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Abstract in Greek 

 

Η υπερφασματική τηλεπισκόπηση ή φασματοσκοπία παρέχει υψηλής ποιότητας φασματικές 

πληροφορίες για τις ιδιότητες της επιφάνειας της γήινης επιφάνειας και τα οικολογικά 

συστήματα παγκοσμίως. Η φασματοσκοπία απεικόνισης βελτιώνει την αναγνώριση των 

χαρακτηριστικών της γης ευνοώντας πλήθος εφαρμογών, συμπεριλαμβανομένης καταγραφής 

και χαρτογράφησης της χρήσης και κάλυψης γης. Ακριβείς πληροφορίες σε τακτικά χρονικά 

διαστήματα για τις χρήσεις και τις αλλαγές της επιφάνειας της γης είναι κρίσιμες για την 

παγκόσμια παρακολούθηση και διαχείριση των οικοσυστημάτων. Τα επιχειρησιακά προϊόντα 

θεματικών χαρτών κάλυψης γης, επί του παρόντος είναι διαθέσιμα σε παγκόσμια ή εθνική 

κλίμακα και προέρχονται από τη χρήση πολλαπλών παθητικών οπτικών αισθητήρων. Ωστόσο, 

η χαμηλή χωρική ανάλυση που εξακολουθούν να παρέχουν αυτά τα προϊόντα τα καθιστά 

ακατάλληλα για πολυάριθμες εφαρμογές σε κλίμακα περιφερειακής και τοπικής ενότητας.  
 

Η διαθεσιμότητα δεδομένων EO από σύγχρονες δορυφορικές αποστολές προσφέρει μοναδικές 

ευκαιρίες για την αντιμετώπιση αυτού του περιορισμού. Το Πρόγραμμα Περιβαλλοντικής 

Χαρτογράφησης και Ανάλυσης (EnMAP) είναι μια δορυφορική υπερφασματική αποστολή της 

Γερμανίας με στόχο την παρακολούθηση και τον χαρακτηρισμό του γήινου περιβάλλοντος σε 

παγκόσμια κλίμακα. Το πρόγραμμα EnMAP προορίζεται να γεφυρώσει το χάσμα παρέχοντας 

πλούσιες λεπτομερείς φασματικές πληροφορίες στο VNIR και SWIR εύρος στην περιοχή 

μεγάλης κλίμακας με ευρεία χρονική κάλυψη και υψηλή χωρική ανάλυση. Αξιοποιώντας τα 

υψηλής ποιότητας δεδομένα και ανοικτής πρόσβασης στην επιστημονική κοινότητα, 

αποκαλύπτεται ένα μεγάλο δυναμικό σε ένα ευρύ φάσμα οικολογικών και περιβαλλοντικών 

εφαρμογών, όπως οι ακριβείς και ενημερωμένοι θεματικοί χάρτες κάλυψης-χρήσης γης. 

 

Στο πλαίσιο των παραπάνω, η παρούσα μελέτη αποτελεί μία από τις πρώτες που διερευνούν 

τις δυνατότητες του δορυφόρου ENMAP στο πλαίσιο της χαρτογράφησης των χρήσεων και 

της κάλυψης γης, με σκοπό να διερευνήσει τα πλεονεκτήματα του. Στόχος αποτελεί η 

διερεύνηση της αποτελεσματικότητας των πιο δημοφιλών αλγορίθμων μηχανικής μάθησης 

επιβλεπόμενης ταξινόμησης, όπως ο αλγόριθμος Support Vector Machines και Random Forest, 

χρησιμοποιώντας ένα σύνολο υπερφασματικών δεδομένων του δορυφορικού προγράμματος 

EnMAP. Ως περίπτωση μελέτης χρησιμοποιείται ένας τυπικό Μεσογειακό τοπίο. 
 

Οι θεματικοί χάρτες που προέκυψαν χρησιμοποιώντας τους αλγόριθμους μηχανικής μάθησης 

SVM και RF αξιολογήθηκαν ως προς την απόδοσή τους χρησιμοποιώντας βασικές στατιστικές 

αξιολόγησης. Επιπλέον, διεξήχθη συγκριτική ανάλυση των αποτελεσμάτων χρησιμοποιώντας 

τον στατιστικό έλεγχο σημαντικότητας McNemar's. Τα αποτελέσματα ανέδειξαν την υπεροχή 

της μεθόδου SVM έναντι RF, όπου προέκυψαν υψηλότερη τιμή της συνολικής ακρίβειας, με 

90,5% έναντι 87,5%, αντίστοιχα. Η υπεροχή της ακρίβειας για την SVM επιβεβαιώθηκε 

περαιτέρω από το στατιστικό έλεγχο McNemar's. 

 

Τα ευρήματα της παρούσας μελέτης ανέδειξαν ότι τα υπερφασματικά δεδομένα του EnMAP 

διαθέτουν μεγάλο δυναμικό στον τομέα της χαρτογράφησης χρήσης/κάλυψης γης και 

αναμένεται να παρέχουν πολύτιμες πληροφορίες για την περαιτέρω αξιολόγηση των συνόλων 

δεδομένων του EnMAP σε σχετικές εφαρμογές. 

 

Λέξεις-κλειδιά: EnMAP, χρήσεις γης και κάλυψη γης, μηχανική μάθηση, υπερφασματική 

τηλεπισκόπηση, φασματοσκοπία 
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Abstract 

 

Hyperspectral remote sensing or imaging spectroscopy provides high-quality spectral 

information on terrestrial surface properties and ecology systems worldwide. Imaging 

spectroscopy enhances the identification of characteristics of derivative surface features 

advantaging various applications, including land use and land cover (LULC) mapping. 

Accurate and repetitive information on land use and its changes are crucial in monitoring and 

managing ecosystems globally. LULC operational products are currently available at global or 

national scales utilizing imaging data acquired from multiple optical sensors. Yet, the coarse 

spatial resolution these products are still provided makes them not suitable for numerous 

applications on regional and local scales.  

The availability of EO data from contemporary satellite missions offers unique opportunities 

towards addressing this limitation. The Environmental Mapping and Analysis Program 

(EnMAP), is a German hyperspectral satellite mission aiming at monitoring and characterizing 

the Earth’s environment on a global scale. EnMAP program is intended to bridge this gap by 

providing abundant detailed spectral information in visible - near infrared (VNIR) and 

shortwave infrared (SWIR) ranges within a large-scale area in wide temporal coverage and 

high spatial resolution. Taking advantage of high-quality and open-access data for the scientific 

community, great potential is revealed in a wide range of environmental applications, such as, 

i.e., accurate and up-to-date LULC thematic maps.  

In the purview of the above, this thesis evaluates – to the authors’ knowledge for the first time 

- the use of recently launched ENMAP in the context of LULC mapping, aiming at exploring 

the advantages of the hyperspectral EnMAP datasets. The overall objective of this study is to 

demonstrate the effectiveness of some of the most popular machine learning (ML) pixel-based 

algorithms, i.e., Support Vector Machines (SVMs) and Random Forest (RF), for image 

classification on EnMAP hyperspectral dataset. As a case study a typical Mediterranean 

landscape is used. 

The thematic maps obtained using fine-tuned SVM and RF algorithms, provided comparable 

accuracy assessed using standard classification accuracy metrics. Further, a comparative 

analysis of results was conducted using McNemar’s chi-square statistical significance testing. 

Results indicated that SVMs exhibited over RF showed higher overall accuracy, of 90.5% and 

87.5%, respectively. The superiority of SVMs was further supported by McNemar’s statistic 

test. 

Findings of present study have shown that EnMAP datasets hold great potential in the field of 

land-cover and use mapping and are expected to provide valuable input for further evaluation 

of EnMAP datasets in relevant applications. 

 

 

 

 

Keywords: Hyperspectral remote sensing, imaging spectroscopy, EnMAP, land cover and 

land use, machine learning 
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1. Introduction 
 

Chapter 1 

 
This chapter aims at providing a general overview to the background of this thesis, the 

research statement as well as the aim and objectives. Furthermore, the chapter closes 

presenting the overall thesis structure.  
 

1.1. A general overview 
 

The Earth's terrestrial surface and ecological systems are currently facing a significant pressure 

from a variety of sources, both natural causes and human factor activities (FAO, 2022). The 

rate of change in land use and land cover has accelerated significantly due to unregulated 

population growth and the increase of economic and industrial activities, such as expansion of 

urban areas, deforestation and mining operations, particularly in developing countries 

(Talukdar et al., 2020). Therefore, there is an urgent need for accurate, consistent and up-to-

date information on global land cover and land use alterations which in turn serves as a critical 

asset in enabling effective and sustainable management of natural resources (FAO, 2022). Such 

information plays a crucial role in informing policy-makers for guiding land use practices and 

strategic planning efforts aimed at achieving sustainable development and environmental 

sustainability goals (Estoque, 2020; Giuliani et al., 2020; Andries et al., 2022). 

 

The rapidly growing advances in the field of Earth Observation, entailed a vast range of remote 

sensing platforms equipped with passive sensors (multispectral or hyperspectral) and scanning 

sensors as well as microwave radiometers and active systems, to capture electromagnetic 

radiation reflected or emitted by the earth's surface (Jensen, 2015; Toth & Jóźków et al., 2016; 

Fu et al., 2019). For passive sensors, multispectral or hyperspectral instruments mounted on 

airborne or spaceborne satellite platforms and function by recording electromagnetic radiation 

reflected or emitted from earths terrain. Multispectral systems are capable of capturing energy 

across several distinct bands of the electromagnetic spectrum, while hyperspectral instruments 

are capable of recording energy across hundreds of narrow, continuous bands within the 

electromagnetic spectrum (Zhu et al., 2018). By employing various digital image processing 

techniques in remotely-sensed data, detailed information can be obtained about the Earth's 

surface features, such as topography, vegetation structure and land use/cover, supporting earth 

monitoring at different scales and wavelengths. Applications of Earth Observation (EO) in 

remote sensing field provides a global perspective for the material of the Earth’s surface 

(Winkler et al., 2021; Zhao et al., 2022).  

Advanced techniques in imaging spectroscopy or hyperspectral imaging (HSI) provide a wide 

range of image processing techniques which enable understanding better the Earths’ surface 

features and their spatial distribution. This information collected through the use of remote 

sensing airborne and spaceborne platforms, corresponds to data with numerous contiguous 

bands in the electromagnetic spectrum (Buckingham & Staenz et al., 2008; Rast et al., 2019). 

The availability of such powerful data provides detailed information about the reflectance 

characteristics of the features at multiple wavelengths. This information can be used to identify 

the unique spectral signatures of different feature properties, such as natural vegetation and 

forests, different type of crops, built-up areas and water bodies (Rasti et al., 2018). In recent 

years, advances in hyperspectral remote sensing technology and increasing computing power 

have made it possible to classify large areas of land cover and land use and perform fine-grained 

discrimination with high accuracy (Pandey et al., 2020; Akar & Gormus, 2021; Moharram et 
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al., 2023). This has important applications in fields such as agriculture, urban planning and 

environmental monitoring where detailed information about the earth's surface benefits with 

various applications within the scientific community and policy makers (Singh et al., 2020; 

Weiss et al., 2020; Wellmann et al., 2020). 

Imaging spectroscopy enhances the identification of characteristics of derivative surface 

features advantaging various applications, including detailed land use and land cover (LULC) 

mapping. Accurate and repetitive information on land cover and its changes are crucial for 

many post-analysis tasks in monitoring and managing ecosystems globally. Measuring and 

predicting changes in land use and land cover through quantitative analysis is the most effective 

way to manage and comprehend landscape transformations and natural resources (Verrelst et 

al., 2018; Lamine et al., 2018). There are several approaches that can be used for hyperspectral 

LULC classification, including traditional statistical and geospatial techniques and state-of-

the-art machine learning algorithms and deep learning techniques (Lv & Wang et al., 2020; 

Mughees & Tao, 2021; Datta et al., 2022). The advancements in hyperspectral remote sensing, 

improved the image enhancement in terms of spectral and spatial information and better 

discrimination of surface materials in data acquired from hyperspectral sensors.  

A wide range of methodological approaches can be employed to develop accurate and up-to-

date LULC maps utilizing algorithms and statistical models to analyse large datasets, identify 

patterns, and predict land cover changes. The advantages of hyperspectral imaging coupled 

with technological advancements in the field of ML algorithms have boosted classification 

techniques and increased efficiency of derived classified thematic maps (Pandey et al., 2019).  

In recent years, ML-based techniques have made significant progress in the field of land-use 

and cover mapping, overcoming the limitations over conventional algorithms and emerging as 

a promising area of research. ML in supervised classification, such as pixel-based, and various 

ensemble methods, have demonstrated robust capabilities of algorithms and achieved 

exceptional accuracy in hyperspectral LULC applications. 
 

1.2. Research statement  
 

The spaceborne imaging spectroscopy satellite mission Environmental Mapping and Analysis 

Program (EnMAP) designed from a consortium of German institutions headed by the German 

Aerospace Center (DLR). The mission aiming to monitor and characterize the Earth’s surface 

and environment on a global scale by providing high spectral resolution hyperspectral imagery 

data with large spatial coverage, enabling a comprehensive view of the Earth's surface (Guanter 

et al., 2015). EnMAP mission endorses a wide range of EO and environmental applications, 

including identifying land cover/use, vegetation analysis and natural resources monitoring 
(Kaufmann et al., 2008; 2015). In contrast with previously launched hyperspectral spaceborne 

missions, acquiring data at medium or coarse resolution, the high quality in spatial and spectral 

characteristics of EnMAP derived hyperspectral data allows for a better discrimination of 

diversity in landscapes and improved characterization of the environment. Such information 

can be utilized in EO applications to elaborate LULC maps, enhance the performance and boost 

the classification accuracy (Yokoya et al., 2016; Rosentreter et al., 2017; Marcinkowska-

Ochtyra et al., 2017). Overall, the design of EnMAP mission can support gap filling in space-

based imaging spectrometer data for environmental and Earth observation applications, 

providing high-quality hyperspectral data that can be used to support a wide range of studies 

and decision-making processes (Chabrillat et al., 2022). 
 

The launch of EnMAP mission was a significant step in comprehensive hyperspectral data 

coverage on a large-scale (Keller et al., 2017). The deployment of the EnMAP hyperspectral 

sensor into its operational phase has prompted the scientific community to investigate the 
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potential benefits and capabilities for employing various advanced machine learning methods 

on high-quality, derived hyperspectral datacubes. However, the extraction of information about 

different land-cover attributes with similar characteristics in HSI image classification is a 

challenging task due to highly complexity of hyperspectral data, as well as the variability and 

diversity of the land cover classes. To tackle this issue, advanced ML algorithms have been 

employed in the analysis of these data. These algorithms offer powerful capabilities for 

extracting valuable information from high-dimensional and complex hyperspectral datasets, 

particularly in distinguishing land-cover attributes with similar characteristics. These advanced 

ML algorithms leverage the significance of EnMAP data and provide sophisticated techniques 

for classification and mapping. By harnessing the capabilities of these algorithms, researchers 

and practitioners can effectively overcome the variability of land cover classes in hyperspectral 

image classification. In this regard, the recent availability of EnMAP HSI (since April 2022) 

expands the potential for enhancing and improving operational EO land-cover products. The 

introduction of high spectral, spatial, and temporal resolution open-access data could contribute 

to enhanced mapping of global ecosystems and land change dynamics. These advancements 

open up new possibilities for accurate and detailed updates of land cover mapping, supporting 

various applications in discipline fields.  
 

1.3. Aim & Objectives  

In purview of the above, this thesis aims at exploring the potential of ML algorithms for LULC 

mapping applied on novel hyperspectral data, in order to identify high-performing algorithms 

that can overcome the limitations of traditional classification methods. The overall goal is to 

acesse the effectiveness of most popular ML pixel-based algorithms in EnMAP hyperspectral 

data through cost-effective tools and approaches for supporting accurate and efficient LULC 

mapping. More specifically, this thesis objectives are to: (i) assess the efficiency of widely-

used ML algorithms i.e., Support Vector Machines (SVMs) and Random Forest (RF) for 

hyperspectral image classification, (ii) compare the performance of fine-tuned algorithms and 

evaluate their potential for practical applications in land cover mapping using EnMAP 

hyperspectral data as well as (iii) compare the results with operational EO LULC products, i.e., 

(ESAs’ WorldCover). As a case study is used a typical Mediterranean setting over a 

heterogeneous landscape located in Greece. The methodology to be implemented is based on 

the synergistic use of ML techniques coupled with ENMAP imagery and ancillary data. The 

study was carried out using EnMAP Box-3, within open-source QGIS software and open-

access remotely-sensed data sources, allowed for a cost-effective implementation of the 

analysis. To the best of authors’ knowledge, the present thesis is one of the first of its kind 

attempting to explore the advantages of recently launched EnMAP hyperspectral satellite 

mission in the context of LULC mapping. This study emphasizes the strengths and capabilities 

of EnMAP datasets in combination with ML.  

1.4. Thesis outline  

This thesis is structured into seven chapters, as follows: Chapter 1 functions as a preface and 

aims at providing a general overview to the background of this thesis, the research statement 

and objectives. Chapter 2, provides an introduction on fundamentals in hyperspectral remote 

sensing along with a representative review of existing literature on hyperspectral image 

classification methods and identify the key research gaps and challenges in the field. Chapter 

3 depicts the experimental site, including the case study and datasets employed in the study. In 

Chapter 4, the detailed methodological framework is presented. Chapter 5 presents the results 

of the analysis while in Chapter 6 the key findings and limitations are discussed. Chapter 7 

presents the concluding remarks and outlines potential future research directions. 
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2. Literature Review 
 

Chapter 2 

This chapter serves as a review of the existing literature related to the research topic. It 

will provide an introduction on principals of hyperspectral remote sensing along with a 

comprehensive overview of applied hyperspectral image classification methods as well 

as in identifying the key research gaps and challenges in the field linked to the present 

study objectives.  
 

2.1. Fundamentals of imaging spectroscopy 
 

EO is experiencing significant growth, with an expanding range of remote sensing platforms 

incorporating passive sensors such as optical cameras, scanning sensors, and microwave 

radiometers for capturing electromagnetic energy emitted or reflected by the Earth's surface 

(Zhao et al., 2022). The adequacy of technical specifications of a passive remote sensor in 

terms of spectral and spatial characteristics directly influences the quality and quantity of the 

derived data. Multispectral sensors collect reflected or emitted energy of target area in a limited 

number of discrete spectral bands, typically for tens, in a certain spectral range within the EM 

spectrum (Curran, 2016; Panuju et al., 2020). Multispectral instruments (MSI) mounted on 

remote sensors provide a cost-effective trade-off between spatial resolution and operational 

costs and a suitable balanced between spatial, spectral and temporal resolution, which can make 

them a practical choice for certain applications. Although, MSI are limited in their ability to 

capture detailed spectral information across multiple spectral bands, which in turn restrict their 

capability to cover a broader range of the EM (Jameel et al., 2020). Sensor characteristics, such 

as spectral resolution, can influence the ability of remote sensing data to detect features in 

complex environments and identify different vegetation species (Priyadarshini et al., 2019).  
 

Conversely to multispectral, hyperspectral sensors are able to provide advanced image data up 

to hundreds of spectral narrow bands with higher spectral resolution, which enhance the quality 

and increase the quantity of retrieved information. In environmental and vegetation analysis 

low-resolution sensors may not be optimal to detect heterogeneity between different vegetated 

areas, while high-resolution sensors can capture detailed information in order to sufficiently 

discriminate different plant species (Marcello et al., 2018; Lu et al., 2019). The ability to 

differentiate between features that possess similar physical properties relies on the enhanced 

spectral resolution and the continuous wavelength range acquired the image. Higher spectral 

resolution enhances the capability to retrieve information on the physicochemical 

characteristics in soil and vegetation with greater precision (Thenkabail et al., 2016; 2018; 

Srivastava et al., 2020). Therefore, data acquired through hyperspectral sensors can be 

beneficial for a variety of tasks that require more detailed spectral information in field of 

agroforestry and relevant ecological applications. Yet, the operational cost remains higher than 

multispectral sensors and they can be challenging and time-consuming due to the high volume 

of data that must be processed (Pandey et al., 2020; Dubovik et al., 2021). For further insights 

into the principles of remote sensing and characteristics of different sensors, one can refer to 

relevant literature (e.g. Lillesand et al., 2014; Richards & Jia, 2013; Jensen, 2015; Curran, 

2016; Richards, 2022). 
 

Hyperspectral remote sensing, also known as imaging spectroscopy, assign to the technology 

that integrates imaging and spectroscopy techniques to capture spatial and spectral information 

in high resolution within. Spectroscopy refers to the study of the interaction between light and 



17 | P a g e  
 
 

 

matter based on its wavelength, whether the light is emitted, reflected or scattered by a material 

i.e., solid, liquid, or gas (Rast et al., 2019). The imaging systems capture the spatial information 

while the spectroscopy functions by measuring the spectral reflectance or emission of light 

using numerous of narrow continuous spectral bands in a wide range of wavelengths ranging 

from visible – near infrared (NIR) to shortwave infrared (SWIR) in the EM (Srivastava et al., 

2020). The amount of the spectral insights provided within hundreds of adjacent near spectral 

bands, is capable to detect and retrieve detailed information about subtle variations in the 

absorption or emission features of different attributes even if these attributes exhibit a degree 

of in physical properties similarity. In the domain of vegetation analysis, imaging spectroscopy 

enabled species discrimination and has played a crucial role in estimating chlorophyll content, 

detecting water stress, identifying nutrient deficiencies, and diagnosing disease symptoms 

(Maschler et al., 2018; Lassalle et al., 2021; Srivastava et al., 2021; Sethy et al., 2022) as well 

as for vegetation extraction in urban related studies (Petropoulos et al., 2015). Regarding the 

agricultural production, it has been utilized to identify crop species, detect nutrient deficiencies, 

and monitor overall crop health throughout various stages of growth (Thenkabail et al., 2018; 

Yao et al., 2018; Verrelst et al., 2019; Sanchez et al., 2020; Aneece & Thenkabail, 2021; 2022). 

Studies of soil chemical and physical properties also relies in imaging spectroscopy (Ben-Dor 

et al., 2009; Goswami et al., 2020; Milewski et al., 2022). Furthermore, in the field of mineral 

exploitation, imaging spectroscopy has proven valuable in identifying mineral types and 

mapping their distributions within mining sites (Gupta & Venkatesan, 2020; Kumar et al., 

2020; Peyghambari & Zhang, 2021) as well as in geochemical analysis (Sun et al., 2019). HSI 

has also found significance in material identification (Chisense et al., 2012; Pandey & Tiwari 

2020), as well as in applications related soil and vegetation metal contamination (Lamine et 

al., 2019). Overall, imaging spectroscopy has demonstrated its value as a powerful tool for 

scientific research and practical applications across multiple disciplines.  
 

2.1.1. Hyperspectral remote sensors characteristics   
 

The imaging spectroscopy systems developed since 1980s in both airborne and spaceborne 

platforms. Airborne sensors are typically mounted on aircraft that flown at low altitudes, 

providing high spatial resolution but limited coverage. Spaceborne sensors, on the other hand, 

orbit the Earth at high altitudes, providing wide-area coverage but at lower spatial resolution. 

Imaging spectroscopy systems operating in four primarily modes: pushbroom, whiskbroom, 

snapshot, and tunable filter, with pushbroom and whiskbroom to be the most commonly used 

modes. Additionally, there is a dispersive mode and a compressive sensing mode (Coulter et 

al., 2007). In pushbroom mode, a hyperspectral sensor uses a two-dimensional (2D) detector 

array to continuously capture a narrow, contiguous strip of the Earth's surface as the sensor 

platform moves forward. This mode works by scanning the Earth with a line of detectors that 

collect data in a range of wavelengths simultaneously. In this mode, the spatial resolution of 

the image is determined by the size of the individual detector of pixels, and the spectral 

resolution is determined by the number of spectral bands captured by the sensor. Pushbroom 

mode has the advantage of being able to capture wide swaths of imageries with a high spatial 

and spectral resolution. (Fig.2.1) However, it requires precise synchronization between the 

motion of the sensor platform and the scanning of the detectors and is therefore sensitive to 

motion and vibration disturbances. In whiskbroom mode, a hyperspectral sensor uses a one-

dimensional (1D) linear detector array to scan across the surface in a series of narrow parallel 

lines. This mode works by sweeping the detector array across the surface of the Earth in a series 

of rows, collecting data in a range of wavelengths as it goes. In this mode, the spatial resolution 

of the image is determined by the size of the detector array and the number of rows scanned, 

and the spectral resolution is determined by the number of spectral bands captured by the sensor 

(Fig.2.2).  
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Figure 2.1. Comprehensive overview of hyperspectral sensor operating in pushbroom mode 

(Source: Fowler, 2014) 

A well-known example of a hyperspectral airborne sensor operating in whiskbroom mode is 

the airborne AVIRIS with a whiskbroom-scan architecture, while there are currently no 

spaceborne hyperspectral imagers that operate in whiskbroom mode. In pushbroom mode, a 

2D detector array captures a continuous strip of the Earth's surface as the sensor platform moves 

forward, while in whiskbroom mode, a 1D linear detector array scans across the surface in 

parallel lines. Pushbroom mode captures wider swaths of imagery with high spatial and spectral 

resolution but is sensitive to motion disturbances. Whiskbroom mode is less sensitive to motion 

disturbances but has a narrower swath width and limited spatial resolution.  

 
Figure 2.2. Comprehensive overview of hyperspectral sensor operating in whiskbroom mode 

(Source: Fowler, 2014) 

The majority of hyperspectral sensors, including airborne and spaceborne, employ 2D detector 

arrays and functions with pushbroom scanning, i.e., the airborne CASI and FLI hyperspectral 

platforms, the spaceborne sensors Hyperion/EO-1, MERIS onboard ESA’s ENVISAT, the 

Italian PRISMA, HISUI onboard Japan Experiment Module (JEM) on ISS, German DLR 

DESIS and EnMAP as well as future launched missions such as FLORIS for ESA’s 

Fluorescence Explorer (FLEX). This configuration enables high spectral and spatial resolution 

imagery, as well as large coverage of the target area. A briefly overview of most well-known 

past, current, and future airborne and spaceborne hyperspectral missions is presented in Table 
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2.1. Major airborne and spaceborne missions are further discussed above (Coulter et al., 2007; 

Buckingham & Staenz, 2008; Pandey et al., 2020; Qian, 2021). 
 
 
Table 2.1. Overview of major past, current and future airborne and spaceborne hyperspectral 
missions 

 

 

Sensor 

 

 

Platform 

 

Spectral 

range (nm) 

 

Spectral 

 bands 

 

Ground 

Sampling 

distance (m) 

 

Swath 

Width 

(km) 

 

 

Launch 

 

 

Phase 

 

 

Organization 

APEX a Dornier 

DO-228 

380 – 2500 Up to 334 

(default 114) 

1 – 2 2 – 2.5 2011 ✓ ESA, RSL, 

VITO 

AVIRIS a Aircraft 

ER-2 

400 – 2500 224 20 11 1987 ✕ NASA, JPL 

CHIME a CHIME 400 – 2500 210 20 – 30 120 2029 

(planned) 

✕ ESA, COM 

CASI a Aircraft 

flexible 

418 – 826 288 2 – 5 1 – 5 1989 ✕ ITRES, 

Canada 

 

CHRIS b 
 

PROBA-1 

 

400 – 1050 

62 (MODE 1) 

18 (MODE 2-4) 

37 (MODE 5) 

34 (MODE 1) 

17 (MODE 2-5) 

5 viewing angles 

 

13 

 

2001 

 

✓ 

 

ESA-UK 

DESIS b ISS 400 – 1000 235 30 30 2018 ✓ LR 

Germany/GFZ 

EnMAP b German 

HS 

420 – 2450 244 30 30 2022 ✓ LR 

Germany/GFZ 

FLORIS b FLEX 500 –780 420 300 150 2024 

(planned) 

✕ ESA 

HISUI b JEM/ISS 400 – 2500 185 30 20 2019 ✓ Japan 

HICO b ISS 350 – 1080 128 90 51 2009 ✕ ONR/USA 

Hyperion b EO-1 400 – 2500 242 30 7.7 2000 ✕ NASA 

HyperScout b GomX-4b 400 – 1000 45 50 200 2018 ✓ ESA 

HySI b IMS-1 400 – 950 64 500 130 2008 ✕ ISRO 

HysIS b IMS-2 400 – 2400 256 30 30 2018 ✓ ISRO 

 

HyspIRI a 
 

HyspIRI 

400 – 2500 220 60 150 2024 

(planned) 

✕ NASA-JPL 

 

MERIS b 
ENVISAT

-1 

 

390–1040 

520  

(transmit 15) 

 

300 

 

1150 

 

2002 

✕  

ESA 

 

PRISMA b 
AVIO 

Italian 

launcher 

 

400 – 2500 

 

237 

 

30 

 

30 

 

2019 

 

✓ 

 

Italy’s ASI 

SHALOM b MBT 

Space 

400 – 2500 275 10 30 2025 

(planned) 

✕ ASI, ISA 

 

a. Airborne  

b. Spaceborne. 

✓     Active 
✕     Non-active 
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Airborne Hyperspectral Imaging missions 
 

The first operational airborne spectrometer Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS), was designed by National Aeronautics and Space Administration (NASA) Jet 

Propulsion Laboratory (JPL) in California in the early ‘80s. It was set to flown aboard a NASA 

ER-2 aircraft in 1986, and was fully operated since 1989, under NASA contract. AVIRIS has 

a whiskbroom-scan architecture and uses a one-dimensional (1D) linear detector array to scan 

across the Earth's surface in a series of narrow parallel lines. It covers the entire spectrum from 

0.4 nm to 2.45 nm with high spectral resolution providing data 224 spectral contiguous narrow 

bands and a high spatial resolution from a 20 km attitude over a swath of 12 km. Later in 90’s 

the AVIRIS was replaced by the Airborne Visible Infrared Imaging Spectrometer – Next 

Generation (AVIRIS NG) which was built upon AVIRIS with improvements in radiometric 

performance and spectral sampling interval of 5 nm higher. Later, the deployment of the 

AVIRIS induced further advancements in airborne hyperspectral mission with the Canadian 

hyperspectral missions FLI (1983), CASI, and SFSI (1992) in 1980s and 1990s, the Australian 

HyMAP (Barnsley et al., 1998) by the HyVista Corporation. Over the following years, the 

development of imaging spectroscopy led to the innovation of other well-known today airborne 

imaging mission such as the Airborne Prism Experiment (APEX) by the University of Zurich 

in Switzerland and VITO in Belgium (Schaepman et al., 2006). In the last decade, there has 

been a rise in the employment of hyperspectral cameras mounted on of Unmanned Airborne 

Vehicles (UAVs) and it is expected that they expect to play a key role in airborne imaging 

spectroscopy (Yan et al., 2019). This is due to the fact that the instruments used in imaging 

spectroscopy are becoming more compact and lightweight (Jia et al., 2022; Sousa et al., 2022). 
 

Spaceborne Hyperspectral Imaging mission 

Spaceborne hyperspectral imagers have been around since the early 1980s. The launched of 

the first generation spaceborne imaging spectrometers for scientific and operational purposes 

was made with the Hyperion aboard NASA’s Earth Observing-1 (EO-1) launched in 

November 2000 (https://data.nasa.gov/dataset/EO-1-Hyperion/). Hyperion was built by TRW 

within a fast-track schedule of development. With an initial estimate of 1-year lifespan, 

Hyperion provided calibrated spaceborne hyperspectral data for 16 years (decommissioned on 

2017). Hyperion is a bushbroom hyperspectral imager, operating in a range of 400-2500 nm 

with a spectral resolution of 10 nm in VNIR and SWIR. The camera had a wide field of view, 

with a 7.65 km wide swath and a spatial resolution of 30 meters (Ungar et al., 2003). Over the 

past three decades, there have been numerous space missions that employed true dispersive 

element imaging spectrometers. These missions include some of the major well-established 

hyperspectral sensors, such as those described briefly above:  
 

The Compact High-Resolution Imaging Spectrometer (CHRIS) is a hyperspectral imager 

developed by the UK's Sira Electro-Optics Ltd. and launched in 2001 as part of ESA's Project 

for On-Board Autonomy (PROBA) platform (https://earth.esa.int/eogateway/missions/proba-

1/data). PROBA's primary objective was testing of innovations in spacecraft platform design, 

including autonomous operation. CHRIS has five operating modes, each with a different 

nominal number of bands, wavelength range, spectral bandwidth, and nominal ground 

sampling distance (GSD). The GSD decreases as the spectral bandwidth increases. The 

hyperspectral imager is using the push-broom technique that operates in the VNIR range (400-

1050 nm). With a lifespan of over 20 years (as of June 2023), CHRIS simultaneously collects 

spectral data at five viewing angles and at two spatial resolutions of 17 m and 34 m, providing 

19 and 62 spectral bands, respectively, over a typical image area of 13 km2 (Cutter, 2008).  
 

https://data.nasa.gov/dataset/EO-1-Hyperion/ethf-arwz
https://earth.esa.int/eogateway/missions/proba-1/data
https://earth.esa.int/eogateway/missions/proba-1/data
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Within the same decade, the Medium-Resolution Imaging Spectrometer (MERIS), developed 

by other prominent sensor systems and the European Space Agency (ESA), was launched in 

2002 aboard the ENVISAT satellite (https://meris-ds.eo.esa.int/oads/access/). It operated 

successfully for ten years before its termination and was designed by incorporating the 

technical specifications of prior hyperspectral airborne systems, i.e., Canadian and NASA. 

Employing a push-broom mode, MERIS provided hyperspectral images in the VNIR region. 

The instrument was intended to capture 520 spectral bands within the wavelength range of 390 

to 1040 nm with a native instrument SSI of 1.25 nm. However, the downlink capability of the 

MERIS was limited and it only transmitted 15 channels, where each channel represented an 

average of eight to ten native spectral elements of the detector arrays. The GSD varied between 

260 m at nadir and 390 m at swath extremities in the cross-track direction (Verstraete et al., 

1999). 
 

Lately, the DLR Earth Sensing Imaging Spectrometer (DESIS) has been developed as a push-

broom hyperspectral imager that operates within the VNIR region, covering wavelengths 

between 400 and 1000 nm with a minimum SSI of 2.55 nm (https://geoservice.dlr.de/data-

assets/). The instrument offers a ground swath width of 30 km and a GSD of 30 m. DESIS is 

mounted on the multi-user system for earth sensing, which was launched on June (29), 2018, 

as part of the SpaceX CRS-15 logistics flight to the ISS and installed on the exterior of the ISS 

on August (27), 2018. DESIS can operate in either static mode, which enables acquiring 

hyperspectral data to produce BRDF products or stereo images with 3° angle steps, or dynamic 

mode, which permits continuous observations of the same targets with ground motion 

compensation to enhance the signal-to-noise ratio (SNR) of the acquired hyperspectral data, 

with up to 1.5° change in viewing direction per second (Heiden et al., 2022). 
 

Furthermore, the Italian is hyperspectral satellite PRISMA, was launched in 2019 with the aim 

of testing and developing technology for environmental monitoring and risk assesment 

(https://prismauserregistration.asi.it/). It consists of a hyperspectral imager and a panchromatic 

camera operating in pushbroom mode and covers spectral bands ranging from 400 to 1010 nm 

(VNIR) and from 920 to 2505 nm (SWIR). The hyperspectral imager provides images with 30 

m GDS, 30 km swath width and spectral bands at an SSI of 12 nm. The PAN camera provides 

images at a 5 m spatial resolution, which are co-registered with the hyperspectral images to 

allow for image fusion and sharper spatial resolution (Shaik et al., 2023). 
 

Recently, the Environmental Mapping and Analysis Program (EnMAP), a spaceborne imaging 

spectroscopy satellite mission designed from a consortium of German institutions headed by 

the German Aerospace Center (DLR), launched on April 1, 2022. EnMAP aims at monitoring 

and characterizing the Earth’s surface and environment on a global scale by providing high 

spectral resolution hyperspectral imagery data in a large spatial coverage. The EnMAP mission 

will endorse a range of earth observation and environmental applications, such as mapping land 

use and cover and species discrimination. A detailed overview of the technical characteristics 

and specifications of the EnMAP hyperspectral satellite mission will be covered in section 

3.2.1. of Chapter 3. 
 

2.2. Remote Sensing image classification in land cover mapping 
 

There is a growing awareness of the alterations of the world’s natural resources which have 

caused significant implications for ecosystems, biodiversity and human society in a global scale 

(FAO, 2022). Accurate information on land use and land cover is essential for understanding 

changes in the way land is used (i.e., conversion of natural forested land for agricultural 

https://meris-ds.eo.esa.int/oads/access/
https://geoservice.dlr.de/data-assets/hxom21uqeo90.html
https://geoservice.dlr.de/data-assets/hxom21uqeo90.html
https://prismauserregistration.asi.it/
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exploitation, urban expansion) and changes in the physical and biological characteristics of the 

land cover (i.e., deforestation, reforestation). Knowledge of changes in physical and biological 

properties due to human activities and natural processes allows for better understanding of 

LULC dynamics and landscape transformation (Gudo et al., 2022). The utilization remotely 

sensing data in image classification presents an effective solution to numerous challenges 

encountered in traditional methods for retrieving information for mapping purposes on land-

cover and land-use. Terrestrial surveying or other common mapping methods; these traditional 

approaches tend to be time-consuming and costly, especially in large-scale areas (Al-Doski et 

al., 2020). Remotely sensed data offer the advantage of swiftly acquiring LULC information at 

diverse spatial and temporal scales and with a significantly reduced operational cost, covering 

large spatial extents in efficient time and easily storage. Quantitative assessment of 

spatiotemporal patterns and dynamics in landscapes is a prevalent research field within Earth 

observation, that have been widely used for analysis and decision-making processes (Navin & 

Agilandeeswari, 2020); in urban planning and industrial development (Heiden et al., 2012; 
Nisha & Anitha, 2022), and for management of natural resources (Chander et al., 2020). 

There are several LULC products available on a global scale that have been developed using 

EO (Table 2.2). These products provide valuable information for management and planning 

purposes, environmental monitoring, and sustainable development. Among the most widely 

used LULC products, is GlobCover, a global land cover map produced by the European Space 

Agency (ESA) and the European Commission (EC). It utilizes data from the 300m MERIS 

sensor on board the ENVISAT satellite mission, covering the period from December 2004 to 

June 2006 (http://due.esrin.esa.int/page_globcover.php). Another notable product is ESA 

WorldCover, which provides global land cover products at 10 m resolution for the years 2020 

and 2021 (https://esa-worldcover.org/en/data-access). These products are developed and 

validated in near-real time using data from Sentinel-1 and Sentinel-2 satellites (Zanaga et al., 

2021; 2022). Additionally, the MODIS Land Cover Type/Dynamics product operating at a 

coarser resolution, incorporates five different land cover classification schemes and provides 

land cover information at yearly intervals (2001-2018) to study vegetation dynamics and 

seasonal cycles (https://lpdaac.usgs.gov/products/mcd12q1v006/). Last but not least, the 

European Corine Land Cover (CLC) provides consistent land cover information across EU. 

The initial establishment of the CLC took place between 1986 and 1998. New versions are 

released every six years, resulting in a total of five implemented versions (so far), i.e., CLC 

1990, CLC 2000, CLC 2006, CLC 2012, CLC 2018, employed enhanced quality data and 

refined classification techniques (https://land.copernicus.eu/pan-european/corine-land-cover). 

These widely-used operational products that corresponding to the EU coverage, have been 

extensively employed by the scientific community for time series analysis and monitoring of 

land cover dynamics. Their open access policy further enhances their accessibility and usability 

for researchers in the relevant field. 

Table 2.2. Characteristics of widely used land cover datasets operating across pan-European 
regions (Manakos & Braun, 2014) 

Dataset Spatial 

Resolution 

Date Input data Land-cover 

classes 

Classification Method Organization 

GlobCover 300 m Since 2009 MERIS FR 22 (Un)supervised methods, 

spatiotemporal clustering 

ESA 

MODIS 500 m Since 2001 MODIS 17 Supervised decision 

tree 

NASA 

ESA 

WorldCover 

10 m Since 2021 Sentinel-1 

Sentinel-2 

11 (Un)supervised methods ESA 

 

Corine Land 

Cover (CLC) 

 

250 m 

1:100 000 

 

Since 1990 

 

Landsat, 

SPOT, LISS III, 
RapidEye, Sentinel 

Hierarchical 

(3 levels, 44 

classes) 

Computer assisted photo-

interpretation  

 

EEA 

http://due.esrin.esa.int/page_globcover.php
https://esa-worldcover.org/en/data-access
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://land.copernicus.eu/pan-european/corine-land-cover
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Principles of image classification 

The accurate assignment of land-cover classes in remotely sensing data can be achieved 

through the utilization of suitable classification techniques that align with the nature of the 

research and the characteristics of the datasets (Abburu & Golla, 2015; Ghorbani et al., 2016). 

The primary approaches involve the use of either a hard classifier, where each pixel is allocated 

to a unique class, or a soft classifier, which provides a degree of similarity for each class. Soft 

classifiers, such as spectral mixture analysis, offer enhanced precision and detailed 

information, particularly in scenarios involving mixed pixels or coarse spatial resolution data 

that may introduce errors. Classifiers can be further classified into parametric and non-

parametric methods depending on their assumptions about the data distribution. Parametric 

classifiers, including Maximum Likelihood and linear discriminant analysis (LDA), which rely 

on specific assumptions about the data distribution i.e., the assumptions of the Gaussian 

distribution (Al-doski et al., 2013). Conversely, non-parametric algorithms, such as Support 

Vector Machine (SVM), and Random Forest (RF), and Artificial Neural Networks (ANN), 

which do not rely on statistical parameters and can handle diverse data distributions without 

making assumptions about distribution (Maxwell et al., 2018; Dhingra & Kumar, 2019) 

The most common classification methods typically involve two main categories: pixel-based 

classification and object-based classification; which in turn pixel-based classification can be 

broadly divided into two main sub-types: supervised, and unsupervised techniques (Pal, 2005; 

Pal and Mather, 2005). Object-based classification process is based upon spectrum 

information, geometry as well as colours of objects. In object-based classification pixels are 

grouping into segments and treated like objects, the creation of a segmented image is later used 

for the classification process (Ma et al., 2017). In contrast to object-based, pixel-based 

classification utilized the reflectance statistics and relies only on the spectral information of 

pixel, i.e., the value that correspond to each pixel, is used for the classification process (Jog & 

Dixit, 2016). Several deep learning network models have been efficiently employed for land-

cover mapping in the field of remote sensing image processing (Li et al., 2019; Wang et al., 

2021).  

Pixel-based classification assigns pixels to represent land use/cover classes, whether training 

samples are used to define land cover classes, the classification process of a pixel is further 

categorized into supervised or unsupervised. In unsupervised classification, pixels are grouped 

together based on their reflectance properties using unsupervised clustering-based algorithms. 

This process utilizes the statistical information derived from the spectral image without prior 

definition of classes. Yet, in this type of classification it is necessary a prior knowledge of the 

characteristics of the region being classified. The analyst is responsible for managing and 

labelling each class in specific category after the classification process, to ensure that obtained 

results are meaningful. Examples of commonly used techniques for unsupervised classification 

include ISODATA, and the K-means clustering algorithm. In case of supervised classification, 

ancillary reference data are utilized to create a training set. This training set comprises spectral 

signatures associated with each class. The classification process is based on these spectral 

signatures which are used to train the classifier to assign pixels to specific classes during the 

classification process. Commonly used classifiers in supervised classification include SVM, 

Mahalanobis Distance, Naive Bayes, RF, Spectral Angle Mapper (SAM), Decision Tree (DT), 

Maximum Likelihood classifier (Al-doski et al., 2020).  

These algorithms are commonly used and proved to be highly effective techniques for both 

supervised and unsupervised classification tasks. For further insights in methods and taxonomy 

of classification algorithms employed in satellite imageries the reader can refer to (Lu & Weng, 

2007; Abburu & Golla, 2015; Dhingra & Kumar, 2019; Macarringue et al., 2022).  
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2.3. A review on image hyperspectral classification  
 

The amount of that information in LULC features depends on sensors’ characteristics. In terms 

of the quality of information varies from high spectral and spatial resolution context to lower 

resolutions. Note there is always a trade-off between spectral, spatial and temporal resolution; 

typically, the higher the spatial resolution, the lower the spectral and temporal resolution, and 

the higher the temporal resolution, the lower the spatial and spectral resolutions (Warner et al., 

2009). Multispectral images, which are commonly superior in spatial resolution compared to 

hyperspectral, face challenges when it comes to accurately identifying distinct features within 

similar groups (Kumar et al., 2015; Marcello et al., 2018). As a consequence, they do not offer 

comprehensive LULC mapping and classification across various algorithms due to their limited 

spectral resolution. This limitation hampers precise identification of diverse species and the 

accurate classification of land cover types (Pandey et al., 2021). In hyperspectral remote 

sensing, the high amount of spectral information given by hundreds of continued narrow bands 

EM makes hyperspectral datasets capable in discrimination of land-cover types due to the 

distinctive spectral signatures observed in different objects (Lv & Wang, 2020). The spectral 

response of different materials in earth’s surface are attributed to their unique chemical and 

physical properties; i.e., in soil or vegetation analysis, varies are caused by differences in 

pigments, structural characteristics, and water content (Thenkabail et al., 2016; 2018). These 

advances in spectral and spatial resolution enabled for obtaining better discrimination and 

accuracy in land-use and cover mapping and multi-temporal change analysis. 
 

Continued research and development of various state-of-the-art techniques, coupled with the 

availability of high-quality derived remotely sensed data, hold great potential for advancing 

current mapping techniques (Pandey et al., 2019; Wang et al., 2022). Currently, among the 

most commonly and widely-used hyperspectral sensors in land-cover mapping are EO-

1/Hyperion (Khosravi & Jouybari-Moghaddam, 2019; Dou et al., 2020; Pal et al., 2020; Roy 

et al., 2021), HySpex (Schmidt et al., 2017; Sabat-Tomala et al., 2020; Wang et al., 2022; 

Constans et al., 2022), as well as airborne campaigns datasets such as Pavia University and 

Center of Pavia from ROSIS, and the Salinas and Indian Pines datasets, both provided by the 

AVIRIS imaging spectrometer (Wang et al., 2020; Khan et al., 2022; Pandey & Tiwari, 2022). 

Additionally, simulated data from HyspIRI and EnMAP (Clark, 2017; Marcinkowska-Ochtyra 

et al., 2017; Rosentreter et al., 2017), as well as hyperspectral cameras mounted on UAVs (Yan 

et al., 2019; Liu et al., 2020; Matese et al., 2021; Sousa et al., 2022), have been widely utilized 

for land-cover mapping. Recently launched hyperspectral platforms such as PRISMA and 

DESIS have also demonstrated great potential for improve performance in applications of land-

cover mapping in heterogeneous landscapes (Vangi et al., 2021; Aneece & Thenkabail, 2022; 

Asam et al., 2022; Farmonov et al., 2023; Kalantar et al., 2022). Other use cases involve 

utilizing multiple datasets from sensors such as HyMAP, APEX, and CASI (Marcinkowska-

Ochtyra & Zagajewski et al., 2017; Raczko & Zagajewski, 2017; Amini et al., 2018). 

 

There are several techniques utilized for land-cover classification, with various cutting-edge 

methods and approaches (Pandey et al., 2019; Wang et al., 2022). Some of the remarkable state-

of-the-art techniques include ML algorithms combined with advanced hyperparameter tuning 

techniques (Yang et al., 2020; Aneece & Thenkabail, 2021), deep learning approaches, such as 

CNN-based architectures such as 3D-CNNs or 2D-CNNs with recurrent connections (Paoletti 

et al., 2018; Swalpa et al., 2021), deep belief networks (DBNs) (Lie et al., 2019; Chintada et 

al., 2021), and recurrent neural networks (RNNs) (Wu & Prasad, 2017; Mou et al., 2018). Other 

approaches focus on transfer and active learning techniques (Xie et al., 2021; Thoreau et al., 

2022) as well as ensemble methods to enhance robustness and mitigate the impact of 

misclassifications (Jafarzadeh et al., 2021; Manian et al., 2022; Colkesen & Ozturk, 2022). 
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These advanced methods employ cutting-edge technologies and algorithms to achieve accurate 

and detailed classification results (Singh et al., 2020; Moharram et al., 2023). 
 

2.3.1. Machine learning in supervised image classification  
 

Among the mentioned approaches, supervised classification techniques hold prominence in 

hyperspectral image LULC classification due to their ability to produce accurate and reliable 

results. Extensive research has been conducted to investigate the robustness and performance 

of different ML classifiers in the context of hyperspectral remotely sensed data (Petropoulos et 

al., 2012; Carranza-García et al., 2019; Akar & Gormus, 2022).  These studies aim to provide 

valuable insights regarding different levels of accuracy and determine the most suitable 

classifier to achieve most accurate results in image classification (Kaul and Raina, 2022). In 

the last decade, non-parametric algorithms as well as ensemble methods such us SVMs and RF 

have shown to be most commonly employed in hyperspectral land-cover classification, due to 

their simplicity, high performance, and ability to handle high dimensional data, and derive 

accurate results with small amount of training dataset (Petropoulos et al., 2015; Kale et al., 

2017; Alcolea et al., 2020; Kaul and Raina, 2022). The unique strengths of SVM lie in its ability 

to handle complex decision boundaries and capture non-linear relationships through kernel 

functions. The polynomial and radial basis function (RBF) kernels have been used most 

frequently in remote sensing, however SVM is the most popular methodology and provides 

superior accuracy than the other conventional methods for LULC classification (Sheykhmousa 

et al., 2020; Talukdar et al., 2020). On the other hand, RF's strength lies in its ensemble learning 

approach, which combines multiple decision trees to achieve accurate and reliable 

classifications. Numerous studies have demonstrated the superior performance and accuracy 

of SVM and RF in identifying and categorizing land-cover properties with exceptional 

precision (Raczko & Zagajewski, 2017; Sabat-Tomala et al., 2020; Aneece & Thenkabail, 

2021). 

 

For example, Chen and Cheng (2018) performed image classification using RF and SVM 

classifiers in order to compare its performance. The research focuses on a Hymap experimental 

data with a 3.5 m resolution image of Berlin, to classify into five land-cover and use classes. 

Results demonstrated that the RF yielded an overall classification accuracy of 92.6% with a Kc 

coefficient of 0.902, and slightly outperformed SVM algorithm, which achieved 91.2% with 

Kc of 0.884, respectively. These findings indicated the effectiveness of both algorithms which 

derived high accuracy results but also highlight the suitability and effectiveness of the RF 

method for high-resolution remotely-sensed classification. 

 

In another study conducted by Christovam et al. (2019), the performance of various pixel-based 

classifiers, including SVMs and RF, was assessed using the HyRANK dataset across 14 land-

use and cover classes. Results of this study revealed that RF perform slightly better compared 

to SVMs in terms of OA and Kc, although both classifiers achieved comparative high 

accuracies (91% and 0.89 for RF, and 88% and 0.86 for SVM, respectively). 
 

Nhaila et al. (2019), performed classification HSI using four supervised learning algorithms, 

namely SVM, RF, K-Nearest Neighbors (KNN), and LDA. The experiments were conducted 

on three real hyperspectral datasets obtained from NASA's AVIRIS i.e., Indian Pines and 

Salinas, and ROSIS i.e., University of Pavia. The dimensionality of the datasets was reduced 

using mutual information. The results showed that the SVM classifier with RBF kernel and RF 

classifier produced statistically better classification accuracies compared to the other 

algorithms. The results demonstrate that the SVM classifier with RBF kernel achieves the 

highest classification accuracy among the tested methods, with OA of 93.2% for the Indian 

Pines dataset, 93.4% for the Salinas dataset, and 91.9% for the Pavia University dataset, slightly 
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better that RF. Thus, SVM with a radial kernel and RF were shown to be more effective in 

supervised classification. 

 

More recently, Kokal et al. (2022), performed SVMs on PRISMA HSI with a 30 meter spatial 

resolution for land-use and cover classification, in a diverse landscape in Turkey. In this study, 

classification performed across 9 land-cover classes, and reported a remarkably high overall 

accuracy of 92.3% and a Kc coefficient of 0.91.  
 

Based on literature most case studies suggest that SVMs algorithm is considered to be more 

popular in hyperspectral data analysis due to its ability to achieve higher accuracy compared 

to other conventional methods.  Yet, according to findings RF, demonstrates higher efficiency 

compared to the SVM when dealing with datasets containing a larger number of target classes 

(Li et al., 2016). Sheykhmousa et al. (2020) conducted a systematic review of recently 

published articles (251) based on supervised remotely-sensed image classification and revealed 

that medium and high spatial resolution images are most common image types for SVM and 

RF, respectively. When it comes to lower spatial resolution images, the RF method consistently 

outperforms SVM, despite the fact that more studies have been conducted using SVM-based 

approaches on low spatial resolution imageries. A comparison within the review of the 

maximum average accuracies of RF and SVM methods suggests the superiority of the SVM 

method while classifying data with many more features. Regarding the utility and performance 

based on hyperspectral datasets the same study reported that the percentages of the HSI 

remotely sensed data for SVM and RF, are 21% and 10%, respectively. Consequently, among 

pixel-based classifiers SVM receives the most attention in working hyperspectral datasets. For 

SVM and RF, the mean classification accuracy based on hyperspectral datasets remains highest 

at 91.5% for SVM and 79.59% for RF, respectively (Sheykhmousa et al., 2020). 
 

These studies highlighted the robustness and efficacy of SVM and RF as prominent approaches 

in the relevant fields of land-cover classification. Overall, the majority of studies based on ML 

algorithms employ advanced optimization techniques for hyperparameter tuning to enhance 

the performance of classifiers and overall accuracy (Yang & Shami, 2020; Sahithi et al., 2022). 

However, several studies highlighted that regarding the ML algorithm and spatial resolution of 

datasets used, increasing the land-cover classes will in turn decrease the overall accuracy. The 

number of classes identified is a crucial factor which affects the accuracy of land cover 

classification; as the number of classes increases, spectral differences between classes become 

less distinct, decreasing classification accuracy (Van Thinh et al., 2019; Zeferino et al., 2020; 

Sheykhmousa et al. 2020; Dabija et al., 2021). 
 

2.4. Final Remarks  

 

The approaches based on ML algorithms for LULC classification have proven highly effective 

in extracting valuable information regarding land use properties and alteration processes from 

images acquired from HSI sensors, as capable to handle large-scale datasets, consider complex 

relationships between spectral and spatial features and adapt to various land-cover types and 

environmental conditions (Gupta et al., 2021; Jia et al., 2021; Wang et al., 2022). 

Deep learning and its complex architectures, such as CNN-based approaches, demonstrated 

significant advancements over other conventional methods. Nevertheless, these methods face 

challenges that necessitate expert knowledge and specialized hardware, primarily due to the 

high computational requirements during process (Kaul and Raina, 2022). According to relevant 

research, SVM-based and RF algorithms are among most widely used methods in ML that can 

enhance classification performance and provide competitive results with CNNs. The advantage 
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of these methods is that they are relatively simple to implement, are robust against overfitting 

and can be trained with a small amount of data (Sheykhmousa et al., 2020).  

However, challenges remain such as computational and operational cost, as well as selection 

of suitable features in order to handle the variability and diversity of the land cover classes. 

The computational costs can be substantial due to dimensionality issues of hyperspectral data 

as well as the complexity of machine learning algorithms. The processing and analysis of large-

scale datasets require significant computational resources and time. It is important to note that 

there are challenges that need to be addressed during the pre-processing steps of HSI data 

before the analysis, regarding the complexity and volume issues in HSI datasets, i.e., curse of 

dimensionality. Additionally, operational costs associated with processing procedures, such as 

storage and analysis of hyperspectral data, can pose significant constraints on the practicality 

of implementing these advanced methods on large-scale.  

The accuracy and precision of the output results for LULC classification primarily rely on 

sensors characteristics and related factors to image acquisition. All in all, the selection of an 

appropriate technique that aligns with the data characteristics, training data, and algorithm fine-

tuning play an important role in ensuring accurate and precise mapping outcomes. Addressing 

these challenges involves overcome computational and operational costs, selecting suitable 

features to handle the variability and diversity of land-cover classes, and optimizing algorithms. 

The computational costs associated with processing related procedures to large-scale datasets 

and the storage requirements for hyperspectral data. 

This research aims at addressing the limitations related to efficient feature discrimination in 

diverse and heterogeneous Mediterranean settings by exploring the performance of fine-tuned 

ML algorithms, and leveraging the enhanced spectral information provided by the EnMAP 

HSI. By doing so, this study contributes to the advancement of the field by evaluating the 

potential of well-established ML algorithms on EnMAP hyperspectral data and addressing the 

specific challenges associated with land-cover classification in Mediterranean environments. 
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3. Experimental set up 
 

Chapter 3 

 

This chapter highlights the significance of the chosen data for the research as a thorough 

overview of the study area and datasets used in this thesis. It provides an overview of 

the geographical location and spatial extent of the research area, along with sources and 

types of data used in the analysis and for quality assessment.  

 

3.1. Experimental sites 
 

The selected study sites featuring a diverse range of land cover forms, varying from a mixture 

of mountainous terrain and agroforestry areas, density urban areas, surrounding suburban 

regions, agricultural fields, including fragments of large-scale farming. The selected scenes 

located in the northern part of Greece, near the border with Macedonia and it is composed by 

three imageries across the sensors path, each covering an area of 30 × 30 km, encompasses a 

tile of total 90 × 90 km swath width (Fig.3.1). The selection of areas was primarily based on 

the availability of EnMAP hyperspectral data within a Mediterranean region as well as on the 

presence of diverse forms of land cover types. 
 

(a)    

                         (b)

 

Figure 3.1. Overview of the research areas: (a) Research areas are located in Northern Greece 

close to the borders with north Macedonia (north-western part Greece and central-eastern part 

of North Macedonia), and (b) EnMAP hyperspectral tiles with the yellow polygons correspond 

regions declared as Natura 2000 within the study area 
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The scene in the first tile (1) is located in the southern part of the Balkan Peninsula, in the 

country of North Macedonia above the borders with Greece. The region is mainly mountainous, 

with elevations ranging from approximately 1867 meters to over 2525 meters above sea level. 

There are also several peaks and valleys visible in the area. In the north and northwest of the 

region, there are several smaller mountain ranges, while to the south and southeast, the terrain 

appears to be flatter and more open. The vegetation in the region would depend on the altitude 

and the amount of precipitation, but it is likely to include forests, grasslands, and shrublands.  

The scene in the second tile (2) is found in the western part of North Macedonia, near the border 

with Greece. It is located near Amyntaio, a municipality in the regional unit of Florina of West 

Macedonia, Greece. The terrain in this region is mainly mountainous, and the area is primarily 

characterized by forests and woodland, with some areas of shrubs and natural grasslands. There 

agricultural land use in the lower elevations, particularly along the valleys. Mineral resources 

in the region include deposits of lead, zinc, and copper, as well as marble and other types.  

The scene within the third tile (3) corresponds to a region in Greece, located in the north-eastern 

part of the country. The landscape in this region is diverse and includes both agricultural and 

forested areas, as well as some mineral deposits. Agriculture is an important economic activity 

in the study region, with the major crops including wheat, corn, and tobacco. The lowlands are 

mostly used for agriculture, while the mountainous areas are used for grazing livestock. In 

terms of mineral resources, the region contains deposits of lignite coal, which is used for 

electricity generation. 

Natura 2000 is composed of two types of designated areas, namely Special Areas of 

Conservation (SACs) and Special Protection Areas (SPAs). The Habitats Directive specifies 

the requirement for Sites of Community Importance (SCIs) to be designated, which can then 

become Special Areas of Conservation (SACs) upon approval by the European Commission 

(EEA, 2020). These areas are designated to protect species other than birds and specific habitat 

types, such as forests, grasslands, wetlands, and more. They are not subject to strict protection 

in terms of human activities and usage; many of these sites are utilized for farming or forestry. 

Regarding Natura sites in extend of study area, the mountain hill located in the northwest of 

the study site, known as Oros Voras (SPA) in Pella, encompasses a total area of 79,454 ha. The 

central part of the region, in Florina, is characterized by significant water bodies. These include 

Lakes Vegoritida – Petron (SCI), spanning an area of 12,569 hectares, Lake Petron (SPA) 

covering 6,696 ha, and Lakes Cheimaditida – Zazari (SPA) in the southeast, with a combined 

area of 5,193 ha. 

The landscape is a diverse and dynamic area with a mixture of natural and human-made 

features. Overall, the region is important for cultivation, agroforestry and mining activities, 

with a diverse array of natural vegetation. In the higher elevation areas to the north, there are 

forests dominated by deciduous and conifer trees. In lower elevations, the forests are more 

characterized as scrubland and grasslands. The lowland areas to the south are primarily used 

for agriculture, mostly small-scale family-owned farms. In terms of mining, there are several 

active mines in the study area that extract various minerals, including lead, zinc, copper, gold, 

and silver. The most notable is a large open-pit lignite mine located in the central part of the 

study area; is one of the largest open-pit mines in Greece, with a production capacity ̴ 10 million 

mt/yr. There are also several smaller mines in the surrounding hills. Activities in mineral 

deposits in the area caused environmental degradation, highlighting the need for sustainable 

resource management practices. The lignite mines in the area have had a significant impact on 

the environment, as they have altered the landscape and caused pollution of air and water 

resources in the surrounding areas. Activities in mineral deposits in the area caused 
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environmental degradation, highlighting the need for sustainable resource management 

practices. In addition, the agricultural practices in the area, including the use of fertilizers and 

pesticides, poses a threat for soils’ health as can lead to soil erosion and water pollution if not 

properly managed. In terms of CLC (2018) of the European Environment Agency (EEA) within 

the region are mainly formed Mediterranean forests, woodlands-scrub and temperate broadleaf 

and mixed forests (Fig.3.2). 

 

Figure 3.2. The Corine Land Cover maps obtaining from the official Corine Land Cover for 

2018 of the EEA for each scene. Codes: 112: discontinuous urban fabric; 121: industrial or 

commercial units; 122: Road and rail networks and associated land; 131: mineral extraction 

sites; 133: construction sites; 211: non-irrigated arable land; 212: permanently irrigated land; 

221: vineyards; 222: fruit trees and berry plantations; 223: olive groves; 231: pastures; 242: 

complex cultivation patterns; 243: land principally occupied by agriculture, with significant 

areas of natural vegetation; 311: broad-leaved forest; 312: coniferous forest; 313: mixed forest; 

321: natural grasslands; 322: moors and heathland; 323: sclerophyllous vegetation; 324: 

transitional woodland/shrub; 333: sparsely vegetated areas; 411: inland marshes; 412: 

peatbogs; 512: water bodies 

3.2. Datasets 

3.2.1. Environmental Mapping and Analysis Program (ENMAP) 

EnMAP is a spaceborne hyperspectral mission designed from a consortium of German 

institutions headed by the German Aerospace Center (DLR). EnMAP platform launched in 

April 2022, aiming to monitor the environment and characterize the Earth’s surface on a global 

scale by providing high spectral resolution hyperspectral imagery data in a large spatial 

coverage, which allows for a comprehensive view of the Earth's surface. The high quality of 

the derived data, allows for a better discrimination of different materials which will improved 

characterization of the environment. 
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3.2.1.1. Technical specifications 
 

The mission is characterized by a specialized hyperspectral sensor with a pushbroom design 

that covers a spectral range of 420 nm to 1000 nm (VNIR) and 900 nm to 2450 nm (SWIR) 

with high accuracy and stability in both ranges. The sensor provides a 30 km wide image with 

a 30 m x 30 m spatial resolution and an off-nadir pointing of 30° for rapid target revisits. The 

onboard memory capacity will enable the acquisition of 1,000 km of image data per orbit and 

a total of 5,000 km per day. The EnMAP expedition is fitted with a strict information handling 

mechanism that involves advanced radiometric and atmospheric adjustment algorithms. These 

mechanisms guarantee data's quality and precision, facilitating the production of precisely-

corrected data products, that can be used for a variety of applications (Table 3.1). The design 

of EnMAP can support gap filling in space-based imaging spectrometer data for environmental 

and earth observation applications, providing high-quality hyperspectral data that can be used 

to support a wide range of studies and decision-making processes (Chabrillat et al., 2022).  

 

Table 3.1. EnMAP HSI Instrument technical specifications 

EnMAP HSI Instrument Specifications 
Image system Pushbroom-prism 

Spectral range VNIR: 420-1000 / SWIR: 900-2450 

Spectral sampling distance: 6.5 nm (420 nm - 1000 nm; VNIR)/10 nm (900 nm - 2450 nm; SWIR) 

Signal-to-Noise ratio: > 500 (at 495 nm; VNIR), > 150 (at 2200 nm; SWIR) 

Number of bands VNIR: up to 99 bands / SWIR: up to 163 bands 

Processing types L0, L1B, L1C, L2A 

Ground sampling distance 30 m × 30 m 

Swath width 30 km 

Geometric co-registration: < 0.2 pixel (at Level 1C) 

Spectral sampling distance: 6.5 nm (420 nm - 1000 nm; VNIR) 

 10 nm (900 nm - 2450 nm; SWIR) 

Spectral accuracy / stability: 0.5 nm / 0.5 nm (VNIR) / 1.0 nm / 0.5 nm (SWIR) 

Smile and keystone: < 0.2 pixel 

Orbit repeat cycle: 398 revolutions in 27 days 

Orbit altitude: 653 km (7021.8 km semi-major axis) 

Inclination angle: 97.96° (polar, sun-synchronous) 

Orbital period: 5856 s 

Local time descending node: 11:00 h ± 18 min. 

Revisit time: 
4 days (±30° off-nadir tilt) / 21 days (±5° off-nadir tilt) 
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3.2.2. EnMAP Dataset  

The EnMAP dataset made publicly available for download at no cost from EnMAP Ground 

Segment Instrument Planning Subsystem (IPS) Portal within EOWEB Geoportal (EGP) 

(https://eoweb.dlr.de/egp/). EOWEB is the interface to the German Satellite Data Archive 

(DSDA). EOWEB Geoportal (EGP) is a multi-mission Earth observation data portal of the 

DLR. Through traditional map- and filter-based, and ordering functions, Earth observation data 

from the German Satellite Data Archive can be requested using a user account (Table 3.2).  
 
Table 3.2. Basic characteristics of the EnMAP datasets that used in this study 

Characteristics of acquired dataset  
 Product level  L2A 

Landscape  
 

Tile 1: 
Tile 2: 
Tile 3: 

Temperate Broadleaf and Mixed Forests  

Mediterranean Forests, Woodlands and Scrub  

Mediterranean Forests, Woodlands and Scrub 

 

 

 

Acquisition settings 

Correction type 
Combined (land and water) 

Terrain correction 
Yes 

Image resampling Bilinear Interpolation 

Cirrus and haze  
Removal 

Water type Clear 

Lat/long 

(center frame): 

 

Tile 1: 
Tile 2: 
Tile 3: 

41.037228825 / 21.778811225 

40.7682671 / 21.701071525 

40.49930575 / 21.62320955 

Projected coordinates UTM UTM 34N – Greece 

Date and time  

(UTC) 

Tile 1: 
Tile 2: 
Tile 3: 

2022-10-07 09:54:38 

2022-10-07 09:54:42 

2022-10-07 09:54:47 

 

3.2.3. Ancillary data  

The Corine Land Cover 2018 from EEA and Planet Scope image dataset were utilized for visual 

interpretation and validation purposes, respectively. To focus on specific research areas, both 

the Corine Land Cover data and the Planet Scope image data were clipped accordingly. The 

projected coordinate system used was the Universal Transverse Mercator (UTM) with UTM 

zone 34N, Greece. The CLC data for year 2018 containing the Corine Land Cover (CLC) data 

for the year 2018 was acquired in vector format (500 × 500 m) through the Copernicus Land 

Monitoring Service (https://land.copernicus.eu/) and was utilized to identify and extract 

comprehensive information on land-cover categories with the highest extent. For the purpose 

of validation, the PlanetScope dataset was acquired for date 07/10/2022 and incorporated into 

the study. PlanetScope, an innovative satellite data platform developed by Planet Labs, a 

leading private Earth imaging company based in the United States, offers a distinctive 

constellation of small CubeSat satellites equipped with high-resolution imaging cameras.  

https://eoweb.dlr.de/egp/
https://land.copernicus.eu/
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4. Methodology 
 

Chapter 4 

 
This chapter serves as a comprehensive guide to the methodology used in this thesis. It 

provides an overview of the research design, including the methodological approa ch and 

validation metrics that were used. More specifically, it presents the data acquisition, pre -

processing, analysis, and validation steps undertaken to access the objectives of the 

research. In addition, it highlights the techniques, tools, and softwar e utilized for data 

analysis, along with their respective potentials and limitations.  
 

4.1. Methodological framework 
 

The extraction of thematic information from satellite data is mainly performed through the 

identification of spectral and spatial patterns associated with different types of land-use /land- 

coverage. Satellite data classification algorithms use the spectral response values for each pixel 

in the image to determine the category to which it belongs according to the characteristics of 

features on the earth's surface (Lv, & Wang 2020; Zhang, & Chen, 2020). For pre-processing 

and implementation of the analysis the classification workflow was used the EnMAP Box-3 

(EnMAP-Box Developers, 2019; van der Linden et al., 2021). The overall methodology 

implemented for land-cover classification is illustrated in Figure 4.1. 

 

 

Figure 4.1.  Methodological framework of the land-cover classification analysis 
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4.1.1. Pre-processing  

The dataset comprises three tiles along the sensor's track, acquired from the EOWEB Geoportal 

(EGP) at L2A processing level. These products have undergone atmospheric, radiometric, and 

geometric corrections, ensuring data’s quality and accuracy. The EOWEB Geoportal interface 

offers additional pre-processing options, allowing users to specify atmospheric correction types 

based on landscape characteristics and land-cover types. Furthermore, the interface provides 

various image analysis options to further enhance the data analysis process. Regarding to the 

study sites used for evaluating EnMAPs’ potential in land-cover mapping, datasets obtained in 

selected GeoTIFF format with Metadata in Universal Transverse Mercator (UTM) coordinate 

system; other available options include BIL, BSQ, BIP or JPEG2000 formats, provided also 

with Metadata. 

During ordering phase, configurations for processing options were determined. As such, terrain 

correction was selected to be applied and atmospheric processing type was set combined 

(which include land and water correction) for each tile due to the presence of water bodies in 

every scene. The bilinear interpolation method was chosen for image resampling, and no 

additional band interpolation was applied. Further processing involved selecting the water 

reflectance type and water type, which were set to normalized and clear, respectively. Cirrus 

and haze removal were performed, while no cloud removal was necessary as the obtained 

dataset was free of clouds and cloud shadows. Dataset are delivered after request using the File 

Transfer Protocol Secure (FTPS) and accessed through the FileZilla Server 1.7.0, using host 

connection (download.dsda.dlr.de) and ID of user’s personal account to EOWEB Geoportal. 

 

Figure 4.2. Spectral response of vegetation (green), soil (brown) and crops (yellow) of EnMAP 

hyperspectral data in Level-2A (a) before pre-processing and (b) after pre-processing applied 

For processing and post-processing, EnMAP Box-3 plugin was used within open-source QGIS 

3.30.3 software. The L2A product contain initially 212 bands from 420-1000 nm (VNIR) to 

900-2450 nm (SWIR). The metadata were imported as an EnMAP L2A product and then 

exported as spectral images after undergoing additional processing steps. Firstly, a moving 

average filter with a 3x3 kernel window was used to detect overlapping bands in the VNIR and 

SWIR regions (Fig.4.2). Further, bad bands occurring between 1358 nm and 1453 nm, as well 

as between 1814 nm and 1961 nm, due to water absorption, have been removed to avoid 

impacts at any further analysis. In this case, bad bands ranging from band 115 (1295.28 nm) – 

band 129 (1519.22 nm) and band 149 (1738.93 nm) – band 155 (1967.95 nm) identified and 

removed. Each tile exported as spectral image containing 192 bands. Subsequently, the tiles 

were merged into a single raster, encompasses a scene of total 90 km swath width. Following 

the merging process, a scale factor of 0.0001 was applied to the TOA reflectance of the mosaic 

image. Lastly, an essential step involves the application of Quality Level (QL) test flags files, 

which are provided as part of the data. This step serves to effectively detect and eliminate line 

noise that may be present in the data. Line noise and white spots resulting from sensor 
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saturation, can adversely impact the accuracy of subsequent data analysis and classification 

processes. Therefore, it is crucial to identify and remove these pixels prior to the classification 

analysis (Storch et al., 2013). The image then projected in WGS 1984 UTM zone 34N, which 

corresponds to Greece. 

4.2. Classification of ENMAP imagery 

In this research, supervised classification approaches are employed in order to identify and 

categorize various land cover classes using advanced machine learning fine-tuning algorithms, 

i.e., SVM and ensemble learning algorithm RF. The SVM with a radial kernel was implemented 

due to superiority in performance and accurate results (Talukdar et al., 2020). RF is widely 

used with hyperspectral (HSI) data due to its ability to provide good classification results, 

without relying on any underlying probability distribution for the input data (Jafarzadeh et al., 

2021). These advanced ML algorithms have demonstrated exceptional performance in LULC 

classification tasks, leveraging their robustness, and capability in handling and processing 

complex and noise datasets (Kale et al., 2017). In this research, the classification scheme was 

based on the Corine Land Cover from the European Environment Agency (EEA), and implied 

to classify 11 distinct classes, after modifications based on sub-classes at level 3. 

4.2.1. Support Vector Machines (SVM) 

The SVM was introduced in the late 1970s by Vapnik (Vapnik, 1995), and since then, it has 

become the most widely employed kernel-based algorithm for various classification tasks. In 

the realm of classification, it holds a great advantage over other statistical methods as a non-

parametric algorithm in remote sensing image classification, mainly because it does not pose 

any constraints based on the distribution of data.   

 

SVM is a supervised machine learning algorithm that aims to find an optimal hyperplane that 

maximally separates data points of different classes. A hyperplane is a decision boundary that 

functions through separating different classes in the feature space with aim to find hyperplane 

with the largest margin. A commonly used technique for finding optimal combinations of hy-

perparameters is Grid Search, which functions by exhaustively searching through a specified 

range of parameter values. The margin in SVM refers to the distance between the decision 

boundary and the closest support vectors; SVM aims to maximize this margin to achieve better 

generalization and improve classification performance. The C parameter in SVM controls the 

trade-off between maximizing the margin and minimizing classification errors. Support Vectors 

are the data points that are closest to the decision boundary, i.e., hyperplane. The kernel trick is 

a technique used to transform data into a higher-dimensional space, enabling SVMs to effec-

tively handle complex relationships between features. Based on the type of kernels utilized to 

establish decision boundaries, SVMs can be categorized as linear, which employs a linear ker-

nel, and non-linear, which utilizes non-linear kernels such as polynomial or radial basis func-

tions. Given that a comprehensive description of SVMs can be found in existing literature, such 

as Foody and Mathur (2004) and Pal and Mather (2005), a detailed explanation of SVMs it is 

not provided in this context. The kernel-based techniques that are extensively employed in the 

utilization of SVMs are briefly presented above (Scholkopf et al., 1999): 

 

Liner kernel:  

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖 · 𝑥𝑗     4.1 

 

Polynomial kernel: 
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𝑘(𝑥𝑖 , 𝑥𝑗) = (𝛾𝑥𝑖 · 𝑥𝑗 + 𝑟)
𝑑
, 𝛾 > 0    4.2 

 

 

Radial basis function (RBF) kernel: 

 

𝑘(𝑥𝑖 , 𝑥𝑗) = exp⁡(−𝛾‖𝑥𝑖 − 𝑥𝑗 ⁡‖
2)    4.3 

 

Sigmoid kernel: 

 

𝑘(𝑥𝑖 , 𝑥𝑗) = tanh(𝛾𝑥𝑖 · 𝑥𝑗 + 𝑟)    4.4 

 

The linear kernel (Equation 4.1) computes the dot product in feature space. The polynomial 

kernel (Equation 4.2) uses a user-defined constant, denoted as d, to determine the kernel order. 

The RBF kernel (Equation 4.3) incorporates a weight term, c, to represent another kernel type. 

The sigmoid kernel (Equation 4.4) illustrates a two-layer sigmoid neural network that acts as a 

similarity indicator between xi and xj, using the dot product term (x x i j) in each kernel. User-

defined parameters, such as γ, d, and r, significantly impact the accuracy of SVMs' solutions in 

different kernel functions. 

 

4.2.2. Random Forest 

Random Forest is an ensemble learning algorithm that combines multiple decision trees in 

order to create a powerful model in image classification tasks. Ensemble learning refers to the 

technique of combining multiple models to improve overall performance. A random selection 

of characteristics and data is used to individually train each decision tree, reducing overfitting 

and increasing diversity among the trees. The approach employs bootstrap aggregating, a 

method known as bagging, to train various bootstrap samples of the training data into diverse 

decision trees (Breiman, 2001). The final prediction, is based on different tree projections are 

combined during prediction through voting or average. The significance of each characteristic 

in the classification task is shown by RF's measures of variable importance. Additionally, it 

avoids the requirement for a separate validation set by estimating model performance using 

out-of-bag (OOB) error. In the Random Forest algorithm, once the forest is grown, each tree 

contributes to the decision by voting for a particular class, and the final label is determined by 

the majority vote. The key benefits of the RF algorithm include its ability to handle noise 

effectively, requiring fewer parameters for tuning, and offering a computationally efficient 

solution. RF method can handle large datasets with several features or channels since it is 

scalable. Due to the randomization of the feature, RF is naturally resistant to overfitting 

(Christovam et al., 2019).  

4.3. Classification scheme design  

A classification scheme was developed by utilizing the archival data of Corine Land Cover 

(CLC) from 2018. The scheme focused on classifying land cover into 11 distinct classes based 

on a moderate version of sub-classes in Level-3. To determine these classes, the extent covered 

by each CLC class in the study area was calculated and classes with the highest coverage were 

identified. This approach allowed for the identification of land-cover types that represented the 

dominant land cover categories in study area and specified the number of categories that will 

be further used for the classification analysis. The classification scheme is shown in Table 5, 

which provides the names of categories at Level-1, and the classification scheme after 

modifications based on sub-classes (Level 3).   
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Table 4.1. Classification scheme generated with reference the Corine Land Cover from 2018 
(Level 1) and classification scheme used in the analysis, after modifications based on sub-
classes (Level 3). Each class is assigned to its corresponding Level-1 section 

 Land-use and cover Classification Scheme 

Level 1 (CLC 18) Classification scheme  Class description 

1. 

Artificial surfaces 

1. Urban fabric 

2. Mineral extraction sites 

-Discontinuous urban fabric, construction sites, including 

road and rail networks and associated land 

-Mining sites of lignite 

2. 

Agricultural 

areas 

3. Non-irrigated arable land 

4. Permanently irrigated arable 

land 

5. Pastures 

-Non-irrigated arable land 

- Permanently or periodically irrigated arable land, 

- Herbaceous vegetation and grass cover, abandoned arable 

land, permanent grasslands under grazing by domestic animals 

3. 

Forest and semi-

natural areas 

6. Broadleaved forests 

7. Coniferous forest 

8. Natural grasslands 

9. Mixed forests – Shrub 

-Broadleaved forests,  

-Coniferous forests 

- Natural grasslands, under minimum human influence, 

-Mixed forest transitional woodlands and shrublands 

4. Wetlands 10. Inland marshes -Flooded vegetation, flowering aquatic plants such as water lily 

5.Water bodies 11. Water bodies -Water bodies, Lakes, clear water 

 

4.3.1. Training points selection  
 

The approach used for the generation of the classification scheme was based on the CLC (2018) 

land-cover map in order to identify the dominant land cover classes within the study area and 

define the number of classes. The dominant land-cover classes in the study area and those that 

could not be dismissed were included in the scheme. These classes comprised artificial surfaces 

(discontinuous urban fabric), broad-leaved and coniferous forest, non-irrigated arable land and 

permanently irrigated arable land, mixed forest and transitional woodland-shrub which 

represents the class mixed forest-shrubs, natural grasslands and pastures, mineral extraction 

sites, water bodies, and inland marshes corresponding to flooded vegetation such as water lilies 

(Table 4.1). Mixed forests and shrublands were merged into a single category due to spectral 

similarities. Similarly, areas associated with mineral extraction and construction activities were 

identified and labelled as mining sites due the spatial limited extent within the study area. 

 

Figure 4.3. Mean spectral signatures of land-use and cover categories used for EnMAP image 

classification analysis 
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Figure 4.4. The 2-D scatter plot of EnMAP spectral bands imported with ROIs in (a) Blue 

(B8) vs. Green (B28); (b) Green (B28) vs. Red (B47); (c) Red (B47) vs. NIR (B92); (d) NIR 

(B100) vs. SWIR (B150) 

Approximately 3500 training points were very carefully selected for each class, a total dataset 

consist of ~30,000 pixels, used to train each classifier (Fig.4.3). The Jeffries-Matusita and the 

Transformed Divergence statistical measures performed using ENVI Classic 5.3 (64 bit). To 

address the high correlation among nearby classes, particularly in VNIR bands, for the analysis 

of Jeffries-Matusita and Transformed Divergence statistics, the half bands of EnMAP imagery 

were used. This was primarily motivated by the narrow spectral sampling distance between 

bands (6.5 nm VNIR and 10 nm in the SWIR). Specifically, a 2-band step was performed, 

selecting bands at intervals of two bands. By selecting bands at intervals of two bands, the 

spectral sampling distance was effectively increased between adjacent bands. Figure 4.4 

displays a 2-d scatter plot depicting the EnMAP spectral bands imported with ROIs across 

different wavelengths. The mean spectra of the collected ROI pixels derived after applying pre-

processing steps of overlapping detection and of bad bands removal, as shown in Figure 4.5. 

The obtained metrics for ROIs separability provide insights into the distinctiveness and 

discriminability of different land cover classes. The computed spectral separability values 

indicated a satisfactory discriminative ability, with values ranging from 1.9 to 2. Values higher 

than 1.9 indicated sufficient separability. The analysis revealed that forested areas exhibited 

high separability from water bodies, and artificial surfaces while the separability between 

agricultural areas comparatively lower. Notably, the separability ranging from 1.99 to 2.00 

indicating a high and satisfactory degree of separability. The lowest separability was observed 

between the pastures, grasslands and mixed forests-shrubs as well as artificial surfaces and 

mineral extraction sites. The separability values of the selected ROIs for training set is shown 

in Table 4.2.  
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Table 4.2. Spectral separability of training dataset (ROIs) according to Jeffries-Matusita, 
Transformed Divergence statistics 
 

 Mining 

sites 

Coniferous 

forest 

Grassland Pasture Mixed 

forest-

Shrubs 

Inland 

marsh 

Non-

irrigated 

arable 

land 

Broad-

leaved 

Perma

nently 

irrigat

ed 

Water 

bodies 

Artificial surfaces 1.98 1.99 1.97 1.99 1.99 1.99 1.99 2 1.99 2 

Mineral extraction 

sites 

 2 1.99 2 2 2 1.99 2 2 2 

Coniferous forest   2 1.99 1.99 2 2 1.99 2 2 

Grasslands     1.99 1.99 1.99 1.99 2 2 2 

Pastures     1.90 1.99 1.99 2 2 2 

Mixed forest-

Shrubs 

     1.99 1.99 1.99 1.99 2 

Inland marshes       1.99 2 1.99 2 

Non-irrigated 

arable land 

       2 1.99 2 

Broad-leaved forest         2 2 

Permanently 

irrigated arable  

         2 

 

4.4. Classification implementation  
 
The classification workflow employed in this study incorporated widely-used ML algorithms, 

Random Forest (RF) and Support Vector Machine (SVM), for image classification within the 

advanced classification workflow of EnMAP Box-3 plugin (der Linden et al., 2015) using the 

scikit-learn library (Pedregosa et al., 2011). Performance of each model evaluated using overall 

accuracy and 'f1 macro' score metric.   
 

For SVM classifier The RBF kernel type was chosen for this study due to well-established 

popularity and superior accuracy in land cover classification tasks. RF supervised machine 

learning algorithm is known to provide enhanced classification performance with high 

accuracy and robustness to noise, and ability to capture non-linear relationships and outlier 

detection (Talukdar et al., 2020). For RF, the power of ensemble learning, which takes 

advantage of the diversity among multiple models to enhance the overall performance and 

achieve accurate results even without hyperparameters tuning; while the fine-tuning process 

using grid search for the SVM model enabled the identification of optimal parameters and 

refined further the model and its classification capabilities. 

 
Figure 4.5. Hyperparameter tuning workflow 
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The training and classification processes for the RF and SVM algorithms were conducted in 

the EnMAP Box-3 toolbox using the Random Forest Classifier and Support Vector Classifier 

(RBF kernel) packages from the scikit-learn library, for RF and SVM respectively (Pedregosa 

et al., 2011). For the k-fold cross-validation procedure on current dataset, the train/test split 

procedure was used to evaluate the model. The dataset was randomly split into subsets of train 

(75%) and test (25%), and same training dataset (pickle file) was used for fitting and evaluating 

the performance of each classifier as indicated in Figure 4.5.  
 

For the RF classifier, parameters were tuned manually, using python coding through the scikit-

learn API within the classification workflow. In order for best estimators and parameters to be 

found and to improve the algorithm's performance the GridSearchCV was used, with cv = 5. 

The criterion was set to gini and decision trees values set to [10,20,30,50,100,200,500, 1000]. 

For max features values changed from default auto to (1, 'sqrt', 'log2') and max depths from 

default None to [2,3,5,10,20], to optimize feature selection and mitigate overfitting. For the 

min samples leaf values and min samples split, the ranging [5,10,20,50,100,200] and 

[2,5,10,20] was used, respectively. The adjustments were made based on recommendations 

within the sklearn’s documentation and multiple experimental iterations using different 

configurations of parameters. After the fine-tuning process, the optimal combination with gini 

criterion was found to 1000 estimators. 
 

In case of SVMs with an RBF kernel, the hyperparameter optimization process was conducted 

in order to find the optimal values for each parameter for the algorithm, taking into account the 

input dataset. By systematically exploring different parameter combinations, the optimization 

process sought to maximize the performance of the algorithms and improve their accuracy in 

classifying the data. A hyperparameter tuning for cost C and gamma γ value was performed 

using an automated process called GridSearchCV, using a k-fold cross-validation, with k = 5. 

A range of values were considered for cross-product of C and γ values ranging in [10-3,10-2, 

10-1, 1, 101 ,102 ,103]. After the fine-tuning process, the optimal combination of regularization 

parameter C and gamma γ was set at 1000 and 0.01, respectively. 
 

4.4.1. Accuracy assessment approach  
 

The accuracy assessment of the thematic land-cover maps involved the utilization of various 

statistical metrics, as evaluated through the confusion matrix. These metrics included the 

overall accuracy Overall Accuracy (OA), User's Accuracy (UA), Producer's Accuracy (PA), 

Kappa coefficient (Kc). OA provides an estimate of the overall classification accuracy, 

representing the percentage of correctly classified pixels in the output map. Kc measures the 

level of agreement between the reference data and the chosen classifier, compared to the 

agreement expected by chance. PA indicates the percentage of correctly classified pixels within 

a specific class and reflects the omission error, which represents the pixels omitted from their 

reference class. Similarly, UA represents the percentage of pixels classified as a specific 

category that actually belong to other ground truth classes, indicating the commission error. 

Mathematically, these parameters can be expressed as shown (Congalton, 2001).  
 

𝑂𝐴 =
1

𝑁
∑ 𝑛𝑖𝑖
𝑟
𝑖=1      4.5 

 

𝑈𝐴 =
𝑛𝑖𝑖

𝑛𝑖𝑟𝑜𝑤
      4.6 
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𝑃𝐴 =
𝑛𝑖𝑖

𝑛𝑖𝑐𝑜𝑙
      4.7 

 

𝐾𝑐 = 𝑁∑ 𝑛𝑖𝑖 − ∑
𝑛𝑖𝑐𝑜𝑙𝑛𝑖𝑟𝑜𝑤

𝑁2 − ∑ 𝑛𝑖𝑐𝑜𝑙𝑛𝑖𝑟𝑜𝑤
𝑟
𝑖=1

𝑟
𝑖=1

𝑟
𝑖=1    4.8 

where the symbol nii represents the count of pixels that are accurately classified within a 

particular category; the variable N refers to the total number of pixels present in the confusion 

matrix, while r denotes the number of rows; nicol represents the sum of columns in the reference 

data; nirow signifies the sum of rows in the predicted classes. 

For the computation of the statistical metrics, the validation set was independently selected 

from each categorization class to ensure accurate classification through random selection. The 

multispectral imaging obtained in eight spectral bands in VNIR, namely coastal blue, green I, 

green, yellow, red, red edge, NIR with a spatial resolution of 3 m (https://www.planet.com/). 

Approximately 9,000 pixels were generated using the PlanetScope multispectral image as 

reference, with around 800 pixels allocated for each class (which accounted for 25% of the 

training set). The process of selection validation points (pixels) was primarily guided by the 

PlanetScope satellite imagery (pixel size ~3⁡meters) used as reference, which acquired closely 

in time to the EnMAP datasets (Fig.4.6). In order to prevent overlap between the training data 

and validation sites and to ensure that the pixels used for training did not coincide with those 

used for validation, the validation sites were chosen at locations separate from where the 

random points were collected. Moreover, validation pixels were collected in regions exhibiting 

homogeneity to mitigate pixel mixing effects regarding the high resolution PlanetScope 

imagery in conjunction with EnMAP HSI. 

To determine OA as well as UA and PA from classified maps the estimating area and map 

accuracy for simple random sampling tool within the EnMAP Box-3 software was utilized 

(Stehman, 2014). Subsequently, these metrics were used to assess the Cohen’s Kappa (Kc), 

which was calculated using Microsoft Excel. The statistic F1 scores was also produced to gain 

insights regarding misclassifications within the classification results. These statistical metrics 

provide valuable information regarding the performance and reliability of the classification 

process, allows for a comprehensive evaluation of the accuracy and robustness of the results.  

 

 
 

Figure 4.6. PlanetScope dataset overlap in EnMAP dataset used for the collection of validation 

pixels. Dataset are presented in true colour RGB composite i.e., for PlanetScope R:6, G:3, B:2 

and for EnMAP R:47, G:32, B:14 

https://www.planet.com/
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4.5. Comparative analysis of thematic land-cover maps 

 
The same set of validation data was used to evaluate the classification accuracy of implemented 

algorithms RF and SVM based on EnMAP imagery, for the production of land-use maps. To 

assess the statistical significance and determine the superiority of one classifier over another, 

McNemar's chi-squared (χ2) test was employed (McNemar, 1947), which is a parametric test 

known for its simplicity and accuracy (De Leeuw et al., 2006). Existing literature suggests that 

it is more precise and sensitive than the Kappa z-test (Manandhar et al., 2009). McNamar 

utilizes two error matrices to calculate a chi-square (χ²), which compares the misclassifications 

between the two classifiers.  

 

More specifically, it considers the cases where one classifier incorrectly classifies a sample that 

the other classifier classifies correctly and vice versa. This statistical test, which based on the 

chi-square value, provides insights into the comparative performance of the classifiers and 

represents a straightforward approach for comparing the predictions of different algorithms on 

a per-class basis. The computation of McNemar’s test is as follows: 
 

𝜒2 =
(𝑓12−𝑓21)

2

𝑓12+𝑓21
      4.9 

where f12 represents the number of cases that are misclassified by classifier one but correctly 

classified by classifier two, while f21 represents the number of cases that are correctly classified 

by classifier one but misclassified by classifier two. 
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5. Results 
 

Chapter 5 

 
 
This chapter provides a detailed account of the results obtained in this thesis. It presents 

an accuracy assessment of the classification results, along with a detailed comparat ive 

analysis based on different machine learning algorithms. Furthermore, the chapter offers 

a comparison of the thematic maps obtained from the analysis and current operational 

products. 

 

5.1. Accuracy assessment of classification analysis 

The land-use and cover maps produced using tuned SVMs and RF algorithms. The selected 

best estimators for each classifier used for the analysis, are shown in Table 5.1. Thematic maps 

illustrating the land-cover and land-use categories derived from the implementation of each 

classifier based on EnMAP HSI, are presented in Figure 5.1. Table 5.2 summarize the results 

of the classification assessment i.e., OA, Cohen's Kappa (Kc), PA and UA accuracy metrics. In 

Tables 5.3 and 5.4 the confusion matrix of each classifier is shown, which represent the pixel 

misclassifications and pixels that classified correctly for each classifier. The visual examination 

of both the thematic maps and the statistical analysis indicates that both classifiers performed 

well in accurately representing the spatial distribution of different land-cover and use types 

across the study area. 

For RF model parameters were tuned manually using python coding, and best estimators were 

found using GridSearchCV, with cv = 5.  For RF with 'gini' criterion, the optimal value of 

estimators (trees) was found to be 100 and the minimum number of samples required to split 

an internal node 2. For SVMs RBF kernel, the best values for hyperparameters were 

automatically identified using the grid search tuning technique. The optimal values using grid 

search method yielded values of the regularization parameter C at 1000 and γ parameter at 

0.01, which found to be most effective resulting in a significant OA of 99%. The grid search 

technique allows for a systematic exploration of different hyperparameter combinations to 

identify the optimal values. By employing grid search technique, fine-tuning of SVM and RF 

model achieved significant performance of fitted classifier (Table 5.1). 
 
Table 5.1. Best values of hyperparameters tuned for each model using 5-fold cross-validation 
and OA of two classifiers 

 

Algorithm Parameters Value OA 

 

 

RF 

criterion gini  

 

95% 
n_estimators 1000 
max_depth 20 

max features sqrt 

min_samples_split 2 
min_samples_leaf 5 

 

SVM (RBF) 

C 1000 99 % 

γ 0.01 

 

The SVMs classifier achieved an average UA range of 71.3% to 99.1% and an average PA 

ranging from 73.5% to 99.5% across eleven different land-cover classes. The Random Forest 

classifier showed an average UA range of 55% to 98.6% and an average PA range of 55% to 
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99.5%. The SVM (RBF) classifier demonstrated promising results across land-cover classes 

used. For artificial surfaces, the UA and PA were 94% and 98.2%, respectively, with an F1-

score of 96%. Broad-leaved forest achieved high accuracy with a UA of 97.5% and a PA of 

98.2%, resulting in an F1-score of 97.9%. Similarly, the coniferous forest exhibited excellent 

classification performance with a UA of 99.1% and a PA of 98.3%, yielding an F1-score of 

98.7%. The SVM classifier performed well in identifying mineral extraction sites, with a UA 

of 87.7% and a PA of 96.9%, resulting in an F1-score of 92.1%. The classification of 

permanently irrigated arable land achieved a UA of 92.9% and a PA of 95.2%, with an F1-

score of 94%. For non-irrigated arable land, the SVM (RBF) classifier demonstrated a UA of 

98.78% and a PA of 83.9%, resulting in an F1-score of 90.79%. The classifier showed 

promising performance for transitional woodland-shrub, with a UA of 88.6% and a PA of 

95.8%, yielding an F1-score of 92%. Water bodies were accurately classified, with a UA and 

PA of 94.9% and 95.3%, respectively, resulting in an F1-score of 95.1%. Inland marshes 

achieved a UA of 95.7% and a PA of 84.5%, indicating a relatively accurate classification with 

an F1-score of 89.7%. However, grasslands, achieved a relatively lower UA of 83.48% and a 

PA of 73.5%, resulting in an F1-score of 78.2%. 

 

However, the grasslands achieved a relatively lower user accuracy (UA) of 83.4% and producer 

accuracy (PA) of 73.5%, resulting in an F1-score of 78.2%. Similarly, the pastures exhibited 

comparatively lower accuracy, with a UA of 71.39% and a PA of 82.6%, resulting in an F1-

score of 76.6%. This discrepancy can be attributed to the homogeneity between the two land-

cover classes, i.e., grasslands and pastures. Overall, SVMs indicating a high level of agreement 

between the predicted and reference land-cover classes, with OA of 90.5% and Kc of 0.89. 

 

 

Figure 5.1. Land-cover and use thematic maps obtained using ML pixel-based algorithms: (a) 

SVMS and (b) RF classifiers based on EnMAP hyperspectral imagery 
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Table 5.2. Summary of results in accuracy assessment for land-cover thematic maps using 
SVMs and RF based on EnMAP hyperspectral satellite imagery 

SVM (RBF) Random forest 

Land cover classes UA (%) PA (%) F1-score UA (%) PA (%) F1-score 
Artificial surfaces 0.940 0.982 0.96 0.851 0.927 0.887 

Broad-leaved forest 0.975 0.982 0.979 0.994 0.979 0.986 

Coniferous forest 0.991 0.983 0.987 0.986 0.995 0.991 

Grasslands 0.834 0.735 0.782 0.805 0.550 0.654 

Inland marshes 0.957 0.845 0.897 0.958 0.827 0.887 

Mineral extraction sites 0.877 0.969 0.921 0.819 0.912 0.863 

Non-irrigated arable 0.987 0.839 0.907 0.965 0.804 0.877 

Pastures 0.713 0.826 0.766 0.674 0.866 0.758 

Permanently irrigated arable land 0.929 0.952 0.940 0.868 0.971 0.917 

Transitional woodland-shrub 0.886 0.958 0.920 0.876 0.955 0.914 

Water bodies 0.949 0.953 0.951 0.949 0.952 0.950 

Overall accuracy (%) OA = 90.5 OA = 87.5 
Kappa coefficient Kc = 0.897 Kc =0.862 

Table 5.3. Adjusted confusion matrix of SVMs classifier: predicted (rows) vs. observed (col-
umns). The diagonal elements of the matrix represent the pixels that were classified correctly 
for each class 

Support Vector Machines (RBF)             

 1 2 3 4 5 6 7 8 9 10 11 Total  

Artificial surfaces (1) 943 0 1 2 28 13 1 2 3 0 10 1003 

Broad-leaved forest (2) 0 851 12 0 0 0 0 0 0 9 0 872 

Coniferous forest (3) 0 1 819 0 3 0 0 0 0 3 0 826 

Grasslands (4) 4 0 0 859 22 12 1 107 19 5 0 1029 

Inland marshes (5) 0 0 0 0 611 0 0 0 0 0 27 638 

Mineral extraction sites (6) 10 0 0 0 0 822 104 0 0 0 1 937 

Non-irrigated arable (7) 0 0 0 0 0 1 892 1 8 1 0 903 

Pastures (8) 0 0 0 298 0 0 2 811 3 18 4 1136 

Permanently irrigated arable land (9) 0 0 0 1 0 0 62 3 877 0 1 944 

Mixed forest-Shrublands (10) 3 14 1 8 12 0 0 57 11 824 0 930 

Water bodies (11) 0 0 0 0 47 0 0 0 0 0 876 923 

Total  960 866 833 1168 723 848 1062 981 921 860 919 10141 
 
Table 5.4. Adjusted confusion matrix of RF classifier: predicted (rows) vs. observed (col-
umns). The diagonal elements of the matrix represent the pixels that were classified correctly 
for each class 

Random Forest             

 1 2 3 4 5 6 7 8 9 10 11 Total 

Artificial surfaces (1) 890 0 1 67 27 40 15 2 1 1 1 1045 

Broad-leaved forest (2) 0 848 1 0 0 0 0 0 0 4 0 853 

Coniferous forest (3) 0 4 829 0 4 0 0 0 0 0 3 840 

Grasslands (4) 20 0 0 643 8 9 10 86 9 13 0 798 

Inland marshes (5) 0 0 0 0 598 0 0 0 0 2 24 624 

Mineral extraction sites (6) 37 0 0 10 0 774 123 0 0 0 0 944 

Non-irrigated arable (7) 5 0 0 1 0 25 854 0 0 0 0 885 

Pastures (8) 6 0 0 352 16 0 0 850 7 17 13 1261 

Permanently irrigated arable land (9) 1 0 0 64 4 0 60 4 895 1 2 1031 

Mixed forest-Shrublands (10) 1 14 2 31 19 0 0 39 9 822 1 938 

Water bodies (11) 0 0 0 0 47 0 0 0 0 0 875 922 

Total 960 866 833 1168 723 848 1062 981 921 860 919 10141 
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The Random Forest classifier also demonstrated high accuracy in obtained results. For artificial 

surfaces, the UA and PA were 85.1% and 92.7%, respectively, with an F1-score of 88.78% and 

performed well in identifying mineral extraction sites, with a UA of 81.9% and a PA of 91.2%, 

resulting in an F1-score of 86.3%. Broad-leaved forest achieved exceptional accuracy, with a 

UA of 99.4% and a PA of 97.9%, resulting in an F1-score of 98.6%. Similarly, the coniferous 

forest exhibited high precision with a UA of 98.6% and a PA of 99.5%, yielding an F1-score 

of 99.10%. For non-irrigated arable land, the Random Forest classifier demonstrated a UA of 

96.5% and a PA of 80.4%, resulting in an F1-score of 87.7%. In case of permanently irrigated 

arable land achieved a UA of 86.8% and a PA of 97.1%, with an F1-score of 91.7%. The 

Random Forest classifier showed promising performance for transitional woodland-shrub, with 

a UA of 87.6% and a PA of 95.5%, yielding an F1-score of 91.43%. Water bodies were 

accurately classified, with a UA and PA of 94.9% and 95.2%, respectively, resulting in an F1-

score of 95.06%. Inland marshes achieved a UA of 95.8% and a PA of 82.7%, indicating a 

relatively accurate classification with an F1 score of 88.79%.  

Similar to SVMs, grasslands and pastures posed a challenge also for RF classifier, exhibited 

comparatively lower accuracy resulting in an F1-score of 65.4% and 75.8%, respectively. RF 

classifier achieved an OA of 87.5% and Kc of 0.86, indicating also a strong agreement between 

the predicted and reference land-cover classes. However, despite the lower accuracy reported 

for the grassland and pastures categories in comparison with the other land-cover classes, both 

classifiers demonstrated satisfactory discrimination capabilities with high F1 scores (Table 

5.2). 

 

5.1.1. Comparative analysis of thematic maps  
 

The findings of this study indicate that both pixel-based algorithms examined show significant 

potential and achieved high accuracy in distinguishing land cover classes based on EnMAP 

HSI, according to OA and Kc metrics.  

To further evaluate if there is a significance among the classifiers performance, McNemar's 

test was employed on a 2 × 2 contingency matrix created for the correctly and incorrectly 

classified pixels (Abdi, 2020). In the accuracy assessment of a total of 10140 pixels, the 

misclassified pixels after SVM classification accounted for 956 pixels, while the RF method 

yielded 1263 misclassified pixels. On the other hand, SVM correctly classified 9185 pixels, 

and the RF approach correctly classified 8878 pixels (Table 5.3 and 5.4, respectively). The 

resulting chi-square test statistic value was 42.20, which exceeded the critical chi-square value 

of 29.59 at a significance level of 0.001. This indicates a significant difference and leads to the 

rejection of the null hypothesis (Table 5.5). 

Table 5.5. The results of McNemar's test for land-use and cover classification accuracy using 
pairwise algorithms, i.e., SVMs and RF, for f12 and f21 are represents the number of cases 
that were correctly classified in classifier one but wrongly classified in classifier two and vice 
versa 
 

 Support Vector Machines vs. Random Forest 

Pairwise algorithms 

 f12 f21 df. Chi-square p-value 

SVM vs. RF 956 1263 10 42.20 0.001 
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5.1.2. Thematic maps against operational EO land-cover product 
 
To evaluate the performance of each classifier in comparison to operational EO land-cover and 

use products, the ESA's WorldCover (2021) was used. The latest version of ESA's WorldCover 

(2021) was selected for this study due to its close temporal proximity to the EnMAP dataset 

acquired in 2022 and its high spectral resolution. ESA's WorldCover, which utilizes Sentinel-

1 and Sentinel-2 data at a 10-meter resolution, emerges as the optimal choice for the current 

analysis. It not only delivers up-to-date information but also provides superior resolution and 

a classification scheme that satisfactorily aligns with the characteristics of the thematic maps 

obtained from the EnMAP dataset. Within the study area, ESA's WorldCover consists of seven 

land-cover classes: tree cover, grassland, cropland, built-up areas, herbaceous wetlands, 

permanent water bodies, and bare/sparse vegetation. To ensure compatibility with ESA's 

WorldCover, a separate dataset was created by merging sub-classes within the primary land-

cover categories derived from the classification results. This merging process was performed 

to align the number of classes with those present in ESA's WorldCover. Specifically, forests 

were merged to represent tree cover, natural grasslands and pastures were merged to represent 

grasslands, permanently irrigated and non-irrigated arable lands were merged to represent 

cropland, artificial surfaces remained as built-up areas, mining sites were renamed as 

bare/sparse vegetation, representing areas of exposed soil in the study area. For herbaceous 

wetlands and permanent water bodies, the categories inland marshes and water bodies were 

renamed, accordingly (Table 5.6).  

 
Figure 5.2. Overview of ESAs WorldCover (2021) reference map and thematic land-cover 

maps obtained from SVMs and RF algorithms, after adjustments in classes of classification of 

the latter 
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Table 5.6. Adjustments in classification scheme used in analysis in accordance to ESA’s 
WorldCover 
 

 WorldCover ESA EnMAP classification scheme 

Classes Classes Adjustment in classes 

1  Broad-leaved forest 

Tree cover Coniferous forest 

 Mixed forest, Shrubland 

2 

Grassland 

Natural grasslands 

Pastures 

3 

Cropland 

Permanently irrigated arable land 

Non-irrigated arable land 

4 Built-up Artificial surfaces 

5 Herbaceous wetland Inland marshes 

6 Permanent water bodies Water bodies 

7 Bare/sparse vegetation Mining sites 

 

Geometry attributes of the WorldCover dataset were used to calculate the predicted area of 

each land cover class in hectares, allowing for a spatial comparison of the outcomes thematic 

maps, in terms of land-cover and land-use predictions. Comparing the classification maps 

obtained from the analysis with the ESAs WorldCover dataset, it becomes apparent that the 

former provides a higher level of detail, particularly in regions characterized by greater 

heterogeneity, despite no significant differences observed in the distribution of land-cover 

classes (Fig.5.2 & 5.3). With respect to the year difference between the datasets i.e., ESAs 

WorldCover (2021) and EnMAP datasets (obtained for 2022), significant variations in land-

cover and land-use classes, such as tree cover or grasslands, can be attributed to temporal 

changes in land-use/-cover patterns. Seasonal variations should also be taken into 

consideration, as grasslands and tree cover can display different phenological patterns and 

seasonal dynamics. More likely, differences in the adopted classification methodologies and 

classification scheme for the LULC product. In this study, the classification scheme generated 

contained classes such as natural grasslands and pastures, but pixels corresponding to 

transitional woodland and shrubs (which are neither pastures nor natural grasslands) were 

treated as mixed forest and merged into forest categories i.e., tree cover (Table 5.7). On the 

other hand, associated land may be correspond to grasslands regarding to ESAs WorldCover. 
These factors contribute to an underestimation in grasslands land cover class and subsequently 

an overestimation in tree cover land cover class between ESAs WorldCover and classification 

outputs. 

Table 5.7. Quantification of land-cover classes in ESA's WorldCover and outcome thematic 
maps after adjustments 

 

 ESAs WorldCover SVM (RBF) RF 

Class Area (ha) Cover (%) Area (ha) Cover (%) Area (ha) Cover (%) 

Tree cover 116410.4 41% 153144.87 54% 151616.51 53% 

Grassland 103386.92 36% 68456.05 24% 80611.24 28% 

Cropland 50459.82 18% 35838.37 13% 27668.33 10% 

Built-up 4157.42 1% 14148.79 5% 12531.46 4% 

Herbaceous wetland 1996.96 1% 1443.44 1% 1680.2 1% 

Permanent water bodies 6807.46 2% 6605.07 2% 6585.54 2% 

Bare/sparse vegetation 740.24 0% 4322.62 2% 3265.94 1% 

Total (ha) 283959.25 100% 283959.25 100% 283959.25 100% 
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Figure 5.3. Area-based comparison (in hectares) of ESAs’ WorldCover LULC product and 

thematic maps obtained using EnMAP hyperspectral dataset 

 

Concerning the built-up area an ~3% discrepancy occurred, which may be attributed to the fact 

that the classification scheme generated in this study, in which urban fabric, construction sites, 

roads, and associated land were all classified as artificial surfaces. Regarding bare/sparse 

vegetation, referring to areas with little or no vegetation, classification scheme in this study 

classifies and identified them as mining sites with bare soil. However, the ESAs WorldCover 

dataset did not accurately identify the extent of bare soil areas, resulting in only a few hectares 

being classified, despite the presence of several remarkable mineral extraction sites within the 

study area (Table 5.7). In this case, it is believed that the classification outputs from the EnMAP 

dataset achieved a better discrimination of bare areas where in case of ESAs WorldCover, are 

corresponds to grasslands. A satisfactory agreement between both SVMs and RF classification 

outputs and the ESAs WorldCover in herbaceous wetland and permanent water bodies, as 

expected, indicating the efficiency of the obtained results. However, with respect to the 

temporal difference between two datasets, both classification outputs showed good overall 

agreement with the ESAs WorldCover, indicating the potential of classification outcomes.  
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6. Discussion 
 

Chapter 6 

 
 
This chapter provides a critical evaluation and interpretation of the key findings and 

limitations of the analysis. It also offers insights into the practical implications of the 

research for the field of remote sensing and land use/land cover analysis.  
 

6.1. Discussion of classifiers performance  
 

The application of machine learning algorithms for land-cover mapping has gained significant 

attention over the field of remotely sensed imagery. Broad range techniques based on ML are 

employed to leverage the capabilities of hyperspectral data (Pandey et al., 2019; Ahmad et al., 

2022). Many researchers have been conducted to evaluate the performance of different ML 

algorithms in LULC classification using hyperspectral sensors (Hasan et al., 2019; Talukdar et 

al., 2020; Gupta et al., 2021). These studies have been conducted across various scales and 

settings, achieving different levels of performance and accuracy (Colkesen & Ozturk, 2022). 

According to Sheykhmousa et al. (2020), there an increase has been noticed in the use of RF 

and SVM across the globe in a wide range of applications, including vegetation and urban 

mapping and particularly LULC applications, which had the highest average accuracy of any 

application.  
 

This research evaluated the efficiency of EnMAP hyperspectral imagery in conjunction with 

well-established ML algorithms, SVMs with RBF kernel type, and ensemble RF, for LULC 

mapping in a typical Mediterranean environment. Both classifiers demonstrated precise and 

accurate results upon eleven land-cover and use classes i.e., two forested and two semi-forest 

(broadleaved forest, coniferous forest and mixed-shrubs, natural grasslands, respectively), 

three agricultural classes (permanently irrigated arable, non-irrigated arable land and pastures), 

two classes representing artificial surfaces (mining sites and total artificial areas), and two 

classes represents water bodies and wetlands (water bodies and inland marshes, respectively). 

With respect to the total land cover coverage across the study area, vegetation cover is the 

dominant land cover class in the region. Both algorithms classified about half of the total land 

as forested (considered all forested classes represents forests), followed by grasslands 

(considered that pastures and natural grasslands are both attributed to grasslands) and arable 

land (considered irrigated and non-irrigated arable land in total as croplands). The area-based 

comparison of spatial extent in land-cover classes among ESA’s WorldCover and LULC 

thematic maps derived from EnMAP imagery revealed both areas of agreement and 

discrepancy. Cropland shows a similar trend, with ESAs WorldCover having a larger area than 

the other classifiers. Built-up areas show relatively high agreement and remarkable agreement 

is shown for herbaceous wetland and permanent water bodies, while discrepancies between the 

classifiers regarding bare/sparse vegetation. In vegetation classes referring to tree cover and 

grasslands exhibits some variation, with ESAs WorldCover reporting a lower and higher 

coverage percentage compared to SVM and RF, respectively, may be attributed to differences 

in the classification methodologies and schemes, canopy density due to seasonal variations the 

temporal difference, as well as different sensors (SAR & multispectral vs. hyperspectral) used 

for generating LULC thematic maps (Fig.5.3). Overall, with respect to spectral, spatial and 

temporal differences between datasets, both SVMs and RF classification outputs have shown 

good agreement the ESAs WorldCover EO land-use and cover product.  
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The SVM classifier with a radial kernel achieved higher accuracy regarding OA and Kc 

performance metrics compared to the RF classifier, indicating a stronger agreement with the 

reference data. Since Kc statistic of two classifiers obtained relatively close, the significance of 

statistical differences between the accuracy of the models was further evaluated using the 

McNemar's test. The McNemar's test is well suited for testing significance of result among two 

algorithms found statistically significant (p-value < 0.001). Consequently, the null hypothesis 

suggesting equal performance between the SVMs and RF was rejected, suggesting the 

relatively superior performance of the SVMs approach over RF, in case of current study. 

However, RF classifier also exhibited notable accuracy for all land-cover classes. In case of 

SVMs (RBF kernel), best performance achieved for artificial surfaces, broad-leaved forest, and 

coniferous forest, with UAs ranging from 94% to 99.1%. Overall, the SVM classifier achieved 

an OA of 90.5% and a Kc of 0.89. Regarding RF, best performance also obtained for artificial 

surfaces, broad-leaved forest, and coniferous forest, with UAs ranging from 85.1% to 99.4%. 

The Random Forest classifier achieved an OA of 87.5% and a Kc of 0.86, indicating good 

agreement between predicted and reference land-cover classes. Both classifiers have also 

accurately identified mineral extraction sites and arable land, including non-irrigated and 

irrigated arable land, mixed forest-shrub, water bodies, and inland marshes, while grasslands 

and pastures exhibited relatively lower levels of accuracy. For both classifiers, grasslands and 

pastures exhibited comparatively lower accuracies, compared to other land-cover classes. This 

may be attributed to the inherent complexity and variability of grassland environments, 

especially when existing with pastures, making them more difficult to accurately classify (Wu 

et al., 2023). Misclassifications between grasslands and pastures can occur due to the mixing 

of spectral signatures, particularly given the 30 m spatial resolution of EnMAP's imagery, 

which makes it difficult to discriminate between areas with similar vegetation characteristics.  

Based on the authors' current knowledge, this study is the first attempt to evaluate the potential 

of recently launched EnMAP hyperspectral satellite imagery in land-use and cover mapping 

using ML algorithms. Therefore, results obtained from this study could not be directly 

compared to previous studies in terms of directly comparison regarding the sensors’ effects on 

classification accuracy in a Mediterranean setting. However, in terms of classifiers accuracy 

the results are comparable to those of previous studies that evaluated the performance of 

various ML algorithms for land-use and cover classification using hyperspectral datasets 

(Petropoulos et al., 2012; 2015; Hasan et al., 2019; Gopinath et al., 2020). For example, Lamine 

et al. (2018), employed SVMs to assess the spatiotemporal changes in land-use and cover using 

Hyperion hyperspectral data, in a typical Mediterranean setting, using Hyperion hyperspectral 

data with a 30 m spatial resolution. The studies reported a maximum OA and Kc of 91% and 

0.90, respectively, which aligns with the results obtained from SVM classifiers using also a 

RBF kernel type. Similar in case of results obtained using RF, have shown similar levels of 

accuracy in land-use and cover classification (Clark, 2017; Colkesen & Ozturk, 2022). The 

results obtained are also similar to previous studies which indicated that SMVs achieved high 

accuracy and outperformed compare to other pixel-based classifiers, i.e., RF, employed on 

different hyperspectral datasets (Puletti et al., 2016; Ghamisi et al., 2017; Raczko & Zagajewski 

2017; Cheng & Cheng, 2018; Nhaila et al., 2019). For example, Alcolea et al. (2020) conducted 

a survey, based on state-of-the-art supervised ML classifiers employed for LULC 

classification, including SVMs and RF, using various land cover classes, applied to various 

hyperspectral datasets derived from different airborne campaigns, with diverse spatial and 

spectral resolutions and different context, i.e., the Indian Pines (IP) from AVIRIS, University 

of Pavia (UP) from ROSIS, Salinas Valley (SV) from AVIRIS, Kennedy Space Center (KSC) 

also from AVIRIS and University of Houston (UH) from CASI,  Results from this study 

demonstrated that RF algorithm consistently yields the lowest accuracy values across all 

datasets, while kernel-based methods, i.e., SVMs, outperformed the other methods (Table 6.1).  
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Table 6.1. An overview of accuracies performance in LULC mapping with up to 10 land-cover 
categories, employed on widely-used hyperspectral airborne campaigns 
 

 Author 

Publication 

Classes 

(No.) 

Dataset and resolution Algorithm OA KA   

 

 

 

 

Alcolea et al., 

2020 

16 Indian Pines 

(20 m) 

RF 75.32 ± 0.44 71.42 ± 0.53  

SVM 83.46 ± 0.35 81.08 ± 0.41  

13 Kennedy Space Center 

(18 m) 

RF 88.88 ± 0.43 87.61 ± 0.48  

SVM 90.51 ± 0.56 89.43 ± 0.62  

16 Salinas Valley 

(3.7 m) 

RF 90.08 ± 0.17 88.93 ± 0.19  

SVM 93.2 ± 0.17 92.42 ± 0.19  

15 University of Houston 
(2.5 m) 

RF 73.0 ± 0.07 70.99 ± 0.07  

SVM 76.96 ± 0.0 75.21 ± 0.0  

9 University of Pavia 

(1.3 m) 

RF 86.8 ± 0.25 81.98 ± 0.35  

SVM 93.98 ± 0.15 91.99 0.2  

 

However, the algorithm to be used must be selected according to the size of input datasets, as 

well as the number of target classes. In addition to the selection of the appropriate classifier, 

the parameters of each algorithm must be tested under different parameter settings in order for 

best values of parameters to be found and set, which in turn will increase the performance of 

the ML algorithm. A wide range of studies have indicated the efficiency in tuning of 

hyperparameters to increase predictive power of ML models. Comparisons among results 

obtained based on these studies using SVMs and RF, demonstrated that after hyperparameter 

tuning, better results are produced than before tuning process, regardless of the datasets used, 

indicating a direct effect on the performance of the model (Yang & Shami, 2020; Chava et al., 

2021). Regarding our study, the high performance achieved by both algorithms can be 

primarily attributed to the hyperparameter tuning process. For the classification analysis, an 

automated sklearn's GridSearchCV process employed to optimize the hyperparameters via 

Scikit-Learn Estimators in EnMAP-Box 3.12.1 using a task-oriented interface. Best estimators 

achieved exceptional scores for each model (i.e., 99% and 95%, with cv=5, for SVMs and RF, 

respectively). Although, fine-tuned SVMs has been found to produce more accurate results 

compare to conventional algorithms in supervised classification, SVM tuning process requires 

selecting a suitable kernel and optimizing kernel parameters, which can involve relatively 

complex computations. While RF does not require extensive parameter tuning, is more 

computationally efficient and has been proven to perform well even with default parameter 

settings (Adugna et al., 2022).  

All in all, both classifiers demonstrate robustness to outliers and noise in the data. SVMs use a 

margin-based approach, in order to find the optimal hyperplane that maximally separates 

different classes, which helps in mitigating the influence of outliers. On the other hand, RF 

constructs an ensemble of decision trees and combines their predictions, which reduces the 

impact of individual noisy or outlier data points. This robustness makes both SVMs and RF 

suitable algorithms in LULC classification when coupled with HSI. In terms of the potential of 

SVMs compared to RF regarding the analysis, the high overall accuracy of outcome thematic 

maps, as reported also in case of other studies, may be linked to the algorithms capability to 

find optimally separating hyperplanes for classes in contrast to other pixel-based techniques 

(Petropoulos et al., 2012). For example, for a dataset that contains a lot of noise or outliers, the 

separating hyperplane cannot accurately approximate the true data distribution and as a result, 

the provided separating margin, performs unevenly in terms of generalization (Ireland et al., 

2015).  
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6.1.1. Challenges and Limitations 

Despite the remarkable potential and advancements in classification of hyperspectral remotely-

sensed imageries, there are still challenges regarding that type of data, that must be taken into 

account. One of the key challenges remain, regarding the complexity and volume issues, refer 

to the computational and operational cost associated with processing procedures i.e., storage 

and analysis, that can pose significant constraints on the practicality of these data. The high 

dimensionality of HSI containing hundreds of narrow, redundant spectral bands make HSI 

processing extremely complex and time-consuming, requiring advanced hardware and 

software (Moharram et al., 2023).  In that sense, numerous of challenges can arise during the 

pre-classification procedure with collecting the labelled training set, including the massive time 

consumption, and difficulty gathering the labelled training samples. The limited number of 

labelled training samples poses a significant threat for hyperspectral land-cover classification 

performance and the selection of suitable features in order to handle the variability and 

diversity of the land cover classes. In the context of this study, a total of 192 spectral bands of 

hyperspectral EnMAP were used for the classification process. To address the high-volume 

issues a substantial number of training samples was collected, which in turn introduce an 

increase in computational costs during the analysis process. In this case, the classification 

process using RF exhibited a notably faster computational efficiency in contrast with SVM 

which required a significant amount of time to complete. Regarding to the analysis outcomes. 

In addition, spatial resolution poses challenges as it may limit the distinction between land-

cover classes with similar spectral characteristics, such as grasslands and pastures (Wu et al., 

2023). A major drawback of both classifiers is that they don't operate at the sub-pixel level, 

which could theoretically greatly reduce potential mixture issues resulting from a sensor's 

coarse spatial resolution and, as a result, misclassification outcomes (Petropoulos et al., 2012).  

6.1.2. Key findings  

The current study represents the first in the field attempt to assess the capabilities of EnMAP 

hyperspectral satellite imagery, using a total of 192 spectral bands, for land-use and cover 

mapping based on a comparative analysis of machine learning (ML) pixel-based algorithms. 

The application of ML algorithms, SVMs and RF, showcased their effectiveness in mapping 

eleven land-cover and use classes in a typical Mediterranean environment. The overall pre-

processing and processing analysis implemented within the freely available python plug-in 

EnMAP-Box 3.12.1 in open-source QGIS software. The hyperparameter tuning process using 

played a crucial role in achieving exceptional scores for both SVMs and RF classifiers. The 

hyperparameter optimization process performed using sklearn's GridSearchCV automated 

approach, within a task-oriented and user-friendly interface provided by Scikit-Learn library. 

The SVM classifier with a radial kernel outperformed RF in terms of overall accuracy metrics, 

indicating a stronger agreement with the reference data. McNemar’s statistic test supported the 

relatively superior performance of the SVMs over RF. Current finding aligns with previous 

studies that demonstrated the superiority of SVM against RF for LULC classification using 

hyperspectral data. In order to further evaluate the performance of ML classifiers in compare 

with EnMAP data, an area-based assessment performed among obtained land-cover thematic 

maps from EnMAP dataset and ESAs’ WorldCover EO product. The comparison of predicted 

area in land-cover classes indicated a generally satisfactory agreement beetween most of the 

LULC categories among datasets. However, notable discrepancies were observed specifically 

for the grasslands and tree cover classes. The generated thematic maps exhibited a tendency to 

underestimate the extent of grasslands while overestimating the extent of tree cover. Overall, 

both SVMs and RF classification outputs have demonstrated good agreement with the ESA's 

WorldCover EO land-use and cover product, taking into account spectral, spatial, and temporal 

differences between datasets. 
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7. Conclusions & Future 

Work 
 

Chapter 7 

 

 
This chapter summarizes the objective of the study, which is to evaluate the efficiency 

of EnMAP in land-use and cover mapping. It highlights the early assessment of EnMAP's 

effectiveness through the evaluation of commonly used classification algorithms. 

Moreover, research aims to provide recommendations for future research and directions.  

 

7.1. Concluding remarks 

The objective of this study was to assess the combined effectiveness of EnMAP hyperspectral 

imagery and the performance well-known ML algorithms, namely SVM along with RBF kernel 

type and ensemble RF for producing land-use/cover thematic maps in a typical Mediterranean 

environment. 

To achieve the research objectives and compare the performance of algorithms, several 

statistical analyses were performed. These included comparing the overall accuracy of all 

algorithms and individual classes accuracy, evaluate the statistical significance between 

algorithms, as well as perform an area-based comparison of outcome thematic maps against 

ESAs Worldcover EO land-use and cover products. Results of the analysis have shown that 

EnMAP hyperspectral data demonstrated a highly promising potential in the field of land-cover 

and use mapping. The key study findings are summarised as follow: 

• Comparing the classification results of SVMs and the RF approaches, based on EnMAP 

HSI, SVMs exhibited showing higher OA and Kc accuracy values. For SVMs an OA 

and Kc of 90.5% and 0.89 obtained, respectively. While RF produced also high OA and 

Kc accuracy of 87.5% and 0.86 respectively. The superiority of SVMs was further 

supported by the McNemar’s chi-square statistic. However, it is important to note that 

the RF classifier also exhibited notable OA and accuracies for individual land-cover 

classes. Thus, both classifiers can be considered to be appropriate for land-cover and 

use mapping using EnMAP HSI. 

• Further, an area-based comparison of outcomes performed against ESAs WorldCover 

operational EO product. Considering the differences in methodological approach and 

the temporal disparity between the two datasets, both thematic maps i.e., EnMAP HSI 

outcomes, demonstrated a satisfactory agreement in land-cover classes covered area 

with ESAs WorldCover. This suggests that further investigation and exploration should 

be conducted regarding the promising potential of the latter for operational applications. 

Such studies as the current one can be linked to ongoing efforts aimed at enhancing and 

improving operational products. 

• In regard to the classification analysis, a total of 192 spectral bands of L2A EnMAP 

HSI were used. To tackle the challenges related to the large volume of data, a significant 

number of training samples (~30,000) were collected. However, this increase in the 

amount of data introduces additional computational costs during the analysis process. 

It should be taken into account the large and high-volume size of input datasets, since 

all high-quality bands were used, and no reduction or optimal band selection techniques 

were undertaken. 
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• The hyperparameter tuning process using played a crucial role in achieving exceptional 

scores for both SVMs and RF algorithms (99% and 95%, respectively). Regarding the 

parameter settings and computational time, parameters for RF are easiest to be set in 

contrast with SVM (selection of appropriate kernel type and parameter values), in 

addition, the computational time for RF classification process is significant lesser form 

SMVs. Thus, in terms of computation cost showed to be RF is more computationally 

efficient.  

• The overall analysis implemented in open-source QGIS 3.30.3 software using EnMAP-

Box 3.12.1 within python Scikit-Learn (sklearn) library, allowed for a cost-effective 

implementation of the analysis. The combination of an open-source and user-friendly 

interface, and the availability of open-access hyperspectral data resources coupled with 

advancement in ML provides a valuable tool for researchers working in the field of 

hyperspectral data analysis and disciplines. 

To the best of the authors’ knowledge, the findings of this study contribute to one of the initial 

assessments of the potential of EnMAP hyperspectral satellite imagery in LULC mapping and 

to provide a comparison among most commonly used ML pixel-based algorithms in the field 

land-cover classification.  

The findings of this study highlight the significance of evaluating the newly deployed EnMAP 

hyperspectral satellite data in combination with advanced ML classification approaches. The 

study not only evaluates EnMAP's potential but also compares its performance using well-

established methods, thus contributing to the existing knowledge and understanding in the 

field. This research contributes to the field by addressing the unique challenges associated with 

land-cover classification in Mediterranean environments. Findings can serve as valuable 

insights and can be further used for future comparison studies, regarding the performance of 

EnMAP hyperspectral data for applications related to land-use and cover in research areas with 

similar characteristics. By assessing the ability of these methods to be applied in diverse 

environmental contexts or landscapes with similar characteristics, their broader applicability 

and reliability can be evaluated, allowing for potential future utilization.  

7.2. Future research directions 

Further research needs to be conducted for the exploitation of the possibilities of this new 

satellite by employing various state-of-the-art spectral-spatial approaches in multi-seasonal 

datasets. It is noting that findings obtained from this study should be viewed as exploratory 

since were based exclusively on a single analysis of EnMAP HSI. The analysis was based on 

images from a single acquisition and the classification was performed using the spectral 

response of features during that specific time period, without supplementary time-series data. 

By incorporating relevant multi-temporal satellite data and considering the seasonal dynamics 

and patterns of vegetation classes, allow to capture seasonal variations, facilitating the 

discrimination among categories that require time-series information for precise detection, 

such as irrigated and non-irrigated land, and various vegetation classes. Regarding the 

vegetation classes, such as coniferous forests, broad-leaved forests, grasslands, and croplands, 

undergo noticeable changes throughout different seasons such as growing or peak season. 

Considering the seasonal dynamics and phenological patterns of vegetation classes is crucial 

for achieving precise land-cover classification results. 

The integration of data from various sensors, such as multispectral and radar, can effectively 

overcome these challenges. Additionally, incorporating ancillary data, such as topographical 
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information, can improve the precision and reliability of the outcomes. EnMAP's high spectral 

and temporal resolution could also contribute to improved mapping and monitoring of large-

scale agricultural areas, facilitating early identification of vegetation stress and monitoring of 

crop growth dynamics. Overall, EnMAP is a valuable tool for boosting precision agriculture, 

improving crop health and ultimately leading to increased productivity. All in all, EnMAP 

offers advantages in discriminating land-cover types, enabling efficient and cost-effective 

mapping of land use and land cover over large, inaccessible regions. 

Last but not least, the framework of the study aims to contribute to ongoing efforts focused on 

enhancing and refining existing operational products. The findings indicate that EnMAP holds 

promise for improving existing EO-based LULC operational products in various fields, 

including land-use planning, environmental monitoring, and natural resource management. 

These findings emphasize the potential of integrating EnMAP's data into existing frameworks. 
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