practice for creating, interpreting, ana-

lyzing and using architecture descriptions within a particular domain of application or stake-

holder community. Especially the domain within a company or other organization is covered

by Enterpsise Architecture Frameworks (EAFs).

Enterprise Systems (ES) are large-scale application software packages that support busi-

ness processes, information flows, reporting and data analytics in complex organizations.

While ES are generally Packaged Enterprise Application Software (PEAS) systems they can

also be pre-ordered, custom developed systems created to support a specific organization’s

needs [30].

An EIS is any kind of information system improving the business processes of an enter-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 2. Background 40

prise by integration. This typically means high quality of service, related with big data and

the capability to support some large and possibly complex organizations or enterprises. An

EIS must be used by all parts and all levels of an enterprise [31].

In general, an architecture framework provides principles and practices for creating and

using the architecture description of a system. It structures architects’ thinking by dividing

the architecture description into domains, layers or views, and offers models - typically ma-

trices and diagrams - for documenting each view [32].

An overview of Enterprise Architectures is presented at [33]. This work presents the main

characteristics of major architecture frameworks and modeling languages for model-based

systems engineering. It states that “a systemmodeling language such as SysMLmight there-

fore evolve not only as a language to describe systems on a high level of abstraction but also

as a language to glue heterogeneous models together”.

The way an enterprise architecture is created and employed is defined by an EAF. EAFs

( [34], [32]) are characterized as an attempt to integrate strategies, processes,methods,mod-

els and tools towards enterprise information system engineering [35]. There are a lot of EIS

engineering methodologies in the literature [24], each of them covering specific EIS engi-

neering aspects. However, in order to integrate all of them in practice, the support of differ-

ent system models cannot be avoided. In many cases, these models are not compatible, or

even not known to others. Details will be presented in the related work chapter.

The desired integration of people, strategies, processes,methods,models and tools could

be accomplished by adopting model-based EIS engineering (MB-EISE). In such a case, a cen-

tral system model must be defined capturing all system requirements and decisions that

fulfill them at different levels of abstraction. Since the central system model serves all engi-

neering activities, it should be technology-neutral, multi-layered,modular and composite, fa-

cilitating the integration of system sub-models corresponding to different perspectives and

their progressive refinement. Relevant methodologies and tools addressing discrete engi-

neering issues may be applied to specific system sub-models.

In [36], the concept of using Zachman framework [1] as the basis for establishing a cen-

tral EIS model for Model-based Enterprise Information System Engineering (MB-EISE) was

introduced. As such, Zachman matrix serves as a canvas to integrate different concerns, is-

sues and methods towards MB-EISE, while specific methods may use parts of it as a refer-

ence point. We also identified some basic guidelines individual model-based methodologies

should fulfill, in order to be integrated into the Zachman matrix, focusing on how to estab-

lish the EIS sub-model corresponding to each of them. In an effort to practically apply these

concepts, in a large scale organization, it became clear that the process of effectively forming

the central EIS model was a complex one. In addition, a key obstacle identified was the lack

of a common understanding about the purpose of the central model by different stakehold-

ers involved in EIS engineering. This resulted in EIS sub-models, which served well individual

methods corresponding to them, but had poor interoperability since it was unclear how spe-

cific methods should be interrelated.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 2. Background 41

To further establish the perception of MB-EISE based on Zachman framework, in the fol-

lowing we identify primary EIS engineering activities and explore the way they can be sup-

ported by specific Zachman matrix rows and columns resulting in an first level approach

describing model-based EIS engineering process. To this end, we propose:

i. a first-level description identifying theprimary EIS engineering activities servedby Zach-

man matrix rows.

ii. a conceptual model for MB-EISE according to ANSI/IEEE 1471 standard [37], which may

assist designers to formulate the central EIS model.

iii. a common, first-level description of MB-EISE activities performed based on each cell-

related view. Each of these activities consists of specific tasks that may be implemented

by a specific EIS engineering method.

Special attention was paid on defining EIS views and viewpoints for each cell in order to

enhance information exchange between them.

To explore the proposed concepts in practice, the System Network cell of the Zachman

matrix is used as example, already discussed in [36]. Model-based EIS architecture design

is focused in this cell. EIS architecture design activity is described based on common first-

level MB-EISE activity model proposed. Identified tasks may contribute to related individual

method and tool integration. System Network meta-model is adjusted to support individ-

ual EIS architecture design tasks and enhance inter-cell communication. The experience ob-

tained when applying the proposed concepts during the renovation of the legacy system of

a public large-scale organization is also discussed in chapter 7.

2.2.2 Requirements Engineering

A requirement specifies the user expectations concerning the behavior of the system.

Managing design requirements, when composing systems or SoS, is a complex task, as they

should be adapted during system evolution [38,39]. According to Byrne [40], a requirement

denotes a capability or a condition that should be satisfied by the system under study and

may be either functional (i.e., specifying a function that a system must perform) or non-
functional (i.e., specifying a condition that a system must achieve).

According to Wymore [41] there are six core categories of system design requirements,

most of which, such as performance or cost, are non-functional. These categories are:

• I/O requirement,

• technology requirement,

• performance requirement,

• cost requirement,

• trade-off requirement, and

• system test requirement.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 2. Background 42

This is evident, sincemost designdecisions dependmainly on the conditions that a system

should operate rather than the description of its structure [42]. Thus, alternative design de-

cisions and NFRs imposed to a system should be explored in parallel [43, 44]. Furthermore,

system architectures should be evaluated [45] and properly adjusted until all imposed re-

quirements are verified in different levels of detail. For example performance requirements

may be defined for the system as a whole or for specific system components.

Figure 2.1: A concern-based taxonomy of requirements 1

Requirements, as stated, are divided into two main categories: functional and non-func-
tional [40, 46, 47]. NFR is a broadly used term, while there are significant efforts on how to

handle them [42]; however, there is no consensus about their nature, since various classifica-

tions exist in the literature [40] [47]. NFRs play a significant role during system design, since

they depict the conditions under which specific system components should operate, lead-

ing to alternative design decisions. A concern-based taxonomy of requirements is presented

in [46] and illustrated in Figure 2.1. Non-functional requirements are often called qualities of

a system.

2.3 Model-based System Engineering

Model-Based Engineering (MBE) is about elevating models to a central and governing

role in the engineering process for the specification, design, integration, validation, and op-

eration of a system [24]. Model-Based System Design (MBSD) is supported by a number of
1This taxonomy is presented in [46]

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 2. Background 43

methodologies [24,48] and is effectively accommodated by SysML [49]. SysML, endorsed by

OMG and INCOSE1, facilitates the description of a broad range of systems and systems-of-

systems in a hierarchical fashion, while it is fully supported by most UML modeling tools.

It enables the description of allocation policies and provides a discrete diagram for re-

quirements specification. To describe specific system domains, a SysML profile should be

specified, using standard UML extension mechanisms, as stereotypes and constraints [51].

Model-based design of information systems is explored by methodologies such as the

ones presented in [4,52–54]. UML and recently SysML are adopted in all of them as the sys-

temmodeling language. As indicated inmost of them, when building large-scale information

systems, software engineering is usually focused, while the combination of software and

hardware and the way it might affect overall system performance is often neglected. Design

decisions related with software architecture are influenced by network infrastructure design,

while NFRs, as performance requirements, can usually be satisfied by effective allocation of

software components to hardware. In practice, both software and network infrastructure ar-

chitecture should be designed in parallel to efficiently explore their interrelations and ensure

non-functional requirement satisfaction.

MBSE [55] provides a central systemmodel that captures all system requirements and de-

cisions that fulfill them at different levels of abstraction. The central system model serves all

engineering activities. In such a case, a multi-level, composite and technology-neutral cen-

tral model for EIS should be defined, taking into account different perspectives and aspects

of EIS. Existing well-known frameworks may be used for such a purpose.

Leading MBSE Methodologies

Estefan [24] provides a cursory description of some of the leading MBSE methodologies

used in industry today. A brief synopsis of each methodology is described in the following

paragraphs. These are Object-Oriented Systems Engineering Method by INCOSE and Ratio-

nal Unified Process for Systems Engineering (RUP-SE) by IBM.

INCOSE Object-Oriented Systems Engineering Method (OOSEM) The Object-Oriented

Systems Engineering Method (OOSEM) integrates a top-down, model-based approach that

uses SysML to support the specification, analysis, design, and verification of systems. OOSEM

is based on object-oriented concepts in conjunction with traditional top down systems engi-

neering methods and other modeling techniques. As such, it enables the systems engineer

to precisely capture, analyze, and specify the system and its components and ensure consis-

tency among various system views. The modeling artifacts can also be refined and reused in

other applications to support product line and evolutionary development approaches. The
1The INCOSE is a not-for-profit membership organization founded to develop and disseminate the interdis-

ciplinary principles and practices that enable the realization of successful systems. Its mission is to share, pro-
mote and advance the best of systems engineering from across the globe for the benefit of humanity and the
planet [50].

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 2. Background 44

methodology part of OOSEM has since evolved into the Rational Unified Process (RUP). The

activities depicted in Figure 2.2 are consistent with typical systems engineering “Vee“ process

that can be recursively and iteratively applied at each level of the system hierarchy.

Figure 2.2: OOSEM Activities and Modeling Artifacts

IBM Rational Unified Process for Systems Engineering (RUP SE) for Model-Driven Sys-
tems Development (MDSD) RUP is a methodology that is both a process framework and

process product from IBM Rational and it has been used extensively in government and in-

dustry to manage software development projects [56]. The RUP is an iterative and incremen-

tal development process. The Elaboration, Construction and Transition phases are divided

into a series of timeboxed iterations. (The Inception phase may also be divided into itera-

tions for a large project.) Each iteration results in an increment, which is a release of the

system that contains added or improved functionality compared with the previous release.

Althoughmost iterations will includework inmost of the process disciplines (e.g. Require-

ments, Design, Implementation, Testing) the relative effort and emphasis will change over

the course of the project. RUP-SE was created to specifically address the needs of systems

engineering projects. The main content elements of the RUP are the following:

• Roles (”WHO”) – A role defines a set of related skills, competencies, and responsibilities.

• Work Products (”WHAT”) – A work product represents something resulting from a task,

including all the documents and models produced while working through the process.

• Tasks (”HOW”) – A task describes a unit of work assigned to a role that provides a mean-

ingful result.

Within each iteration, the tasks are categorized into a total of nine (9) disciplines (Figure 2.3):

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 2. Background 45

Figure 2.3: The Rational Unified Process framework

Engineering Disciplines:

i. Business modeling

ii. Requirements

iii. Analysis and design

iv. Implementation

v. Test

vi. Deployment

Supporting Disciplines:

i. Configuration and change manage-

ment

ii. Project management

iii. Environment

2.3.1 Model-based System Design

Design, as a term, provides a structure to any artifact. The idea is to decompose a system

into parts, assign responsibilities, ensure that parts fit together to achieve a global goal. De-

sign refers to both an activity and the result of the activity. An activity for example, acts as

a bridge between requirements and the implementation of the system. Moreover, it gives

a structure to the artifact e.g., a requirements specification document must be designed.

A structure helps to better understand the goal. So a design activity refers to the decom-

position of a system to subsystems, in order to focus on specific aspects. Software design

is the process by which an agent creates a specification of a software artifact, intended to

accomplish goals, using a set of primitive components and subject to constraint [57].

There are four core activities in systems architecture design:

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 2. Background 46

i. Architectural Analysis is the process of understanding the environment in which a pro-

posed system or systems will operate and determines the system requirements. The

input or requirements to the analysis activity is derived from any number of stakehold-

ers and include items such as:

• what the system will do when it is operational (the functional requirements)

• how well the system will perform in runtime (the NFRs)

• development-time non-functional requirements such asmaintainability and trans-

ferability

• business requirements and environmental contexts of a system that may change

over time, such as legal, social, financial, competitive, and technology concerns

ii. Architectural Synthesis or design is the process of creating an architecture. Given the

requirements determined by the analysis, the current state of the design and the results

of any evaluation activities, the design is created and improved.

iii. Architecture Evaluation is the process of determining how well the current design or

a portion of it satisfies the requirements derived during analysis. An evaluation can

occur whenever an architect is considering a design decision, it can occur after some

portion of the design has been completed, it can occur after the final design has been

completed or it can occur after the system has been constructed.

iv. Architecture Evolution is the process of maintaining and adapting an existing software

architecture tomeet requirement and environmental changes. As software architecture

provides a fundamental structure of a software system, its evolution and maintenance

would necessarily impact its fundamental structure. As such, architecture evolution is

concerned with adding new functionality as well as maintaining existing functionality

and system behavior.

Moreover, architecture requires critical supporting activities. These supporting activities

take place throughout the core software architecture process. They include knowledgeman-

agement and communication, design reasoning and decision making, and documentation.

2.3.2 System Models Management

MBSE, as previously stated, is based on system models. Methods and tools supporting

the design process are using viewpoints and for each viewpoint a corresponding model is

defined. This subsection presents standards methods, practices, modeling languages and

standards to manage system models.

OMG

OMG is an international, open membership, not-for-profit computer industry standards

consortium. OMG develop enterprise integration standards for a wide range of technolo-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 2. Background 47

gies and an even wider range of industries. OMG’s modeling standards enable powerful vi-

sual design, execution and maintenance of software and other processes. Originally aimed

at standardizing distributed object-oriented systems, OMG focuses on modeling (programs,

systems and business processes) and model-based standards [58].

The OMGwas formed to help reduce complexity, lower costs, and hasten the introduction

of new software applications. The OMG is accomplishing this goal through the introduction

of the Model Driven Architecture (MDA) architectural framework with supporting detailed

specifications.

MDA

MDA is an approach to system development, which increases the power of models in that

work. It is model-driven because it provides a means for using models to direct the course of

understanding, design, construction, deployment, operation, maintenance andmodification

[59]. The architecture of a system is a specification of the parts and connectors of the system

and the rules for the interactions of the parts using the connectors. The MDA prescribes

certain kinds ofmodels to be used, how thosemodelsmay be prepared and the relationships

of the different kinds of models.

A viewpoint on a system is a technique for abstraction using a selected set of architectural

concepts and structuring rules, in order to focus on particular concerns within that system.

Here ”abstraction” is used to mean the process of suppressing selected detail to establish a

simplified model. The MDA specifies three viewpoints on a system, a computation indepen-
dent viewpoint, a platform independent viewpoint and a platform specific viewpoint. A viewpoint

model or view of a system is a representation of that system from the perspective of a cho-

sen viewpoint. A platform is a set of subsystems and technologies that provide a coherent set

of functionality through interfaces and specified usage patterns. Therefore, any supported

application by that platform could use them without concern of the platform related func-

tionality. Table 2.1 presents the three viewpoints and the corresponding models that MDA

defines.

Figure 2.4 presents the three viewpoints through the system development process, start-

ing from Computation Independent Models (CIMs) that describe business objects and ac-

tivities independently of supporting systems, to Platform Independent Models (PIMs) that

describe how business processes are supported by systems seen as functional black boxes

and finally to Platform Specific Models (PSMs) which describe system components as imple-

mented by specific technologies.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 2. Background 48

Table 2.1: MDA viewpoints and models

Concept Viewpoint Model

Computation Independent

Focuses on the environment of
the system, and the require-
ments for the system; the de-
tails of the structure and pro-
cessing of the system are hid-
den or as yet undetermined.

A CIM does not show details of the
structure of systems. A CIM is some-
times called a domain model and
a vocabulary that is familiar to the
practitioners of the domain in ques-
tion is used in its specification.

Platform Independent

Focuses on the operation of
a system while hiding the de-
tails necessary for a particu-
lar platform. A platform inde-
pendent view shows that part
of the complete specification
that does not change fromone
platform to another. A plat-
form independent view may
use a general purpose mod-
eling language, or a language
specific to the area in which
the system will be used.

A PIM exhibits a specified degree of
platform independence so as to be
suitable for use with a number of dif-
ferent platforms of similar type.

Platform Specific

Combines the platform inde-
pendent viewpoint with an ad-
ditional focus on the detail of
the use of a specific platform
by a system.

A PSM combines the specifications in
the PIM with the details that spec-
ify how that system uses a particular
type of platform.

Of particular importance to MDA are the notions of metamodel and model transforma-

tion. Metamodels are defined at the OMG using the Meta-Object Facility (MOF) standard. A

specific standard language for model transformation called QVT has been defined by OMG.

In that way, MOF provides the canvas in order to define meta-models in PIMs and PSMs and

theway to go over between them. MDA is about usingmodeling languages as programming

languages rather than merely as design languages. Programming with modeling languages

can improve the productivity, quality, and longevity outlook [60].

One of the main aims of the MDA [60] is to separate design from architecture. As the

concepts and technologies used to realize designs and architectures have changed at their

own pace, decoupling them allows system developers to choose from the best and most

fitting in both domains. The design addresses the functional requirements while architecture

provides the infrastructure through which NFRs like scalability, reliability and performance

are realized.

1source: https://caminao.wordpress.com/system-engineering/models-perspectives/mde/

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

https://caminao.wordpress.com/system-engineering/models-perspectives/mde/


Chapter 2. Background 49

Figure 2.4: A Straightforward Understanding of MDA 1

Figure 2.5: MDA 2

A central and unique model describes aspects and properties of the system. This model

can be used to capture the design aspects and the architectural aspects, independently of

the concepts and technologies. A PIM in SE amodel of a software system or business system,

that is independent of the specific technological platform used to implement it.

MDA [59] provides an open, vendor-neutral approach to the challenge of interoperabil-

ity, building upon and leveraging the value of OMG’s established modeling standards: UML;

MOF; and Common Warehouse Meta-model (CWM) (depicted in the center of Figure 2.5 and

forming the first layer of MDA architecture). Platform-independent application descriptions

built using these modeling standards can be realized using any major open or proprietary

platform, including CORBA, Java, .NET, and Web-based platforms (forming the second layer).

Another standard, XMLMetadata Interchange (XMI), allows communication between the pro-

2source: http://www.omg.org/mda/mda_audio/mda_rollovers/mda_left_new2.gif

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

source: http://www.omg.org/mda/mda_audio/mda_rollovers/mda_left_new2.gif


Chapter 2. Background 50

prietary platforms. The third layer contains the services that manage events, security, direc-

tories, and transactions. The final layer offers specific frameworks in fields (Finance, Telecom-

munications, Transportation, Space, Medicine, Commerce, Manufacturing, etc).

UML

The UML is a general-purpose modeling language in the field of software engineering,

which is designed to provide a standard way to visualize the design of a system. It was cre-

ated and developed by Grady Booch, Ivar Jacobson and James Rumbaugh at Rational Soft-

ware during 1994–95, with further development led by them through 1996. In 1997, it was

adopted as a standard by the Object Management Group (OMG), and has been managed by

this organization ever since. In 2000, the Unified Modeling Language was also accepted by

the International Organization for Standardization (ISO) as an approved ISO standard. Since

then it has been periodically revised to cover the latest revision of UML. UML defines 13 types

of diagrams which are capable of modeling the static and dynamic aspects of a system.

A profile in the UML provides a generic extension mechanism for customizing UML mod-

els for particular domains and platforms. Extension mechanisms allow refining standard se-

mantics in strictly additivemanner, preventing them from contradicting standard semantics.

Profiles are defined using stereotypes, tag definitions, and constraints which are applied to

specific model elements, like Classes, Attributes, Operations, and Activities. Specifically, a

profile is a collection of such extensions that collectively customize UML for a particular do-

main (e.g., aerospace, healthcare, financial) or platform (J2EE, .NET).

OCL

Object Constraint Language (OCL) [61] is a formal specification language, part of the UML

standard. It is a declarative language for describing rules that apply to UML models. OCL is

a key component of the new OMG standard recommendation for transforming models, the

QVT specification [62]. OCL supplements UML by providing expressions that have neither the

ambiguities of a natural language nor the inherent difficulty of using complex mathematics.

OCL is also a navigation language for graph-based models.

QVT

In the model-driven architecture, QVT is a standard for model transformation defined

by the OMG. The QVT specification [62] has a hybrid declarative/imperative nature, with the

declarative part being split into a two-level architecture:

i. The user-friendly Relations metamodel and language which supports complex object

pattern matching and object template creation

ii. A Coremetamodel and language is defined usingminimal extensions to EMOF andOCL

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 2. Background 51

EMOF stands for Essential MOF and is the part of the MOF 2 specification that is employed

for defining simple metamodels using simple concepts.

A transformation between candidate models is specified as a set of relations that must

hold for the transformation to be successful. Using the relations transformation languagewe

can transform a source model to a target model. To accomplish this, the two models should

conform to MOF

SysML

Figure 2.6: SysML and UML 1

SysML is a general purpose visual modeling language for systems engineering appli-

cations. SysML supports the specification, analysis, design, verification and validation of a

broad range of systems and systems-of-systems. These systemsmay include hardware, soft-

ware, information, processes, personnel, and facilities. It was originally developedby an open

source specification project, and includes an open source license for distribution and use. In

addition, SysML is defined as an extension of a subset of theUnifiedModeling LanguageUML

using UML’s profile mechanism, as presented in Figure 2.6. Moreover, SysML offers systems

engineers several noteworthy improvements over UML, which tends to be software-centric.

These improvements include the following [63]:

• SysML’s semantics are more flexible and expressive. SysML reduces UML’s software-

centric restrictions and adds two new diagram types, requirement and parametric dia-
grams. The former can be used for requirements engineering; the latter can be used for

performance analysis and quantitative analysis.

• SysML is a smaller language that is easier to learn and apply [64]. Since SysML removes

many of UML’s software-centric constructs, the overall languagemeasures smaller both

in diagram types and total constructs.
1source: http://wiki.objetdirect.com/wiki/images/7/7a/RelationsSysML_UML2.jpg

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

http://wiki.objetdirect.com/wiki/images/7/7a/RelationsSysML_UML2.jpg


Chapter 2. Background 52

• SysML allocation tables support common kinds of allocations. Whereas UML provides

only limited support for tabular notations, SysML furnishes flexible allocation tables

that support requirements allocation, functional allocation, and structural allocation.

This capability facilitates automated verification and validation (V&V) and gap analysis.

• SysML model management constructs support models, views, and viewpoints. These

constructs extend UML’s capabilities and are architecturally aligned with IEEE Recom-

mended Practice for Architectural Description of Software Intensive Systems (IEEE-Std-

1471-2000).

SysML reuses seven of UML 2’s fourteen diagrams, and adds two diagrams (requirement

and parametric diagrams) for a total of nine diagram types. SysML also supports allocation

tables, a tabular format that can be dynamically derived from SysML allocation relationships.

A table which compares SysML and UML 2 diagrams is available in the SysML FAQ [65].

The advantages of SysML over UML for systems engineering become obvious if you con-

sider a concrete example, like modeling an automotive system. With SysML you can use Re-

quirement diagrams to efficiently capture functional, performance, and interface require-

ments, whereas with UML you are subject to the limitations of Use Case Diagram to define

high-level functional requirements. Likewise, with SysML you can use Parametric diagrams to

precisely define performance and quantitative constraints like maximum acceleration, min-

imum curb weight, and total air conditioning capacity. On the contrary, UML provides no

straightforward mechanism to capture this sort of essential performance and quantitative

information.

SysML can be rendered as a domain specific modeling language. Domain specific model-

ing is a way of how system design and develop. It uses the domain specific language used to

represent the different parts of system. SysML was evolved to provide simple and effective

constructs to address modeling issues of complex system engineering problems. As SysML

reuse subset of UML, it seems to be a good approach to describe its architecture with re-

spect to UML as shown in Fig2.6, where UML and SysML are represented by two intersecting

circles [64]

The most important SysML constructs are:

• Structural:

– Blocks: the modular unit of structure in SysML that is used to define a type of sys-

tem, system component, or item that flows through the system. The block not only

has structure features like sub-blocks or attributes but also has behavior features

including states, activities and operations. A block may be composed of instances

of other blocks, called Parts.

– Ports are interaction points between a Block or a Part and the environment through

which data and signals are exchanged.Ports are Block properties. They are con-

nected with one another with connectors.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 2. Background 53

– Package, Block Definition, Internal Block Definition, Parametric Diagrams

• Behavioral: Activities support the behavior specification. They take a set of input data
to produce a set of output data. (Activity, Sequence, State Machine, Use Case Diagrams)

• Crosscutting:

– Allocations: Mapping of elements onto the various structures of a model

– Requirements: Properties that must be satisfied.

Requirements and SysML

Requirements in SysML are described in an abstract, qualitative manner, since they are

specified by two properties, id and text, corresponding to a simple description. However,

SysML specification suggests to use the stereotype mechanism to define additional proper-

ties for specific requirement categories. Requirements should be satisfied by entities belong-

ing to other diagrams (SysML satisfy relation). Requirements are interrelated through a large

relationship set, indicating the way they affect each other.

Last but not least, SysML [49] facilitates the description of systems or systems-of-systems

for model-based design, providing different system views serving specific design activities.

Block definition diagrams can be used to depict alternative system design views in multiple

layers of detail (for example the software and hardware architecture of an information sys-

tem). The concept of resource allocation (for example allocating a software component to

a hardware component), crucial for system design, facilitates the establishment of relations

between such views. Since SysML can be extended or restricted to describe a specific system

domain, it may be effectively serve solution synthesis and solution re-adjusted activities, en-

abling the effective modeling and design of complex systems. So it could act as a canvas for

all basic system design activities of Figure 1.2.

2.4 System Evaluation

Focus is given on evaluating systems defined by models. System evaluation is a process

that intents to ensure that a specific system meets the defined objectives of its creation and

operates as expected. Depending on the system, different evaluation criteria can be tested.

Some common criteria are the performance of the system, the security, the availability, the

usability etc. To be able to define such criteria, the concept of requirement is exploited. In this
case, a requirement denotes a condition that should be satisfied by the system under study.

Capturing system requirements is not an easy task, and it has to be accomplished by the

cooperation of many stakeholders. Requirements engineering is one of the most important

phases of the system development process [66].

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 2. Background 54

2.4.1 Requirements Verification

In order to be able to evaluate a system, the defined requirements should be verifiable.

To verify a requirement means to prove that this requirement has been satisfied. Verification

can be done by logical argument, inspection, modeling, simulation, analysis, expert review,

test or demonstration [67]. In our case, which are the IS, the verification is based onmodeling

and simulation. Thismeans that a representation of the system (a systemmodel) will be used

to form a simulationmodel. Model elements satisfy requirements, so the verification process

checks that all defined requirements are verified.

The NFRs are concerned with QoS. Examples of NFRs are response time, availability and

cost. Their verification must be performed using quantitative methods, as for example simu-

lation. Simulation is a widely accepted model-based method to evaluate complex system be-

havior, especially when non-functional requirements should be verified [24]. Since NFRs (for

example performance requirements) are described using both qualitative and quantitative

properties, simulation, as a quantitative method, is very effective to produce the necessary

data for their verification.

2.4.2 Simulation

Simulation is identified as an appropriate technique for the estimation of systemmodel’s

performance [68]. The use of formal methods [69] could play the role for testing quantita-

tively NFRs and especially performance ones if the system model could be expressed in an

abstract mathematical model. These methods rely on performing appropriate mathemati-

cal analysis to contribute to the reliability and robustness of a design. Evaluating resource

allocations policies could rely either on real-time measurements or running simulation on a

system model.

Discrete event simulation (DES) is the process of codifying the behavior of a complex sys-

tem as an ordered sequence of well-defined events [70]. In this context, an event comprises

a specific change in the system’s state at a specific point in time. Discrete event modeling is

the process of depicting the behavior of a complex system as a series of well-defined and

ordered events and works well in virtually any process where there is variability, constrained

or limited resources or complex system interactions.

DEVS is a modular and hierarchical formalism for modeling and analyzing general sys-

tems that can be discrete event systems. The DEVS formalism describes a system as a math-

ematical expression using set theory. It is a theoretically well-defined system formalism [71].

There are two kinds ofmodels in DEVS: atomic and coupledmodels. An atomicmodel depicts

a system as a set of input/output events and internal states along with behavior functions

regarding event consumption/production and internal state transitions. A coupled model

consists of a set of atomic models, information of message connections between the atomic

models, and input/output ports [72].

In [73,74], an integrated framework for utilizing existing SysMLmodels and automatically

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 2. Background 55

producing executable discrete event simulation code is introduced. This approach utilizes

MDA concepts. Although this approach is not simulation-specific, DEVS was employed, due

to the similarities between SysML and DEVS, mainly in system structure description, and the

mature, yet ongoing research on expressing executable DEVS models in a simulator-neutral

manner [74]. DEVSys framework includes:

i. a SysML profile for DEVS, enabling integration of simulation capabilities into SysML

models

ii. a meta-model for DEVS, allowing the utilization of MDA concepts and tools

iii. a transformation of SysML models to DEVS models, using a standard model transfor-

mation language QVT

iv. the generation of DEVS executable code for a DEVS simulation environment with an

extensible markup language Extensible Markup Language (XML) interface

2.5 Summary

This chapter outlined the information that is required in order to define the research

area in which this thesis contributes. Definitions, architectures defined for ISs, model-based

system engineering principles and evaluation techniques were presented. In next chapter,

methodologies formodel-based systemdesign, SysML-based approaches, simulation of SysML

models and efforts on verifying NFRs are discussed.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach





Chapter 3
Related Work

Contents
3.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Rational Unified Process Methodology . . . . . . . . . . . . . . . . . . . . . 57

3.3 SysML profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Simulating SysML Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Requirements in SysML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 SysML Requirements Verification . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 What is missing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1 Outline

As related work we consider the work that has been done in proposedmethodologies for

model-based system design, approaches based on SysML, efforts about simulating SysML

models and in the area of RE and especially on howNFRs are verified. Finally, a comparison to

related work is presented to make clear what is missing in order to provide an integrated en-

vironment for EIS design capable of making performance evaluation through requirements

verification.

3.2 Rational Unified Process Methodology

One related methodology for model-based EIS design is RUP-SE [75], that targets infor-

mation system engineering in RUP and was initially based on UML. During its evolution, it

adopted SysML for model-driven information system design [48]. SysML block entities may

be employed to describe software, hardware or workers within the system or systems un-

der consideration, while SysML diagrams are used to describe different viewpoints. NFRs are

57



Chapter 3. Related Work 58

defined during allocating software to hardware components. In RUP-SE this is accomplished

in the context of Joint Realization Tables (JRTs), which are associating logical and distribution

views, while NFRs are defined as properties (e.g. table columns) of each specific association.

For example, response time requirements can be defined when allocating processes to lo-

calities (distribution of enterprise resources). SysML requirement entity, while used to depict

functional requirements, is not adopted for NFR description. The description of derived NFRs

is also not emphasized. Furthermore, NFR verification is not addressed within the context of

RUP-SE.

Figure 3.1: The RUP SE architecture framework

The RUP-SE system architecture framework is deployed in two dimensions, as shown in

Figure 3.1. The first dimension defines a set of viewpoints that represent different areas of

concern that must be addressed in the system architecture and design. Analytically, Worker
viewpoint expresses roles and responsibilities of system workers regarding the delivery of

system services. Logical viewpoint concerns the logical decomposition of the system into a

coherent set of UML subsystems that collaborate to provide the desired behavior. Physical
viewpoint regards the physical decomposition of the system and specification of physical

components. Information viewpoint focuses on the information stored and processed by the

system. Process viewpoint examines the threads of control that carry out the computation el-

ements. Lastly, Geometric viewpoint denotes the spatial relationship between physical com-

ponents.

In addition to viewpoints, building a system architecture requires levels of specification,

forming the second dimension. As the architecture is developed, it evolves from a general,

abstract specification to a more specific, detailed specification. Consistent with RUP guide-

lines, there are four architectural model levels in RUP-SE, as depicted in Figure 3.1. The level

of abstraction at which each model may be constructed, from the more general -hiding or

encapsulating detail- to the more specific -exposing more detail and explicit design deci-

sions [76]. Moving down model levels adds specificity, not accuracy, to the models. At each

level, you need to be as accurate as possible in specifyingmodel elements, because accuracy

at each level adds to the understanding of the system and discipline of the process. Mov-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 3. Related Work 59

ing down the levels, each view is a more specific decision, resulting in configuration items at

the implementation level. It is important to note that the model elements at one level estab-

lish the requirements at the next level. Each model level (Figure 3.1) realizes requirements

discovered at a higher level. For example:

• The analysis model level shows how requirements specified in the context model level

are met.

• Thedesignmodel level showshow requirements arising from the systemanalysismodel

level are met.

• The implementation model level meets design specifications.

3.3 SysML profiles

In the relative literature, there are many efforts that employ SysML for model-based sys-

temdesign in different domains. Among these, some efforts focus on simulating SysMLmod-

els [77,78], while others focus on the verification process [79,80].

Modeling and Analysis of Real Time and Embedded systems (MARTE) UML profile by OMG

[81] supportsmodel-baseddesignof real-timeandembedded systems.Non-Functional Prop-

erties (NFP) are introduced to specify non-functional quantitative properties (e.g., through-

put, delay, memory usage), associated to specific system design entities. MARTE profile fo-

cuses on performance and scheduling properties of real-time systems. Non-Functional con-

straints are introduced to define conditions the NFP should conform to. The Value Specifica-

tion Language (VSL) is utilized for this purpose formulating semantically well-formed alge-

braic and time expressions. Defining constraintswith VSL enables their automated validation,

verification and traceability, using external tools. Requirement association and derivation

may also be depicted using NFR constraints expressed in VSL.

MARTE profile, which is based in UML, does not support the notion of requirement that

was introduced in SysML. Strategies to apply SysML and MARTE profile, in a complementary

manner, were suggested in [82] in a high-level fashion, indicating the potential to combine

NFP and VSL expressions defined in MARTE, with SysML requirements for the description of

non-functional system characteristics. In any case, NFR verification is left to external tools,

althoughNFR constraints can be useful in identifying the conditions that should be evaluated

for this purpose.

A similar approach for NFR description is adopted in User Requirement Notation (URN)

standard by International Telecommunication Union (ITU) [83], also supported by a UML

profile, where performance characteristics are defined as discrete entities, associated to

telecommunication system elements, and described using qualitative parameters.

Syndeia, (recently known as Systems LIfecycle Management (SLIM)) [84] is a commercial

collaborativemodel-based systems engineering workspace that uses SysML as the front-end

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 3. Related Work 60

for orchestrating system engineering activities from the early stages of systemdevelopment.

The SysML-based systemmodel serves as a unified, conceptual abstraction of the system in-

dependent of the specific design and analysis tools that shall be used in the development

process. It is designed to provide plugins to integrate the system model (in SysML) to a va-

riety of design and analysis tools. Until now, only the integration of SysML and other model

repositories, such as Product Lifecycle Management (PLM) tools is implemented. Integration

with MATLAB/Simulink ,Mathematica and OpenModelica is offered in a varierty of commer-

cial tools, but these tools are used as math solvers and not as a verification method of a

complete SysML model in a specific domain. The work done in the framework of this thesis

shares the vision of Syndeia, but our approach targets to transparency, hiding the analysis

tools, like the simulation environment from the designer, making possible to verify system

requirements of a SysML model, which is enhanced with a domain specific profile.

Knorreck et al. [85],introduced TEmporal Property Expression language (TEPE), a graph-

ical expression language, which is based in SysML parametric diagrams, representing func-

tional andNFP in a formalway,making themamenable to automated verification. Logical and

temporal relations between block attributes and signals. In this work, Automated Verification

of reAl Time softwARe (AVATAR) methodology is used to capture requirements, design the

system using SysML blocks and behavior described with state machines. Finally formal verifi-

cation is done. A toolkit, called TTool supports these profiles andmethodologies. TTool is inter-
faced to verification tools that implement reachability analysis and model-checking. DesIgn

sPace exLoration based on fOrmal Description teChniques, Uml and SystemC (DIPLODOCUS),

a simulation engine, is integrated in TTool, which features the animation and interactive simu-

lation of UML diagrams. This effort is applied in real-time systems. AVATAR improves SysML’s

capabilities to express time-constraint systems. TTool uses UPPAAL for formal verification.

IFx toolkit3 [86] which provides simulation and timed-automata based model-checking. OCL

is used for well-formed rules. IFx toolkit3 also provides simulation capabilities within TTool
framework.

3.4 Simulating SysML Models

Modelica is a standardized general purpose systems modeling language for analyzing

the continuous and discrete time dynamics of complex systems based on solving differential

algebraic equations. SysML-Modelica Transformation, enables and specifies a standardized

bi-directional transformation between the two modeling languages that will support imple-

mentations to efficiently and automatically transfer the modeling information transfer be-

tween SysML and Modelicamodels without ambiguity [87].

The SysML4Modelica profile endorsed by OMG [87] enables the transformation of SysML

models to executable Modelica simulation code. To embed simulation capabilities within

SysML, ModelicaML profile is used [88]. QVT is used for the transformation of SysML models

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 3. Related Work 61

defined using ModelicaML profile to executable Modelica models. A corresponding MOF 2.0

meta-model for Modelica is defined. The overall approach is fully compatible with model-

driven engineering concepts, making it suitable of efficient SoS engineering.

In [89], manufacturing line system models are defined in SysML and transformed using

ATLAS Transformation Language (ATL) to be simulated using ARENA simulation software.With

the definition of a SysML profile, Arena-specific properties modeling manufacturing systems

are incorporated within SysML block definition and activity diagrams [90]. Corresponding

ARENA simulation libraries are incorporated with ARENA environment, and properly instan-

tiated to construct the simulation model executed within ARENA tool. As far as simulation is

concerned only system structure is defined in SysML diagrams. System simulation behavior

is defined within ARENAmanufacturing system libraries. SysML-to-ARENAmodel transforma-

tion is performed using ATL based on model-based software engineering principles, while a

correspondingMOF-basedmeta-model for ARENAmanufacturing system libraries is defined.

The exploitation of simulation output towards system model validation is not discussed.

There are many tools and methods suggested to simulate SysML models and integrate

SysMLwith different simulation languages either for continuous or discrete event simulation

[91–93].

3.5 Requirements in SysML

Requirements in SysML are described, as class stereotypes, in an abstract, qualitative

manner, since they are specified by two properties, id and text, corresponding to a simple

description. Requirements can be grouped in packages based on common characteristics,

as their category (for example functional or non-functional) or the activities they are related

to (for example software or hardware requirements) forming a multi-level hierarchy.

Regarding requirement definition, SysMLprovides a discrete diagram to describe require-

ments and the relations between them, while a set of predefined relations are supported.

Furthermore, requirements are explicitly related to system components, which should satisfy

them, indicating the functionality they should support or the conditions they should operate

in. Moreover, SysML includes a variety of entities to describe requirements and their relation

to system components in multiple layers of detail.

Furthermore, SysML provides the means for requirement description and the way to de-

fine how the requirements are interrelated, for example which requirement is derived but

not how this derivation happens when dealing with quantitative properties of requirements.

In [94] an extension on SysML requirements diagram is presented in order to classify and

group requirements, but it is too general and does not deal with quantitative requirements

and their interrelations with other quantitative ones.

In likemanner, SysML includes specific relationships to associate requirementswith other

requirements (indicating the way they affect each other) or other model elements. The con-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 3. Related Work 62

Figure 3.2: SysML Requirement representation

tainment relationship, defined between requirements, indicates that the composite require-

ment is realized if and only if all the contained ones are realized. In this way, an abstract

requirement may be composed of many specific ones, or a complex requirement may be

described in a more detailed fashion. In the case of system design, the notion of composite

requirements is essential to indicate the way a requirement defined for the whole system

may be described in terms of the detailed requirements defined for system components.

The deriveReqt relationship indicates that a specific requirement is derived by others. Since

relationships do not have properties, the way derived requirements are specified is not de-

picted.

Requirements should be satisfied bymodel elements belonging to other diagrams (SysML
satisfy relationship). For this purpose, requirements may participate into other diagrams,

enabling the exploration of the relationship between requirements and design decisions.

Additionally, SysML provides the means to describe a set of tests, which should be per-

formed to verify whether a requirement is satisfied by system components. To depict such

an activity, the test case entity, included in Requirement diagrams, is introduced. A test case

is related to one or a set of requirements for their verification, while it is described through

a behavior diagram (for example activity or state machine diagram) corresponding to the

activity (as a set of tests) performed to verify related requirements. The way requirements

are handled in SysML is summarized in Figure 3.2.

Moreover, SysML defines constraint blocks, which provide a mechanism for integrating

engineering analysis such as performance and reliability models with other SysML models.

Constraint blocks can be used to specify a network of constraints that represent mathemat-

ical expressions.

3.6 SysML Requirements Verification

In [79], SysML extensions are proposed for information system design, which are imple-

mented within the context of a custom tool called CASSI. CASSI targets information system

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 3. Related Work 63

integration, while three different design views are supported, depicted using SysML external

and internal block diagrams. The allocation of system components between different views is

also supported. SysML requirement entity is not used to associate requirements to system el-

ements. Though, information system configurations defined using CASSI are evaluated using

simulation to verify performance and availability requirements. This is accomplished using

an external simulator. The behavior of system components is described within CASSI using

sequence diagrams, transformed to simulationmodel by an external transformation tool. Al-

though, NFRs can be verified, this is performed by the system designer using external tools.

Evaluation results are not integrated within the SysML system model and NFR verification is

not performed using it.

In [95] focus is given on using the SysML4Modelica profile for embedded systems engi-

neering. In the proposed profile, SysML requirement entity is extended with testable charac-

teristics. Testable stereotype may be used for quantitative NFR definition. Testable require-

ments are associated to conditions under which the requirement is verified with the use of

experiments or test cases. Verification conditions are defined as part of a test case, which
in turn may be simulated using Modelica simulation language in external simulators to en-

sure that a design alternative satisfies related requirements [80]. Requirement verification

is performed in an external modelica tool (MathModelica) through visual diagrams created

during simulation. The proposed approach succeeds in converting SysML system models to

executable simulation models and enable visual requirement verification. One limitation of

this framework is that test cases and requirement verification process are implicitly handled

by a domain-specific tool, in this case Virtual Verification of Designs against Requirements

(vVDR) [96].

3.7 What is missing?

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter
3.

Related
W
ork

64

Table 3.1: A Comparative Overview of SysML Simulation Approaches

Profile System Domain Simulator Profile Characteristics Transformation language MDA conformance Code generation SysML model validation/ req. verification

MARTE Profile Real-Time Embedded Systems Non-Specified
Focus on performance and
time requirement description
and verification utilizing VSL

Non Specified Medium Non specified

Requirement verification performed
within SysML models (MDEReqTrace
integrates requirement verification
data from external tools within
SysML)

CASSI Tool Information Systems Petri-Nets

Focus on describing perfor-
mance requirements
System behavior is described
using Sequence diagrams

Non Specified Low Semi automated
Requirement verification performed
by an custom external tool

TTool Toolkit Real-Time Embedded Systems
Y-Chart

Timed-Automata

Focus on requirement descrip-
tion using TEPE
System behavior is described
using State Machine diagrams

Non Specified Medium Fully automated
Requirement verification performed
by external tools

SysML to Arena Tools Manufacturing Line Systems Arena

Focus on the description of
the specific domain to incorpo-
rate simulation-related char-
acteristics

ATL High Fully automated Not Specified

SysML4 Modelica General (emphasis on real-time systems) Modelica

Focus on describing perfor-
mance requirements
System behavior under ex-
ploitation is defined as Test
Cases using Modelica ML

QVT High Fully automated
Requirement verification performed
by external tools

DEVSys Framework General (case study: Information Systems) DEVS

Focus on embedding simula-
tion output within SysMLmod-
els
System behavior is described
using State Machine, Paramet-
ric and Activity diagrams

QVT High Fully automated
Requirement verification performed
within SysML models

Anargyros
T.Tsadim

as
M
odel-Based

Enterprise
Inform

ation
System

D
esign:A

SysM
L-based

approach



Chapter 3. Related Work 65

As already stated, to perform the requirements verification process, the system model

should be able to provide a simulation model/code in an automated manner in order to

measure the system’s performance. Having in mind existing approaches, it is evident that

there is a strong interest in simulating SysML models in an automated fashion to serve

SoS engineering and especially SoS design. Since different system domains should be effec-

tively supported, it is expected that different simulationmethods and tools will be employed.

Though, it is imperative that a standardized methodology/framework, based on OMG stan-

dards, should be proposed to guide experts to develop tools targeting specific domains and

simulation environments. Most recent approaches seam to follow the same basic steps:

i. Definition of the simulation/domain specific profiles. In this process, efforts should con-

centrate on defining simulator-specific profiles thatmay be combinedwith domain spe-

cific profiles. Furthermore, the exploration of a simulator-agnostic profile is suggested

for discrete-event and continuous simulators respectively, taking into account that ex-

isting approaches utilize the same SysML diagrams.

ii. Transformation of SysML to simulation models in a standardized fashion, utilizing lan-

guages as QVT and ATL. Simulator-specific profiles should be accompanied by corre-

sponding MOF-based meta-models for the corresponding simulators. The definition of

suchmeta-models openly availablemay also promote simulator interoperability. Corre-

sponding initiatives, as those employed by Modelica and DEVS community are already

successful.

iii. Utilization of the simulation output to validate SysML models and verify correspond-

ing requirements defined in such models. In order to simplify requirement verifica-

tion process, we endorse the suggestion of Syndeia to conduct requirement verification

within SysML modeling tools, independently of the simulation methods and tools. The

incorporation of simulation results within the SysMLmodel should be facilitated for this

purpose. Such enhancements simplify the evaluation process, allowing the system de-

signer to focus on the examination of the unverified requirements and, consequently,

the detection of the necessary solution re-adjustments.

As derived from the examination of existing approaches, depicted in Table 3.1, there are

two key issues in requirements verification during model-based system design that have not

been fully addressed:

i. the estimation of system models behavior in a generic and -at the same time- auto-

mated manner, and

ii. the designation of the requirements that have not been verified in the original system

model.

Regarding the estimation of system models behavior, SysML provides a set of diagrams

for describing a single system’s behavior (use case, activity, sequence, state machine). How-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 3. Related Work 66

ever, each diagram focuses on a different aspect of the system’s behavior and the syntax of

SysML does not enforce a strict combination of these aspects towards a unified executable

behavioral model. On the other hand, simulation profiles for SysML focus on the semantics

and structures of specific simulation frameworks, leading to solutions that cannot be applied

in general. A systematic approach to assess these issues has not been proposed or adopted

yet.

To this end, the details of existing simulation profiles for SysML should be examined

thoroughly and processed to derive common concerns and structures. The latter should be

further explored against the inherent concepts and attributes of the behavioral SysML dia-

grams, to conclude to a set of extensions and restrictions for SysML (i.e. a profile) that would

enable the general, but conceptually precise and machine-usable definition of the behavior

of systems.

Regarding requirements specification, simulation has been identified as an appropriate

technique for the estimation of systemmodels’ performance. Hence, the obtained simulation

results should be incorporated within the original system model and a comparison against

the predefined, performance-related, requirements should be performed within the SysML

modeling environment. However,many approaches perform requirements verification using

external tools, due to acquaintance with them and also due to the lack of quantified require-

ments handling in the SysML requirements diagram. This thesis introduces the concept of the

incorporation of the simulation results into the design environment. Next chapters describe

how we reclaim this concept.

In a similar manner as above, approaches proposing solutions for quantified require-

ments specifications should be examined in detail and in regardwith the concepts of different

SysML modeling elements (e.g. blocks, states, ports, actions). This would enable the defini-

tion of a general profile, capable of defining precise and quantified requirements. Therefore,

generic and automated requirements verification within the SysML model could be enabled,

once system performance estimation has been added in the model. The proposal of a gen-

eral profile is out of the scope of this thesis, as we focus on EIS. The interested reader could

refer to [97], where a comprehensive understanding of the similarities and differences of ex-

isting approaches is presented and identifies current challenges in fully automating SysML

models simulation process.

To conclude, in order to enhance the design capabilities of a system architect, require-

ment verification should be conducted within SysML modeling environment independently

of themethods and tools adopted to evaluate alternative system designs. Furthermore, eval-

uation results should be incorporated within the SysML system model to be utilized by the

system designer in alternative design decisions.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 3. Related Work 67

3.8 Summary

This chapter presented the related work that has been conducted in the area of model-

based system design, and specifically the popular SysML profiles, efforts about simulating

SysML models and approaches utilizing verification of requirements for system validation

were discussed. Additionally, a comparison of the related work revealed the research chal-

lenges that this thesis tries to resolve. Next chapter presents our proposal for amodel-based

approach for architecture design of EIS. Related work that formed the basis for our approach

is also discussed.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach





Chapter 4
A MBSD Approach for EIS Architecture

Contents
4.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Using Zachman Framework as a canvas for EIS engineering . . . . . . . . 70

4.2.1 Analysing Zachman matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2 NFR handling in Zachman matrix . . . . . . . . . . . . . . . . . . . . . . 73

4.2.3 Utilizing Zachman Framework in EIS architecture design . . . . . . . . 73

4.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 A conceptual model for Information System Architecture Design . . . 76

4.3.2 Supporting the proposed approach . . . . . . . . . . . . . . . . . . . . . 80

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1 Outline

This chapter presents an approach to explore EIS architecture design. The proposed ap-

proach is based on the concepts of MBSE as defined by INCOSE. There are numerous EIS en-

gineeringmethodologies in the literature, each covering different aspects. However, in order

to integrate them in an Enterprise Architecture, model-based engineering can be adopted.

In such a case, a central system model is defined supporting all engineering activities. Zach-

man’s matrix may be used as a basis for constructing such a model. Based on this assump-

tion, we propose a systematic approach for the support of model-based EIS engineering

process using Zachman matrix as EIS central model. Our approach is based on these frame-

works, showing the concepts of views and viewpoints we adopted and the stakeholders iden-

tified throughout the design process. To support the proposed approach, a SysML profile is

defined. The profile overview and the defined views are analytically presented in the follow-

ing sections.

69



Chapter 4. A MBSD Approach for EIS Architecture 70

4.2 Using Zachman Framework as a canvas for EIS engineering

Evidently, system architecture design is a complex process involving different stakehold-

ers and concerns [98, 99]. The identification of functional requirements, e.g. software and

hardware components and their capabilities [100], are not enough to ensure efficient sys-

tem operation. Since, as mentioned, NFRs [46] are critical during architecture design [101],

thus they should be emphasized. Visualization helps the involved stakeholders to understand

and utilize the architecture design decisions [102]. Proposed architecture scenarios should

be evaluated [45] and properly adjusted, to achieve an acceptable solution. Discrete architec-

ture design tasks and corresponding stakeholders are served by independent, interrelated

views. Each view focuses on a specific design concern and is defined by a corresponding

system sub-model, which is part of the overall information system model serving EIS archi-

tecture design.

4.2.1 Analysing Zachman matrix

In the following, views and corresponding viewpoints, stakeholders and concerns are de-

fined based on the principles of Institute of Electrical and Electronics Engineers (IEEE) 42010

standard [99] and the conceptual model for model-based enterprise information system en-

gineering using the Zachman framework [4]. In Zachman framework, the model focuses on

six different perspectives serving discrete primary engineering activities according to Zach-

man matrix row rationale and six different aspects according to Zachman matrix column ra-

tionale (Figure 4.1). Thus, EIS engineering framework consists of 36 EIS views, defined accord-

ing to the combination of perspectives and aspects. For each EIS view, a viewpoint is defined

serving the corresponding stakeholder’s perspective on a specific aspect. Each aspect (for ex-

ample function) is treated independently within the limits of the specific engineering activity

(for example design) based on a corresponding EIS sub-model, while specific methodologies

and tools may be applied within EIS viewpoint corresponding to each Zachman matrix cell.

For example, RUP methodology [103, 104] could be employed for application design within

System Function cell. In a similar fashion, system architecture corresponds to the Structure
aspect of Zachman framework, thus, system architecture design should be treated indepen-

dently within System Network cell.

The Zachman framework itself may provide some guidelines on the dependencies be-

tween discrete design activities. In this case, it is evident that there is a need for the ex-

change of information between software design methodologies, corresponding to System
Function cell, and software architecture design methodologies, corresponding to System Net-
work cell. The exchange of information and the transformation between EIS models serving

different activities and aspectsmay be feasible using the concept of external entities, defined

within each EIS model. External entities indicate the required information coming or passed

to other methodologies and facilitate EIS models integration. Inter-model consistency is ac-

complished by creating mappings between external entities of respective models. The cor-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 4. A MBSD Approach for EIS Architecture 71

Figure 4.1: The Zachman framework matrix

responding stakeholder is responsible for describing internal entities of each discrete EIS

model. Internal and external entities are adopted in order to exchange data between design

views (described in chapter 5) and Evaluation view (described in chapter 6), in our approach.

Since Zachman framework provides a holisticmodel of enterprise information infrastructure,

we argue that eachmatrix rowmay servemodel-based implementation of a discrete primary

engineering activity, as defined in [105] and proposed by INCOSE [98], addressing the needs

of corresponding stakeholders (see Figure 4.2).

Here, a brief discussion about the Zachman framework rows and how they relate to EIS

is attempted. The first two rows, namely Scope, denoting business purpose and strategy,

and Business Model (Figure 4.1), describing enterprise functionality, are intensively business-

oriented and are expressed in business oriented vocabularies [32]. They may serve two dis-

crete primary EIS engineering activities, namelyDefining Enterprise Objectives and Establishing
Enterprise Functionality respectively. Definition of Enterprise Objectives may comprise to spe-

cific activities, such as Policy Management, Enterprise Environment Management, Investment
and Risk Management, and others characterized in IEEE 15288 as enterprise processes [105].

Establishing enterprise functionality focuses on describing the provided services and cor-

responding requirements imposed by different stakeholders. The third row, namely System
Model, which describes how the system will satisfy the requirements yielding from business

objectives, may serve EIS Design (both at software and hardware level). EIS design facilitates

requirements analysis and architecture design of both applications/data and EIS architec-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 4. A MBSD Approach for EIS Architecture 72

Figure 4.2: MB-EISE primary activities based on the Zachman framework

ture. The next two rows, namely Builder Model, representing how the system is implemented

andOut-of-Context including implementation-specific details, may serve Implementation and
Detailed Implementation respectively [98]. Finally, the last row, Operational, which is the func-

tioning system,may serve Support andMaintenance activities, also included in EIS engineering
cycle.

All primary engineering activities, as described in Figure 4.2, are interrelated and recur-

sively executed, since EIS engineering is an iterative process targeting the continuous im-

provement of EIS [98]. Model-driven implementation of these primary engineering activities

based on Zachman matrix rows, accommodates the concurrent execution of them based on

the EIS sub-model of the corresponding row, provided that they may obtain the information

needed by other Zachman matrix rows. Such an approach also facilitates the progressive

engineering of EIS in different levels of detail, performed in cumulative cycles. Rules gov-

erning the Zachman framework, as defined in [1], are applied during model-based EIS engi-

neering as well. EIS sub-models corresponding to each row are interrelated. The respective

requirements are progressively refined, starting from enterprise objectives to the functional

EIS supporting it.

Each primary engineering activity should be explored taken into account related require-

ments identified by the respective stakeholders. A requirement denotes a capability or condi-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 4. A MBSD Approach for EIS Architecture 73

tion thatmust (or should) be satisfied andmay specify a function that a systemmust perform,

or a condition that a systemmust achieve [100]. Thus, requirements are divided into twomain

categories, i.e. functional and non-functional [40], [47]. In other words, the Zachman matrix

consists of six different rows, identifying EIS different aspects, each of which reveals different

requirements related to the specific aspect.

We argue that for each primary engineering activity, these six different EIS viewpoints

should be defined, each one related to a different EIS aspect. Data aspect describes the en-

tities involved, while Function viewpoint shows how the entities are processed resulting to

application implementation. Network viewpoint indicates where the entities are located re-

sulting to EIS architecture. People viewpoint indicates users related aspects, while Time view-
point reveals the way identified entities are synchronized. All these viewpoints are used to

explore functional requirements, which are related to the functionality of the system.

4.2.2 NFR handling in Zachman matrix

Obviously, NFR is a broadly used term. Unfortunately, there is no consensus about the

nature of NFRs since various classifications of them exist in the literature [40] [47]. During

this thesis, we follow the common concept that the basic aspects of NFR can be depicted in

three sub-categories, namely performance, constraint and specific quality [46]. TheMotivation
row of Zachman matrix relates to the reasons that lead to the specific functionality of an

EIS. We argue, thus, that not-functional requirements should be handled by a corresponding

viewpoint, as also suggested in [106].

4.2.3 Utilizing Zachman Framework in EIS architecture design

The conceptual model for model-based EIS engineering using Zachmanmatrix according

to ANSI/IEEE 1471 standard [37] is depicted in Figure 4.3. The complete software develop-

ment process is out of the scope of this research, where focus is on the architecture design.

Having this in mind, we are able to frame the latter into Zachman matrix. The activity of

designing system architecture is performed based on the EIS view corresponding to System
Network cell, which facilitates:

i. the definition of EIS architecture (e.g. a system-oriented view of distributed applica-

tions),

ii. the definition of system performance and availability requirements,

iii. the definition of system access points,

iv. the description of platform-independent distributed infrastructure (e.g. network archi-

tecture and hardware configuration) and

v. the association of software components to network nodes (resource allocation), in or-

der to ensure performance and availability requirements.

Themapping between the EIS architecture design and Zachman framework are based on the

following assumptions:

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 4. A MBSD Approach for EIS Architecture 74

Figure 4.3: MB-EISE conceptual model

Figure 4.4: Basic engineering tasks performed based on each cell-related view

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 4. A MBSD Approach for EIS Architecture 75

• The basic tasks identified during the EIS architecture design activity (depicted in Figure

1.2) are in alignment with basic engineering tasks performed for each Zachman matrix

cell, as depicted in Figure 4.4

• The Collect Requirements task is accomplished through discrete stages i.e. Functional-
ity Definition and Requirements Definition within System Network cell. The former depicts

functional requirements extracted from People, Data and Function cells (see Figure 4.1)

of the system model row. The latter concerns non functional requirements related to

EIS architecture design, extracted from theMotivation cell of SystemModel row. Require-
ments included in this cell are either propagated from the upper layers of Zachman

framework or specifically defined for system design and may relate to issues not rele-

vant to EIS architecture design. Only architecture design related requirements are prop-

agated within EIS System Network view.

• Solution is synthesized through two interactive steps i.e. Topology Definition and Net-
work Infrastructure Definition [107, 108]. Topology Definition facilitates resource alloca-

tion and replication. This task is performed taken into account the definition of system

access points in terms of hierarchically related locations performed in upper Network
cells (Business row Network cell in particular). The term site is used to characterize any

location (i.e. a building, an office, etc.) It resembles the term locality from RUP-SE. As

such, a site is a composite entity which can be further analyzed into sub-sites, forming

thus a hierarchical structure.

• Network Infrastructure Definition refers to the aggregate network, described through a

hierarchical structure comprising Local Area Networks (LANs). Devices, such as servers

and workstations are associated with LANs at the lowest level of the hierarchy. Net-

work nodes are either workstations allocated to users or computers running server

processes. Topology and Network Infrastructure Definition tasks are interrelated. Both

should be performed in the same hierarchical levels of detail. At the lowest level, net-

work nodes should be related to processes/data replicas. In essence, interaction be-

tween these two tasks represents an interdependence in terms of derived require-

ments. Requirements derived during Topology Definition affect Network Infrastructure
Definition and vice versa. Therefore, Requirements Definition is performed in parallel

with Topology and Network Infrastructure Definition as well. Developing requirements

and architectural artifacts in parallel has already been addressed in the literature [109].

• After the solution deployment, validation is performed using simulation. Solution evalu-
ationwill determine whether the overall process will end in case the solution is satisfied

or readjustments will be performed through the recurrence of the previous steps.

• The Requirements Collection and Solution Synthesis tasks are described through adiscrete
view. As such, four corresponding views are defined, namely:

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 4. A MBSD Approach for EIS Architecture 76

Figure 4.5: EIS Sub-Views corresponding to the System Network cell

i. Functional view
ii. Topology view
iii. Network Infrastructure view
iv. Requirements view

These views constitute sub-views of the System Network view of Zachman framework.

Solution validation and evaluation are performed using information included in all of

them, used to build a discrete view, called Evaluation view.

• Interrelations between corresponding tasks are reflected upon the introduced views.

These interrelations along with the dependencies between the aforementioned views

and the related models of the corresponding Zachman cells are depicted in Figure 4.5.

Dependencies with external Zachman cells are bidirectional. Functional view, obviously,
is influenced by and influences People,Data and Function cells of SystemModel row, while
Requirements view interacts with SystemMotivation view. Topology view is bidirectionally

related to Business Network cell, while Network Infrastructure view to Technology Network
cell. System Network views are illustrated in Figure 4.5 in a blackbox manner. A white-

box perspective of them will unfold through the description provided in the following

sections, further elucidating view interdependencies.

4.3 Proposed Approach

4.3.1 A conceptual model for Information System Architecture Design

EIS architecture design consists of the definition andoptimization of a systemarchitecture

comprised of software and hardware components, ensuring that all software components

are identified, properly allocated and that hardware components are properly combined to

support the efficient operation of software components, providing the desired performance.

A conceptualmodel formodel-based EIS architecture design is presented in Figure 4.6, where

the model is based on the principles of IEEE 42010 [2] standard. Figure 4.6 also follows the

concept of using the Zachmanmatrix to progressively construct a common systemmodel for

the integration of all EIS engineering issues (described in subsection 4.2.3) and correspond-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 4. A MBSD Approach for EIS Architecture 77

NI : Network Infrastructure
NFR: Non Functional Requirements

Enterprise Architecture

EIS Architecture

Design View

System Model Perspective

Software Architect

Network Architect

EIS Architecture Design

EIS Profile
(based on SysML)

EIS Specific Model

Functional 
Viewpoint

NFR
Viewpoint

NI 
Viewpoint

Evaluation
Viewpoint

Topology
Viewpoint

Concern

Enterprise

Central
EIS Model

Enterprise
Stakeholder

EIS Engineering
Rationale

EIS Engineering
Framework

Hardware Architect

EIS Viewpoint

EIS Architecture
Design Viewpoint

System Architect EIS Architecture 
Design Model

NI 
Model

NFR
Model

Functional 
Model

Topology
Model

Network Aspect

Evaluation
Model

Topology
 View

NI 
View

Evaluation 
View

Functional 
View

NFR 
View

Logical Design

Evaluation
Diagram

Topology
View Diagram

Functional
View Diagram

NFR
Diagram

NI
Diagram

EIS View

Structure 
(where)

Designer

defined

describing

described by

defined

is concerned

describes

1..*

represented

represented

represented

represented

represented

defined 1

1

identifies

has

1..*

1..*

is framed

describes

describes

describes

describes

describes

is framed

1..*

follows
1..*

is served by

relates to

is served by

is concerned

1..*

relates to

relates to

relates to

relates to

relates to

follows

follows

represented

described by

Figure 4.6: A Conceptual Model for Information System Architecture Design

ing methodologies in order to promote interoperability [4].

EIS architecture design view is defined as an EIS view, which is part of the System Model,
e.g. the perspective serving the designer as a stakeholder, and focuses on Network aspect

emphasizing Structure rational. To promote interoperability and integration, it is crucial to

provide a typical definition of the meta-model describing each EIS view. Thus a correspond-

ing EIS architecture designmodel is defined for EIS architecture design view. Thismodel is a part

of the overall system model (indicated in the Figure 4.6 as Central EIS Model) and is further

decomposed to sub-models corresponding to any sub-views defined for EIS architecture de-

sign. For each EIS view, a corresponding representationmodel should be defined, along with

the necessary mappings to EIS view sub-model. A SysML profile, named EIS profile, is defined
as a representation model for EIS architecture design view and is described analytically in

chapters 5 and 6.

As already stated, for each EIS view, a viewpoint is defined serving the corresponding

stakeholder’s perspective on a specific concern [110]. Thus EIS architecture design viewpoint

describes EIS architecture design view serving system architect as a stakeholder, concerned

with EIS architecture design. Since EIS architecture design is a complex concept, it should be

decomposed intomore specific concerns dealt with by experts with specific experience, char-

acterized as system architects. Thus, the system architect as a stakeholder should be conceived
more as role than a specific person responsible for system architecture design.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 4. A MBSD Approach for EIS Architecture 78

The term architect implies that the specific role will be involved in the description of the

structure of the information system in some way, though one expert may obtain all these

roles, or, more frequently, these roles may be played by experts, for example a software

engineer, which are responsible for other tasks as well. As EIS architecture design is decom-

posed into more specific concerns, corresponding viewpoints forming the overall EIS archi-

tecture design viewpoint are explored. In practice, many different experts may contribute

in EIS architecture design tasks, as software architects, network architects and hardware archi-
tects. Software architect’s main responsibilities are:

• to limit the choices available during development,

• recognize potential reuse in the organization or in the application,

• subdivide a complex application,

• understand the interactions and dependencies among components and

• communicate these concepts to developers

Network architect is responsible for the design of the distributed architecture of the organi-

zation’s network. Hardware architect is responsible for interfacing with enterprise architect or
client stakeholders, to determine their needs to be realized in hardware. He/she is generating

the highest level of hardware requirements.

Views supporting system design activity tasks

As shown above, the basic tasks identified during any system design activity are Require-
ment definition, Solution synthesis, Solution evaluation and Solution re-adjustment [24] (shown
in Figure 4.4). Based on predefined requirements, the system designer build a solution on

system synthesis. In order to decide if a solution is acceptable, evaluation is used. Until an

accepted solution is reached, re-adjustments are performed.

In the case of EIS architecture design, solution synthesis encompasses Functionality, Topol-
ogy and Network Infrastructure definitions [4]. Functionality definition focuses on software ar-
chitecture design, Topology definition on software allocation process and Network Infrastruc-
ture definition on hardware architecture design. For each of these concerns, a corresponding
viewpoint is defined to explore functional requirements and corresponding design decisions.

The software architect stakeholder concernedwith software architecture design and software
allocation is served by Functional and Topology viewpoints to contribute in the construction

of EIS architecture. In a similar fashion, hardware architect is contributing to hardware con-

figuration using Network Infrastructure view and the network architect builds the network ar-
chitecture based on Topology and Network Infrastructure viewpoints. In case more than one

stakeholders are served by a specific viewpoint, this is an indication that their cooperation is

needed.

NFR definition should also be independently treated, since the conditions, under which

the system should operate, play a significant role in design decisions. For each of these defi-

nitions, a corresponding NFR viewpoint has been defined. In this manner, any of the system

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 4. A MBSD Approach for EIS Architecture 79

architects (for example software architect) is enabled to realize the affect of specific design

decisions (for example the allocation of software to hardware resource) to NFRs imposed to

them (for example performance) and vise-versa. Using the corresponding NFR view, the sys-

tem designer is enabled to explore non-functional requirements relationships, while, using

other views, the relationship between non-functional requirements and design decisions is

explored [8]. Our approach supports the progressive and independent execution of EIS ar-

chitecture composition tasks in parallel, while the impact of design decisions is expressed in

terms of NFRs.

Furthermore, EIS architecture evaluation should be performed. In order to evaluate the

designed solution, NFRs definition is used, focusing on system performance and availability

requirements essential for EIS architecture design. Then, solution evaluation is performed

and evaluation results are used to check whether NFRs are satisfied. If not, then EIS architec-

ture readjustment is performed until an acceptable EIS architecture synthesis is identified.

Tomanage the evaluation process andmaintain evaluation results a discrete Evaluation view-
point is defined.

All the aforementioned viewpoints related to EIS architecture design, the corresponding

concerns and stakeholders are summarized in Table 4.1. They are characterized as internal

viewpoints and are typed using italics. Each of these viewpoints is associated with external
viewpoints, not concerned with EIS Architecture design, but explicitly or implicitly related to

it. Thus information exchange or synchronization between corresponding views of internal

and external viewpoints is necessary.

Functional viewpoint serves software architect in order to facilitate him/her to design the

software architecture. External viewpoints that are related to Functional viewpoint include:

i. Application Design viewpoint which serves software designer, which is responsible for

the design of a specific application of the organization, and is the person that will com-

municate his/her ideas with developers.

ii. Logical Data Model viewpoint which serves information designer to design the data

model and

iii. Human Interface Design viewpoint which serves information system analyst to design

the human interfaces.

Topology viewpoint serves network and software architects in order to do the resource

allocation. Topology viewpoint is related to Business Offices viewpoint, in order to serve enter-
prise architect to define the access points of the system. Enterprise architect is responsible for
having a holistic view of the organization’s strategy, processes, information and information

technology assets. His/her role is to take this knowledge and ensure that the business and

IT are in alignment.

Network Infrastructure viewpoint serves network and hardware architects to design the net-
work infrastructure architecture. They co-operate with solutions architects who compose the

solution based on available technology, which is defined on EIS Technology Architecture view-
point. A solutions architect is a very experienced architect with cross-domain, cross-functional

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 4. A MBSD Approach for EIS Architecture 80

and cross-industry expertise. He/she outlines solution architecture descriptions (mainly in

Functional analysis), then monitors and governs the implementation.

NFR viewpoint serves network, hardware and software architects to define NFRs of EIS ar-

chitecture. They could co-operate with business analyst, which is served by Design Require-
ments viewpoint to define the design of the requirements. Business analyst assess business
models and their integration with technology.

Evaluation viewpoint serves network, software and hardware architects to evaluate the so-
lution that has been composed using all other EIS architecture design viewpoints. They de-

cide if the solution is accepted or not, so as re-adjustments to be done.

Table 4.1: EIS Viewpoints

Internal Viewpoints External Viewpoints Concern Stakeholder

Functional Software Architecture Design Software Architect
Logical Data Model Data Model Design Information Designer
Application Design Software Design Software Designer
Human Interface Design Human Interface Design IS Analyst

Topology Resource Allocation Network Architect
Software Architect

Business Offices Access Points Definition Enterprise Architect

Network Infrastructure Net. Infra. Architecture Design Network Architect
Hardware Architect

EIS Technology Architecture Solution Composition Solutions Architect
(based on available technol-
ogy)

NFR EIS Architecture NFR Defini-
tion

Network Architect

Hardware Architect
Software Architect

Design Requirements Design Requirements Defini-
tion

Business Analyst

Evaluation Solution Evaluation Network Architect
Software Architect
Hardware Architect

4.3.2 Supporting the proposed approach

In EIS architecture design, each stakeholder would like to interact with his specific view,

showing him the appropriate entities to facilitate him in order to make design decisions. To

have a consistent model, an appropriate modeling language should be selected.

As previously stated, SysML supports the specification, analysis, design, verification and

validation of a broad range of systems and SoS [64]. It also supports the concepts of require-

ment definition, requirements management, systems composition and communication and

resource allocation, which are vital to depict EIS architecture design activities [64]. Moreover,

SysML as part of OMGalongwithQVT andOCL could be used to define constraints andmodel

transformations, so as to be able to verify a system model using formal validation methods,

such as simulation. A large number of modeling tools, (open source, like Eclipse [111], Pa-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 4. A MBSD Approach for EIS Architecture 81

pyrus UML [112] andModelio [113] and enterprise, like Magicdraw [3], Visual Paradigm [114]

and Enterprise Architect [115]) support SysML. Moreover, SysML supports many kinds of di-

agrams like Block and Internal Block Definition diagrams, to describe complex systems (SoS)

and Requirements diagram to handle requirements and their relationships.

Moreover, in a survey aboutwhat industry needs fromarchitectural languages [116], UML

is by far themost preferredmodeling language for architectural description, but the architec-

ture description languages have Insufficient expressiveness for non-functional properties.

Blocks aremodular units of system description. Each block defines a collection of features

to describe a system or other element of interest. These may include both structural and be-

havioral features, such as properties and operations, to represent the state of the system

and behavior that the systemmay exhibit [64]. Thus, blocks are suitable to describe systems

such as IS consisting of software and hardware blocks. The Block Definition Diagram in SysML

defines features of blocks and relationships between blocks such as associations, general-

izations, and dependencies. It captures the definition of blocks in terms of properties and

operations, and relationships such as a system hierarchy or a system classification tree. The

Internal Block Diagram in SysML captures the internal structure of a block in terms of prop-

erties and connectors between properties [64]. Internal Block Diagrams are convenient to

describe internal network architectures, such as LANs.

What’s more, SysML makes use of a number of stereotyped dependencies, particularly

in the requirement diagram and use case diagram [117]. Allocations define a basic allocation

relationship that can be used to allocate a set of model elements to another, such as allo-

cating behavior to structure or allocating logical to physical components. A requirement is

related to other keymodeling artefacts via a set of stereotyped dependencies. The deriveReqt
and satisfy dependencies describe the derivation of requirements from other requirements

and the satisfaction of requirements by design entities, respectively. The verify dependency
shows the link from a test case to the requirement or requirements it verifies. In addition, the

UML refine dependency is used to indicate that an SysML model element is a refinement of a

textual requirement, and a copy relationship is used to show reuse of a requirement within

a different requirement hierarchy. The rationale concept can be used to annotate any model

element to identify supporting rationale including analysis and trade studies for a derived

requirement, a design or some other decision.

Proposed views and viewpoints should be supported by a modeling tool. To follow the

standards of MBSE, the formal way is to extend a standard metamodel, as INCOSE promotes

the integration and interoperability of methods and tools. MOF profile mechanism can be

used to extend UML meta-model, to support any domain specific languages. In our case,

SysML, as an extension of UML is chosen for extension, as it effectively describes systems

and SoS. Although SysML is the preferred modeling language for system engineering, an

extension is necessary in order to describe EIS architecture. The next chapter (chapter 5)

explains why SysML needs extension to effectively support the non-functional requirements

definition, their derivation and a way to be verified. Stereotype mechanism is used for this

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 4. A MBSD Approach for EIS Architecture 82

purpose and a profile, called EIS profile, has been implemented as an extension of SysML.

The proposed approach consists of the profile definition, which include the extensions of

SysML to support NFRs and the definition of a performance evaluation method. Moreover,

it includes the use of methods and tools, such as model transformations and simulation ex-

ecution of a well established simulation environment. These processes are supported by a

corresponding extension mechanism of a broad used modeling tool.

MOF Extension Mechanism

Figure 4.7: MDA four-layer architecture 1

As stated earlier, to support the proposed approach, extensions should be done to exist-

ingmodeling languages as SysML. There is a formal way to support extensions.MOF 2.0 [118]

states that in order to create models using a specific language, an appropriate metamodel

should be defined. The following paragraphs explain the extension mechanism that is pro-

vided by MOF.

MOF is designed as a four-layered architecture (see Figure 4.7). It provides a meta-meta

model at the top layer, called the M3 layer. This M3-model is the language used by MOF to

build metamodels, called M2-models. The most prominent example of a Layer 2 MOF model

is the UML metamodel, the model that describes the UML itself. These M2-models describe

elements of theM1-layer, and thusM1-models. These would be, for example, models written

in UML. The last layer is the M0-layer or data layer. It is used to describe real-world objects.

Another OMG foundation standard XMI, which defines mapping from MOF-defined meta-

models to XML documents and schemas. XML enables meta-metamodel, metamodel and

model sharing through XMI.

1source: http://www.jot.fm/issues/issue_2006_11/article4/

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

http://www.jot.fm/issues/issue_2006_11/article4/


Chapter 4. A MBSD Approach for EIS Architecture 83

For UML, the metamodeling approach means that ”a metamodel is used to specify the

model that comprises UML”. OMG states that the meta-metamodeling layer forms the foun-

dation of the metamodeling hierarchy. The primary responsibility of this layer is to define

the language for specifying a metamodel [119]. The layer is often referred to as M3, and

MOF is an example of a meta-metamodel. MOF is used as the meta-metamodel not only for

UML, but also for other languages, such as CWM. The UML Superstructure metamodel [120]

is specified by the UML package on the diagram in Figure 4.8. UML is defined as amodel that

is based on MOF. Each model element of UML is an instance of exactly one model element in

MOF. A model is an instance of a metamodel. UML is a language specification (metamodel)

from which users can define their own models.

Figure 4.8: Meta Meta Models, UML and Profiles

The Profiles package of the Infrastructure Library contains mechanisms that allow meta-

classes from existing metamodels to be extended to adapt them for different purposes, e.g.

to adapt the UML metamodel for different platforms (such as JEE or .NET) or domains. As

such, it could be considered at the same meta-metalevel as MOF - one level higher than the

UML metamodel. The Profiles package of the UML Superstructure (from Auxiliary Constructs)
merges Profiles package of the Infrastructure library. A profile is a restricted form of a meta-

model thatmust always extend some referencemetamodel that was created fromMOF, such

as UML or CWM. So, a profile can be defined as a set of stereotypes and tag values customized

for particular domain modeling.

Stereotype is a profile class which defines how an existing metaclass may be extended as

part of a profile. It enables the use of a platform or domain specific terminology or notation

in place of, or in addition to, the ones used for the extendedmetaclass. When a stereotype is

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 4. A MBSD Approach for EIS Architecture 84

applied to a model element, the values of its properties may be referred to as tagged values.

EIS Profile Overview

To define the structure of the proposed profile, we should tabulate the basic tasks identi-

fied during EIS architecture design (characterized as viewpoints in section 4.3.1), which are:

i. Functionality definition, consisting software architecture description (e.g. a system-orien-

ted view of applications). In practice, Functionality definition consists of the description

of functional requirements (e.g. application and data architecture, user behavior and

application requirements).

ii. Topology definition, consisting of the description of system access points. It facilitates

user, application and data allocation to system access points.

iii. Network Infrastructure definition, consisting of the description of platform- independent

distributed infrastructure (e.g. network architecture and hardware configuration) and

the association of software components to network nodes (resource allocation).

iv. NFRdefinition, consisting of the description of non functional requirements, focusing on

systemperformance and availability requirements essential for EIS architecture design.

v. EIS architecture evaluation, consisting of these model elements that participate in the

performance evaluation process along with the requirements that should be verified.

Figure 4.9: EIS Architecture Views and Corresponding Design Tasks

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 4. A MBSD Approach for EIS Architecture 85

According to the basic processes that are identified during the design activity (presented

in Chapter 1.3, Figure 1.2), solution synthesis encompasses Functionality, Topology and Net-
work Infrastructure definitions. Functionality definition focuses on software architecture de-

sign, Topology definition on software allocation process and Network Infrastructure definition
onhardware architecture design. For each of these concerns, a corresponding view is defined

to explore non functional requirements and related design decisions. The system designer,

concerned with software architecture design and software allocation, is served by Functional
and Topology views to contribute in the construction of EIS architecture. In a similar fashion,

the designer is contributing to hardware configuration using Network Infrastructure View. A

complementary view, called Evaluation view is proposed to serve system evaluation activity

andmanage evaluation results and requirements verification. This view incorporates entities

from other views and stores all the required attributes for each model element, in order to

facilitate the requirements verification process. Specifically, evaluation view facilitates:

i. the definition of the conditions under which the system will be evaluated;

ii. the incorporation of the evaluation results;

iii. the requirement verification, informing the system designers for inconsistencies.

EIS architecture views and corresponding design tasks are presented in Figure 4.9.

It is evident that all aforementioned tasks are interrelated, since noneof themcanbe com-

pleted independently, while in most cases tasks are performed in parallel, and often repeat-

edly by the system architect in order to reach an EIS architecture satisfying both functional

(identified during Functionality definition and partly during Topology and Network Infrastruc-
ture definition) and NFRs (identified during NFR definition). NFR definition is performed in

parallel with Functionality, Topology and Network Infrastructure definition. Developing re-

quirements and architectural artifacts in parallel has already been addressed in section 4.2.2.

After the definition of EIS architecture, an evaluation phase follows,most commonly using

simulation, if it is about performance issues. Solution evaluation will determine whether the

proposed solution is satisfying all functional and non functional requirements, or the system

designer should improve the proposed architecture or readjust requirements by repeating

definition tasks. Adopting a model-based approach for EIS architecture design should pro-

vide the system architect with a common system model to support all design tasks and en-

able him/her to perform each design task in an independent fashion taking into account the

restrictions imposed by other tasks.

As depicted in Figure 4.10, the aforementioned views are associated with relations such

as satisfy, verify, allocate and evaluate. These relations are supported by SysML [64]. A satisfy
relationship is a dependency between a requirement and a model element that fulfills the

requirement [64]. Satisfy relates system elements in Functional, Topology and Network Infras-
tructure views with their corresponding requirements. A verify relationship is a dependency

between a requirement and a test case or other model element that can determine whether

a system fulfills the requirement [64]. In EIS profile, Verify relates requirements that are veri-

fied by elements from evaluation view. SysML also includes an allocation relationship to rep-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 4. A MBSD Approach for EIS Architecture 86

Figure 4.10: EIS architectural model

resent various types of allocation, including allocation of functions to components, logical to

physical components, and software to hardware. In our case, allocate relates entities from
Functional or Topology views that are allocated to entities from Network Infrastructure view,
supporting the software to hardware allocation and users allocation (system access points).

Finally, evaluate relates entities from evaluation view that are evaluating entities from the

other views (design views). Evaluate relation defined as an extension of SysML relations.

The next two chapters present the defined views, which are categorized as design views

(chapter 5), that are functional, topology, network infrastructure andNFR viewand evaluation

view (chapter 6).

4.4 Summary

This chapter presented an approach based on the concepts ofMBSE as defined by INCOSE

to explore EIS architecture design. The proposed approach is based on Zachman framework,

showing the concepts of views and viewpoints we adopted and the stakeholders identified

throughout the design process. To this end, a SysML profile was defined. Next chapter ex-

tensively presents two parts of the proposed approach: the design phase and related views

and the handling of NFRs.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach





Chapter 5
Designing EIS Architecture

Contents
5.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Design Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Functional View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.2 Topology View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.3 Network Infrastructure View . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Non-Functional Requirements View . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.1 Non-functional requirements classification . . . . . . . . . . . . . . . . 100

5.3.2 SysML Extension to support NFRs . . . . . . . . . . . . . . . . . . . . . . 103

5.3.3 NFR Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.4 NFR Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.5 NFR Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1 Outline

This and the next chapter present EIS profile views, grouped in three categories:

• Design Views. Within these views, system designer defines the software and hardware

architectures of the system.

• NFR View. Here, non functional requirements are defined for model elements of the

design views.

• Evaluation View. Since design and NFR views are complete and consistent, evaluation

view collects these entities from design views that are participating in the evaluation

process, initiates the evaluation process and maintains the results to validate system

against NFRs.

88



Chapter 5. Designing EIS Architecture 89

Design views provide the appropriate diagrams to define the applications software archi-

tecture, to set system access points and to define network architecture.

NFR view, in practice is not an autonomous view. Requirements are defined in design

views, each of them satisfying design entities, and are interrelated in many ways:

• requirements are derived from other requirements

• requirements satisfy design entities

• requirements are verified from evaluation entities

Evaluation view encompasses the appropriate design entities along with their require-

ments in order to clarify which of them could be verified so as to inform the designer about

the non-verified ones.

5.2 Design Views

As design views we could consider the Functional, Topology and Network Infrastructure
views, where system designer defines software and hardware architecture and makes the

appropriate allocations (users and software allocations).

Specific extensions, as supported by OMG, provided the desired functionality. A view in

EIS profile is depicted as a discrete diagram. The stereotype mechanism provided by UML

and SysML is employed to customize SysML functionality to depict EIS Architecture views.

Functional, Topology and Network Infrastructure views are described using hierarchical block-
definition diagrams. SysML blocks can be used throughout all phases of system specification

and design, and can be applied to many different kinds of systems. These include modeling

either the logical or physical decomposition of a system, and the specification of software,

hardware, or human elements.

An overviewof the synthesismodel (i.e., themodel elements participating in design views)

is presented in Figure 5.1. Their connections with NFRs and the allocations between them are

presented with dashed lines. The allocate relation between design views indicate that enti-

ties defined in Functional view andmore specifically softwaremodules, data entities and users
modeled as roles are allocated in system access points, called sites, defined in the Topology
view. The allocation of modules, roles and data entities to sites corresponds to software ar-

chitecture design. The allocation relation between Topology and Network Infrastructure views
indicates that each site defined in Topology view is served by a network defined in Network
Infrastructure view. When a site is allocated to a network, Functional view entities allocated

to this site must be specifically allocated to hardware nodes belonging to this network. Fig-

ure 5.1 also illustrates the requirements which are referenced by design views model ele-

ments. Section 5.3 analyzes the role and the relationships between requirements and model

elements belonging to other views.

For each of the aforementioned views, a corresponding table summarizes the elements

participating in each view. So the defined stereotype, the SysML/UML extended element, the

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 90

Functional View

                               Network Infrastructure ViewTopology View

Service Description

Composite Network

Atomic Network

Composite Site

responseTime req

roleBehavior Req

availability req

moduleQoS req

serviceQoS req

constraint req Workstation

Application

Data Entity

traffic req

uilization req

Atomic Site

Network

Service

Initiate

Module

Invoke

load req

Server

Role

Node

Site

Allocation

Allocation

satisfy

satisfy

-target1 -incoming -source-outgoing

-target-incoming

Allocation

Allocation

satisfy

Allocation

satisfy

satisfy

1

1

Allocation

satisfy
satisfy

satisfy

satisfy

satisfy

-source

-outgoing

satisfy

Allocation

satisfy

Figure 5.1: EIS synthesis model

tagged values, the constraints and the type of the entity are presented at the columns of the

table. Each model element, belonging to a view, can have one of the following types:

• internal, focusing on the specific view

• external, facilitating the integration with entities belonging to other views

5.2.1 Functional View

Functional view depicts functional requirements related to software components and re-

lated data, as well as EIS users. It also includes design decisions related to software archi-

tecture. Entities that are participating in Functional view are briefly described here. Roles are
used to depict the behavior of different user groups whilemodules (client & server) are appli-

cation tiers (supporting multi-layered applications) that consist of services. Each role initiates
services that belong to client modules, and each service may invoke other services that be-
long to othermodules, depending on the complexity of the application. Data Entities are used
to represent portions of stored data. Main entities of Functional view, along with their type

(external or internal, see 4.3.1) and the SysML base class they extend, are presented in Table

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 91

5.1. Entities participating in Functional view are related to entities participating in all other

diagrams to implement the relations depicted in Figure 4.10. These relations are discussed

in the following paragraphs as the rest of the views are presented.

Table 5.1 presents the complete definition of the stereotypes belonging to Functional view,
where the properties (tagged values) of each stereotype and the constraints are depicted.

Table 5.1: Functional View Entities

Stereotype Base Class Properties Constraints Type

Functional View Block Def. Diag.
Only FV stereotypes participate in it and all defined
constraints must be validated

Role Actor
StartTime
EndTime
NumOfOccurs

Values must be defined for all attributes
Initiates at least one service
Total of related service initiations percentagemust be
100%
Satisfies a Behavior Requirement
Allocated to an Atomic-Site

External

Service Block
Satisfies a Response-Time Requirement
Satisfies a Service-QoS Requirement
Belongs to one Module

External

Server-Module Block
Includes at least one service
Satisfies a Module-QoS Requirement
Allocated to an Atomic-Site

External

Client-Module Block
Includes at least one service
Satisfies a Module-QoS Requirement
Allocated to an Atomic-Site

External

Data Entity Block
Size
Type
Repl. Policy

Invoked by a service
Allocated to an Atomic-Site

External

Initiate Dependency Percentage
Defined between a Role and a service, belonging in a
Client-Module

Internal

Invoke Dependency Defined between Services Internal

Module-Invoke Dependency
Defined between Modules and created automatically
Satisfies a Module-QoS Requirement

External

Let us examine this view from the designer’s perspective. Using Functional view, system
designer has to define the applications and the users of the system. To describe an appli-

cation, all tiers, starting from the user invocation of a specific operation (through the ap-

propriate interface) to the remote services or database operations should be described. Ap-

plications, either web-based or not, are composed of many software components that are

communicating and exchanging data. In Functional view the architecture of the distributed

software components is described.

A user is stated as a role, where specific attributes define his behavior: StartTime, EndTime
to declare his dailyworkinghours andNumOfOccurs to declare howmanyusers of that role are

existing in the IS. Note that roles are aggregations of users having the sameworkingbehavior

and dealing with the same applications. The next step is to define the user interfaces (called

client-modules, stereotypes of Block SysML entity), through which users are interacting with

applications. Applications are complex, constituting ofmany tiers (a set of clientmodules and

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 92

server-modules). Each module that is not invoked by a role, is considered as server-module

and is a stereotype of SysML Block entity.

Roles initiate operations of applications (called services, which are also stereotypes of

Block) belonging to client-modules. We can imagine services and modules as operations of

web-services. The communication between services belonging to different tiers of applica-

tions is defined with invoke relations, which are stereotypes of UML Dependency relationship.

A user can interact with different user interfaces and call a set of operations in the dura-

tion of his working time. So, a percentage attribute describes the percentage of time a user

is interacting with each specific operation. For that reason a constraint defined to this model

element is that the sum of percentage attributes of initiate relations starting from a specific

role, should be 100%. UML defines the constraint as “a restriction or a condition that should

be applied”. Data entities are modeling application’s files that store data.

Table 5.1 presents the specific constraints that entities of Functional view should satisfy.

For example, a role satisfies a behavior requirement. This means that a role could behave

differently under certain circumstances, e.g. on a heavy load day. Section 5.3 presents the

defined requirements and how they relate to other elements.

A conceptual representation of Functional view entities is presented in Figure 5.2. Please

note that a Module-Invoke relation is defined between two Modules. This relation is auto-

created and is associated with a module-QoS requirement, that holds the amount of process-
ing, storage and traffic (networking) requirements of the communicating services of these

Modules.

Figure 5.2: Functional view entities

5.2.2 Topology View

Topology view act like a bridge between Functional view and Network Infrastructure view,
facilitating the hierarchical allocation of software entities (such as software modules) and

users to hardware elements (such as networks and nodes). It acts as an intermediate step,

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 93

that provide information to the designer in order to facilitate him to make the appropri-

ate allocations. Moreover, in Topology view, software component replicas can be defined, to

support distributed architectures. This means that many instances of roles, software compo-

nents and nodes are supported in EIS profile. The allocation is enhancedwith the definition of

derived requirements that capture the load that software components and user interactions

produce to hardware components.

Topology view facilitates the description of system access points in terms of hierarchically

related locations, called sites. Sitesmay be atomic or composite (meaning that are composed

of other sites). The Site entity is an extension of SysML Block entity. Topology view is a Block
Definition diagram that comprises the aforementioned entities. Topology view entities are

presented in Table 5.2. Entities defined in other views (e.g. Functional view) may also partici-

pate in this diagram, in order to describe Topology view interrelation with other diagrams, as

defined in Figure 4.10. Software Allocation is used to describe the allocation of software mod-

ules (client or server) to atomic sites, while Usage Allocation refers to roles that are allocated

to atomic sites. Sites satisfy traffic requirements, indicating the amount of information ex-

change between the modules allocated to them. A traffic requirement is described in terms

of traffic coming in, going out and exchanged within each site. Traffic requirements are en-

tities defined in NFR view.

Constraints were used in two ways:

• to constraint SysML functionality, for example only modules may be software-allocated

to sites or atomic sites are allocated only to atomic networks and composite sites or

networks have to own at least one atomic element and

• to compute values of derived entity attributes, for example, traffic requirements at-

tributes of a specific site are automatically computed from module-Qos requirements

attributes of modules allocated to this site.

Table 5.2 presents the entities of the Topology view, and for each entity the attributes and
the constraints are depicted.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 94

Table 5.2: Topology View Entities

Stereotype Base Class Properties Constraints Type

Topology View Block Def. Diag.
TV stereotypes and Roles, Client-Modules and Server-
Modules from FV participate in it and all defined con-
straints must be validated

Site Block
Range
Instances

External

Atomic-Site Block External
Composite-Site Block Comprised of other Sites External

Software-Allocation Allocation Instances
Defined between Modules/Data Entities and Atomic
Sites

Internal

Usage-Allocation Allocation Instances Defined between Roles and Atomic Sites Internal

Client-Module-Replica Block

Autocreated from a Client-Module
A Client-Module can have one ormany Client-Module-
Replicas
Client-Modules from Topology view are migrating to
Topology view, to make replicas of them
When a role is allocated to a site, for every service that
this role initiates, for the corresponding client mod-
ule a replica is created and is allocated to the same
atomic-site

Internal

Server-Module-Replica Block

Autocreated from a Server-Module
A Server-Module can have one or many Server-
Module-Replicas
Server-Modules from Topology view are migrating to
Topology view, to make replicas of them
Allocated with Software-Allocation to Atomic-Sites

Internal

Replica-of Realization Defined between Modules and their Replicas Internal

Two kinds of allocation are defined in Topology view: Software and Usage. The first is de-
fined between software component instances (module-replicas) and atomic-sites and the lat-

ter to users allocation to atomic sites, defining the system access points to users. Roles, client-
modules and server-modules are derived from Functional view and are appeared to Topology
view, so as to give the ability to the designer to make instances (replicas) of them.

A major constraint defined in Topology view is the following: when a role is allocated

to an atomic-site, for each client-module that the role initiates services from it, a replica is

auto-created and auto-allocated to this atomic-site. Figure 5.3 presents software-allocation

of client-module-replicas in gray color, meaning that these allocations are automatically cre-

ated, when a role is allocated to a site. Client and server modules are presented in blue, to

identify that these entities are coming from Functional view. Note that atomic sites may be

hierarchically contained in composite sites with the containment relationship of UML.

Section 5.3 presents the requirements defined in Topology view. Furthermore, the deriva-

tion of the complex requirements is provided there. For example, in Functional view, each
service is related with a service-QoS requirement, indicating the required processing, storage
and networking resources that this service needs in order to be executed (i.e., three types

of service-QoS are defined: proc-service-QoS, stor-service-QoS and traffic-service-QoS). Themod-
ule that contains these services, gathers all requirements of services in a requirement called

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 95

module-QoS requirement (also three types ofmodule-QoS are defined: proc-module-QoS, stor-
module-QoS and traffic-module-QoS). In order to estimate the gathered processing and stor-

age requirements for themodule-QoS, a simple aggregation is enough. For the traffic type of

module-QoS, this should be defined for each module-invoke relation between modules. This

derivation is produced in Topology view, where module-replicas are defined. The derivation

ofmodule-QoS requirements is presented in section 5.3.4.

Figure 5.3: Topology view entities

From the system designer’s perspective, a usual scenario would be the following. Starting

with sites definition, a reasonable hierarchy could be done taking into account the geographi-

cal distribution (e.g regions or buildings) of the information system. Sites could be considered
as hosts of users and software components.

As stated, roles, client-modules and server-modules defined in Functional view participate

also in Topology view. Validation rules are applied to system model to ensure this. In a next

step, roles are allocated to atomic-sites. Each role in Functional view initiates services. These ser-
vices belong to client-modules. For that reason, according to the aforementioned constrains,

when a role is allocated to an atomic-site and for each client-module that this role initiates, a
client-module-replica is also automatically allocated to the same atomic-site. This process is
automated to help the designer to define the allocation policy.

Afterwards, the designer decides how many replicas should be defined for each of the

server-modules and allocates them to atomic-sites. Another validation rule checks allmodules
in order to ensure that are allocated to an atomic-site. If this is not valid, the system designer

is notified about the non-allocated modules. The final step is to estimate the traffic that soft-

ware allocated modules produce in a site. This helps the designer to define the allocation

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 96

policy, based on the load imposed to sites.

A conceptual representation of topology view entities is presented in Figure 5.3. Firstly,

roles, client-modules and server-modules are derived from Functional view (noted as ¶). Then

the role has been allocated to an atomic-site (noted as ·), and as a result of the automa-

tion, the appropriate client-module-replicas are created and allocated to the same atomic-site

(noted as ¸).

5.2.3 Network Infrastructure View

Network Infrastructure view refers to the aggregate network, described through a hierar-

chical structure comprising simple and composite networks. It is represented using a hierar-

chy of Block Definition diagrams. Hardware components and configurations are also defined

using this view (servers, workstations and network devices). Networks could inter-connected

with PTP-connections (i.e., point-to-point connections, the simplest topology with a perma-

nent link between two endpoints) or could belong to other networks, which is defined with

the usage of UML containment relationship. Consider a LAN where smaller networks could

be defined (e.g. Virtual Local Area Networks (VLANs)) with different configurations for each

of them.

Sites are allocated to networks using Structural Allocation relation. Each atomic network is
a custom diagram (based also on Block Definition diagram), called atomic network diagram,

which encompasses all hardware elements that belong to that network. Network Infrastruc-
ture view entities are presented in Table 5.3. Most of them are characterized as external enti-
ties, since they should be further refined during network implementation by the system con-

structor. Existing network infrastructure is depicted using constraint requirements defined in

NFR view and associated to appropriate network components in Network Infrastructure view.
Elements of Functional, Topology and NFR viewsmay also participate in Network Infrastructure
view to represent inter-view relations.

To depict the usage ofNetwork Infrastructure view, consider a network architect designing
an information system’s network using this view. Network architecture is defined taken into

account:

i. the system access points, called sites, defined in the Topology view,
ii. the traffic performance indications for the information exchange within and between

sites, and

iii. existing network infrastructure restrictions.

Network architecture is defined in a hierarchical fashion, constituting of atomic networks,
which depict local networks that connecting hardware elements, such as workstations and

servers, where eventually software components are allocated. Atomic networks are intercon-

nected through networks either private or public.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 97

Table 5.3: Network Infrastructure View Entities

Stereotype Base Class Properties Constraints Type

Network Block

ProtocolStack
Throughput
Type
NumOfMaxNodes

External

Atomic-Network Block External

Composite-Network Block
Composite-Network must contain at least one Atomic
or Composite Network

External

Atomic-Network-Diagram Block Def. Diag.
Atomic Diagrammust be associated to an Atomic Net-
work

External

Server System

Memory
OperatingSystem
StorageUnit
ProcessingUnit

External

Workstation System

Memory
OperatingSystem
StorageUnit
ProcessingUnit

External

Processing-Unit System
Cores
ProcPower

External

Storage-Unit System
Capacity
StorageSpeed

External

Connection Association
Usptream
Downstream

External

PTP-Connection Association
ProtocolStack
Speed

External

Structural-Allocation Abstraction Instances
Atomic and Composite Sites are allocated to Atomic
and Composite Networks

Internal

Software-Allocation Abstraction Instances
Client and Server Modules are Allocated to Servers
and Workstations

Internal

Usage-Allocation Abstraction Instances Roles are Allocated to Workstations and Servers Internal

Three kinds of allocations are defined in this view:

• Structural allocation defines the allocation between sites and networks. Allowed alloca-

tions are between the same type of elements: i.e. atomic sites can be allocated to atomic

networks.

• Usage allocation defines the allocation of users to nodes.

• Software allocation defines the allocation of software components to nodes, responsible

for their execution.

Servers and workstations are comprised of three units: processing, storage and network
(in accordance with the three types of requirements in service-QoS and module-QoS require-
ments). Processing unit has tagged-values to define the processingpower and the cores of the
CPU. Storage unit has tagged-values that correspond to diskcapacity and speed (defined in

rpm). Network entity has the following entities: type, which corresponds to network type (eth-
ernet, wifi, bluetooth), throughput (depicted in Mbps) , protocolStackwhich corresponds to the

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 98

supported protocols by this network (e.g. TCP, UDP) and numOfMaxNodes, a constraint to de-

fine the maximum number of connected devices to this network.

The allocation relation between Topology and Network Infrastructure views indicates that
each site defined in the Topology view is served by a network defined in Network Infrastructure
view. When a site is allocated to a network, Functional view entities allocated to this site must

be specifically allocated to network nodes belonging to this network. This task is assigned

to system designer/network architect. A validation rule ensures that there are no elements

(roles andmodule-replicas) non-allocated to networks.

Network Infrastructure view is multi-level. At the first level atomic and composite networks
along with their hierarchy and their connections are defined. The next step is to gather the

atomic and composite sites from the Topology view. Each of them has to be structural-allocated
to a network. A constraint applied here is that an atomic-site has to be allocated to atomic
network and a composite site to a composite network. Of course, many atomic-sites can be

allocated to one atomic network. Figure 5.4 presents a sample of a Network Infrastructure
diagram: Sites are allocated to atomic networks, and for each atomic-network, a corresponding
block definition diagram is defined.

In a second level of allocations, for each atomic-network a corresponding atomic-network
diagram is created. To accommodate the designer, in an atomic-network diagram, all allo-

cated elements (roles and module-replicas) to sites that are allocated to this atomic-network,
are automatically created. The remaining task for the designer is to define the servers and
workstations that should accommodate them. Afterwards, in the atomic-network diagram, the

system designer has to allocate roles and module-replicas to these workstations and servers.
Figure 5.5 presents a simple atomic-network diagram, where a role and client-module-replica
are allocated to a workstation and a server-module-replica is allocated to a server. A constraint

that is applied here is that since a role is allocated to a node, the corresponding invoked

client-module-replicas should be also allocated to the same node. To facilitate the designer,

the allocation of client-module-replicas is automated. The reader will notice that in an atomic-
network diagram the connections between the nodes are not presented. We could take into

account the following considerations:

• hardware elements inside an atomic-network diagram, are connected through a LAN

connection and the properties of the connection are defined in the atomic-network el-

ement

• the amount of information that has to be exchanged between nodes is estimated with

the help of themodule-QoS requirements of the module-invoke relations that has been

defined in Topology view. There are three types of traffic: in, out and inout. Refer to 5.3.4

for the process of the estimation of the derived requirements.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 99

Figure 5.4: Network Infrastructure view entities

Figure 5.5: Network Infrastructure view: atomic network entities

5.3 Non-Functional Requirements View

NFR view consists of all NFRs that should be satisfied by entities belonging in the three

aforementioned -design- views. These requirements are progressively defined duringmodel-

based EIS architecture design. Performance requirements are emphasized, since they are

essential in EIS architecture design. The utilization of NFR view is not to present all require-

ments from design views, but relates to the distribution of the requirements to other views.

Of course, if a designerwants to see all defined requirements, EIS profile gives him the oppor-

tunity to gather all requirements in a single NFR diagram. NFR view bridges the gap between

design views and Evaluation view, since the NFRs are the mean through which the evaluation

can be performed. Thanks to requirements verification, a system model described in design

views can be evaluated against the defined requirements.

A classification of NFRs is necessary to help us discover the requirements interrelations.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 100

Two kinds of NFRs are defined: simple and derived. Simple requirements have attributes that

system designer is responsible to provide values. Derived requirements have attributes that

their values are depending on values of other requirements. This derivation can be described

either with amathematical expression or can be estimated by a derivation formula such as an
algorithm. In the latter case an implementation of this algorithm in a programming language

is necessary to be incorporated in the modeling tool that the designer uses.

There are three main perspectives (Figure 5.6 presents them conceptually) to help us cat-

egorize NFRs, as far as the scope of this thesis defines:

i. Behavior description. Requirements belonging at this category are used in order to de-

scribe specific user behavior, e.g. user behavior variations under different circumstances.

They are usually used as input parameters to evaluation process.

ii. Performance description. These requirements are used to dictate specific performance

that should be guaranteed by the system components, e.g. response time require-

ments.

iii. Load indications. These kind of requirements are used as specific indicators about the

aggregated required resources from the hardware components that the software com-

ponents impose to them. They help system designer to make allocation policies.

Figure 5.6: Requirements categorization perspectives

5.3.1 Non-functional requirements classification

Requirements could have qualitative and/or quantitative characteristics. Handling them

from the performance perspective, any qualitative characteristic should be translated to

quantitative, so as to be validated against any formal verification method.

NFR view comprises NFRs relevant to EIS architecture design. They are progressively de-

finedduringmodel-based EIS architecture design tasks. Threemain categories are supported:

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 101

performance, physical and specific quality [46]. Performance requirements are emphasized,

since they are substantial in EISs architecture design.

Performance requirements are further decomposed to behavior, load and utilization [8].

Utilization requirements are associated with Network Infrastructure view and regard the pro-

portion of network infrastructure resources used by applications during normal operation

or extreme conditions.

Behavior requirements deal with service behavior and are time-related (e.g. response

times). They affect Functional view. Two of them are defined, namely responseTime, indicating
the time interval within which a service should complete its execution, and Behavior, indicat-
ing activation patterns for roles defined within Functional view.

Load requirements concern the load imposed to other EIS resources by EIS components

allocated to them. Load requirements are defined in all views. Most of them are derived

requirements, calculated using properties of other load requirements. Four different load

requirements are defined, namely service-QoS,module-QoS, traffic-Load and load.

Regarding physical requirements, indicating constraints imposed on design decisions by

existing hardware resources, we focus on those concerning capacity. Capacity, indicating lim-

itations of the hardware and their impact to the system, is related to Network Infrastructure
view.

Regarding specific quality requirements, we consider only availability requirements. They

are associated with Network Infrastructure view, where availability deals with hardware as-

pects. Availability requirements may also be defined for software components within Func-
tional View.

NFRs and theway they are interrelated to each other as well as to other entities belonging

in Functional, Topology and Network Infrastructure views are depicted in Figure 5.7. In the

following, NFRs are analytically presented grouped by EIS architecture view they are satisfied

by.

Functional Requirements: Behavior requirement describes alternate user behavior, e.g.,

when the user is active, or with which probability and how frequent a user initiates ser-

vices. A role initiates services, while each service satisfies a responseTime requirement. The

response time defined here is the accepted time while the user waits for or is informed for

the execution of the operation that he is interacting with. The service requires EIS resources

for its effective execution, expressed in terms of QoS it should receive from the underly-

ing infrastructure. The service-QoS requirement indicates the amount of processed, stored

or transferred information a service requires during its execution. Consequently, the service-
QoS properties are average and maximum estimations of traffic, processing and storage QoS
needed for the service execution. The QoS for each service is defined by the system architect,

taking into account that it should satisfy corresponding responseTime requirement. Module-
QoS requirement describes the QoS needed for the module execution. It bears the same

properties as service-QoS and is apparently derived by the service-QoS requirements belong-

ing in the samemodule. Moreover,module-QoS requirement properties are calculated as the

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 102

Figure 5.7: Defined NFR Requirements and their relations to other entities

aggregation of the values of the corresponding service-QoS requirement properties. Subsec-

tion 5.3.4 presents such an estimation.

Topology Requirements: Sites satisfy traffic requirements, indicating the amount of infor-

mation exchange between the allocated modules. Traffic requirement is described in terms

of incoming, outgoing and exchanged traffic. Maximum and average values are estimated. It

is derived from module-QoS and behavior performance requirements as indicated in Figure

5.7 and it is estimated each time there is a change in allocations performed within Topology
View. Subsection 5.3.4 presents this computation.

Network Infrastructure Requirements: Networks and network nodes are characterized by

capacity indications, for example throughput, storage, speed or processing power. Their def-

inition by the system architect must take into account constraints applied by existing infras-

tructure, availability, utilization and load requirements, as indicated in Figure 5.7. Load re-

quirements are estimated based onmodule-QoS and traffic requirement properties satisfied

by entities allocated to the specific network infrastructure component (for example modules

allocated to a specific network node). Subsection 5.3.4 presents an algorithm to calculate the

derived attributes of traffic requirements.

In order to effectively define EIS architecture, the system architect should ensure that all

performance requirements are fulfilled. In SysML a test case determines whether the system

meets specifications placed by requirements. A test case is a set of conditions or variables

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 103

which will be tested to ensure requirements aremet. Next chapter will explain the equivalent

of the SysML test case that we are using to verify the defined requirements.

5.3.2 SysML Extension to support NFRs

Requirements in SysML are described, as stereotypes of Class, in an abstract, qualitative

manner, since they are specified by two properties, id and text, corresponding to a simple

description. However, SysML specification suggests to use the stereotype mechanism to de-

fine additional properties for specific requirement types. Requirements can be grouped in

packages based on common characteristics, such as their category (for example functional

or non-functional) or the activities they are related to (for example software or hardware

requirements) forming a multi-level hierarchy.

SysML includes specific relationships to relate requirements with other requirements (in-

dicating the way they affect each other) or other model elements. The containment relation-
ship, defined between requirements, indicates that the composite requirement is realized

if and only if all the contained ones are realized. In this way, an abstract requirement may

be composed of more specific ones, or a complex requirement may be described in a more

detailed fashion. In the case of system design, the notion of composite requirements is es-

sential to indicate the way a requirement defined for the system as awholemay be described

in terms of the detailed requirements defined for system components. The SysML deriveReqt
relationship indicates that a specific requirement is derived by others. However, the way re-

quirements are specified is not depicted.

Requirements should be satisfied by model elements belonging to other diagrams (us-

ing SysML satisfy relationship). For this purpose, requirements may participate into other

diagrams, enabling the exploration of the relationship between requirements and design

decisions.

SysML provides the means to describe a set of tests, which should be performed to verify

whether a requirement is satisfied by system components. To depict such an activity, the test
case entity, included in requirement diagrams, is introduced. A test case is related to one or

a set of requirements to handle their verification, while it is described through a behavior

diagram (for example activity or state machine diagram) corresponding to the activity (as a

set of tests) performed to verify related requirements. The way requirements are handled in

SysML is summarized in Figure 5.8.

Since NFRs (for example performance requirements) are described using both qualitative

and quantitative properties, a quantitative method, such as simulation, should be employed

to produce the necessary data for their verification. In the related work (Chapter 3), tools and

methods about simulating SysMLmodels were discussed. The concept of the test case is not

supported by any of them. In such case, theway systemevaluation is performed, conforms to

the corresponding simulationmethod. Thus, the definition of test cases is of less importance,

since they could only be used to specify the conditions under which the system should be

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 104

Figure 5.8: SysML Requirement representation

evaluated and not the evaluation method itself [95]. Furthermore, the results of the tests

performed either by a test case or using simulation to verify requirement satisfaction are

not included in SysML models. Such information is crucial for the system engineer to adjust

system design or relax imposed requirements.

When SysML is utilized for system design, as for example in EIS architecturemodel-based

design, NFRs are emphasized. To be accurately defined, NFRs should be described using

quantitative properties, in a similar fashion as thenon-functional properties defined inMARTE

profile [81]. Since, NFRs may not always be described in an exact fashion, value deviation of

quantitative properties should be allowed, to indicate for example that the response time

for a specific service should be 4 to 5 seconds. In the same rational, maximum, minimum or

average values should be described. Thus, more than one properties should be available for

their description.

Furthermore, derived quantitative properties of NFRs should be automatically estimated.

The deriveRqt relationship indicates only the fact that the derived requirement is related to

one or more others. It does not provide any information about the way the requirement may

be derived. The derivation may be depicted by indicating the way its quantitative properties

are estimated, and this estimation is based onproperties of the corresponding requirements.

Thus, a computation formula property should be defined. The computation formulas may

involve heuristics and become complicated. SysML requirement entity must be extended to:

i. effectively represent the quantitative aspects of requirements and

ii. define the way derived requirements should be computed.

Constraints, specific purpose languages as VSL [82] or scripts can be applied to derived re-

quirements to enforce the automatic computation of derived properties, while computation

algorithmsmust also be integrated in the SysMLmodel. It should be noted that the specifica-

tion of computation formulas is meaningful only if it is actually executed and corresponding

quantitative properties are calculated.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 105

Figure 5.9: Extending SysML to explore NFRs

NFRs must be satisfied by system components included in any of the system design dia-

grams. In such case, in order to decide whether a NFR is verified, the designer may have to

explore if the value of a quantitative property is satisfied by the related system components.

To perform such a task, the comparison of specific evaluation results for each system com-

ponent and related requirements properties should be performed, leading to the necessity

of integrating evaluation data into the system model.

The SysML test case, as a concept, is focused on depicting how to evaluatemodel element

satisfying a specific requirement, while integrating evaluation results into the systemmodel

is not considered. In the case of system design, NFRs are verified in a quantitative fashion by

evaluation scenarios instead of test cases. An evaluation scenario should facilitate both:

• the definition of the conditions under which the system will be evaluated (probably

using simulation) and

• the depiction of the evaluation results, so that the system engineer may be directly

informed of requirement verification.

An evaluation scenario comprises of evaluation entities, used to evaluatemodel elements, to

verify the corresponding requirement or requirements and can be described with block def-

inition diagrams. Since an evaluation scenario is introduced to specify the conditions under

which the system design should be explored, it involves the evaluation of all model elements,

thus it is used to verify a composite, abstract NFR (for example the system performancemust

be high), constituting of specific ones (e.g., service time should be between 3 to 5 seconds).

When an evaluation scenario verifies a composite requirement or a set of requirements, it

should be used to verify all the included requirements.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 106

Regardless of the method used to perform system evaluation, evaluation elements have

input properties, related to evaluatedmodel elements, and output properties, depicting eval-
uation data. Based on the value of output properties, requirements are verified. In the case

of NFRs described in a quantitative fashion, an appropriate comparison method should be

defined for the specific requirement, based on the output properties of all related evalua-

tion entities. Such a method could be defined for example using a SysML Parametric diagram
or executable scripts, associating requirement quantitative properties to evaluation entity

output properties.

As already mentioned, to simulate a SysML model using a specific simulation method,

simulation-specific characteristics should be included in the model. Such properties may be

incorporated into evaluation entities, thus evaluation specific information does not have to

be included in a systemmodel designed by the system engineer, promoting discrete activity

independence.

During system design, NFRs may also used to depict specific behavior forced on system

components (for example the way a traffic generator may behave under heavy traffic con-

ditions). In such a case, there is no point in verifying the requirements. The corresponding

evaluation entity may conform to them, since they specify conditions under which the system

design should be evaluated. The same requirement or requirements may be verified more

than once, by evolving evaluation scenarios, as the system design is re-adjusted. Evaluation

data and conditions included in them should be integrated in the SysML model. Thus, eval-

uation scenarios should be grouped into a distinct diagram, named Evaluation Diagram. The

way basic SysML concepts are extended to handled NFRs for system design is summarized

in Figure 5.9.

5.3.3 NFR Representation

As seen in Figure 4.10, NFR view comprises requirements that are satisfied by entities

of the three aforementioned views (called design views) and are verified by elements of the

Evaluation View. Table 5.4 presents these requirements and the related entities that satisfy

them. All requirements are defined as stereotypes of SysML requirement entity, while addi-

tional stereotype attributes are defined to accommodate specific requirement properties.

Requirements may be derived from other requirements, while all of them are treated as in-

ternal entities, since they are defined on the context of EIS architecture design. As stated

earlier, requirements in SysML are described in an abstract, qualitative manner, since they

are defined using a name and a description. In the case of EIS architecture design, NFRs

should be more accurately descriptive using quantitative properties. Furthermore, derived

requirement properties should be automatically computed by combining specific attributes

of requirements and allocation entities. Though, SysML supports NFRs description, SysML

requirement entity was heavily extended to effectively represent the quantitative aspects of

requirements and the way they derive from each other.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 107

Table 5.4: Requirements and their relationship with other model elements

EIS Profile entity Associated Elements Derived from

Load-Req (derived) Network, Server, Workstation Traffic-Req
Availability-Req Server, Workstation

Traffic-Load-Req (derived) Site Module-QoS-Req
Utilization-Req Network, Server, Workstation

Service-QoS-Req Service

Module-QoS-Req (derived) Module Service-QoS-Req
Response-Time-Req Service

Behaviour-Req Role

Constraint-Req Network, Node, Connection, External-WAN, PTP-Connection

Table 5.5 presents the entities that extend the SysML requirement entity with their attributes

and the corresponding constraints.

Table 5.5: Non-Functional Requirements View Entities

Stereotype Base Class Properties Satisfied by Constraints

NFR View Reqts. Diag.
Only NFRV stereotypes participate in it and all defined
constraints must be validated

Service-QoS Reqt
Type
Value

Service
Types are: Processing, Storage, Traffic
Value must be defined for all types

Response-Time Reqt
Value
Deviation

Service Value and deviation must be defined

Module-QoS Reqt

type
max-value
avg-value
deviation
comp. form

Module
Module-Invoke

Types are: Processing, Storage, Traffic
Derived by corresponding Service-QoS requirements

Behavior Reqt
ActDistrFunc
Mean
StdDeviation

Role
Attributes are obligatory
One Behaviour requirement per Role

Traffic-Load Reqt

type
max-value
avg-value
deviation
comp. form.

Site
Types are: in,out,within
Derived by allocated modules Module-QoS require-
ments

Load Reqt

type
max-value
avg-value
deviation
comp. form.

Network
Types are: in,out,within
Derived by allocated sites

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 108

5.3.4 NFR Derivation

SysML includes specific relationships to associate requirements with other requirements

(indicating the way they affect each other) or other model elements. The containment re-
lationship, defined between requirements, indicates that the composite requirement is re-

alized if and only if all the contained ones are realized. In UML, realization is defined as a

specialized abstraction relationship between two sets of model elements, one representing

a specification (the supplier) and the other represents an implementation of the latter (the

client). In this way, an abstract requirement may be composed of more specific ones, or a

complex requirement may be described in a more detailed fashion. In the case of system

design, the notion of composite requirements is essential to indicate the way a requirement

defined for the system as a whole may be described in terms of the detailed requirements

defined for system components. The deriveReqt relationship indicates that a specific require-
ment is derived by others. Since relationships do not have properties, the way derived re-

quirements are specified is not depicted.

Derived requirements have attributes that their values are related to values of other, in-

terrelated requirements. A derive relationship between a derived requirement and a source

requirement is based on analysis. A derive relationship often shows relationships between

requirements at different levels of the specification hierarchy. There aremany ways to define

the derivation. OCL could be used to describe the derivation. If the derivation formula is com-

plex, an algorithm (or a heuristic method) could be used to define the derived attributes. The

implementation of the algorithm could be done in any programming language that a design

tool could support, even with a call to external program.

Derived requirements are used in order to provide indications to system designer about

the required resources (storage, processing and traffic). They could be considered as estima-

tionswhere specificQoS requirements are calculated to help the designer to define allocation

policies. In the case of EIS profile, the implementation language is the Java language, as it is

supported by the MagicDraw [3] modeling tool, that was used for the profile definition and

implementation.

The following subsection present the derivation algorithms for the following derived re-

quirements:

• Processing Module-QoS requirement: the derived attributes are the avg − value and
max − value.

• TrafficModule-QoS requirement: the derived attributes are avg−value andmax−value.

• Traffic-Load requirement: the derived attributes are avg − value and max − value.

Derivation of processing & storagemodule-QoS requirement

Processing and storage module-QoS requirements are defined for each module. These re-
quirement capture the average andmaximumvalues of the processing and storage resources

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 109

that are required from the services that are belonging to a module.

1: for ୧ ୀ ଵ to m (where୫ is the number of modules in {୫୭ୢ}) do
2: for ୨ ୀ ଵ to s (where ୱ is the number of services in {ୱ୰୴}౟ ) do
3: for ୩ ୀ ଵ to r (where ୰ is the number of roles in {୰୭୪ୣ}ౠ) do
4: for ୲ ୀ ଴ to 23 (where ୲ is an hour of a day) do
5: if ୗ୲ୟ୰୲୘୧୫ୣౡ ஸ ୲ ஸ ୉୬ୢ୘୧୫ୣౡ then
6: ୗୖౠ[୩, ୲] ୀ ୬୳୫ୠୣ୰୓୤୓ୡୡ୳୰ୣ୬ୡୣୱౡ
7: ୗୖୟ୴୥ౠ[୩, ୲] ୀ ୬୳୫ୠୣ୰୓୤୓ୡୡ୳୰ୣ୬ୡୣୱౡ ∗ ୮ୣ୰ୡୣ୬୲ୟ୥ୣౡౠ
8: else
9: ୗୖౠ[୩, ୲] ୀ ଴

10: ୗୖୟ୴୥ౠ[୩, ୲] ୀ ଴
11: for ୲ ୀ ଵ to 23 do
12: ୗ୫ୟ୶ౠ[୲] ୀ ∑౨

ౡసభ ୗୖౠ[୩, ୲]
13: for ୲ ୀ ଵ to 23 do
14: ୗୟ୴୥ౠ[୲] ୀ ∑౨

ౡసభ ୗୖୟ୴୥ౠ[୩, ୲]
15: for ୲ ୀ ଵ to 23 do
16: ୗ୮୰୭ୡౠ[୲] ୀ ୗ୫ୟ୶ౠ[୲] ∗ ୮୰୭ୡ౩
17: ୗୱ୲୭୰ౠ[୲] ୀ ୗ୫ୟ୶ౠ[୲] ∗ ୱ୲୭୰౩
18: ୗୟ୴୥୮୰୭ୡౠ[୲] ୀ ୗୟ୴୥ౠ[୲] ∗ ୮୰୭ୡ౩
19: ୗୟ୴୥ୱ୲୭୰ౠ[୲] ୀ ୗୟ୴୥ౠ[୲] ∗ ୱ୲୭୰౩
20: for ୲ ୀ ଵ to 23 do
21: ୑୮୰୭ୡ౟[୲] ୀ ∑౩

ౠసభ ୗ୮୰୭ୡౠ[୲]
22: ୑ୱ୲୭୰౟[୲] ୀ ∑౩

ౠసభ ୗୱ୲୭୰ౠ[୲]
23: ୑ୟ୴୥୮୰୭ୡ౟[୲] ୀ ∑౩

ౠసభ ୗୟ୴୥୮୰୭ୡౠ[୲]
24: ୑ୟ୴୥ୱ୲୭୰౟[୲] ୀ ∑౩

ౠసభ ୗୟ୴୥ୱ୲୭୰ౠ[୲]
25: ୮୰୭ୡ౟ ୀ ୫ୟ୶మయ౪సభ୑୮୰୭ୡ౟[୲]
26: ୱ୲୭୰౟ ୀ ୫ୟ୶మయ౪సభ୑ୱ୲୭୰౟[୲]
27: ୟ୴୥୮୰୭ୡ౟ ୀ

∑మయ౪సభ౉౗౬ౝ౦౨౥ౙ౟[౪]
౮ where ୶ the number of୑ୟ୴୥୮୰୭ୡ౟[୲] ஷ ଴

28: ୟ୴୥ୱ୲୭୰౟ ୀ
∑మయ౪సభ౉౗౬ౝ౩౪౥౨౟[౪]

౮ where ୶ the number of୑ୟ୴୥ୱ୲୭୰ୡ౟[୲] ஷ ଴

Algorithm 1: Calculating the max-value and avg-value attributes of the processing and

storage Module-QoS-requirement

Amodule is comprised of services. Each service satisfies a Service-QoS requirement, which

is composed of three types: processing, storage and traffic. Α module-QoS requirement also

is composed of the same three types. To estimate the corresponding processing module-
QoS requirement, we have to estimate the average and the maximum values of the required

processing power and the storage capacity. Themaximun value is estimated if all the services

concurrently require processing power and storage for their active time.

Module-QoS requirement is defined for eachModule-Replica in Topology view. The derived
attributes are themaximum and the average processing power and storage that the services

belonging to this module require.

For eachmodule replica participating in Topology viewwhich is replica of a corresponding

module defined in Functional view ({mod}), maximum and average processing power and

storage requirements are estimated as described in the following steps:

i. For each service belonging to the module {srv}୫, the roles initiating it, either directly or
indirectly, are gathered in {role}ୱ list.

ii. Maximun concurrent instances of each role initiating this service, called SR, are esti-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 110

mated, based upon StartTime, EndTime and numberOfOccurences properties of this role
on a daily basis (using 24 time-intervals lasting an hour).

iii. Average concurrent instances of each role initiating this service , called SRavg, are esti-
mated on a daily basis (using 24 time-intervals lasting an hour), based upon StartTime,
EndTime and numberOfOccurences properties of this role and the percentage property of
initiation entities associating the role (either directly or indirectly) to the service .

iv. Maximum concurrent role instances initiating the service, called Smax୧, are estimated

for each time-interval.

v. Average concurrent role instances initiating the service, called Savg୧, are estimated for

each time-interval.

vi. Maximum processing power requirements imposed by the invocation of each specific

service, called Sprocୱ, are estimated for each time-interval, based upon corresponding

service-QoS requirement properties and maximum concurrent role instances initiating

the service.

vii. Maximum storage requirements imposed by the invocation of each specific service,

called Sstorcୱ, are estimated for each time-interval, based upon corresponding service-
QoS requirement properties and maximum concurrent role instances initiating the ser-

vice.

viii. Maximum processingmodule-QoS requirement, called proc୫, is estimated as the maxi-

mum value of the sums of the maximum processing power requirements imposed by

the invocation of each specific service it belongs to, computed for each time-interval

(called Mproc).

ix. Maximum storagemodule-QoS requirement, called stor୫, is estimated as themaximum

value of the sums of the maximum storage requirements imposed by the invocation of

each specific service it belongs to, computed for each time-interval (called Mstor).

x. Average processing power requirements imposed by the invocation of each specific ser-

vice, called Savgprocୱ, are estimated for each time-interval, based upon corresponding

service-QoS requirement properties and average concurrent role instances initiating the

service.

xi. Average storage requirements imposed by the invocation of each specific service, called

Savgstorୱ, are estimated for each time-interval, based upon corresponding service-QoS
requirement properties and average concurrent role instances initiating the service.

xii. Average processingmodule-QoS requirement, called avgproc୫, is estimated as the aver-

age value of the sums of the average processing power requirements imposed by the

invocation of each specific service it belongs to, computed for each time-interval (called

Mavgproc).

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 111

xiii. Average storagemodule-QoS requirement, called avgstor୫, is estimated as the average

value of the sums of the average storage requirements imposed by the invocation of

each specific service it belongs to, computed for each time-interval (called Mavgstor)

Algorithm 1 describes this computation process. The same algorithm calculates and the

storage-module-QoS requirement.

Derivation of Traffic Module-QoS requirement

Traffic-module-QoS requirement is defined for each module-invoke relationship defined in

Topology view, which is also derived from the services relations defined in Functional view.
This requirement captures the average and maximum values of the networking resources

that are required from the communicating services of these two module-replicas.

In order to find the maximum traffic between a module A and a module B, the following
steps are performed 1:

i. for each service belonging to module A, called srv୅,

ii. for each service belonging to module B, called srv୆,

iii. if a service of themodule A (srv୅) invokes a service of module B (srv୆), we add this traffic

to the total_traffic(A → B)

iv. in order to find the maximum traffic that is exchanged between srv୅ and srv୆ (srv୅
invokes srv୆) hourly , we multiply the value of the traffic service-QoS requirement that

is satisfied by the srv୆ (trafficQoSreqୱ୰୴ా ) with the maximum instances of the roles that

initiate this srv୅ for each specific hour

v. the maximum traffic for the module invoke between module A and B (max(traffic −
module − QoS୅→୆)), is the maximum value of total_traffic(A → B)matrix

vi. in order to find the average traffic that is exchanged between srv୅ and srv୆ in a hourly

basis, wemultiply the value of the traffic service-QoS requirement that is satisfied by the

srv୆ with the average concurrent instances of the roles that initiate srv୆ for each hour

vii. to find the average traffic requirement for the exchange between modules A and B, we
get the average traffic requirement from all hours

The way that the derived traffic module-QoS requirement is estimated, is presented in

Algorithm 3. The input, output and temporary data for this estimation are presented in Al-

gorithm 2.

Load requirements concern the load imposed to EIS resources by EIS components allo-

cated to them. They provide an indication for the systemdesigner so as to have an estimation
1We have adopted the following assumption: a role ia active by calling services at specific hours a day, which

are defined in ୱ୲ୟ୰୲୘୧୫ୣ and ୣ୬ୢ୘୧୫ୣ attributes

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 112

Input: {mod}: a list of Client and Server Modules of Functional View

Input: {smod}: a list of Server Modules of Functional View

Input: S୧: a list of the services that belong to a specific Module i
Data: Smax: a Table created for each service s holding the maximun number of all role

instances responsible for the invocation of the service a specific hour of the day.

It is assumed that all the associated roles invoke the service at the same time.

Data: Savg: a Table created for each service s holding the average number of all role

instances responsible for the invocation of the service a specific hour of the day.

Data: invokes(S୧, S୨): returns true if service S୧ invokes service S୨ otherwise returns false
Data: Mtmax୫౟→୫ౠ : a Table created for each pair of modules m1,m2 holding the

maximum traffic that module m1 invokes to module m2 each hour of the day

Data: Mtavg୫౟→୫ౠ : a Table created for each pair of modules m1,m2 holding the average

traffic that module m1 invokes to module m2 each hour of the day

Output: maxtraff୫౟→୫ౠ : the value of maximun traffic requirement between modules ୧1
and m୨. It is stored in the max-value attribute of the traffic

Module-QoS-requirement associated to invokation m୧ → m୨

Output: avgtraff୫౟→୫ౠ : the value of average traffic requirement between modules ୧1
and m୨. It is stored in the avg-value attribute of the traffic

Module-QoS-requirement associated to invokation m୧ → m୨

Algorithm 2: Input, Output and Temporary Data Structures

1: for i = 1 to m (where୫ is the number of modules in {୫୭ୢ}) do
2: for j = 1 to ms (where୫ୱ is the number of server modules in {ୱ୫୭ୢ}) do
3: if i ≠ j then
4: for k = 1 to S୧, l = 1 to S୨
5: (where ୗ౟ is the number of services in {ୱ୰୴}౟ and ୗౠ the number of services to {ୱ୰୴}ౠ) do
6: if invokes(S୧୩,S୨୪) then
7: Mtmax୫౟→୫ౠ+ = Smax(S୧୩) ∗ traffic(S୨୪)
8: Mtavg୫౟→୫ౠ+ = Savg(S୧୩) ∗ traffic(S୨୪)
9: maxtraff୫౟→୫ౠ = maxଶଷ୲ୀଵMtmax୫౟→୫ౠ[t]

10: avgtraff୫౟→୫ౠ =
∑మయ
౪సభ୑୲ୟ୴୥ౣ౟→ౣౠ [୲]

୶ , where x the number of Mtavg୫౟→୫ౠ[t] ≠ 0

Algorithm 3: Calculating traffic Module-QoS-requirements

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 113

of the software components that require resources. Similarly to service-QoS andmodule-QoS
requirements, three types of load requirements are defined: processing, storage and traffic.
The first two types are derived straightforward from the corresponding types ofmodule-QoS
requirements. Traffic-load requirements derivation is more complex, since it is based on the

network communication of software components, which are allocated to nodes across the

network.

Derivation of processing and storage Load requirement

Processing load requirements are defined for each node that is defined in atomic-network

diagrams. In nodes there are allocated module-replicas, which have specific processing re-

quirements that are derived from the services that are composed of. Two values are calcu-

lated for each processing load requirement: average and maximum value. Average value is

calculated as the sum of the average values of the module-replicas that are allocated to each

specific node. Maximum value is the sum of the maximum values of the module-replicas,

accordingly.

Derivation of traffic-Load and Load requirements

Performance requirements are defined as extended NFRs. Besides id and text properties,
quantitative properties are also defined.Maximumand average values are defined for utiliza-
tion requirement and minimum and average values are defined for availability requirement,

while the accepted deviation of values is also defined. The load requirement is described

by maximum value, average value, deviation and measurement unit quantitative properties.

Availability and utilization requirements are defined by the network designer. The load re-

quirement, though, is a derived one, as shown by the corresponding stereotype. Thus, it is

described by computational formula additional property. In practice, it is an estimation of the

aggregated QoS parameters of the module replicas they serve as system resources. There

are three types of load requirement: processing, storage, satisfied by nodes, and traffic sat-
isfied by networks. Traffic-load requirement is related to site-to-network allocation decisions,

and is derived by corresponding traffic requirements, which in turn are derived by traffic-
Module-QoS requirement of module-replicas allocated to sites. More than one sites may be

allocated to a network. When a site is allocated to a network, themodule-replicas allocated to
it, must be specifically allocated to network nodes belonging to this network. When changes

are made to site allocation or network architecture (e.g., new sites are allocated/removed

to/from a network), module-replica allocation to network nodes is also adjusted and the re-

estimation load requirements is needed, to ensure that hardware elements composing the

network architecture provide the requested quality of service to the software components.

The maximum and average value properties of traffic-load requirement are derived from

corresponding traffic requirements properties, defined for each site that is allocated to the

network satisfying this requirement. Traffic requirements, which are defined for each site, in-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 114

dicate throughput requirements concerning the information flowing from this site to others

and within the site. Traffic-load requirement is described by similar quantitative properties as

the load requirement. The destination property is defined to indicate the site the information

is flowing to.

Todetermine the trafficbetween two sites, named source and target, the followingprocess
is proposed:

i. get all modules of source site
ii. get all modules of target site
iii. for each module belonging to source site, if there is amodule-replica-invoke relationship

and the target module belongs to target site, then add the max and avg traffic values of
the traffic requirement of thismodule-invoke relation to the corresponding values of the
traffic requirement.

The computation formula of the maximum and average value of the traffic-load require-

ment, is a complex process defined by a heuristic algorithm presented in algorithm 4. In

practice, it was integrated in corresponding MagicDraw plugin. The algorithm 4 estimates

traffic-Load values in a recursive fashion, starting with traffic-load computation for atomic

networks, based on atomic site traffic requirement values allocated to the specific network.

To this end, matrix A is estimated based on traffic requirements between all atomic sites

(trafficୱౡ→ୱౢ in STEP1). STEP 2 consists of traffic-load computation for all atomic networks. Since

composite networks consist of other networks, a traffic-load requirement is estimated for a

composite network, if and only if the traffic-load requirement has been estimated for all the

networks belonging in the composite network. Thus, in STEP 3 traffic-load is estimated for all

composite networks consisting only of atomic ones, and in STEP 4 traffic-load is estimated for

all the rest composite networks. In STEP 5, traffic-load is estimated for all network connec-

tions defined in the Network Infrastructure view. As shown in algorithm 4, the traffic traveling

through a network consists of internal traffic, exchanged between the sites allocated to it,

and external traffic, propagated to other networks. In the case of a composite network, the

traffic imposed to it may be estimated based on the external traffic of all the networks be-

longing to it. Since the computation of a network’s internal traffic can be performed more

efficiently, the network traffic is estimated using the total and internal traffic of its compo-

nents.

5.3.5 NFR Verification

System designer uses design views to define software and hardware architecture and

NFR view to impose performance requirements to model elements. The intension is to eval-

uate the proposed system synthesis and this is possible if an appropriate evaluationmethod is

chosen and if all the defined requirements are finally verified by their corresponding system

elements. There are two sets of requirements: the first set is providing input information for

evaluation process, for example the service-QoS requirement defining the required resources

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 115

for its execution and the second set is used as the validation rule, to check if a specific evalua-

tion process output is between a range defined in this requirement (Figure 5.10). In order to

facilitate the evaluation process, a specific view thatmatches the input and output properties

of each model entity and defines the evaluation configuration data is introduced.

Since this thesis emphasizes on performance NFRs, which are described using both qual-

itative and quantitative properties, a simulation, as a quantitative method, is employed to

produce the necessary data for their verification. In such case, the way system evaluation is

performed, conforms to the corresponding simulationmethod. A specific view that serve the

evaluation process is introduced, to separate the systemmodel from the verification process.

Evaluation view serves the following aspects:

1: let ୗ ୀ {ୱబ , ୱభ , ⋯ , ୱ౤} be the set of all atomic-sites
2: STEP 1:
3: create a (୬మ × ଷ) matrix A ୀ ୅[୧, ୨] , where ୬ ୀ |ୗ|, |ୗ| stands for the number of elements of the set ୗ, as follows:
4:

୅[୧, ୨] ୀ
⎧⎪
⎨⎪⎩

ୱౡ , ୩ ୀ ⌊୧/୬⌋, ୨ ୀ ଴
ୱౢ , ୪ ୀ ୧ ୫୭ୢ ୬, ୨ ୀ ଵ
୲୰ୟ୤୤୧ୡ౩ౡ→౩ౢ , ୩ ୀ ⌊୧/୬⌋, ୪ ୀ ୧ ୫୭ୢ ୬, ୨ ୀ ଶ.

where ୱౡ , ୱౢ ∈ ୗ,
୲୰ୟ୤୤୧ୡ౩ౡ→౩ౢ is the aggregated traffic between sites ୗౡ and ୗౢ

5: STEP 2:
6: let ୔ be the set of all atomic-networks
7: ∀୮ ∈ ୔: ୗ౦ , ୗ౦ ⊂ ୗ be the set of sites allocated to atomic-network ୮
8: ∀୮ ∈ ୔:

୲୭୲ୟ୪୘୰ୟ୤୤୧ୡ౦ ୀ ∑୅[୶, ଶ], {୶ ∶ ୅[୶, ଴] ∨ ୅[୶, ଵ] ∈ ୗ౦}
୧୬୘୰ୟ୤୤୧ୡ౦ ୀ ∑୅[୷, ଶ], {୷ ∶ ୅[୷, ଴] ∧ ୅[୷, ଵ] ∈ ୗ౦}
୰ୣ୫୭୴ୣ(୅[୷, ∗]{୷ ∶ ୅[୷, ଴] ∧ ୅[୷, ଵ] ∈ ୗ౦})

9: STEP 3:
10: let େ be the set of all composite-networks that are comprised only of atomic-networks
11: ∀ୡ, ୡ ∈ େ, let ୕ౙ be the set of atomic-networks belonging to ୡ, ୬ ୀ |୕ౙ|
12: ∀ୡ, ୡ ∈ େ, let ୗౙ be the set of sites allocated to atomic-networks belonging in ୕ౙ

∀ୡ, ୡ ∈ େ : ୲୭୲ୟ୪୘୰ୟ୤୤୧ୡౙ ୀ ∑౤
౧సభ ୲୭୲ୟ୪୘୰ୟ୤୤୧ୡ౧ ି ୧୬୘୰ୟ୤୤୧ୡ౧, ୯ ∈ ୕ౙ ି ୧୬୘୰ୟ୤୤୧ୡౙ

୧୬୘୰ୟ୤୤୧ୡౙ ୀ ∑୅[୷, ଶ], {୷ ∶ ୅[୷, ଴] ∧ ୅[୷, ଵ] ∈ ୗౙ}
୰ୣ୫୭୴ୣ(୅[୷, ∗]{୷ ∶ ୅[୷, ଴] ∧ ୅[୷, ଵ] ∈ ୗౙ})

13: STEP 4:
14: let ୖ be the set of all composite-networks that are comprised of networks for which traffic is calculated
15: ∀୰, ୰ ∈ ୖ, let ୕౨ be the set of networks belonging to ୰, ୬ ୀ |୕౨|
16: ∀୰, ୰ ∈ ୖ, let ୗ౨ be the set of sites allocated to networks belonging in ୕౨

∀୰, ୰ ∈ ୖ :
୲୭୲ୟ୪୘୰ୟ୤୤୧ୡ౨ ୀ ∑౤

౧సభ ୲୭୲ୟ୪୘୰ୟ୤୤୧ୡ౧ ି ୧୬୘୰ୟ୤୤୧ୡ౧, ୯ ∈ ୕౨ ି ୧୬୘୰ୟ୤୤୧ୡ౨
୧୬୘୰ୟ୤୤୧ୡ౨ ୀ ∑୅[୷, ଶ], {୷ ∶ ୅[୷, ଴] ∧ ୅[୷, ଵ] ∈ ୗ౨}
୰ୣ୫୭୴ୣ(୅[୷, ∗]{୷ ∶ ୅[୷, ଴] ∧ ୅[୷, ଵ] ∈ ୗ౨})
repeat step 4 until ୖᇲ ୀ ∅

17: STEP 5:
18: let ୘ be the set of all network-connections
19: ∀୲, ୲ ∈ ୘,let ୬భ , ୬మ be the two connected networks and ୗభ , ୗమ the sets of sites allocated to ୬భ , ୬మ respectively

∀୲, ୲ ∈ ୘ :
20: ୲୰ୟ୤୤୧ୡ౪ ୀ ∑୅[୷, ଶ], {୷ ∶ ୅[୷, ଴] ∧ ୅[୷, ଵ] ∈ ୗభ ∪ ୗమ}

Algorithm 4: Estimating the load requirement for networks

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 116

Figure 5.10: Two kinds of requirements: performance and behavior

• evaluation view is automatically created when an evaluation method is applied to sys-

tem model;

• design data are separated from evaluation data;

• each evaluation method require specific configuration data, which can are differenti-

ated per simulation scenario;

• a history of the evaluation scenarios facilitates the designer to explore alternative solu-

tions;

• each evaluation scenario is a snapshot of the architecture design.

Algorithm5presents the process of requirements verificationwhen the simulation results

are incorporated into the system model.

1: STEP 1:
2: Gather simulation results and populate output attributes of evaluation entities
3: STEP 2:
4: If an evaluation entity satisfies a requirement, a validation rule is applied. Values of outpout attributes are checked against

the defined values for the corresponding NFR. For all NFRs, a satisfying value is required, but there are cases where a
range of values is more appropriate. Let ୱ be a value of an output attribute of an evaluation entity, ୰ be the value of the
corresponding requirement and ୢ be the deviation of this value. Then the following equation should be valid:

ୱ ∈ [୰ ି ୢ, ୰ ା ୢ]

5: STEP 3:
6: If ୱ ∉ [୰ିୢ, ୰ାୢ], this means that the validation rules failed, so the specific requirement is not verified. The user is notified

for this event, by annotating the evaluation and the design entity.

Algorithm 5: NFR Verification

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 5. Designing EIS Architecture 117

5.4 Summary

In this chapter the views concerning the design phase, where software and hardware ar-

chitecture are specified, were analytically presented. Furthermore, the organization of NFRs

was discussed, aswell as, the estimation of derived requirementswas presentedwith specific

algorithms. Next section presents the Evaluation view in detail.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach





Chapter 6
Evaluating EIS Architecture

Contents
6.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Evaluation View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 The Big Image: Views Interrelation . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Automating the verification Process . . . . . . . . . . . . . . . . . . . . . . . 128

6.4.1 Simulation framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4.2 Generate executable simulation model . . . . . . . . . . . . . . . . . . . 129

6.4.3 Simulation Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4.4 Simulation results incorporation . . . . . . . . . . . . . . . . . . . . . . . 134

6.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1 Outline

This chapter describes the Evaluation view. This view is introduced to enhance the defini-

tion specific EIS architecture configurations, which should be evaluated, as well as, to store

the evaluation results of different configuration scenarios. Using these results, NFRs verifi-

cation is done. Finally, performance evaluation is enabled via requirements verification.

6.2 Evaluation View

In order to effectively define EIS architecture, the system architect should ensure that all

NFRs are fulfilled. Evaluation view is used to verify these requirements. System performance

varies because of the ability to define different EIS architecture configurations in Functional
and Network Infrastructure views. In practice, Evaluation view determines whether the pro-

posed (current) architecture meets specifications placed by NFRs. Since EIS architecture de-

119



Chapter 6. Evaluating EIS Architecture 120

sign process may require to evaluate and properly adjust the proposed architecture more

than once, Evaluation view consists of multiple evaluation scenarios, in order to evaluate al-

ternative solutions. Since simulation is employed to evaluate the architecture design, these

scenarios are specific simulation experiments.

Figure 6.1: Interrelating EIS Performance Requirements, Design Entities and Evaluation En-

tities

An evaluation scenario is a set of conditions or variables which will be tested (simulated)

to ensure that requirements are met. As indicated in Figure 6.1, an evaluation scenario is

conducted to evaluate design decisions depicted in Functional, Topology and Network Infras-
tructure views, while its results are used to verify requirements defined in NFR view. When

conflicts are discovered, changes are made to the system configuration by the system archi-

tect (e.g. Functional, Topology, Network Infrastructure or even NFR view) and a new evaluation
scenario is initiated by the system architect until a satisfiable solution is reached.

The entities participating in a evaluation scenario and the way they are interrelated to with
entities belonging to design views are depicted in Figure 5.1. An evaluation scenario evaluates
network topology and network elements. For each design entity that will be evaluated, a cor-

responding evaluation entity is created (notedwith Eval prefix). As such, Eval-Node entity eval-
uates workstation and server elements from Network Infrastructure view. An atomic network
is represented as Eval-Atomic-Network and a composite network as Eval-Composite-Network. In-
terrelations between network evaluation entities have a direct mapping to interrelations of

corresponding entities in Network Infrastructure view. Roles andmodules defined in Functional
view are allocated to nodes in Network Infrastructure view. Since allocation decisions are part
of the EIS architecture, these entities should also be representedwithin a evaluation scenario

by Eval-Role and Eval-Module entities. Furthermore, the Eval-Service entity is included corre-

sponding to a service defined in Functional view, since it contains the necessary information

for the execution of specific services grouped within a module.

Each entity in Evaluation view is created in order to evaluate a specific EIS architecture

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 6. Evaluating EIS Architecture 121

Figure 6.2: Eval-Service entity description

entity. Thus, NFRs related to the entity that the system designer wishes to verify, should also

be related to the evaluation entity. An Evaluation view entity can only be related to require-

ments that the corresponding design entity should satisfy. For example, a service satisfies a
responseTime requirement indicating maximum execution time. This requirement is verified

by Eval-Service entity. Figure 6.2 illustrates this example.

Evaluation entities have input and output attributes. Input attributes correspond to at-

tributes describing corresponding design entity. Output attributes indicate simulation re-

sults. To verify a requirement, the systemdesigner (better yet, the design environment) should

compare output attributes to corresponding requirement attributes, to check if there is a

conflict. As indicated in Figure 6.2 for example, Eval-Servicehas as input attributes the amounts

of processed, stored or transferred information that a service requires during its execution.

These attributes are inherited from Service entity belonging to Functional view. Moreover,

Eval-Service has as output attribute the average responseTime, which is computed when the

evaluation scenario is executed. ResponseTime attribute of Eval-Service is compared to respon-
seTime requirement that this Service has to satisfy. If a conflict has been identified, the sys-

tem designer should alter the system design (e.g. modify the network architecture or the

requirement itself) using Functional and NFR views and conduct a new evaluation scenario.

The Evaluation view entities are presented in Table 6.1, where the specific evaluation diagram

that they are participating is defined, while Table 6.2 illustrates them along with the defined

constraints.

It is important to enable the system designer to maintain all performed evaluation sce-

narios in order to reach an acceptable solution, since they are part of the information used

to make design decisions. Even if a acceptable solution is reached, information contained

within evaluation scenarios may be used to pursue alternative solutions. This is facilitated by

the fact that output attributes are directly compared to corresponding NFR attributes. There

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 6. Evaluating EIS Architecture 122

Table 6.1: Evaluation View Entities in Diagrams

EIS Profile entity SysML Entity Part Of

Evaluation View Block Definition diagram -
Evaluation Scenario Class -
Software Architecture Diagram Block Definition diagram -
Hardware Architecture Diagram Block Definition diagram -
Eval-Service Block Software Architecture Diagram
Eval-Service-Replica Block Hardware Architecture Diagram
Eval-Server-Module Block Software Architecture Diagram
Eval-Client-Module Block Software Architecture Diagram
Eval-Server-Module-Replica Block Hardware Architecture Diagram
Eval-Client-Module-Replica Block Hardware Architecture Diagram
Eval-Role Block Software & Hardware Architecture Diagram
Eval-Workstation System Hardware Architecture Diagram
Eval-Server System Hardware Architecture Diagram
Eval-Node System Hardware Architecture Diagram
Eval-Connection System Hardware Architecture Diagram
Eval-PTP-Connection System Hardware Architecture Diagram
Eval-Network (Atomic & Composite) Block Definition diagram Hardware Architecture Diagram
Eval-Usage-Allocation Allocation Hardware Architecture Diagram

are two kinds of requirements: qualitative and quantitative. In the case of quantitative require-
ments, the exact comparison between arithmetic values is not always appropriate. Thus, an

appropriate comparison method should be defined for a specific requirement.

The system designer may choose to evaluate the whole EIS architecture or a part of it.

Conditions, under which the EIS architecture is evaluated, are defined by behavior require-
ments associated to eval-Roles, since they are used to represent different behavior of the

same role, e.g. when a user initiate services, with what probability and how frequent.

Each evaluation entity is created in order to evaluate a specific EIS architecture entity and

verify corresponding requirements. During system design, NFRs may also be used to depict

specific behavior forced on system components (e.g., the way a traffic generatormay behave

under heavy traffic conditions). In this case, the corresponding evaluation entity should con-

form to them, providing input that could be used for the generation of the simulationmodel.

The relation between design and evaluation entities, as well as corresponding requirements

is depicted in Figure 6.1. To generalize this, it could be stated that a design entity satisfies two

NFRs: performance requirement (depicting system performance restrictions) and behavior

requirement (depicting system behavior). Only the first requirement must be verified by an

eval-entity, since the second provides input properties to the evaluation entity, indicating the

conditions under which the evaluation should be done.

Each evaluation scenario consists of two sub-views (diagrams), focusing on software and

hardware architecture design respectively.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 6. Evaluating EIS Architecture 123

Table 6.2: Evaluation View Entities

Stereotype Base Class Properties Constraints Diagram

Evaluation View Block Def. Diag. contains one or more evaluation scenarios -

Evaluation Scenario Block Def. Diag. contains all evaluation entities -

Eval-Role Block

in:activDistrFunct
in:mean
in:numberOfOccurences
in:startTime
in:endtime

evaluates Role entity and conforms to Behavior re-
quirement
for each role in an evaluation scenario only one be-
havior req is defined

H.A. & S.A.

Eval-Service Block

in:QoS-traffic
in:QoS-processing
in:QoS-storage
out:max-
ResponseTime
out:avg-
ResponseTime

evaluates service entity and verifies ResponseTime &
conforms to Service-QoS reqts

S.A.

Eval-Module Block

in:numberOfOccurences
in:list-of-services
out:avg-QoS-
processing
out:max-QoS-
processing
out:avg-QoS-storag
out:max-QoS-storage

evaluates module entity and verifies Module-QoS req.
avg-QoS-processing is computed as the average of
corresponding module replicas attribute
max-QoS-processing is computed as the maximum of
corresponding module replicas attribute
avg-QoS-storage is computed as the average of cor-
responding module replicas attribute
max-QoS-storage is computed as the maximum of
corresponding module replicas attribute

S.A.

Eval-Module-Invoke Dependency

in:invoking-Eval-
Module
in:invoking-Eval-
Module
out:avg-QoS-traffic
out:max-QoS-traffic

defined between Eval-Modules
evaluates Module-Invoke entity and verifies traffic
Module-QoS requirement
avg-QoS-traffic is computed as the average of corre-
sponding module replicas attribute
max-QoS-traffic is computed as the maximum of cor-
responding module replicas attribute

S.A.

Eval-Initiate Dependency in:percentage defined between an Eval-Role and an Eval-Service S.A.

Eval-Module-Replica Block

in:instances
in:list-of-services
out:avg-QoS-
processing
out:max-QoS-
processing
out:avg-QoS-storage
out:max-QoS-storage

evaluates Module-Replica entity and verifies Module-
QoS req.

H.A.

Eval-Usage-Allocation Allocation in:instances
defined between an Eval-Role and an Eval-
Workstation

H.A.

Eval-Software-Allocation Allocation in:instances
defined between an Eval-Module-Replica and an Eval-
Node

H.A.

Software ArchitectureDiagram The entities participating in software architecture diagram
correspond to entities from Functional view and are used to define the behavior of the soft-

ware components during the evaluation of the proposed EIS architecture design; evaluate

the corresponding functional view entity and verify the requirements that should be satis-

fied. Technically, it is a simple block definition diagram, resembling the Functional View.

Hardware Architecture Diagram Hardware architecture diagram entities correspond to

entities from Topology and Network Infrastructure views, and are used to initialize an appro-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 6. Evaluating EIS Architecture 124

priate simulationmodel instance and evaluate the design entity and verify the corresponding

requirements. Hardware architecture diagram consists of a network diagram, presenting the

evaluation equivalent entities of Network Infrastructure view, and for each atomic network, a

block definition diagram exists, having the evaluation entities of the corresponding atomic-

network diagram of Network Infrastructure view.

Software architecture diagram defines the software architecture of replicas defined and

distributed in hardware architecturediagram. Their combination is able to build an executable

simulation model.

During the automated construction of software and hardware diagrams, validation rules

are applied to model elements to ensure that the appropriate simulation input data exist

and are valid. As soon as the simulation is performed and the results are incorporated, spe-

cific validation rules are performed to check the verification of all requirements, as stated in

Section 5.3.5.

6.3 The Big Image: Views Interrelation

This section describes the interconnections of model elements: how a design entity is

related to an evaluation entity and how is connected with requirements, in order to verify,
satisfy or conform to them. Furthermore, requirements derivations and allocations are also

depicted. All defined views are depicted in an abstract fashion, to show how they are inter-

connected through their containing elements connections.

To be able to track the interrelations of the model elements, we should place all model

elements in a figure. This would explain how the allocations, replications, evaluations and ver-
ification are defined between design entities and evaluation entities, as they were presented

in Figure. 4.10.

Focusing on Network Infrastructure view, in Figure 6.3, networks A:atomic-network and

B:atomic-network are interconnected through a point-to-point connection. Network architec-

ture design decisions are aiming to the allocation of sites to networks supporting them in

order to minimize network traffic. In Figure 6.3, sites S1:site and S2:site are allocated to net-

work A:atomic-network. To take such a decision, the network architect is based on the Traffic
requirements of the information exchange within and between sites. For that reason, a Load
requirement, satisfied by networks, is defined. In practice this requirement represents a per-

formance QoS indication imposed to the network system resource. It depends on site alloca-

tion decisions and it is derived by corresponding sites Traffic requirements. It is recomputed

each time a new network is added or deleted or a site allocation decision is made, while its

computation is not trivial, since a heuristic computation algorithm should be applied.

Network configuration is performed taking into account, besides load, utilization and avail-
ability requirements defined inNetwork Infrastructure view, as well as existing network infras-
tructure restrictions, represented as constraint requirements.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 6. Evaluating EIS Architecture 125

Focusing on the Topology view, traffic requirements, associated to sites, depend on soft-

ware allocation decisions. Software components, called modules, are defined in Functional
view. Each of them contains services initiated by roles, or invoked by other services. Each

service satisfies a responseTime requirement and impose specific requirements about the

needed QoS from processing, storage and networking resources for its execution.

Based on service-QoS requirements,module-QoS requirements associated to eachmodule
are derived. Modules communication is described by a Module_Invoke relation, as shown in

Figure 6.3 between modules M1 and M2.

A traffic-module-QoS requirement indicates the QoS needed from the network resources

to effectively perform data-exchange within acceptable time, e.g. so as all corresponding

services have an acceptable response time. Based on this, the software designer decides on

alternative software allocation polices, by

i. allocating one or multiplemodule-replicas for eachmodule in different sites
ii. decidingwhichmodule-replica to use inmodule communication (depictedby themodule-

replica-inkove relation).

For example, in Figure 6.3, two replicas of module M1 (M1R1 and M2R2) are allocated to

site S1:site. Both of them are invoking the single replica of moduleM2, called M2R1 allocated
to site S2:site. Traffic performance requirement depends on module replica allocation deci-

sions and is derived bymodule-Qos requirements associated tomodule-replica-inkove relation.

Module-replicas are allocated to nodes (either workstation or server) belonging in an

atomic network. In Figure 6.3, the module replica M1R1 is allocated toW1:workstation, which
satisfies the W1: Pro Load processing-Load requirement. This requirement is derived by the

corresponding Proc Module-QoS requirements (e.g.,M1R1 ∶ ProcModule−QoS) of all the mod-

ule replicas running on that workstation (the software components that are executing on

that node).

As shown in Figure 6.3, the load requirement for a network (A:Load), defined by the net-

work designer in Network Infrastructure view, is derived by a set of traffic-Module-QoS require-
ments defined by the software designer in Functional view (M1M2 ∶ TraffModule − QoS). This
means that A:Load is derived by the communication of software components that are allo-

cated to nodes that are belonging to that network. Paragraph Derivation of traffic-Load and

Load requirements analyzes this derivation. Analyzing this dependency is not evident, thus

a number of discrete views and an enhance performance requirement description mecha-

nisms, emphasizing requirement derivation and their association with specific design deci-

sion is needed to effectively design the system architecture.

In order to evaluate the proposed architecture design, Evaluation view is utilized. Evalua-
tion view consists of two sub-views, focusing on software and hardware design respectively

(as shown in the right part of Figure 6.3). The entities participating in software architecture

diagram view correspond to Functional view entities and are used:

i. to define the behavior of the software components during the simulation of the pro-

posed architecture design and

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 6. Evaluating EIS Architecture 126

ii. to evaluate the corresponding Functional View entities (for example the Eval-Module M2
evaluates the M2module and verifies the requirements that are satisfied by M2, based
on the behavior of all of its replicas).

Hardware architecture diagram entities correspond to Topology (module replicas) and Net-
work Infrastructure view entities, are used:

i. to initialize a corresponding simulation model instance and

ii. to evaluate the corresponding design view entities.

For example, the properties of W1: Eval-Workstation entity are used to verify the processing-

Load requirement that the corresponding design entity W1: workstation satisfies (W1: Proc
Load).

When the evaluation process is completed, evaluation results (simulation results) are in-

corporated into evaluation entities. In that way, evaluation entities are checked against de-

fined validation rules. If incorporated results are not in accordance with all related require-

ments that this entity verifies, this means that the defined requirements are not verified.

System designer has to change the architecture so as to re-evaluate the new system archi-

tecture until all requirements to be verified.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter
6.

Evaluating
EIS

Architecture
127

Figure 6.3: Performance Requirement Derivation and Verification in IS Architecture Design: An example

Anargyros
T.Tsadim

as
M
odel-Based

Enterprise
Inform

ation
System

D
esign:A

SysM
L-based

approach



Chapter 6. Evaluating EIS Architecture 128

6.4 Automating the verification Process

To evaluate the performance of an EIS architectural design, system designer would like

to have an integrated design environment that would support performance evaluation. This

means that ideally the designer would not like to be involved in the evaluation process, for

example he/she could perform evaluation without knowing the background processes such

as model transformations, simulation framework initialization and simulation execution. To

manage this, an automated evaluation process is presented in this section.

The steps required to accomplish the automation of the verification process, are:

• simulation framework selection

• simulation code generation

• simulation execution

• simulation results incorporation

6.4.1 Simulation framework

In the case of EIS, simulation frameworks supporting discrete time simulation are well

suited, as users and software services generate requests on other services. The requests

generate specific traffic on the network and processing and I/O load on the site of service.

Stochastic functions may be used to define random behavior of specific parts of the system,

like time handling and type of requests made by users.

Regarding the requirement forMDA compliance, the selected simulation frameworkmust

provide a standards-based specification for input simulationmodels, i.e. a MOFmeta-model.

This enables the definition and execution of standards-based transformations of EIS models

(UML meta-model) to simulation models. Modelica and DEVS simulation frameworks both

provideMOFmeta-models for simulationmodels specification, in thenotiondescribed above.

DEVS is appropriate for discrete time simulation by definition. Modelica is better suited for

simulating systems with continuous behavior, but it can also be used for discrete time sim-

ulation. As stated in 2.4.2, an extension of DEVS was introduced, making possible to define

simulation capabilities in a SysML model. From this work, the DEVS metamodel is utilized, as

we have already defined a SysML profile for our model.

DEVS is a formalism allowing a hierarchical and modular description of the models. In

the classic DEVS formalism, atomic DEVS captures the system behavior, while coupled DEVS

describes the structure of system. DEVS coupled elements enable the definition of composite

models in a way similar to SysML components and contain ports (input and output), other

DEVS (Atomic or Coupled) elements and couplings (e.g., port inter-connections).
In this thesis, focuswas given on defining behavior of DEVS atomicmodels and combining

them in DEVS coupledmodels, rather than using existing simulation components. Therefore,

the DEVS meta-model, proposed there, did not feature provisioning for this case. However,

in the case of EIS, models are composed of large amounts of interconnected components of

specific types (e.g. nodes, services, etc.). As simplification of the verification activity is one of

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 6. Evaluating EIS Architecture 129

our main goals, there is no need for EIS engineers to define each component’s behavior, us-

ing yet another (than the EIS) simulation specific profile. Therefore, the required simulation

components where analyzed and implemented during the application of the approach for

EIS, while initialization, composition and interconnection of the components emerge from

the EIS model during the verification execution. The missing feature was introduced in the

DEVS meta-model by extending it, as illustrated in Figure 6.4. In the previous version of the

DEVS meta-model, component references of DEVS coupled components could only be ref-

erences to other DEVS components, defined in the simulation model. In the revised version

of the meta-model, they may also be references to existing simulation library components,

in which case, required initialization parameters must be specified. The parameters may be

single values, multiple values or other simulation library components.

Figure 6.4: DEVS Meta-model extension

6.4.2 Generate executable simulation model

A valid executable simulationmodel should conform to the DEVSmeta-model, mentioned

in Figure 6.4 [74]. Thus, executable simulationmodel generation is performedwith the trans-

formation of the EIS model to the respective DEVS model.

This requires that a DEVS execution environment supporting the DEVS meta-model is se-

lected. If no such environment is available, existing environments must be configured or

extended, so that they can handle DEVS models as input. In our case, DEVSJava [121] was se-

lected and extended with a transformation layer that translates complex DEVS models, that

conform to the aforementioned meta-model, to DEVSJava executable code.

Regarding the generation of DEVS models from EIS models, the structure and relation-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 6. Evaluating EIS Architecture 130

ships of the latter were analyzed. The main model entities that affect overall performance

were identified in both hardware and software architecture diagrams (that are included in the

Evaluation view), like Eval-Network, Eval-Node etc.

Although, for EIS design purposes, it is better to define different aspects of EIS elements

using distinct diagrams/views, the simulation model should capture the structure and at-

tributes of a given concrete system each time. Additionally, verification and effectiveness of

the simulation largely depends on the simplicity of the simulation model. Apparently, model

structure andmodel element attributes and dependencies exist and can be used in the trans-

formation independently of the diagrams they appear in, which are more useful for organi-

zation/presentation purposes. Therefore, a set of simulation components were defined as

an equivalent to EIS software and hardware elements, as they could be combined in the con-

text of a given evaluation scenario. This is coarsely depicted in Figure 6.5, where EIS model

elements reside on the left side of the Figure and the respective DEVS model elements on

the right.

Moreover, Figure 6.5 illustrates the high-level patterns of the conceptual mapping be-

tween EIS model elements and DEVS model elements. However, these patterns can be ap-

plied on large and complex configurations of EIS, with several hundreds of nodes.

It is clearly illustrated that simulation elements usually derive from the combination of

more than one EIS model elements, with the exception of DEVS_Simulation_Controller. The
latter was decided to be defined independently from the DEVS_Scenario, in order to separate

simulation model structure from simulation execution context, like simulation duration or

number of simulation executions.

The EIS part of Figure 6.5 includes the main entities of the hardware architecture diagram
(Eval-Network, Eval-Node, Eval-Module-Replica-Invoke), the main entities of the software ar-
chitecture diagram (Eval-Role, Eval-Module, Eval-Service) and their associations and depen-

dencies. Also, the Eval-Scenario block provides information regarding the context of the eval-

uation that is used for the generation of the respective, top-most DEVS_Scenario and the

DEVS_Simulation_Controller elements. These EIS entities are utilized for the generation of the

respective DEVS elements (DEVS_Network,DEVS_Node, etc.), while associations and dependen-
cies mostly indicate how DEVS model elements should be interconnected. In EIS, elements

are organized under diagrams, which are combined with a scenario. On the contrary, DEVS

elements are organized in a more strict hierarchy. The DEVS_Scenario is the root of the model

containing the DEVS_Simulation_Controller, a set of interconnected DEVS_Network elements

and a set of DEVS_Nodes. Each DEVS_Node is composed of a DEVS_Processor, a DEVS_Storage, a
DEVS_Network_Interface and a set of DEVS_Modules, containing sets of DEVS_Services. Addition-
aly, the DEVS_Roles using each node are specified, as well as the DEVS_Network, where each

node belongs.

In a lower level of this transformation scheme, EIS entities were further analyzed to iden-

tify their key attributes that determine the performance of the system. Equivalent attributes

were defined in the respective simulation elements. The transformation handles their proper

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 6. Evaluating EIS Architecture 131

Figure 6.5: Outline of the EIS to DEVS model transformation

initialization, based on the values of the respective attributes of EIS elements. The possible

entity interconnection schemeswere also examined. Additional information derived from the

combination with other EIS model elements, like the Eval-Initiate dependencies that indicate

which services are initiated by each user role. Actually, a large set of attributes and associa-

tions of the EIS model, that cannot be depicted in the high level representation of Figure 6.5,

are utilized in the implemented transformation.

DEVS_Scenario, DEVS_Node and DEVS_Module were implemented as DEVS Coupled compo-

nents that are composed of other components. All other leaf elements were implemented as

DEVS Atomic components with the expected behavior. The interested reader may refer to the

source code of the aforementioned library components, in [122]. Each library component is a

Java class that extends DEVSJava basic classes ViewableAtomic or ViewableDigraph. Simulation

execution can be inspected via SimView, a free GUI framework for DEVSJava [121]. In View-
ableAtomic classes, the behavior of the simulation component is defined as determined by

the component state as affected by the reaction of the external events, with internal function-

ality. In ViewableDigraph classes, composite simulation components are defined, containing

other interconnecting components. The behavior of ViewableDigraph components is defined

by the composition of the behaviors of the contained components.

The fact that both meta-models (SysML and DEVS) are MOF-based, enables the use of

standard transformation languages, like QVT. Therefore, the appropriate QVT relations were

defined for the generation and interconnection of DEVSmodel elements from the respective

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 6. Evaluating EIS Architecture 132

EIS model elements. The first relation of the EIS to DEVS QVT transformation is displayed in

listing 6.1.

Listing 6.1: EIS to DEVS QVT transformation
transformation eis2devsMM ( eis:uml , devs:Devs ) {

top relation eisScenario2DevsModel {
scenarioName: String ;
checkonly domain eis scenario : uml::Class { name = scenarioName } ;
enforce domain devs model : Devs::MODEL {

DEVS_COUPLED = devsCoupled : Devs::DEVS_COUPLED {
MODEL_NAME = modelName : Devs::T_Model_Name { text = scenarioName } ,
COMPONENT_REFERENCE_LIST =

componentReferenceList : Devs::T_Component_Reference_List { } ,
INTERNAL_COUPLING = internalCoupling : Devs::T_Internal_Coupling { } } } ;

when { scenario . getAppliedStereotype ( ’ Evaluat ionView: :Evaluat ion Scenario ’ )ష>notEmpty ( ) ; }
where {

eisSimulationAttributes2ComponentReference ( scenario , componentReferenceList ,
internalCoupling ) ;

eisEvalNetwork2ComponentReference ( scenario , componentReferenceList , internalCoupling ) ;
eisIncludes2InternalCoupling ( scenario . getModel ( ) , internalCoupling ) ;
eisIncludesRev2InternalCoupling ( scenario . getModel ( ) , internalCoupling ) ;
eisEvalPTPConnection2InternalCoupling ( scenario . getModel ( ) , internalCoupling ) ; } }

. . .
}

Executable simulation models contain all the information required, indicating the impor-

tance of their automated generation from system models, without the need for human in-

terference. A part of a generated DEVS simulation model is presented in the listing 6.2. In

this listing a DEVS Coupled scenario contains a SimController DEVS library component and

a Network DEVS library component. Initialization parameters, derived from the EIS SysML

model, are in the simulation model.

Listing 6.2: DEVS simulation model
<?xml version=” 1.0 ” encoding=”UTFష8” ?>
<Devs:MODEL xmlns:xsi= ” ht tp : / /www.w3. org/2001/XMLSchemaషinstance ”
xmlns:Devs=”urn:DEVS_MM . ecore ”
xsi:schemaLocation=”urn:DEVS_MM . ecore platform: / resource /Eis2DevsMM/metamodel/DEVS_MM. ecore ”>
<DEVS_COUPLED>

<MODEL_NAME text= ” aScenario ” />
<COMPONENT_REFERENCE_LIST>

<COMPONENT_REFERENCE xs i : t ype=”Devs:T_Component_Reference ” text= ” Simulat ionControl ler ”>
<LIBRARY_COMPONENT c lass=” SimController ” package=” e is . l i b ra r y ”>

<INIT_PARAMS>
<INIT_PARAM xs i : t ype=” Devs:T_Value_Init_Param ” name=” simulationTime ”>

<VALUE type=” Real ” value=”3600 ” />
</ INIT_PARAM>
<INIT_PARAM xs i : t ype=” Devs:T_Value_Init_Param ” name=” simulationRuns ”>

<VALUE type=” Integer ” value=”1 ” />
</ INIT_PARAM>

</ INIT_PARAMS>
</LIBRARY_COMPONENT>

</COMPONENT_REFERENCE>
<COMPONENT_REFERENCE xs i : t ype=”Devs:T_Component_Reference ”
text= ”CompositeషNetwork regional o f f i ce 1 net evaluation ”>
<LIBRARY_COMPONENT c lass=”Network ” package=” e is ”>

<INIT_PARAMS>
<INIT_PARAM xs i : t ype=” Devs:T_Value_Init_Param ” name=” throughput ”>

<VALUE type=” Real ” value=”100 ” />
</ INIT_PARAM>
<INIT_PARAM xs i : t ype=” Devs:T_Array_Init_Param ” name=”nodes ”>

<INIT_PARAMS/>
</ INIT_PARAM>
<INIT_PARAM xs i : t ype=” Devs:T_Array_Init_Param ” name=” networks ”>

<INIT_PARAMS>
<INIT_PARAM xs i : t ype=” Devs:T_Value_Init_Param ” name=”network ”>

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 6. Evaluating EIS Architecture 133

<VALUE type=” Str ing ” value=”AtomicషNetwork reg is t ry o f f i ce 1 net evaluation ” />
</ INIT_PARAM>
<INIT_PARAM xs i : t ype=” Devs:T_Value_Init_Param ” name=”network ”>

<VALUE type=” Str ing ” value=”AtomicషNetwork datatacenter 1 net evaluation ” />
</ INIT_PARAM>

</ INIT_PARAMS>
</ INIT_PARAM>

</ INIT_PARAMS>
</LIBRARY_COMPONENT>

</COMPONENT_REFERENCE>
. . . .

< /DEVS_COUPLED>
</Devs:MODEL>

Given that the required simulation components are already implemented inDEVSJava, the

essential information contained in the generated DEVS model is the initialization, intercon-

nection and configuration of such components. Therefore, as far as the DEVS meta-model

compatible environment is concerned, we decided to implement a transformation of DEVS

models (XMI) to the respective DEVSJava configuration class that instantiates and configures

all EIS-related DEVSJava components, forming, this way, the executable DEVSJava code. This

transformation was defined using EXtensible Stylesheet Language Transformations (XSLT),

as it is basically a syntactic transformation that exploits initialization information in the DEVS

model and creates the respective Java declarations and statements. Therefore, the gener-

ated DEVS simulation models are executed in the DEVSJava environment after an automated

transformation.

To be able to execute the simulation, the corresponding library components were de-

veloped [122]. Table 6.3 presents them along with the corresponding EIS entities that they

implement.

Table 6.3: DEVS library components

Library Type EIS model element

Module Coupled Client-Module, Server-Module
Network Atomic Composite Network
NetworkInt Atomic Atomic-Network
Node Coupled Server, Workstation
Processor Atomic Processing Unit
Role Atomic Role
Service Atomic Service
Storage Atomic Storage Unit
SimController Atomic

6.4.3 Simulation Execution

Having produced the DEVSJava simulation code, the simulation is executed and anyone

can watch the progress through the DEVSJava simulation viewer (Figure 6.6).

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 6. Evaluating EIS Architecture 134

Figure 6.6: The DEVS suite simulation viewer

Simulation results are stored in XML format, so as to be able to be incorporated into the

design environment.

6.4.4 Simulation results incorporation

Having generated the executable simulation model, simulation may be executed and the

simulation results must be incorporated in the EIS model. Thus, requirement verification

through the profile, independent from the simulation environment is possible.

To exploit simulation results and import them in the EISmodel via standards-basedmodel

manipulation approaches, they should be provided in a standard representation, i.e. accord-

ing to a MOF meta-model. A simple meta-model for the representation of performance esti-

mation, was defined for that purpose, as illustrated in Figure 6.7.

For each EIS model element there are two recorded properties: one holding information

related with the identification of the model element, such as the name, the stereotype name
and a unique identifier and the second holding information relatedwith the simulation results

for that model element, such as a key-value pair for each attribute of the model element

that will be imported to the system model. Having such a representation, the incorporation

renders to one step procedure.

Having the simulation results imported in the system model, the only thing that the sys-

tem designer should do is to run validation rules. Validation rules are utilized to indicate the

evaluation entities associated to non-verified requirements. Evaluation entities not verifying

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 6. Evaluating EIS Architecture 135

Figure 6.7: Simulation results meta-model

amodel constraint aremarkedwith red color, and the designer is able, by clicking on them, to

identify the non-verified requirement. The verification process have been described in detail

in Section 5.3.5

All these tasks require expertise in several technologies and standards, as SysML, DEVS,

QVT, Java and the EIS domain. However, once implemented, the benefits from their combined

use are available for multiple uses by numerous, interested EIS engineers.

6.5 Implementation

The following steps were accomplished in order to implement the proposed approach:

i. EIS metamodel definition

ii. Implementation of EIS profile in MagicDraw [3] modeling tool, which was accomplished

in two steps:

• profile definition, extending SysML entities [123]. EIS profile is a set of diagrams,

each of them holding the corresponding stereotypes with their tagged-values

• validation rules and constraints implementation, using the plugin extensionmech-

anism of MagicDraw [124], writing Java code

iii. definition of the DEVS metamodel

iv. definition of theQVT transformation to produce theDEVSmodel from the systemmodel

v. generation of DEVSJava simulation code from the DEVS model

vi. implementation of the EIS library components [122] using the DEVSJava [125] simulator

vii. incorporation of the simulation results into the system model

viii. verification of the requirements, which is based on the simulation results

Many software tools were exploited throughout this thesis. The selection criteria were to

use open source software when possible or widely accepted commercial ones. A key issue

was to select a modeling environment that would support the SysML, as officially specified

my OMG. The complete list of software that was used, follows.

• MagicDraw [3] and SysML plugin [123] for MagicDraw, to define the EIS profile which is

supported by the EIS plugin

• Netbeans [126], as IDE for the development of EIS plugin

• Medini QVT [127] eclipse plugin, for the transformation of EIS model to DEVS model

• Java Architecture for XML Binding (JAXB), for the incorporation of simulation results

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 6. Evaluating EIS Architecture 136

• DEVSJava [121], to execute the simulation

Figure 6.8: Implementation overview

Effort was given in order to provide an automated environment to system designer (see

Figure 6.8). The design environment is based on a well-known commercial product, Magic-

Draw (Academic Standalone Edition) with SysML plugin, which provides an open API [124] to

encourage programmers to implement custom plugins for their specific domain. From the

designer’s perspective, the evaluation process is transparent (he is not involved in the sim-

ulation code generation, execution and incorporation of results). Especially, the EIS plugin,

incorporated the following functionality:

• Custom diagrams to support EIS profile views. Each diagram has a toolbar with the cor-

responding view elements (enhanced with diagram constraints). These diagrams are:

– Functional View

– Topology View

– Network Infrastructure View

– Atomic Network Diagram

– NFR View

– Evaluation View

– Software Architecture Diagram

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 6. Evaluating EIS Architecture 137

– Hardware Infrastructure Diagram

– Evaluation View Atomic Network Diagram

• Validation rules to ensure model consistency

• Constraints implementation in EIS plugin.

• Auto-generation of evaluation scenarios

• Invocation of shell scripts

• Invocation of model transformations

• Incorporation of simulation results

• Requirements verification

6.6 Summary

This chapter presented the evaluation phase of the proposed approach. Evaluation view

was analytically described. An abstract overview of the approach, involving all defined views

with their interrelations was presented, to help the reader understand how we manage to

produce simulation executable code fromSysMLmodels. Finally, implementation issueswere

discussed, to prove that the approach was based on the integration of standards and tools,

in accordance in INCOSE. The next chapter presents an extensive case study, showing the

design and evaluation process from the perspective of the system environment, using the

implemented design tool.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach





Chapter 7
A Case Study

Contents
7.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.4 Design Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.4.1 Functional View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.4.2 Topology View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.4.3 Network Infrastructure View . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.4.4 NFR View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.5 Producing Evaluation View and Inflating Simulation Parameters . . . . . 153

7.5.1 Evaluation scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.6 Transformation to simulation code . . . . . . . . . . . . . . . . . . . . . . . . 157

7.7 Simulation execution and results incorporation . . . . . . . . . . . . . . . . 157

7.8 Verifying Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.9 Re-design System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.10 Experience Obtained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.1 Outline

This chapter presents a case study, to prove the feasibility of the proposed approach.

Here, we will show how the system designer could use the proposed views to define the

architecture design of an EIS. Furthermore, the evaluation process will be described step-by-

step and the potential re-adjustments are discussed.

139



Chapter 7. A Case Study 140

7.2 Description

In the followingwediscuss the case of renovating a legacy information system supporting

a large-scale public organization. The organization supports more than 350 interconnected

regional offices and its main purpose is to provide services to the public. Regional offices

are technologically supported by a central IT Center responsible for IT diffusion and man-

agement. More than 15.000 employees work in the organization having on-line access to

the legacy system, while there are more than 300 different services provided to the public.

Regional offices are divided into three categories according to their size, structure and per-

sonnel (large, medium and small). Each category is treaded differently in terms of network

infrastructure requirements. All of them have the same structure consisting of seven differ-

ent departments reflecting independent operation, while all departments provide services

to the citizens.

Existing system architecture is based on client-server model. All application logic is pro-

grammed within the client platform, while data are distributed in local database servers

located in each regional office. A central database is supported in the IT Center for data

synchronization and lookup purposes. Client programs access the local database to store

data, while they access the central databasemostly for lookup purposes. Local data are asyn-

chronously replicated in the central database using a transactionmanagement system (TMS).

The IT Center and all regional offices participate in a private TCP/IP network to facilitate effi-

cient data replication.

To enhance the level of service provided by the organization, over the last decade an e-

government portal was established. Themain target of the portal is to provide easy access to

citizens twenty four hours per day, seven days perweek and tominimize the need for citizen’s

presence in regional offices. The portal facilitates on-line transactional services and ensures

on-line access to the databases of the legacy information system, serving almost one third

of requests processed by the legacy system on a daily basis.

Since hardware supporting the legacy system was obsolete, the IT Center obtained the

necessary funds to replace it. Though, since almost one third of the citizens request are ser-

viced through the portal, it was decided to explore the renovation of the legacy information

system by adopting modern technological trends, such server-based computing and thin

clients to minimize maintenance cost. Hardware consolidation in the IT Center was consid-

ered instead of supporting local servers in regional offices, aswell as changes in the database

architecture by supporting one central database to avoid synchronization. Legacy system

architecture modification should be considered without any changes to existing application

code. Themodel-based EIS Architecture design approach presented in Chapter 4 was applied

to explore alternative architectures and their implications to the network infrastructure. One

of the main objectives of legacy system architecture re-design was to enhance application

performance without rewriting the applications themselves.

One of the main objectives of legacy system architecture re-design was to enhance ap-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 7. A Case Study 141

plication performance, without major rewriting of the applications themselves. Alternative

software architectures and their implications to hardware/network infrastructure were eval-

uated. Since performance plays a significant role, the application of the EIS profile explored

related design decisions and evaluated them. The scenario to be explored is to support the

existing distributed database architecture and try to consolidate the hardware in order to im-

prove the overall performance. A set of different architectural designs were proposed form-

ing the corresponding evaluation scenarios. To measure the overall performance, specific

non-functional requirements, such as response times were defined.

7.3 Challenges

To measure the performance of a system, specific quantitative parameters are required.

Our first challenge was to define these parameters. The identification of the requirements

for thr software components was not a straightforward procedure, since NFRs were not

recorded, indicating the lack of Enterprise Architecture perception in the organization.

Another challenging issue was the fact that neither the software maintenance or admin-

istration personnel were able to provide accurate NFR information regarding response time

or other performance-related requirements for the software and hardware components.

To overcome these challenges, the response time requirements were finally defined by

software designers of the organization, while the QoS requirements were obtained via man-

ual auditing application functionally in the current version of the system. To obtain the re-

quired resources (processing, storage and networking) of a software component, the Con-

structive CostModel (COCOMO) II [128], as a procedural software cost estimationmodel, was

utilized. Using Functional Point Analysis technique it is possible to quantify the functions con-

tained within software in terms that are meaningful to the software users. Function points

are a standard unit of measure that represent the functional size of a software application.

Using these methods we were able to calculate the function points of each software compo-

nent (service) and transform them to countable processing instructions.

As a result, the accurate definition of service-QoS was essential for the effective explo-

ration of application performance based on alternative architecture scenarios.

7.4 Design Mode

7.4.1 Functional View

Functional View describes software architecture of legacy system. Seven independent

applications are supported, each one perceived as a different module, while a total of 300

on-line services are provided by them. According to legacy application design, each appli-

cation reflects the operation of a specific department of regional office. Since application

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 7. A Case Study 142

functionality is well-known, the identification of software architecture and performance re-

quirements was perceived as a trivial task. To obtain this information, the system designer

had to communicate with application maintenance personnel in the corresponding depart-

ment of the IT Center. RUP methodology ( [103], [75]) was used for software development,

thus application description models were developed within Rational Rose platform. Appli-

cation description (e.g. applications, modules and services) as well as data structures were

manually extracted from corresponding Rational Rose [129] files. Though the process was

not automated, the provision of Functional View meta-model, enabled the system architect

to easily obtain the necessary information. Unfortunately, the identification of service per-

formance requirements was not a straightforward procedure, since software maintenance

personnel was not able to accurate provide either response time or service QoS information.

Response time requirements were finally defined by system architects, while service QoS in-

formationwere obtain aftermonitoring application functionally duringworking hours by sys-

tem administration personnel in the current version of the system. Service QoS requirement

accurate definition was essential for the effective exploration of application performance

based on alternative architecture scenarios.

A snapshot of the Functional view corresponding to a distributed architecture scenario of

the system under consideration is depicted in Figure 7.1. All application logic is programmed

within clients running on users’ workstations, while data are distributed in local database

servers located in each regional office.

A central database is supported in the IT Center for data synchronization and lookup pur-

poses. Client programs access the local database to store data, which are asynchronously

replicated in the central database using a transaction management system (TMS). The IT

Center and all regional offices participate in a private TCP/IP network to facilitate efficient

data replication.

As an example, an excerpt of Functional view focusing on manage citizens application

is depicted in Figure 7.1. This application, named registry application, is composed of four

services:

• add taxation registry

• update taxation entity

• deactivate taxation entity

• check data

The application is used by two different user roles, the registry staff and the registry man-
ager. Registry staff perform all these operations (services) while registry manager cannot up-
date registry data. These interactions are shown as special relations between role and ser-

vice, called initiate, indicating the fact that a user perform a specific operation in the system.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter
7.

A
Case

Study
143

Figure 7.1: Functional View

Anargyros
T.Tsadim

as
M
odel-Based

Enterprise
Inform

ation
System

D
esign:A

SysM
L-based

approach



Chapter 7. A Case Study 144

This kind of relation contains additional data: a percentage variable. To explain the role

of percentage, let us consider a role in his everyday interaction with the system and the appli-

cation performing some operations. The percentage indicates how often the role uses these

specific services. We consider that a registry staff calls operation add taxation entity by 15% ,

while he/she makes updates to existing entities by 30% , deactivates entities by 5% and the

rest 50% is about checking specific records of the entities (e.g., readonly database opera-

tions).

Each service (belonging to a client-module) that a user initiates, in order to be executed

requires the invocation of other services, either belonging to this regional office or to a re-

mote datacenter, constituting a distributed environment. For example, the service update
taxation entity invokes modify registry record, select registry data and synchronize registry of

a local database server module. Afterwards, the synchronize registry invokes modify registry
record of a remote server module belonging to the datacenter of the organization.

The software designer may use a behavior requirements to model role behavior. Here, the

registry staff role may satisfy two different behavior requirements corresponding to normal

and heavy workload. Later, on Evaluation view, two different evaluation scenarios are en-

abled for execution, each of them according to these behavior aspects.

Each service could be related to specific requirements: e.g., one kind is service-QoS re-

quirement, storing the required resources for execution. This is roughly an estimation about

the processing power, storage and networking resources that this service requires in order

to execute. Consequently, there are three QoS requirements for each service. For each of

them, a max-value and an average value is estimated. These values were acquired using the

COCOMO II [128] methodology. According to our proposal, the relation between a service

and a service-QoS requirement is satisfy. For a specific module, all service-QoS requirements

constitute a module-QoS requirement, which is a derived requirement, that gathers the re-

quired resources of all services belonging in this module.

Another requirement related to services is the responseTime requirement. This defines

the maximum execution time that a user could wait for this operation to accomplish. In the

case that this service would invoke other services, this particular time includes the responses

of all the invoked services. During the evaluation process, the response time of a service

is estimated and the estimated value should verify this predefined time. From the system

designer perspective, the following steps are required to work on Functional view:

• User roles creation. A role groups users interactingwith the same applications and have

similar behavior.

• application access points definition. Usually this is the front-end environment of the

applications, providing specific operations to users.

• Definition of the identical operations that are performed for each application. These

operations, called services, are grouped into modules.

• Service invocations architecture definition; for each service the calling services should

be defined, in order to provide the complete software architecture of the application

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 7. A Case Study 145

under consideration.

In parallel, a set of validation rules are performed to ensure that the model is in accor-

dance with the defined EIS profile, as depicted in Table 5.1. Consider the percentage of all

services initiations from a role summing up to 100%. When a violation in a validation rule

occurs, the designer is notified.

Figure 7.2 presents the application of validation rules to model. A specific role produces

several violations: In our case, one of them, the summing up to 100%, for the percentage

attribute of services initiations, of this role, is not valid. The design environment identifies

possible problems and suggests alternatives(Figure 7.3).

Figure 7.2: Functional view: Validation rules applied

Figure 7.3: Functional view: Validation handling

7.4.2 Topology View

Topology view is exploited to specify the system access points and define the software

replicas. Three model elements are participating in this view:

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 7. A Case Study 146

• Roles (derived from Functional view) are automatically imported.

• Client and Server modules (according to Functional view again) are also auto-imported.

• Sites (system access points). There are two kind of sites, atomic and composite 1. Sites

are defined by system designer to gather geographically or conceptually the roles and

modules.

As stated, roles, client and server modules are auto-derived from Functional view. To the

designer remains he allocation of roles and modules to sites and then, via Network Infras-
tructure view, to workstations and servers. Since EIS are complex and distributed information

systems, there are many replica software components. For that reason, the system designer

should make replicas of he server modules and allocate them to sites, e.g. local or remote

datacenters. This is achieve by right-clicking on a server module, and the new created model

element is related with replica of relationship to source element.

Next step deals with the allocation of roles to sites. This is accomplished by defining a

usage allocation relationship between the role and the site. When roles are allocated to sites,

then an automation could be applied to allocate the initiating client-modules to the same site

from the application menu. The logic is simple; when a role is allocated to a site, the client

modules that contain services initiated by this role are auto-allocated with software allocation
relationship to the same site. In practice, a client-module replica is created and allocated to

the same site. This has to do about our ability to define many users sharing a specific role

(defined with the attribute NumberOfOccurs of role entity). This step has been implemented

as part of the EIS plugin, facilitating the system designer and ensuring model consistency,

according to EIS profile. Thus, we cannot have a role allocated to a site without the called

services of this role to do not belong to the same site.

There are some additionally constraints that our model should obey to. Usage allocations
and software allocations should be applied to atomic sites, which are the leafs of the sites hi-

erarchy. Atomic sites are contained in composite sites using the containement relationship of
UML. Validation rules ensure the compliance of our system model according to constraints

defined in Table 5.2. For example, a validation rule checks if there is a role defined in Func-
tional view that has not been allocated to a site in Topology view. The same applies to client

and software modules; all modules have replicas allocated to atomic sites.

As shown earlier, service-QoS requirements have been defined to services in Functional
view. Two of them (processing and storage) are estimated for the modules that the services

belong to. The other one, traffic service-QoS is meaningless to be defined in relation to a

module. What makes sense is to de defined in the case of communicating services between

modules. For that reason, traffic service-QoS are automatically created and their values are es-

timated according to the Algorithm 3 presented in subsection 5.3.4. Themodule-QoS derived
requirements are related to theModule Replica Invoke relations between the communicating

module replicas.
1comprised of other sites to formulate a site hierarchy

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter
7.

A
Case

Study
147

Figure 7.4: Topology View

Anargyros
T.Tsadim

as
M
odel-Based

Enterprise
Inform

ation
System

D
esign:A

SysM
L-based

approach



Chapter 7. A Case Study 148

In Topology view diagram (Figure 7.4) and in accordancewith Functional view diagram, the

registry staff role is allocated to three different sites: small regional office, registry office 1 and
registry office 2 atomic sites. To these sites are also allocated module replicas 1 of the registry

application (namely registry staff registry application small registry office, registry manage reg-
istry application registry office 1 and registry manage registry application registry office 2). Ten
discrete role instances are allocated to sites with the following occurrences: one of them is

allocated to small regional office, four to regional office 1 and the remaining six to regional
office 2.

7.4.3 Network Infrastructure View

Network Infrastructure view is utilized to design the network architecture of the EIS. Each

network is either an atomic or composite 2 network. For atomic networks, the specific hard-

ware elements that belonging to that network are presented in a special atomic network

diagram. In that way, Network Infrastructure View is composed of:

• an overall network diagram where network hierarchy and interconnections to other

external networks are presented

• a complementary diagram associated with each atomic network presenting the roles,

the software components and the hardware elements connected to that specific net-

work. Specifically:

– Roles and software components that have been defined in Functional and Topology
views, and have been allocated to sites.

– Hardware components that are defined in atomic networks.

– Roles and software allocations that are also take place in atomic network diagrams.

To help the designer with allocations, in network infrastructure main diagram, sites are

auto imported from the Topology view, and what remains to the designer is to allocate them

to networks. Validation rules ensure the consistence with the EIS profile: e.g., every site

should be allocated to a coresponding network 3 (see Table 5.3 for the set of the defined

constraints).

Figure 7.5 presents the network architecture of the EIS under consideration. Inmost cases

sites are allocated to networks with structural allocation relationships in a one-to-one fashion.
Depending on the load requirements (see subsection 5.3.1) the system designer may decide

to allocate multiple sites to a network or vice-versa. Certainly, if a composite network is allo-

cated to a network, all the contained sites should also be allocated to the same network’s or

subnetworks’ hierarchy. Validation rules ensure this compliance.

1the names are auto-produced by the combination of the role name, the module name and the site name
2if it interconnects other networks
3an atomic site has to be allocated to an atomic network

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 7. A Case Study 149

Requirements are also presented in this diagram. For each network a load requirement is

estimated as the result of the demanding networking resources of all software components

that are allocated to this network and is produced by specific roles’ behavior. The way these

requirements are derived is described in the Algorithm 5.3.4 of the subsection 5.3.4. Load
requirements provides a quantity indicator of the networking load imposed to networks.

System designer can reclaim site allocation policy to increase/reduce load to networks.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter
7.

A
Case

Study
150

Figure 7.5: Network Infrastructure view

Anargyros
T.Tsadim

as
M
odel-Based

Enterprise
Inform

ation
System

D
esign:A

SysM
L-based

approach



Chapter 7. A Case Study 151

Figure 7.6 presents such an atomic network diagram for the regional office 2 network, as
presented at Figure 7.5. Roles and software components are auto imported from Functional
and Topology views. The designer should only add the hardware nodes where the roles and

the software will be allocated to. For each of them, a number of instances could be defined,

describing many users allocated to workstations with similar hardware and software capa-

bilities. For each node, a number of attributes could be defined (see Table 5.3), categorized

as follows:

• Quantity

• Operating System

• Memory

• Processing Unit

– Processing Power

– Cores

– Number of processors

• Storage Unit

– Number of disks

– Storage speed

– Capacity (per disk)

We consider that in regional office 2 network, there are 2 registry managers ir front of

a workstation and 10 registry staff, eh one having one workstation For each of them the

working hours are providing, as defined in Functional view.

Figure 7.6: Network Infrastructure View, Atomic Network

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 7. A Case Study 152

7.4.4 NFR View

NFR view is a complementary view where all the requirements from other views are gath-

ered. Figure 7.7 presents an excerpt of the NFR view, where the requirements defined in

all design views are illustrated. Requirement’s expert or a system designer are able to see

or define the requirements relationships and derivations. Starting from generic, qualitative

text-based requirements, we could end up to specific quantitative requirements, in order to

be used as simulation input or evaluation conditions. From the perspective of the system

designer, this view is not mandatory for the completion of his work. It is more useful in the

early stage of system analysis.

Figure 7.7: Non Functional Requirements

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 7. A Case Study 153

7.5 Producing Evaluation View and Inflating Simulation Parameters

As the design phase is performed and after the validation rules have been applied to sys-

tem model in order to check its consistency and completeness, we could proceed to evalua-

tion phase. The first step is to create an evaluation diagram and an a corresponding scenario.

An evaluation scenario is comprised of two specific diagrams:

• a software architecture diagram: a replica of Functional view where only evaluation spe-

cific elements are presented

• a hardware architecture diagram: a multi-level diagram in accordance with Network In-
frastructure view, where also only evaluation specific elements participating.

The reason that we have different evaluation diagrams is that we want to record the dif-

ferent scenarios under consideration. Evaluating a snapshot of the architecture enables the

ability to make comparisons and peruse the influence of changes in the overall performance

of the system.

During the evaluation process, requirements act as behavior descriptors or performance

ones (see section 5.3 and Figures 6.2 and 6.1). Behavior requirements are used as simulation

input while among performance ones are responseTime, availability and utilization require-

ments.

7.5.1 Evaluation scenario

As already stated, an evaluation scenario is a snapshot of the system. Evaluation scenar-

ios comprise of evaluation entities used to evaluate design entities and verify corresponding

requirements (Figures 4.10 and 6.3). It is important to notice that evaluation scenarios are

auto-created from the design phase and this process does not require human interaction.

Of course, if the design phase diagrams are inconsistent or not completed, notification mes-

sages inform the designer about the imposed problem.

Software Architecture Diagram

The entities participating in a software architecture diagram correspond to Functional
view entities and are used to:

• define the behavior of the software components during the evaluation of the proposed

EIS architecture design

• verify the appropriate requirements of software components (e.g. services response-

time)

Aswe can see in Figure 7.8, roles andmodules are presented. For each role, there are Eval-
Initiate relationships to each module, so many times as the number of the calling services.

Notice that each element has an attribute named simid, namely a unique identifier used in

order to handle the corresponding simulation results.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 7. A Case Study 154

Figure 7.8: Software Architecture Evaluation Diagram

Hardware Architecture Diagram

Hardware architecture diagram entities correspond to Topology (module replicas) and

Network Infrastructure view entities, and are used to:

• to initialize a corresponding simulation model instance

• to evaluate the design entity and

• verify the corresponding requirements.

Hardware architecture diagram (Figure 7.9) is like a network infrastructure diagramwhere

no load requirements are presented. Load requirements are used in the early stages of the

design, to help the network architect allocate sites to networks. Each network has input and

output attributes, where input attributes (Figure 7.10) are used as simulation parameters

(passed as initialization parameters to a constructor of a network class). Output parameters

will be filled with values when the simulation results will be incorporated to system model.

Network hierarchy is built using include relations between networks. For each atomic net-

work a specific diagram presents roles, software components and nodes. Figure 7.11 is pro-

duced from the corresponding atomic network diagram from the design phase, presented

in Figure 7.6. The obvious difference is that in the evaluation phase diagram, behavior re-

quirements are presented. These requirements are derived from Functional view (see Figure

7.1) and help the designer to select specific behavior for the roles (in case there are many

behavior requirements specified).

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 7. A Case Study 155

Figure 7.9: Hardware Architecture Evaluation Diagram

Figure 7.10: Hardware Architecture Evaluation Diagram, Atomic Network properties

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 7. A Case Study 156

Figure 7.11: Hardware Architecture Evaluation Diagram, Atomic Network

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 7. A Case Study 157

7.6 Transformation to simulation code

Simulation model should represent a concrete system, which is described in many views.

For that reason model transformation is inevitable. The transformation formula has been

described in Figure 6.5. In an EIS model, elements are presented in different views, which

are described in an evaluation scenario. Here, the selected simulation framework is DEVS.

In a DEVS model there is a strict model hierarchy, due to the necessity of executable simu-

lation code. To transform the system model to a corresponding DEVS simulation model, the

following steps are required:

i. export the systemmodel in XML format, using XMI specification [130]. Magicdrawmod-

eling tool supports the export of a model in XMI format (Eclipse UML2 v2.x XMI file).

ii. import the XMI file in Medini QVT [127] tool, and apply the QVT transformation (the qvt

file in repository [122]). The resulting model is also in XML format corresponding to a

DEVS model.

iii. apply an XSLT transformation to obtain DEVSJava executable code from the xported

XML file.

In [25] the interested reader can find details about the model transformations in order to

produce the simulation code.

7.7 Simulation execution and results incorporation

DEVSJava simulation environment has to be extended with the appropriate simulation

library components due to the lack of the description of the behavior (explained in section

6.4.1) . The source code of library components is presented in [122]. Simulation time and

the number of simulation runs should be defined, in order to have reliable results. After the

simulation execution, an XML file is produced containing simulation results, according to

Figure 6.7. Listing 7.1 presents an excerpt of these results.

Listing 7.1: Simulation results
<?xml version=” 1.0 ” encoding=”UTFష8” standalone=” yes ” ?>
<resu l ts>

. . .
< resu l t

stereotype=” EvalషAtomicషNetwork::EvalషServiceషRepl ica ”
name=” synchronize reg is t ry ”
id= ” _16_8_14d00da_1366132358008_45445_15160 ”
count= ”1 ”>
<value

value=” 0.00008364964640774856 ”
name=”avgషResponseTime ” />

<value
value=” 0.00039550217238502227701246738433837890625 ”
name=”maxషResponseTime ” />

</ resu l t >
<resu l t

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 7. A Case Study 158

stereotype=” EvalషAtomicషNetwork::EvalషServiceషRepl ica ”
name=” synchronize reg is t ry ”
id= ” _16_8_14d00da_1366132358005_661866_15146 ”
count= ”1 ”>
<value

value=”ష0.00000860113645457735 ”
name=”avgషResponseTime ” />

<value
value=” 0.00057738729261473054066300392150878906250 ”
name=”maxషResponseTime ” />

</ resu l t >
. . .

< / resu l ts>

The incorporation of the simulation results is a simple task, since it has been implemented

in EIS plugin. Figure 7.12 presents how this could be achieved.

Figure 7.12: Importing Simulation results

7.8 Verifying Requirements

Having the results incorporated to our systemmodel, the out tagged values of all evalua-
tion entities (e.g. out values of Figure 7.10) are filled. Afterwards, a validation rule that checks

the out values with the corresponding requirements values is applied. Figure 7.13 presents

the case where an atomic network fails to verify a load requirement: the requirement has an

average value of 2.7Mbps with 0.2 deviation and the simulation reported an average load of

3.1Mbps. Since this value does not belong to the interval [2.5, 2.9], the corresponding valida-

tion rule fails and the designer is being notified with a red annotation (see Figure 7.13).

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 7. A Case Study 159

Figure 7.13: Verifying a load requirement

7.9 Re-design System Model

Depending on the nature of the non-verified NFR, system designer has to adapt the sys-

tem model. This can be done with one of the following:

• in case of a load NFR, a solution is to alter the software to hardware allocations so as to
increase/decrease the imposed load

• in case of a response-time NFR, either reducing the complexity of software architecture

(e.g., decreasing software tiers) or providing hardware with additional capabilities (e.g.

processing power or memory)

• in case of availability and utilization NFRs via improving either the hardware and/or the

network.

7.10 Experience Obtained

System designers that tested the tool in the case study, appreciated the fact that all the

information related to requirement verification was presented in a single view. The Load

requirement derivation mechanism, enable the designer to accurately define network archi-

tecture. For example a suggestion was that more DB servers were required in Large Offices.

They also found useful that all different experiment results were maintained, as evaluation

scenarios, and could be used when making modification in architecture design. In fact, they

ranked it as the most important feature of the proposed SysML extensions, since it enabled

them to keep track of all redesign decisions and the reasons leading to them.Derived require-

ment computation was considered useful, but also a bit confusing for some of the experts

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 7. A Case Study 160

using the tool. Furthermore, most of them also suggested that the tool could propose al-

ternatives on system architecture modifications to satisfy imposed requirements. Using the

tool, it was estimated that software performance was improved almost by one third by the

second scenario suggesting a Central Database Architecture, while the network architecture,

interconnecting regional offices and the IT Center, remained the same. Thus, the communi-

cation cost was not much bigger.

The outcome of this experience proved that it was feasible to achieve desired perfor-

mance adopting alternative systemdesignswithout any application re-writing. The proposed

approach enabled the suggestion of alternative designs for local databases that result in im-

proved performance. Initial service response time requirements were not verified, because

of limited network bandwidth in the initial private network design. Requirements derivation

enhanced the private network design. Load requirements were estimated and they revealed

that in heavy load circumstances, network bandwidth requirements was not adequately de-

fined.

7.11 Summary

This chapter presented a detailed case study concerning the application of the proposed

approach as this is conceived and realized from the designer’s perceptive. Design mode of

the EIS plugin has been explained by exposing its facilities in a sequential manner. Each one

of the provided views and diagrams has been depicted and explained to help the reader

understand their capabilities. Next chapter presents a critical view about the contribution as

well as the shortcomings of the proposed approach.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach





Chapter 8
Discussion

Contents
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.1 Overview

A SysML-based approach about model-based EIS architecture design was presented. The

related background was reviewed in chapter 2. To reveal the research challenges that influ-

enced the elaboration of this thesis, the related approacheswere discussed in chapter 3. Dur-

ing this thesis, two main research areas were exploited: themodel-based systems engineering
and the requirements engineering. The literature review revealed the following shortcomings:

• regarding systemarchitecture design, there aremany stakeholders that eachonewants

his own perspective. A model-based approach, based on the literature, ensuringmodel

consistency, supports this feature.

• requirements play a significant role in systems design and their verification is vital

when talking about system performance. Regarding requirements verification, simu-

lation has been identified as an appropriate technique for the estimation of system

models’ performance.

• simulation results should be incorporated within the original systemmodel and a com-

parison against the predefined, performance-related, requirements should beperformed

within the SysML modeling environment.

• automated requirements verification within the SysML model could be enabled, once

system performance estimation has been added in the model.

162



Chapter 8. Discussion 163

Afterwards, the contribution of this thesis was presented in three parts: the proposed

approach described and documented by related work, the design phase of the proposed ap-

proach along with the definition and the handling of NFRs and finally the evaluation process

through the NFR verification.

This thesis had two complementary objectives that concern an EIS: to provide auto-derived

NFRs in order to act as indicators about the load of the software to hardware allocations and

to propose an automation process of NFRs verification. To this end, focus was given on EIS

architecture design. The same concepts described here, could be applied to other domains

equally, with the corresponding customizations. In addition, EIS profile can be extended to

include modern aspects of the web based applications development, such as cloud com-

puting issues. In spite of the fact that the modules and services of Functional view resemble

Software as a Service (SaaS), the concepts aremore general and could be applied to Platform

as a Service (PaaS) and Infrastructure as a Service (IaaS) as well.

8.2 Contribution

As the application domain of this thesis was the EIS, the contribution could be considered

as domain-specific. Though, during this research, some aspects were proposed that could be

applied in general for the design of systems, and not necessarily only IS. Hence, as domain

specific contribution, we consider the following:

• a domain specific profile for the design of EIS based on SysML and

• a design environment with:

– enhanced model validation rules

– auto-derived requirements

– automated evaluation process

At the same time, the following aspects are domain agnostic and could be applied in systems

design process:

• exploitation of requirements to define the behavior and the performance of the system

and a way to be verified

• NFRs categorization focused on performance requirements

• an additional view dealing with the evaluation, enabling the existence of an evaluation

scenario history

A key contribution of this thesis was the proposition of a way tomeasure the performance

of a designed EIS, based on defined NFRs and constraints. As a result, system designer be-

came evaluation-agnostic. After the definition of software and hardware architectures (at

design phase views), the evaluation phase is auto-generated and a snapshot of the system

model is able to be simulated, following specific guidelines. In any stage of the systemdesign,

validation rules ensure the conformance to the EIS metamodel.

As NFRs are critical in systems design process, this approach provides a systematic re-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 8. Discussion 164

view and a categorization of NFRs. Emphasis was given on performance issues and related

requirements. Issues such as auto-derivation of requirements were resolved. To this end,

quantitative characteristics have to be defined as attributes to NFRs and a derivation for-

mula is applied. The integration of the derivation process inside the modeling environment

supports the decision making process.

In early stages of software to hardware allocations, specific requirements provide the

required information about the imposed load to hardware elements, helping the designer

to define his allocation policy. To handle the user behavior, a new kind of requirement was

introduced: behavioral requirements. These requirements can be associated with the user

roles to describe their behavior, in terms of traffic generators, providing distributions and

their parameters. Throughout this thesis, OMG standards were exploited in order to define a

SysML profile and the corresponding QVT relations to transform systemmodel to simulation

model. These standards facilitated the interoperability between methods and tools of the

proposed approach.

Figure 8.1: Contribution Overview

The overall contribution of this thesis is summarized in Figure 8.1. Until now, many stake-

holders should use their own tools in order to design an information system. These tools

could not effectively exchange data because each of them has its own data structures. An in-

tegrated design environment is provided so as the stakeholders participating in the design

of an information system can be synchronized in order to effective design and evaluate the

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 8. Discussion 165

actual information system. The knowledge of a requirements engineer expert, an analysis

model expert and a system designer were utilized to constitute this environment, which is

capable of executing model analysis to verify the imposed requirements, and this process is

transparent to the system designer.

8.3 Limitations

As the intention of this thesis was to propose an approach for EIS architecture design,

some bottlenecks arose, when someone tries to apply this approach to other domains. First

of all, a domain expert is needed in order to implement simulation library components corre-

sponding to the SysML model. Moreover, the selection of an appropriate evaluation method

e.g., different simulation environments remains an open issue. As oftentimes stated, many

stakeholders are involved in the design process of an EIS. Practically not all of them are prop-

erly communicating during this process.

Another key issue that was not addressed here, is the derivation of quantitative NFRs

from generic described requirements using natural language. Maybe a query based system,

domain specific and knowledge-based could contribute towards this direction.

Last but not least, the responsibility of the system designer to ensure requirements veri-

fication by alterations of the systemmodel, remains open. A recommendation system would

be useful to act as a self-healing system. Take as an example, an efficient recommendation

system based on previous knowledge that could suggest auto-adjustments.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach





Chapter 9
Conclusions - Future Work

Contents
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.1 Conclusions

The process of EIS design is challenging, as it involves specialist frommany domains, such

as system designers, network architects, requirements engineers, simulation experts etc. All

of themneed a common canvas to be able to communicate. The proposed approach provides

this particular canvas and the required tools in order to have a central model that could be

used from anyone participating to this process and that is consistent and able to reflect the

changes from one perspective to other perspectives.

The main objective of this research was the proposition of an MBSD approach for EIS

architecture design using SysML. Motivated by the lack of efficient mechanisms for the veri-

fication of quantitative NFRs defined in SysMLmodels, focus was given on the detailed repre-

sentation of quantitative NFRs in SysML and their verification using quantitative methods. To

this end, SysML was properly extended, while automated and efficient verification of SysML

requirements via simulation was explored. Proposed concepts were applied in the informa-

tion system domain, focusing on the design of EIS architectures, while performance require-

ments were focused.

The integrated framework, implemented to support the proposed approach, illuminates

the role of models and standards towards solutions that enforce knowledge exchange and

combined use of diverse proprietary tools. It aims to facilitate the system designer providing

feedback about the performance of the system.

To explore the effectiveness, the proposed approachwas applied to a complex case study.

Chapter 7 presented a case study where an EIS was designed, evaluated and re-adjusted fol-

lowing the proposed approach. The transformation of system model to executable simula-

167



Chapter 9. Conclusions - Future Work 168

tion code was successful and the simulation results were incorporated to system model in

order to verify the NFRs. The design environment informed the system designer about the

non-verifiedNFRs, giving him the opportunity tomake decisions to improve the performance

of the system.

9.2 Future Work

This researchput emphasis on the evaluation of performance requirements. Performance

is a critical issue that a designer should examine when building a large scale EIS. Of course

there are other issues such as security, safety, usability, legal and many others [46]. A forth-

coming research direction could be to exploremore types of NFRs, as there is a lot of interest

in the literature [131,132].

Moreover, research interest also exists in order to analyze existing requirements for reg-

ulatory compliance [133]. The cost of noncompliance is high, including fines, cost of court

representation, government audits, and workforce training. Ensuring compliance to laws,

regulations, and standards in a constantly changing business and compliance environment

is one of themajor challenges companies face today. As a result, compliance in EIS is an issue

of major importance.

Additionally to the fact that the systemdesigner is notified about the non-verified require-

ments, a complementary recommendation system, that would rely on existing and obtained

knowledge, could make the evaluation process to act as a self-healing system. Utilizing the

automation, on a non verified requirement occurrence, a set of running tasks/operations

could be defined so as to support the concept of self-organizing networks in systems engi-

neering. This presupposes that a knowledge base is available in order to decide the specific

tasks that would make the requirement satisfiable again, ensuring that there are no other

unverified requirements.

As a forthcoming research challenge, the application of the proposed approach on other

systemdomains such as transportation and communications are already under investigation

and partially implementation [134].

Moreover, the incorporationof techo-economic analysis during thedesignprocess it could

be explored. Cost is one of themajor factor that anyone should take into consideration when

developing information systems. Into this context, a model-driven techno-economic target-

ing the estimation of economic parameters of cloud service deployment, which is able to as-

sist decision support procedures for cloud users, cloud providers and cloud brokers. SysML

could be adopted as a modeling language for describing cloud architectures as SoS, empha-

sizing cost properties. As an example, the Total Cost of Ownership (TCO) for cloud infrastruc-

ture and services could be explored [135].

Last but not least, due to the rise of cloud computing and the extensive use of web ser-

vices, the proposed approach could fit the needs of anymodern information system running

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Chapter 9. Conclusions - Future Work 169

in the cloud and communicating with other software components via web services. A set

of cloud computing specific non-functional requirements are necessary to support this cus-

tomization.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach





Bibliography

1. J. F. Sowa and J. A. Zachman, “Extending and Formalizing the Framework for Information Systems
Architecture,” IBM Systems Journal, vol. 31, no. 3, pp. 590–616, 1992.

2. IEEE, “IEEE System and Software Engineering - Architectural Description: Std 42010,” Tech. Rep.,
May 2009.

3. “MagicDraw UML.” [Online]. Available: http://www.magicdraw.com/
4. M. Nikolaidou, A. Tsadimas, N. Alexopoulou, and D. Anagnostopoulos, “Employing Zachman

Enterprise Architecture Framework to systematically performModel-Based System Engineering
Activities,” in HICSS-42, 2009, pp. 1–10. [Online]. Available: http://dx.doi.org/10.1109/HICSS.
2009.189

5. A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, “Extending sysml to explore non-
functional requirements: the case of information system design,” in Proceedings of the 27th
Annual ACM Symposium on Applied Computing, ser. SAC ’12. New York, NY, USA: ACM, 2012, pp.
1057–1062. [Online]. Available: http://doi.acm.org/10.1145/2231936.2231941

6. M. Nikolaidou, A. Tsadimas, and D. Anagnostopoulos, “Model-based enterprise information sys-
tem architecture design using SysML,” in IEEE Systems Conference 2010, April 2010.

7. A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, “Evaluating software architecture in a
model-based approach for enterprise information system design,” in SHARK ’10. New York,
USA: ACM, 2010, pp. 72–79.

8. ——, “Handling non-functional requirements in information system architecture design,” in IC-
SEA ’09, 2009, pp. 59–64.

9. A. Tsadimas, G.-D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopoulos, “Integrating sim-
ulation capabilities into sysml for enterprise information system design,” in System of Systems
Engineering (SOSE), 2014 9th International Conference on. IEEE, 2014, pp. 272–277.

10. M. Nikolaidou, G.-D. Kapos, A. Tsadimas, V. Dalakas, and D. Anagnostopoulos, “Simulating sysml
models: Overview and challenges,” in System of Systems Engineering Conference (SoSE), 2015 10th.
IEEE, 2015, pp. 328–333.

11. A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, Formal Languages for Computer Simulation:
Transdisciplinary Models and Applications. IGI Global, 2013, ch. 8: Model-Based System Design
Using SysML: The Role of the Evaluation Diagram, pp. 236–266.

12. A. Tsadimas, “Model-based enterprise information system architectural design with sysml,” in
Research Challenges in Information Science (RCIS), 2015 IEEE 9th International Conference on. IEEE,
2015, pp. 492–497.

13. G.-D. Kapos, V. Dalakas, A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, “Model-based sys-

171

http://www.magicdraw.com/
http://dx.doi.org/10.1109/HICSS.2009.189
http://dx.doi.org/10.1109/HICSS.2009.189
http://doi.acm.org/10.1145/2231936.2231941


Bibliography 172

temengineering using SysML: Deriving executable simulationmodels withQVT,” in SysCon. IEEE
International Systems Conference, 2014.

14. M. Nikolaidou, N. Alexopoulou, A. Tsadimas, A. Dais, and D. Anagnostopoulos, “A consistent
framework for enterprise information system engineering,” in EDOC. IEEE Computer Society,
2006, pp. 492–496. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/EDOC.2006.
6

15. M. Nikolaidou, A. Tsadimas, N. Alexopoulou, and D. Anagnostopoulos, “Employing zachman en-
terprise architecture framework to systematically performmodel-based system engineering ac-
tivities,” in HICSS, 2009, pp. 1–10.

16. M. Nikolaidou, N. Alexopoulou, A. Tsadimas, A. Dais, and D. Anagnostopoulos, “Using UML to
model distributed system architectures,” in CAINE. ISCA, 2005, pp. 91–96.

17. M. Nikolaidou, A. Tsadimas, N. Alexopoulou, A. Dais, and D. Anagnostopoulos, “A UML profile
utilizing enterprise information system configuration,” in ICECCS. IEEE Computer Society, 2006,
pp. 77–88. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/ICECCS.2006.48

18. INCOSE, Systems Engineering Handbook, version 3.2.2 ed. San Diego, CA, USA: International
Council on Systems Engineering, 2012.

19. M. Nikolaidou, N. Alexopoulou, A. Tsadimas, A. Dais, and D. Anagnostopoulos, “Extending UML
2.0 to augment control over enterprise information system engineering process,” in ICSEA.
IEEE Computer Society, 2006, p. 10. [Online]. Available: http://doi.ieeecomputersociety.org/10.
1109/ICSEA.2006.41

20. N. Alexopoulou, A. Tsadimas, M. Nikolaidou, A. Dais, and D. Anagnostopoulos, “Introducing a
UML profile for distributed system configuration,” in ICEIS: Databases and Information Systems
Integration, Paphos, Cyprus, May 23-27, 2006, 2006, pp. 542–545.

21. M. Nikolaidou, N. Alexopoulou, A. Tsadimas, A. Dais, and D. Anagnostopoulos, “Facilitating en-
terprise information system engineering through a UML 2.0 profile: A case study,” Information
Resource Management Association (IRMA 2007), Vancouver, British Columbia, Canada, 2007.

22. ——, “Accommodating EIS UML 2.0 profile using a standard UML modeling tool,” in Software
Engineering Advances, 2007. ICSEA 2007. International Conference on. IEEE, 2007, pp. 26–26.

23. B. Nuseibeh and S. Easterbrook, “Requirements engineering: A roadmap,” in Proceedings of the
Conference on The Future of Software Engineering, ser. ICSE ’00. New York, NY, USA: ACM, 2000,
pp. 35–46. [Online]. Available: http://doi.acm.org/10.1145/336512.336523

24. J. A. Estefan, “Survey of model-based systems engineering (MBSE) methodologies,” vol. 25, pp.
1–80, May 2008.

25. S. Kapos, Georgios-Dimitrios, “Model-oriented approach for automating sysml system models
simulation,” Ph.D. dissertation, Harokopio University of Athens, 70, El. Venizelou Str, Kallithea,
09 2016.

26. R. H. von Alan, S. T. March, J. Park, and S. Ram, “Design science in information systems research,”
MIS quarterly, vol. 28, no. 1, pp. 75–105, 2004.

27. L. M. Jessup and J. S. Valacich, Information systems today. Prentice Hall Professional Technical
Reference, 2002.

28. S. J. Kapurch, NASA Systems Engineering Handbook. DIANE Publishing, 2010.
29. Definition of information system engineering. [Online]. Available: http://www.accessscience.

com/content/information-systems-engineering/343950
30. Definition of enterprise system. [Online]. Available: http://en.wikipedia.org/wiki/Enterprise_

system

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

http://doi.ieeecomputersociety.org/10.1109/EDOC.2006.6
http://doi.ieeecomputersociety.org/10.1109/EDOC.2006.6
http://doi.ieeecomputersociety.org/10.1109/ICECCS.2006.48
http://doi.ieeecomputersociety.org/10.1109/ICSEA.2006.41
http://doi.ieeecomputersociety.org/10.1109/ICSEA.2006.41
http://doi.acm.org/10.1145/336512.336523
http://www.accessscience.com/content/information-systems-engineering/343950
http://www.accessscience.com/content/information-systems-engineering/343950
http://en.wikipedia.org/wiki/Enterprise_system
http://en.wikipedia.org/wiki/Enterprise_system


173

31. D. L. Olson and S. Kesharwani, Enterprise information systems: contemporary trends and issues.
World Scientific, 2010.

32. J. Schekkerman, How to Survive in the Jungle of Enterprise Architecture Frameworks: Creating or
Choosing an Enterprise Architecture Framework. Trafford, 2003.

33. A. Reichwein and C. J. Paredis, “Overview of architecture frameworks and modeling languages
for model-based systems engineering,” in ASME 2011 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference. American Society of Me-
chanical Engineers, 2011, pp. 1341–1349.

34. S. Leist and G. Zellner, “Evaluation of current architecture frameworks,” in SAC, H. Haddad, Ed.
ACM, 2006, pp. 1546–1553. [Online]. Available: http://doi.acm.org/10.1145/1141277.1141635

35. “Institute For Enterprise Architecture Developments.” [Online]. Available: http://www.
enterprise-architecture.info/

36. M. Nikolaidou and N. Alexopoulou, “Enterprise Information System Engineering: A Model-Based
Approach Based on the Zachman Framework,” in HICSS’08. IEEE Computer Society, 2008.
[Online]. Available: http://doi.ieeecomputersociety.org/10.1109/HICSS.2008.148

37. I. P1471, “IEEE Recommended Practice for Architectural Description of Software-intensive
Systems–-Std. 1471-2000,” New York, NY, USA, 2000.

38. M. Jarke, P. Loucopoulos, K. Lyytinen, J. Mylopoulos, and W. N. Robinson, “The brave new world
of design requirements,” Inf. Syst., vol. 36, no. 7, pp. 992–1008, 2011.

39. M. Fonoage, I. Cardei, and R. Shankar, “Mechanisms for requirements driven component selec-
tion and design automation,” Systems Journal, IEEE, vol. 4, no. 3, pp. 396 –403, sept. 2010.

40. E. R. Byrne, “IEEE Standard 830: Recommended Practice for Software Requirements Specifica-
tions,” 1998.

41. A. W. Wymore, Model-Based Systems Engineering, 1st ed. Boca Raton, FL, USA: CRC Press, Inc.,
1993.

42. J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using non-functional requirements:
A process-oriented approach,” IEEE Transactions on Software Engineering, vol. 18, pp. 483–497,
1992.

43. L. Zhu and I. Gorton, “UML profiles for design decisions and non-functional requirements,” in
SHARK-ADI ’07. Washington, DC, USA: IEEE Computer Society, 2007, p. 8.

44. R. Jain, A. Chandrasekaran, G. Elias, and R. Cloutier, “Exploring the impact of systems architecture
and systems requirements on systems integration complexity,” Systems Journal, IEEE, vol. 2, no. 2,
pp. 209 –223, june 2008.

45. M. H. Kacem, M. Jmaiel, A. H. Kacem, and K. Drira, “A UML-based approach for validation of
software architecture descriptions,” in TEAA, 2006, pp. 158–171.

46. M. Glinz, “On non-functional Requirements.” 15th IEEE International Requirements Engineering
Conference, 2007.

47. A. v. Lamsweerde, “Goal-Oriented Requirements Engineering: A Guided Tour,” in Fifth IEEE Inter-
national Symposium on Requirements Engineering (RE’01), aug 2001, p. 249.

48. L. Balmelli, D. Brown,M. Cantor, andM.Mott, “Model-driven systems development,” IBM Systems
Journal, vol. 45, no. 3, pp. 569 –585, 2006.

49. O. M. G. Inc, “Systems Modeling Language (SYSML) Specification, Version 1.2,” June 2010.
50. International Council on Systems Engineering. INCOSE. [Online]. Available: http://www.incose.

org/
51. O. M. G. Inc, “UML Superstructure Specification, Version 2.1.2,” November 2007.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

http://doi.acm.org/10.1145/1141277.1141635
http://www.enterprise-architecture.info/
http://www.enterprise-architecture.info/
http://doi.ieeecomputersociety.org/10.1109/HICSS.2008.148
http://www.incose.org/
http://www.incose.org/


Bibliography 174

52. B. Nolan, B. Brown, L. Balmelli, T. Bohn, and U. Wahli, Model Driven Systems Development with
Rational Products, IBM Red Book, 2008.

53. ISO, “Information technology –- open distributed processing –- use of UML for ODP system
specifications,” october 2009. [Online]. Available: ISO/IECCD19793

54. S. Izukura, K. Yanoo, T. Osaki, H. Sakaki, D. Kimura, and J. Xiang, “Applying a model-based
approach to IT systems development using SysML extension,” in MoDELS, ser. Lecture
Notes in Computer Science, vol. 6981. Springer, 2011, pp. 563–577. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-24485-8

55. “INCOSE System Enineering Terms Glossary,” INCOSE, October 1998. [Online]. Available:
http://www.incose.org/ProductsPubs/techresourcecenter.aspx

56. P. Kruchten, The rational unified process: an introduction. Addison-Wesley Professional, 2004.
57. P. Ralph and Y. Wand, “A proposal for a formal definition of the design concept,” in Design re-

quirements engineering: A ten-year perspective. Springer, 2009, pp. 103–136.
58. Object Management Group. OMG. [Online]. Available: http://www.omg.org/
59. OMG, “Model Driven Architecture. Version 1.0.1,” June 2003. [Online]. Available:

Availableonlineviahttp://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
60. F. S. David, Model driven architecture: applying MDA to enterprise computing. Wiley publishing,

Inc. USA, 2003.
61. Object Constraint Language Specification, version 2.0, Object Modeling Group, jun 2005. [Online].

Available: http://www.omg.org/technology/documents/formal/ocl.htm
62. OMG, “Meta object facility (MOF) 2.0 Query/View/Transformation specification,” Transformation,

no. April, pp. 1–230, 2008. [Online]. Available: http://www.omg.org/spec/QVT/1.0/PDF/
63. “Sysmlforum.” [Online]. Available: http://www.sysmlforum.com/
64. O. M. G. Inc, Systems Modeling Language (SYSML) Specification, Version 1.3, Std., June 2012.

[Online]. Available: http://www.omg.org/spec/SysML/1.3/PDF
65. “SysML-faq.” [Online]. Available: http://sysmlforum.com/sysml-faq/
66. J. Siddiqi andM. C. Shekaran, “Requirements engineering: The emerging wisdom,” IEEE Software,

vol. 13, no. 2, pp. 15–19, 1996.
67. A. Terry Bahill and S. J. Henderson, “Requirements development, verification, and validation

exhibited in famous failures,” Syst. Eng., vol. 8, no. 1, pp. 1–14, Mar. 2005. [Online]. Available:
http://dx.doi.org/10.1002/sys.v8:1

68. A. Law, Simulationmodeling and analysis, 4th ed., ser.McGraw-Hill series in industrial engineering
and management science. McGraw-Hill, 2006.

69. U. Herzog, “Formal methods for performance evaluation,” in Lectures on Formal Methods and
PerformanceAnalysis, ser. Lecture Notes in Computer Science, E. Brinksma, H. Hermanns, and
J.-P. Katoen, Eds. Springer Berlin Heidelberg, 2001, vol. 2090, pp. 1–37. [Online]. Available:
http://dx.doi.org/10.1007/3-540-44667-2_1

70. G. Fishman, Discrete-event simulation: modeling, programming, and analysis. Springer Science &
Business Media, 2013.

71. B. P. Zeigler, H. Praehofer, and T. Kim, Theory of Modeling and Simulation, 2nd ed. Academic
Press, 2000.

72. C. Seo and B. Zeigler, “Devs namespace for interoperable devs/soa,” in Simulation Conference
(WSC), Proceedings of the 2009 Winter, Dec 2009, pp. 1311–1322.

73. G.-D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopoulos, Formal Languages for Computer
Simulation: Transdisciplinary Models and Applications. IGI Global, 2013, ch. 10: An Integrated

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

ISO/IEC CD 19793
http://dx.doi.org/10.1007/978-3-642-24485-8
http://www.incose.org/ProductsPubs/techresourcecenter.aspx
http://www.omg.org/
Available online via http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/spec/QVT/1.0/PDF/
http://www.sysmlforum.com/
http://www.omg.org/spec/SysML/1.3/PDF
http://sysmlforum.com/sysml-faq/
http://dx.doi.org/10.1002/sys.v8:1
http://dx.doi.org/10.1007/3-540-44667-2_1


175

Framework to Simulate SysML Models Using DEVS Simulators, pp. 305–332.
74. ——, “An integrated framework for automated simulation of SysML models using DEVS,” Simu-

lation, vol. 90, no. 6, pp. 717–744, 2014.
75. M. Cantor, Rational Unified Process for Systems Engineering, RUP SE Version 2.0, IBM Rational Soft-

ware white paper, IBM Corporation, May 2003.
76. ——, “Rational Unified Process for Systems Engineering Part II: System Architecture,” The Ratio-

nal Edge, 2003.
77. E. Huang, R. Ramamurthy, and L. F. McGinnis, “System and simulation modeling using SysML,”

in WSC ’07: Proceedings of the 39th conference on Winter simulation. Piscataway, NJ, USA: IEEE
Press, 2007, pp. 796–803.

78. O. Schonherr and O. Rose, “First steps towards a general SysML model for discrete processes
in production systems,” in Proceedings of the 2009 Winter Simulation Conference, Austin, TE, USA,
December 2009, pp. 1711–1718.

79. D. Kimura, T. Osaki, K. Yanoo, S. Izukura, H. Sakaki, and A. Kobayashi, “Evaluation of it systems
considering characteristics as system of systems,” in System of Systems Engineering (SoSE), 2011
6th International Conference on, june 2011, pp. 43 –48.

80. W. Schamai, P. Helle, P. Fritzson, and C. J. J. Paredis, “Virtual verification of system designs
against system requirements,” in Proceedings of the 2010 international conference on Models in
software engineering, ser. MODELS’10. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 75–89.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2008503.2008514

81. O. M. G. Inc, “UML profile for MARTE: Modeling and analysis of real-time embedded systems
specification, version 1.0,” November 2009.

82. H. Espinoza, D. Cancila, B. Selic, and S. Gérard, “Challenges in combining SysML and
MARTE for model-based design of embedded systems,” in ECMDA-FA, ser. Lecture Notes
in Computer Science, vol. 5562. Springer, 2009, pp. 98–113. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-02674-4

83. ITU, “User requirements notation URN - language definition,” ITU, ITU-T Reccomendation Z.151,
Nov. 2008.

84. M. Bajaj, D. Zwemer, R. Peak, A. Phung, A. Scott, andM.Wilson, “Slim: collaborativemodel-based
systems engineering workspace for next-generation complex systems,” in Aerospace Conference,
2011 IEEE, 2011, pp. 1–15.

85. D. Knorreck, L. Apvrille, and P. de Saqui-Sannes, “Tepe: A sysml language for time-constrained
property modeling and formal verification,” SIGSOFT Softw. Eng. Notes, vol. 36, no. 1, pp. 1–8,
Jan. 2011. [Online]. Available: http://doi.acm.org/10.1145/1921532.1921556

86. I. Ober, S. Graf, and I. Ober, “Validating timed UML models by simulation and verification,”
International Journal on Software Tools for Technology Transfer, vol. 8, no. 2, pp. 128–145, 2006.
[Online]. Available: http://dx.doi.org/10.1007/s10009-005-0205-x

87. OMG, SysML-Modelica Transformation (SyM), Nov. 2012. [Online]. Available: http://www.omg.org/
spec/SyM/1.0/PDF/

88. W. Schamai, “Modelica Modeling Language (ModelicaML): A UML Profile for Modelica,” Tech.
Rep., 2009. [Online]. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-20553

89. O. Batarseh and L. F. McGinnis, “System modeling in sysml and system analysis in arena,” in
Proceedings of the Winter Simulation Conference, ser. WSC ’12. Winter Simulation Conference,
2012, pp. 258:1–258:12. [Online]. Available: http://dl.acm.org/citation.cfm?id=2429759.2430107

90. L. McGinnis, E. Huang, K. S. Kwon, and V. Ustun, “Ontologies and simulation: a practical ap-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

http://dl.acm.org/citation.cfm?id=2008503.2008514
http://dx.doi.org/10.1007/978-3-642-02674-4
http://dx.doi.org/10.1007/978-3-642-02674-4
http://doi.acm.org/10.1145/1921532.1921556
http://dx.doi.org/10.1007/s10009-005-0205-x
http://www.omg.org/spec/SyM/1.0/PDF/
http://www.omg.org/spec/SyM/1.0/PDF/
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-20553
http://dl.acm.org/citation.cfm?id=2429759.2430107


Bibliography 176

proach,” Journal of Simulation, vol. 5, no. 3, pp. 190–201, 2011.
91. R. Peak, R. Burkhart, S. Friedenthal, M. Wilson, M. Bajaj, and I. Kim, “Simulation-based design

using SysML part 1: A parametrics primer,” in INCOSE Intl. Symposium, San Diego, CA, USA, 2007,
pp. 1–20.

92. L. McGinnis and V. Ustun, “A simple example of SysML-driven simulation,” in Winter Simulation
Conference (WSC), Proceedings of the 2009. IEEE, 2009, pp. 1703–1710.

93. R. Wang and C. Dagli, “An executable system architecture approach to discrete events system
modeling using SysML in conjunction with colored petri nets,” in IEEE Systems Conference 2008.
Montreal: IEEE Computer Press, April 2008, pp. 1–8.

94. M. dos Santos Soares and J. L. M. Vrancken, “Model-driven user requirements specification using
SysML,” JSW, vol. 3, no. 6, pp. 57–68, 2008.

95. A. A. Kerzhner, J. M. Jobe, and C. J. J. Paredis, “A formal framework for capturing knowledge to
transform structural models into analysis models,” J. Simulation, vol. 5, no. 3, pp. 202–216, 2011.

96. W. Schamai, “Model-based verification of dynamic system behavior against requirements:
Method, language, and tool,” Ph.D. dissertation, Linköping University, SE-581 83 Linköping, Swe-
den, 10 2013.

97. M. Nikolaidou, G.-D. Kapos, A. Tsadimas, V. Dalakas, and D. Anagnostopoulos, “Challenges in
sysml model simulation,” Advances in Computer Science: an International Journal, vol. 5, no. 4, pp.
49–56, 2016.

98. “INCOSE Handbook SE Process Model,” INCOSE, September 2003. [Online]. Available: http:
//g2sebok.incose.org/

99. M. W. Maier, D. Emery, and R. Hilliard, “Ansi/ieee 1471 and systems engineering,” Systems Engi-
neering, vol. 7, no. 3, pp. 257–270, 2004.

100. A. Aurum and C. Wohlin, Engineering and Managing Software Requirements. Springer, 2005.
101. C.-W. Ho, L. Williams, and B. Robinson, “Examining the relationships between performance re-

quirements and ”not a problem” defect reports,” in RE ’08: Proceedings of the 2008 16th IEEE In-
ternational Requirements Engineering Conference. Washington, DC, USA: IEEE Computer Society,
2008, pp. 135–144.

102. L. Lee and P. Kruchten, “Visualizing software architectural design decisions,” in ECSA, 2008, pp.
359–362.

103. P. Kruchten, Rational Unified Process: an Introduction. Reading/MA: Addison-Wesley, 1998.
104. D. Brown and J. Densmore, “The new, improved RUP SE Architecture Framework,” 2005, iBM

Rational Edge.
105. IEEE Std 15288 -2004, Systems Engineering -System Life Cycle Processes, Institute for Electrical and

Electronic Engineers, June 2005.
106. A. Fatolahi and F. Shams, “An investigation into applying UML to the Zachman Framework,”

Information Systems Frontiers, vol. 8, no. 2, pp. 133–143, 2006. [Online]. Available: http:
//dx.doi.org/10.1007/s10796-006-7977-8

107. D. J. de Villiers, Using the Zachman Framework to assess RUP, Rational Edge, 2001.
108. H.-P. Hoffmann, Harmony-SE/SysML Deskbook: Model-Based Systems Engineering with Rhapsody,

Rev. 1.51, Telelogic/I-Logix white paper, Telelogic AB, May 2006.
109. K. Pohl and E. Sikora, “Supporting the Co-Design of Requirements and Architectural Artifacts,”

in 15th IEEE International Requirements Engineering Conference (RE’07), India Habitat Center, New
Delhi, 2007, pp. 258–261.

110. D. E. Emery and R. Hilliard, “Every architecture description needs a framework: Expressing archi-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

http://g2sebok.incose.org/
http://g2sebok.incose.org/
http://dx.doi.org/10.1007/s10796-006-7977-8
http://dx.doi.org/10.1007/s10796-006-7977-8


177

tecture frameworks using ISO/IEC 42010,” in WICSA/ECSA, 2009, pp. 31–40.
111. “Eclipse Integrated Development Environment.” [Online]. Available: https://eclipse.org
112. “Eclipse Papyrus Open Source UML tool.” [Online]. Available: https://eclipse.org/papyrus/
113. “Modelio Open Source UML tool.” [Online]. Available: https://www.modelio.org/
114. “Visual Paradigm.” [Online]. Available: http://www.visual-paradigm.com/
115. “Enterprise Architect.” [Online]. Available: http://www.sparxsystems.com/products/ea.html
116. I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What industry needs from architec-

tural languages: A survey,” IEEE Transactions on Software Engineering, vol. 39, no. 6, pp. 869–891,
2013.

117. J. Holt and S. Perry, SysML for Systems Engineering. 2nd Edition: A Model-Based Approach, ser.
Computing and Networks Series. Institution of Engineering and Technology, 2013. [Online].
Available: https://books.google.gr/books?id=JlRHAgAAQBAJ

118. O. M. Group, “Meta object facility (MOF) 2.0 core final adopted specification,” Object
Management Group, Tech. Rep., 2004. [Online]. Available: http://www.omg.org/cgi-bin/doc?
ptc/03-10-04

119. ——, “OMG meta object facility (MOF) core specification,” Object Management Group, Tech.
Rep., 2013. [Online]. Available: http://www.omg.org/spec/MOF/2.4.1/PDF/

120. O. M. G. Inc, “UML Superstructure Specification, Version 2.1.2,” November 2007.
121. J. Mather, “The devsjava simulation viewer: A modular gui that visualizes the structure and be-

havior of hierarchical devs models,” Ph.D. dissertation, UNIVERSITY OF ARIZONA, 2003.
122. “EIS DEVSjava Library Components,” Bitbucket, 2014. [Online]. Available: https://bitbucket.org/

anargyros_tsadimas/eis-devsjava
123. MG, SysML Plugin for Magic Draw, 2007.
124. “MagicDraw Open API User Guide,” No Magic Inc, 2013. [Online]. Available: http://www.

nomagic.com/files/manuals/MagicDraw%20OpenAPI%20UserGuide.pdf
125. B. P. Zeigler and H. S. Sarjoughian, Introduction to DEVS Modeling and Simulation with

JAVA. DEVSJAVA Manual, 2003. [Online]. Available: www.acims.arizona.edu/PUBLICATIONS/
publications.shtml

126. “Netbeans.” [Online]. Available: https://netbeans.org/
127. “medini QVT,” ikv++ technologies ag, 2013. [Online]. Available: http://projects.ikv.de/qvt
128. B. W. Boehm, R. Madachy, B. Steece et al., Software cost estimation with Cocomo II with Cdrom.

Prentice Hall PTR, 2000.
129. D. Brown, J. Densmore, and S. J. Vaughan-Nichols, “Web services,” pp. 18–21, 2002, IBM Rational

Edge.
130. “XML Metadata Interchange (XMI), v2.1.1,” 2007. [Online]. Available: http://www.omg.org/spec/

XMI/2.1.1/PDF/index.htm
131. J.-F. Pétin, D. Evrot, G. Morel, and P. Lamy, “Combining SysML and formal methods for

safety requirements verification,” in 22nd International Conference on Software & Systems
Engineering and their Applications, Paris, France, Dec. 2010, p. CDROM. [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00533311

132. G. Pedroza, L. Apvrille, and D. Knorreck, “Avatar: A sysml environment for the formal verification
of safety and security properties,” in New Technologies of Distributed Systems (NOTERE), 2011 11th
Annual International Conference on. IEEE, 2011, pp. 1–10.

133. J. C. Maxwell, A. Anton et al., “Checking existing requirements for compliance with law using a
production rule model,” in Requirements Engineering and Law (RELAW), 2009 Second International

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

https://eclipse.org
https://eclipse.org/papyrus/
https://www.modelio.org/
http://www.visual-paradigm.com/
http://www.sparxsystems.com/products/ ea.html
https://books.google.gr/books?id=JlRHAgAAQBAJ
http://www.omg.org/cgi-bin/doc?ptc/03-10-04
http://www.omg.org/cgi-bin/doc?ptc/03-10-04
http://www.omg.org/spec/MOF/2.4.1/PDF/
https://bitbucket.org/anargyros_tsadimas/eis-devsjava
https://bitbucket.org/anargyros_tsadimas/eis-devsjava
http://www.nomagic.com/files/manuals/MagicDraw%20OpenAPI%20UserGuide.pdf
http://www.nomagic.com/files/manuals/MagicDraw%20OpenAPI%20UserGuide.pdf
www.acims.arizona.edu/PUBLICATIONS/publications.shtml
www.acims.arizona.edu/PUBLICATIONS/publications.shtml
https://netbeans.org/
http://projects.ikv.de/qvt
http://www.omg.org/spec/XMI/2.1.1/PDF/index.htm
http://www.omg.org/spec/XMI/2.1.1/PDF/index.htm
http://hal.archives-ouvertes.fr/hal-00533311


Bibliography 178

Workshop on. IEEE, 2009, pp. 1–6.
134. C. Kotronis, A. Tsadimas, G. D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopoulos, “Sim-

ulating sysml transportation models,” in 2016 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), Oct 2016, pp. 001674–001679.

135. E. Filiopoulou, P. Mitropoulou, A. Tsadimas, C. Michalakelis, M. Nikolaidou, and D. Anagnos-
topoulos, “Integrating cost analysis in the cloud: A sos approach,” in 2015 11th International Con-
ference on Innovations in Information Technology (IIT), Nov 2015, pp. 278–283.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Publications

This chapter presents thepublications thatwereproduced throughout this researchwork,

that started from my M.Sc. thesis.

Book Chapters

B1. A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, Formal Languages for Computer
Simulation: Transdisciplinary Models and Applications. IGI Global, ch. 8: Model-Based Sys-

tem Design Using SysML: The Role of the Evaluation Diagram, pp. 236–266.

Journal Papers with Review

J1. M. Nikolaidou, G.-D. Kapos, A. Tsadimas, V. Dalakas, andD. Anagnostopoulos, “Challenges

in sysml model simulation,” Advances in Computer Science: an International Journal, vol. 5,
no. 4, pp. 49–56, 2016.

J2. A. Tsadimas, G.-D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopoulos,

“Simulating simulation-agnostic sysml models for enterprise information systems via

devs,” Simulation Modelling Practice and Theory, vol. 66, pp. 243 – 259, 2016. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S1569190X16300259

Conferences Papers

C1. C. Kotronis, A. Tsadimas, G. D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopou-

los, “Simulating sysml transportation models,” in 2016 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), Oct 2016, pp. 001674–001679.

C2. E. Filiopoulou, P. Mitropoulou, A. Tsadimas, C. Michalakelis, M. Nikolaidou, and D. Anag-

nostopoulos, “Integrating cost analysis in the cloud: A sos approach,” in 2015 11th Inter-
national Conference on Innovations in Information Technology (IIT), Nov 2015, pp. 278–283.

C3. A. Tsadimas, “Model-based enterprise information system architectural design with

179

http://www.sciencedirect.com/science/article/pii/S1569190X16300259


Conferences Papers 180

SysML,” in Research Challenges in Information Science (RCIS), 2015 IEEE 9th International
Conference on. IEEE, 2015, pp. 492–497.

C4. M. Nikolaidou, G.-D. Kapos, A. Tsadimas, V. Dalakas, and D. Anagnostopoulos, “Simulat-

ing SysML models: Overview and challenges,” in System of Systems Engineering Confer-
ence (SoSE), 2015 10th. IEEE, 2015, pp. 328–333.

C5. A. Tsadimas, G.-D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopoulos, “Inte-

grating simulation capabilities into SysML for enterprise information system design,” in

System of Systems Engineering (SOSE), 2014 9th International Conference on. IEEE, 2014,

pp. 272–277.

C6. G.-D. Kapos, V. Dalakas, A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, “Model-

based system engineering using SysML: Deriving executable simulation models with

QVT,” in SysCon. IEEE International Systems Conference, 2014.

C7. A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, “Extending SysML to explore

non-functional requirements: the case of information system design,” in Proceedings
of the 27th Annual ACM Symposium on Applied Computing, ser. SAC ’12. New York,

NY, USA: ACM, 2012, pp. 1057–1062. [Online]. Available: http://doi.acm.org/10.1145/

2231936.2231941

C8. M. Nikolaidou, A. Tsadimas, and D. Anagnostopoulos, “Model-based enterprise infor-

mation system architecture design using SysML,” in IEEE Systems Conference 2010, April
2010.

C9. A. Tsadimas, M. Nikolaidou, and D. Anagnostopoulos, “Evaluating software architecture

in a model-based approach for enterprise information system design,” in SHARK ’10.
New York, USA: ACM, 2010, pp. 72–79.

C10. ——, “Handling non-functional requirements in information system architecture de-

sign,” in ICSEA ’09, 2009, pp. 59–64.
C11. M. Nikolaidou, A. Tsadimas, N. Alexopoulou, and D. Anagnostopoulos, “Employing

Zachman Enterprise Architecture Framework to systematically perform Model-Based

System Engineering Activities,” in HICSS-42, 2009, pp. 1–10. [Online]. Available:

http://dx.doi.org/10.1109/HICSS.2009.189

C12. M. Nikolaidou, N. Alexopoulou, A. Tsadimas, A. Dais, and D. Anagnostopoulos, “Accom-

modating EIS UML 2.0 profile using a standard UML modeling tool,” in Software Engi-
neering Advances, 2007. ICSEA 2007. International Conference on. IEEE, 2007, pp. 26–26.

C13. ——, “Facilitating enterprise information system engineering through a UML 2.0 pro-

file: A case study,” Information Resource Management Association (IRMA 2007), Vancouver,
British Columbia, Canada, 2007.

C14. N. Alexopoulou, A. Tsadimas, M. Nikolaidou, A. Dais, and D. Anagnostopoulos, “Intro-

ducing a UML profile for distributed system configuration,” in ICEIS: Databases and In-
formation Systems Integration, Paphos, Cyprus, May 23-27, 2006, 2006, pp. 542–545.

C15. M. Nikolaidou, N. Alexopoulou, A. Tsadimas, A. Dais, and D. Anagnostopoulos,

“Extending UML 2.0 to augment control over enterprise information system engi-

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

http://doi.acm.org/10.1145/2231936.2231941
http://doi.acm.org/10.1145/2231936.2231941
http://dx.doi.org/10.1109/HICSS.2009.189


181

neering process,” in ICSEA. IEEE Computer Society, 2006, p. 10. [Online]. Available:

http://doi.ieeecomputersociety.org/10.1109/ICSEA.2006.41

C16. ——, “A consistent framework for enterprise information system engineering,”

in EDOC. IEEE Computer Society, 2006, pp. 492–496. [Online]. Available: http:

//doi.ieeecomputersociety.org/10.1109/EDOC.2006.6

C17. M. Nikolaidou, A. Tsadimas, N. Alexopoulou, A. Dais, and D. Anagnostopoulos, “A

UML profile utilizing enterprise information system configuration,” in ICECCS. IEEE

Computer Society, 2006, pp. 77–88. [Online]. Available: http://doi.ieeecomputersociety.

org/10.1109/ICECCS.2006.48

C18. M. Nikolaidou, N. Alexopoulou, A. Tsadimas, A. Dais, and D. Anagnostopoulos, “Using

uml to model distributed system architectures,” in CAINE. ISCA, 2005, pp. 91–96.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach

http://doi.ieeecomputersociety.org/10.1109/ICSEA.2006.41
http://doi.ieeecomputersociety.org/10.1109/EDOC.2006.6
http://doi.ieeecomputersociety.org/10.1109/EDOC.2006.6
http://doi.ieeecomputersociety.org/10.1109/ICECCS.2006.48
http://doi.ieeecomputersociety.org/10.1109/ICECCS.2006.48


Short Bio

Anargyros Tsadimas was born in Lamia on 22 October 1979. Since 2004 is working at the

Harokopio University as a research associate where is currently Technical Laboratory Staff at

the Department of Informatics & Telematics.

He received his B.Sc. in Applied Informatics from the University of Macedonia in 2002 and

his MSc in Advanced Information Systems from the Department of Informatics & Telecommu-

nications of the National and Kapodistrian University of Athens in 2005.

Since 2008 he is adjunct lecturer at the Department of Informatics & Telematics, teach-

ing the laboratories part of the courses: Operating Systems, Distributed Systems, System

Analysis and Software Technology.

His research interests lie in the field of Modeling & Simulation of Systems, Distributed

Systems and Enterprise Information Systems Engineering. He has several publications in in-

ternational conference proceedings and he has been participated in numerous R&Dprojects.

Last but not least, he is open source enthusiast. Since 2007 he has entangled with web

applications development and systems administration tasks, mainly administering UNIX and

Solaris operating systems.

182



183

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Acronyms

ATL ATLAS Transformation Language.

AVATAR Automated Verification of reAl Time softwARe.

CIM Computation Independent Model.

COCOMO Constructive Cost Model.

CWM Common Warehouse Meta-model.

DES Discrete event simulation.

DEVS DEVS abbreviating Discrete Event System Specification is a modular and hierarchical formalism for model-
ing and analyzing general systems that can be discrete event systems which might be described by state tran-
sition tables, and continuous state systems which might be described by differential equations, and hybrid con-
tinuous state and discrete event systems. DEVS is a timed event system.

DIPLODOCUS DesIgn sPace exLoration based on fOrmal Description teChniques, Uml and SystemC.

EAF Enterpsise Architecture Framework.

EIS Enterprise Information System.

ES Enterprise Systems.

IaaS Infrastructure as a Service.
IEEE Institute of Electrical and Electronics Engineers.

IEEE-Std-1471-2000 IEEE Recommended Practice for Architectural Description of Software Intensive Systems.

INCOSE International Council on Systems Engineering.

IS Information System.

ISE Information Systems Engineering.

ISO International Organization for Standardization.

ITU International Telecommunication Union.

JAXB Java Architecture for XML Binding.

JRT Joint Realization Table.

LAN Local Area Network.

MARTEModeling and Analysis of Real Time and Embedded systems.

MB-EISEModel-based Enterprise Information System Engineering.

MBEModel-Based Engineering.

MBSDModel-Based System Design.

MBSEModel-Based Systems Engineering.

MDAModel Driven Architecture.

MOFMeta-Object Facility.

184



185

NFP Non-Functional Properties.

NFR In systems engineering and requirements engineering, a non-functional requirement is a requirement that
specifies criteria that can be used to judge the operation of a system, rather than specific behaviors. This should
be contrasted with functional requirements that define specific behavior or functions. The plan for implementing
functional requirements is detailed in the systemdesign. The plan for implementing non-functional requirements
is detailed in the system architecture.

OCL Object Constraint Language.
OMG Object Management Group.

OOSEM Object-Oriented Systems Engineering Method.

PaaS Platform as a Service.

PEAS Packaged Enterprise Application Software.

PIM A Platform-Independent Model is a model of a system that does not have any technology-specific imple-
mentation informationshortplural.

PLM Product Lifecycle Management.

PSM A Platform-Specific Model is a model of a system that has technology-specific implementation information
shortplural.

QoS Quality of Service.
QVT Query / View / Transformation.

RE Requirements Engineering.

RUP Rational Unified Process.

RUP-SE Rational Unified Process for Systems Engineering.

SaaS Software as a Service.
SE Software Engineering.
SLIM Systems LIfecycle Management.

SoS System of Systems.

SysE Systems Engineering.

SysML The Systems Modeling Language (SysML) is a general-purpose modeling language for systems engineer-
ing applications. It supports the specification, analysis, design, verification and validation of a broad range of
systems and systems-of-systems.

TCO Total cost of ownership is a financial estimate intended to help buyers and owners determine the direct
and indirect costs of a product or system. It is a management accounting concept that can be used in full cost
accounting or even ecological economics where it includes social costs.

TEPE TEmporal Property Expression language.

UML Unified Modeling Language.

URN User Requirement Notation.

VLAN Virtual Local Area Network.

VSL VSL is a textual language defined inMARTE. It specifies expressions for constraints, properties and stereotype
attributes. It enables the value specification, at model level, in tagged values, body of constrainst and in any UML
element.

vVDR Virtual Verification of Designs against Requirements.

XMI XML Metadata Interchange.

XML Extensible Markup Language.

XSLT EXtensible Stylesheet Language Transformations.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Acronyms 186

ΕΠΣ Εταιρικά Πληροφοριακά Συστήματα.
ΜΛΑΜη-Λειτουργικές απαιτήσεις.

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



Index

ATL, 61, 65
AVATAR, 60

CIM, 47, 48
COCOMO, 141, 144
CWM, 49, 83

DES, 54
DEVS, 27, 33, 54, 55, 65, 128–133, 135, 157
DIPLODOCUS, 60

EAF, 39, 40
EIS, 19, 29, 31–33, 36, 39–41, 43, 57, 66, 67, 69–73,

75–82, 84–86, 88–90, 93, 99–102, 104, 106,
108, 111, 119, 120, 122, 123, 128–137, 139,
141, 145, 146, 148, 153, 157, 158, 160, 162,
163, 165, 167, 168

ES, 39

IaaS, 163
IEEE, 70, 71, 73, 76
IEEE-Std-1471-2000, 52
INCOSE, 19, 20, 33, 43, 69, 71, 81, 86, 137
IS, 29, 31, 35, 36, 38, 39, 54, 55, 81, 91, 163
ISE, 39
ISO, 50
ITU, 59

JAXB, 135
JRT, 58

LAN, 75, 81, 96, 98

MARTE, 59, 104
MB-EISE, 40, 41
MBE, 42
MBSD, 42, 167
MBSE, 33, 36, 43, 46, 69, 81, 86
MDA, 47–49, 55, 128
MOF, 48, 49, 51, 61, 81–83, 128, 131, 134

NFP, 59, 60
NFR, 19, 30–33, 35, 36, 42, 43, 46, 48, 54, 55, 57–59,

63, 70, 73, 78–80, 82, 84–86, 88, 89, 93, 96,

99–101, 103–106, 113–117, 119, 121, 122,
141, 152, 159, 163–165, 167, 168

OCL, 50, 60, 80, 108
OMG, 19, 20, 23, 32, 43, 46–50, 59, 60, 65, 80, 82, 83,

89, 135, 164
OOSEM, 43, 44

PaaS, 163
PEAS, 39
PIM, 47–49
PLM, 60
PSM, 47, 48

QoS, 26, 32, 54, 101, 108, 113, 124, 125, 141, 144
QVT, 27, 33, 48, 50, 55, 60, 65, 80, 131, 132, 135, 157,

164

RE, 31, 33, 57
RUP, 44, 57, 58, 70
RUP-SE, 43, 44, 57, 58, 75

SaaS, 163
SE, 33, 49
SLIM, 59
SoS, 19, 20, 29, 33, 41, 61, 65, 80, 81, 168
SysE, 31, 33, 39
SysML, 19, 20, 22–27, 29, 32, 33, 35, 36, 38, 40, 43,

51–55, 57–63, 65–67, 69, 77, 80–82, 85, 86,
89–93, 102–106, 108, 128, 131, 132, 135–
137, 159, 162–165, 167, 168

TCO, 168
TEPE, 60

UML, 22, 23, 29, 33, 38, 43, 49–52, 57–60, 81–83, 89,
92, 94, 96, 108, 128, 146

URN, 59

VLAN, 96
VSL, 59, 104
vVDR, 63

XMI, 49, 82, 133, 157



Index 188

XML, 55, 82, 134, 157
XSLT, 133, 157

ΕΠΣ, 20, 25–27
ΜΛΑ, 20, 21, 23, 24

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach



189

Anargyros T. Tsadimas Model-Based Enterprise Information System Design: A SysML-based approach


	List of Figures
	List of Tables
	Introduction
	General
	Objectives & Contribution
	Overview
	Research Methodology
	Structure

	Background
	Outline
	Information Systems Engineering
	Architecture Frameworks
	Requirements Engineering

	Model-based System Engineering
	Model-based System Design
	System Models Management

	System Evaluation
	Requirements Verification
	Simulation

	Summary

	Related Work
	Outline
	Rational Unified Process Methodology
	SysML profiles
	Simulating SysML Models
	Requirements in SysML
	SysML Requirements Verification
	What is missing?
	Summary

	A MBSD Approach for EIS Architecture
	Outline
	Using Zachman Framework as a canvas for EIS engineering
	Analysing Zachman matrix
	NFR handling in Zachman matrix
	Utilizing Zachman Framework in EIS architecture design

	Proposed Approach
	A conceptual model for Information System Architecture Design
	Supporting the proposed approach

	Summary

	Designing EIS Architecture
	Outline
	Design Views
	Functional View
	Topology View
	Network Infrastructure View

	Non-Functional Requirements View
	Non-functional requirements classification
	SysML Extension to support NFRs
	NFR Representation
	NFR Derivation
	NFR Verification

	Summary

	Evaluating EIS Architecture
	Outline
	Evaluation View
	The Big Image: Views Interrelation
	Automating the verification Process
	Simulation framework
	Generate executable simulation model
	Simulation Execution
	Simulation results incorporation

	Implementation
	Summary

	A Case Study
	Outline
	Description
	Challenges
	Design Mode
	Functional View
	Topology View
	Network Infrastructure View
	NFR View

	Producing Evaluation View and Inflating Simulation Parameters
	Evaluation scenario

	Transformation to simulation code
	Simulation execution and results incorporation
	Verifying Requirements
	Re-design System Model
	Experience Obtained
	Summary

	Discussion
	Overview
	Contribution
	Limitations

	Conclusions - Future Work
	Conclusions
	Future Work

	Bibliography
	Acronyms
	Index

