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Abstract in Greek 

Η ύπαρξη υπερβάλλοντος βάρος αποτελεί βασικό βοηθητικό παράγοντα για 

την εκδήλωση καρδιομεταβολικών νοσημάτων. Η δραματική αύξηση της παγκόσμιας 

συχνότητας της παχυσαρκίας αποδίδεται τόσο στην ύπαρξη ευνοϊκών εξωτερικών 

ερεθισμάτων όσο και στην αλληλεπίδρασή τους με ευνοϊκούς προδιαθεσικούς 

γενετικούς παράγοντες. Η αποτρέψιμη φύση της διαταραχής κάνει την ανάγκη για 

αποτελεσματική πρόληψη και αντιμετώπισή της προτεραιότητα στην προσπάθεια 

αντιμετώπισης και άλλων μη μεταδοτικών ασθενειών. Σε μια προσπάθεια 

εμβάθυνσης της κατανόησης των μηχανισμών της πολυπαραγοντικής αιτιολογίας της 

παχυσαρκίας, η παρούσα εργασία διερεύνησε αλληλεπιδράσεις γονιδίων και 

παραγόντων τρόπου ζωής και διατροφής στη διαμόρφωση χαρακτηριστικών που 

σχετίζονται με αυτή.  

Η μελέτη χρησιμοποιήσε δεδομένα από 202 συμμετέχοντες της μελέτης 

iMPROVE για να εξετάσει το αντίκτυπο μιας υποθερμιδικής δίαιτας διαφορετικού 

μακροθρεπτικού περιεχομένου σε ανθρωπομετρικούς δείκτες και δείκτες του τρόπου 

ζωής Ελλήνων ενηλίκων. Παρόμοιες παράμετροι εξετάστηκαν και σε εφηβικούς 

πληθυσμούς, χρησιμοποιώντας δεδομένα από 766 και 287 συμμετέχοντες των 

μελετών  TEENAGE και STANISLAS. Τέλος, ένα πολυγονιδιακό σκορ κινδύνου (ΠΣΚ) για 

το Δείκτη Μάζας Σώματος (ΔΜΣ) ενηλίκων δημιουργήθηκε χρησιμοποιώντας 

δεδομένα από τις μελέτες  NAFLD, THISEAS και OSTEOS. 

Το διαφορετικό μακροθρεπτικό περιεχόμενο δεν επηρέασε τις αλλαγές που 

παρατηρήθηκαν στους συμμετέχοντες της μελέτης iMPROVE. Φορείς των 

αλληλομόρφων των παραλλαγών FTO-rs1421085 και MC4R-rs17782313 που 

συσχετίζονται με το ΔΜΣ έδειξαν μειωμένη απώλεια βάρους μετά την παρέμβαση. 

Στους εφηβικούς οληθυσμούς, ένα γενετικό σκορ κινδύνου για αυξημένα 

επίπεδα VEGF-A συσχετίστηκε με αυξημένο ΔΜΣ, συστολική πίεση και μειωμένη 

χοληστερόλη HDL. Τέλος, το ΠΣΚ για το ΔΜΣ ενηλίκων παρουσίασε περαιτέρω 

επεξήγηση του δείκτη κατά 2.3% στο δείγμα των τριών μελετών. Η αξιολόγηση 

διατροφογενετικών συσχετίσεων οδήγησε στη διαμόρφωση ενδιαφέροντων 

αποτελεσμάτων σε πληθυσμούς ενηλίκων και εφήβων, θέτοντας τις βάσεις για 

περαίτερω μελλοντική έρευνα στο πεδίο.  

 

 

Λέξεις-κλειδιά: Γενετική, Παχυσαρκία, Διατροφογενετική, Τρόπος Ζωής, Διαχείριση 

Σωματικού Βάρους 
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Abstract in English 

Excess weight is seen as sine qua non for the manifestation of cardiometabolic 

comorbidities.  The dramatic increase in obesity prevalence is attributed both to the 

existence of favorable external stimuli and to their interactions with favorable genetic 

makeup. The preventable nature of the disorder renders its successful prevention and 

treatment a priority in the effort to tackle non-communicable disease (NCD) 

prevalence. In an effort to deepen the understanding of the modus operandi of the 

multifactorial obesity aetiology, the present thesis sought to investigate gene-lifestyle 

and -diet interactions on the formation and modification of obesity-related traits. 

The study used data from 202 participants of the iMPROVE cohort to 

investigate a hypocaloric diet of different macronutrient composition in 

anthropometric and lifestyle indices of Greek adults. Similar parameters were 

explored in adolescent populations, using data from 766 and 287 participants of the 

TEENAGE and STANISLAS Studies. Lastly, a Polygenic Risk Score (PRS) for adult Body 

Mass Index (BMI) was created using data from the NAFLD, THISEAS and OSTEOS 

studies.  

Different macronutrient content did not affect changes in the iMPROVE 

participants. Carriers of the BMI alleles for the FTO-rs1421085 and MC4R-rs17782313 

variants showed reduced rates of weight loss. In the adolescent populations, a VEGF-

A unweighted genetic risk score was associated with increased levels of BMI, systolic 

blood pressure (SBP) and reduced high-density cholesterol (HDL-C). Lastly, the 

constructed PRS for BMI accounted for an overall 2.3% of the observed BMI variance 

in the three studies.  

Assessment of the nutrigenetic associations displayed interesting results in both 

adult and adolescent populations of European ancestry, laying the ground for future 

work in the field.  

 

 

Keywords: Genetics, Obesity, Nutrigenetics, Lifestyle, Body Weight Management 
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Glossary 

• Genetic/Polygenic Risk Score (GRS, PGS): The aggravated score calculated by 
the summation of multiple genetic variants and used to assess the heritable 
risk for a particular phenotype in question.  

o Unweighted Genetic Risk Score (uGRS): The sum of the number of risk 
alleles related to a particular phenotype. 

o Weighted Genetic Risk Score (wGRS) or Polygenic Risk Score: The sum 
of the number of risk alleles related to a particular phenotype, each 
multiplied by their estimated weight coefficient for said phenotype. 

• Genotype: The sum of an organism’s genes and their genetic variations. 

• Nutrigenetics: The scientific field investigating the impact of single nucleotide 
polymorphisms (SNPs) on gene nutrient interaction and their role in metabolic 
pathways. 

• Nutrigenomics: The scientific field investigating the effect of nutrients on gene 
expression. 

• Phenotype: A noticeable characteristic attributed to gene expression. 

• Pleiotropy: The phenomenon during which expression of a single gene can 
simultaneously affect more than one unrelated phenotypes. 
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1. Introduction 
 
1.1. Overweight and Obesity 
1.1.1. Epidemiological Data  

The classic definition of overweight and obesity comes from the World Health 
Organization (WHO), who traditionally defines their existence as “abnormal or 
excessive fat accumulation that presents a risk to health” [1].  Prevalence of 
overweight or obesity has increased steadily in the last decades, with the latter being 
currently regarded as a chronic disease [2]. The dramatic rise in obesity rates during 
the past decades has led WHO to reshape our perception of the disorder in a global 
epidemic, currently  even using the term “globesity” to describe it [3]. According to 
data up to 2016, 39% of the global, adult population were presented either overweight 
or obesity, with 13% solely presenting obesity . As of March 2023, the World Obesity 
Atlas suggested that about half of the global population will present either overweight 
or obesity by the end of 2015 [4].  

Augmenting rates are partly attributed to the vast global increase of the double 
burden of malnutrition, as obesity also currently presents higher rates than 
underweight in specific developing  

 

 
Figure 1. Worldwide prevalence of adult overweight and obesity for 2016 [6]. 

 
countries (sub-Saharan Africa and Asia). Presence of overweight appears dominating 
across the world, with regions such as the majority of Europe, the United States of 
America (USA), Russia, Australia and North Africa to be presenting a respective 
prevalence of above 40%. Similarly, obesity maintains a corresponding augmented 
prevalence of more than 25% in the USA, South America, Europe, Russia, Australia and 
Saudi Arabia [6]. More specifically, data deriving from 2016 (Figure 1) estimates show 
that region-specific prevalence percentages of adult overweight or obesity were at 
70.2% for the United States, 40 to 60% for the European Region, 50-60% for the region 
of Latin America, 70-80% for Asia and 60 to 70% for Australia [7]. According to 
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Eurostat, in Greece, up to the year 2014, about 48% and 17% of adult men presented 
overweight and obesity, respectively, while the rates for adult women reached a 
respective 65% and 19% [8]. Current projections for Greece dictate rising rates for all 
men, women, boys and girls by 2035, with a projected 2035 obesity prevalence of 39%. 
Annual rates appear elevating for both adult and childhood obesity, with a respective 
2% and 2.4% rise until the year 2035 [4]. Indicatively, when referring to children and 
adolescents, from the period 1988-1994 up to the period 2013-2014, prevalence of 
obesity appeared to be increasing, with about 21% of female adolescents in the United 
States classified as obese in the year 2014 [9]. According to WHO, the prevalence of 
overweight of obesity in children and adolescents increased from 4% in 1975 to 18% 
in 2016 [1].  

 
Figure 2. Projected trends in obesity prevalence in Greece for 2035 [4]. 

 

Excessive weight directly increases the risk for a variety of other cardiometabolic-
related, non-communicable diseases (NCDs), such as cardiovascular disease (CVD), 
type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD) and cancer [10]. Its 
continuous and propound contributions to increasing multimorbidity render obesity 
an ongoing public health emergency. Indicatively, about 44% of T2D and a range of 7-
41% of various types of cancer cases are met in persons with overweight or obesity 
[8,11]. Subsequently, according to Our World in Data, obesity was the cause for 8% of 
global deaths in 2017. This percentage varied across regions, with high-income 
countries (HICs) to note a range of 8-10%, middle-income countries (MICs) to reach 
up to 15% and low- and middle-income countries (LMICs) to show a percentage lower 
than 5% [6]. In the region of Greece, relevant deaths showed a 10.6% prevalence in 
2019 and presented an increase from 1990 up to 2012, with the reported rates 
steadily remaining above 10% ever since 1997. A region high was observed in 2012 
where the rates touched 12.77%, whereas a respective low of 9.64% was noted in 
1990 (Figure 3) [6].   
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Figure 3. Percentage of obesity-attributed deaths in Europe and trend of obesity-
attributed deaths in Greece for the time period 1990-2019 and Projected Trends in 
the Prevalence of Obesity in Greece up to 2035 [6]. 
 

Due to its widespread impact but preventable nature, the need for effective 
obesity prevention, prognosis and treatment strategies and policies is currently 
highlighted. It is in this context that within their framework of Sustainable 
Development Goals (SDGs) for 2030, the United Nations have set the achievement of 
good health and well-being in the third place of their seventeen targets [12].  
 

 
Figure 4 Associations between obesity with the 17 United Nations SDGs [12]. 
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A massive focal point aims at the reduction of NCD-related mortality via 
successful prevention and treatment, essentially putting obesity-tacking strategies at 
the centre of current and future efforts (Figure 4) [13]. In this spectrum, a WHO 
resolution for obesity was shaped as of 2020, aiming at recognizing the severity of the 
disease. Its effective monitoring and creation of prevention and treatment strategies 
has also been brought to the forefront with system-based approaches, such as the 
ones outlined in the context of the ROOTS framework [12]. Naturally, nutrition lies at 
the center of these efforts, with WHO focusing on the importance of nutrition such 
strategies [14].  

As it will be further analysed below, these increasing trends appear associated 
to the increased food availability and accessibility observed in the developed countries 
[11,15]. Another factor lies concerns the increased adherence to dietary regimes with 
high consumption of energy-dense foods [11,15] (such as the western diet-WD) in 
various parts of the world. The etiology for overweight and/or obesity development is 
multifactorial with causes referring to genetic predisposition, ethnicity, family and 
medical history, environmental factors, such as food availability and accessibility and 
lifestyle habits, such as low levels of physical activity (PA) [1].This need for efficient 
prognosis, diagnosis and treatment of overweight and obesity is currently dictating 
the development of effective methodologies for disease handling in the daily practice. 
These demand the use of all helpful information available, such as the integration of 
genetic information in the form of Genetic and Polygenic Risk Scores (GRS and PRSs). 

 
1.1.2. Body Weight and Composition Assessment Methods 

Although current perceptions on overweight and obesity reflect their role as 
chronic diseases pertaining to long-term effects in cardiometabolic status, stigma 
surrounding increased body weight remains prevalent in modern societies. In an effort 
to enhance the notion of overweight and obesity as established disorders of 
multifactorial etiology, rather than lifestyle choices of reduced willpower, the use of a 
weight-neutral terminology is now strongly suggested as a means to promote 
references on weight assessment, as well as well-being interventions, without 
strengthening weight stigma. Indeed, the European Association for the Study of 
Obesity (EASO) recommends the use of “people-first language” (eg use of terms such 
as individuals with overweight or obesity in the place of overweight or obese 
individuals) as a means to highlight the role of the latter as significant diseases. 
Accordingly, the present study will henceforward use the corresponding terminology 
to refer to relevant study populations, characteristics and findings [16].  

A variety of methods implemented in the assessment of body weight and body 
composition contribute to the diagnosis of overweight and/or obesity. To date, the 
most widely used approach to assessing body weight status remain anthropometric 
measurements, with the primary one being the calculation of Body Mass Index (BMI). 
BMI is calculated when dividing an individual’s weight in kilos to their respective 
squared height in squared meters [Weight (kg)/ Height2 (m2)]. According to the 
majority of global organizations, i.e. WHO, the Centre for Disease Prevention (CDC), 
World Obesity Federation (WOF), the classification in the rankings of overweight or 
obesity categories takes place according to the following cut-offs: 

• An individual with BMI< 18.5kg/m2 is considered to present underweight, with 
mild thickness if in the range 17-18.49 kg/m2, moderate thickness if in the 
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values of 16-16.99 kg/m2 and severe thickness if their BMI is below 16.00 
kg/m2; [6] 

• An individual with a BMI of 18.5 to 25 kg/m2 is considered to present normal 
weight; 

• An individual with 25 <BMI ≤29.99 kg/m2 is considered to present overweight; 

• An individual with 30 ≤BMI ≤34.99 kg/m2 is considered to present obesity (class 
1 obesity); 

• An individual with 35 ≤BMI ≤39.99 kg/m2 is considered to present obesity (class 
2 obesity); and 

• An individual with BMI≥40.00 kg/m2 is considered to present obesity (class 3 
obesity) [17] 
Nowadays, BMI cut-off values for the identification of overweight and/or 

obesity presence are not universally the same. As will be further analyzed below, use 
of analytic body composition methods has revealed differences in the body 
composition of individuals with similar BMI, but different ethnic backgrounds, which 
can be potentially attributed to a variety of genetic, epigenetic and environment 
factors. Multiple studies demonstrate variations in the BMI proposed categories and 
corresponding body fat percentages among populations of different ethnicities, 
highlighting the potential effect in the corresponding risk for weight-related, 
cardiometabolic comorbidities [17]. One of the most prominent differences lie in the 
populations of Asians, who have reportedly demonstrated smaller body structure and, 
thus, smaller BMI values, when compared to individuals of Caucasian or African-
American descent. Although lower levels of body fat and a lower risk to 
overweight/obesity and related comorbidities would be expected for Asian 
populations due to their lower BMI levels, in reality they tend to paradoxically display 
higher levels of body fat percentage for same BMI values when compared to Caucasian 
populations. More specifically, Asians display a steady 3-5% increased body fat levels, 
when compared to Europeans of the same BMI [18,19]. Similarly, it has also been 
shown that for a given percentage body fat, Asian individuals presented a 3–4 unit 
lower BMI [19]. As such, Chinese and other Asian populations present higher risk for 
abdominal obesity and, thus, higher prevalence of other obesity-related disorders, 
such as type 2 diabetes and cardiovascular disease, at lower BMIs [18, 19] Additionally, 
another contrast is found in African-American populations who present lower body 
fat and higher muscle mass percentages, when compared to Caucasians of the same 
BMI [18,19].  

Although the WHO first declined to adjust BMI cut-offs for the different 
populations, appearance of multiple scientific studies has provided the evidence 
needed to allow a variety of groups to set different metrics for the different 
populations, as well as prompt WHO to set cut-off values for obesity and weight-
related disorders’ screening and onset of corresponding interventions. In this context, 
WHO suggests initiating interventions among increased and high-risk Asians with a 
BMI of 23kg/m2 and 25 kg/m2, respectively [20,21]. For Asian and south Asian 
populations, same cut-offs are used for overweight or obesity diagnosis [2]. Similarly, 
presence of overweight and obesity is set at a BMI of 24 kg/m2 and 28 kg/m2, 
respectively, for Chinese and Japanese populations. Moreover, thresholds for 
populations of Indian or Pacific Island descent are set at 23 kg/m2 and 26 kg/m2, as 
well as 27 kg/m2 and 32 kg/m2 for overweight and obesity presence, respectively. A 
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summary of the population-adjusted cut-off values for BMI categories is presented in 
Table 1.  

Table 1. BMI cut-offs for overweight and obesity presence in adult populations of 
different ethnicities. 

 BMI values (kg/m2) 

 Caucasian 
populations 

Asian- South 
Asian 

populations 

Chinese- 
Japanese 

populations 

Indian 
populations 

Pacific Islander 
populations 

Overweight 25≤BMI<30 23≤BMI<35 24≤BMI<28 23≤BMI<26 27≤BMI<32 
Obesity ≥30 ≥25 ≥28 ≥26 ≥32 

 
Although BMI is known for not taking body composition into account, and thus not 

being the most reliable tool in representing body status, it continues to acquire the 
title of the gold standard method, mainly due to its character as a non-invasive, rapid, 
easy and inexpensive measurement. One of the greatest advantages of BMI use is the 
fact that its calculation only requires information on weight and height, which are 
usually easy to acquire across a variety of different settings and environments. 
Furthermore, the widespread use of BMI allows for universal comparisons between 
populations [22]. 

However, as BMI is more of a measure representing excess weight rather than 
increased fat accumulation [22], it may lead to underestimation of the presence of 
overweight and/or obesity in individuals with a BMI that falls into the normal weight 
range but who present increased percentage of body fat. In this context, BMI also does 
not provide information on the type of body fat presented in the individual (eg 
visceral, subcutaneous, etc). Similarly, assessment of BMI alone may lead to 
overestimation of overweight/obesity risk in individuals with a high percentage of 
body muscle mass which contributes to their reported, increased body weight. More 
considerations in BMI use include the fact that older adults and women tend to 
present higher levels of body fat when compared to younger adults and men, 
respectively, who present an equivalent BMI [22]. 

The importance of body fat percentage is crucial in determining the relatively 
attributed risk for cardiometabolic disorders. In this spectrum and as body fat is 
deemed essential in determining adiposity, further anthropometric measurements 
come to complement BMI in assessing body weight status, with special attention to 
the presence of central/abdominal obesity. Correspondingly, Waist Circumference 
(WC) and Waist-to-Hip ratio (WHR) are widely used to assess obesity and risk of 
cardiometabolic health risks. Sex specific cut-off values for the latter refer to a ratio of 
0.85 for women and 1.00 for men being the indicative threshold above which lies 
increased risk for cardiometabolic reverse outcomes.  

When referring to WC measurements, a generally accepted rule of thumb remains 
with the suggestion that an individual’s WC ought not to exceed the half of their 
respective height measurement [19]. The generalized recommendation of the ATP III 
criteria for WC measurements includes a threshold of 88cm and 102cm for males and 
females, respectively. However, in line with the current considerations for the role of 
ethnicity in the formation of BMI levels and the key part of abdominal obesity in 
subsequent cardiometabolic risk, the International Diabetes Federation has 
proceeded to the formation of recommended cut-off points for abdominal obesity 
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based on different ethnic groups. As depicted in Table 2, the existing ATP III 
recommendation can still be used for clinical reasons, however a lower threshold for 
both sexes is uniformly suggested for Europid, South Asian, Chinese and Japanese 
populations.   

 
Table 2. WC cut-offs in adult populations of different ethnicities [18]. 

 WC (cm) 

 European, North American, 
Sub-Saharan African, Eastern 
Mediterranean, Middle East, 

populations 

South Asian, Ethnic 
South and Central 

American populations 

Chinese 
populations 

Japanese 
populations 

Men ≥102 (clin. 
purposes), 

≥94 ≥90 ≥90 ≥90 

Women ≥98 (clin. 
purposes), 

≥80 ≥80 ≥80 ≥80 

 
To boot, assessment of overweight and/or obesity existence varies not only based 

on ethnicity characteristics, but also differs when taking age into consideration. In 
children and adolescent populations, existence of overweight and/or obesity is 
primarily determined by BMI values specifically adjusted for age and sex and referred 
to as BMI-for-age [23]. Use of the adjusted value of BMI for age and sex, otherwise 
known as BMI z score or zBMI, is also widely used to assess body weight in populations 
below the age of 18. As shown in Figure 5, for the ages 2 to 20 years old, BMI is 
classified using percentile ranking, as follows [1]: 

• An individual with a ranking under the 5th percentile is considered to present 
underweight; 

• An individual with a 5th percentile < ranking < 85th percentile is considered of 
normal weight; 

• An individual 85th percentile ≤ ranking ≤ 95th percentile is considered to present 
overweight; 

• An individual with ranking ≥ 95th percentile is considered to present obesity 
[6,9]. 
 



A. B.  
Figure 5. BMI-for age percentiles for A. 2 to 20 years in Boys; and B. b.2 to 20 years in Girls. Assessment of body weight and classification in the 
categories of underweight, presenting overweight or obesity for children and adolescents from 2 to 20 years old takes place via calculation of 
their BMI to the corresponding percentile [24].  
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In the same context, a differentiated concept concerns the existence of 
metabolically health obesity (MHO). This term is used to describe obesity existence 
with a BMI over 30 kg/m2, accompanied by the absence metabolic dysfunction usually 
observed in the obese state, such as altered glucose or lipid metabolism, increased 
blood pressure and/or inflammatory or cardiorespiratory indices [22]. Prevalence of 
MHO ranges from 10 to 30% of adults with obesity, depending on factors of age and 
sex. On the contrary, the term metabolically unhealthy obesity (MUO) concerns 
people with obesity presenting multiple cardiometabolic risk factors and frequently 
elevated risk for related disorders like cardiovascular disease [22]. 

The simultaneous use of metabolic health and obesity in the MHO definition has 
been controversial, as the obese state is by nature considered a circumstance of 
altered metabolic profile. The need for the creation of a specified definition led to the 
international effort conducted in the nodes of the BioShare-EU Healthy Obese project, 
which set out to specify the definition criteria for MHO. The initiative concluded that 
MHO was defined in the absence of increased blood pressure, blood glucose of over 
110 mg/dL, high density cholesterol (HDL-C) lower that 40 mg/dL, triglyceride (TG) 
levels above 150mg/dL and the existence of CVD [23]. Lavie et al attempted to set 
stricter criteria by defining MHO as all the aforementioned but with a lower threshold 
for fasting glucose (<100mg/dL) and the absence of receiving glucose-related or anti-
hypertensive treatment [24]. A different definition by Zembic et al focused solely on 
blood pressure and anthropometrics by stating MHO as  the existence of systolic blood 
pressure levels lower than 130 mmHg and a WHR of less than 1.03 in men and 0.95 in 
women [22, 25, 26]. Overall, as MHO definitions are mainly focused on 
cardiometabolic contributors, the need for including more metabolic-related indices 
such as indicators of inflammation, liver or immune function in future revisiting of the 
criteria is also underlined [27]. Existence of the state has also been observed in 
children, where MHO prevalence ranges from 3-87% according to factors of ancestry 
and puberty level [27]. An internationally accepted definition for MHO in children was 
provided in 2018 by Damanhoury et al. who included the standardized BMI values of 
the WHO growth charts, the percentile cut-offs for blood pressure (≤90mmHg) and 
the suggested cut-offs for glucose, HDL-C and TG levels (≤ 100, >40 and ≤150mg/dL, 
respectively) [27, 28]. 

Although at increased risk for cardiometabolic-related disease manifestation than 
persons with normal weight, individuals with MHO present lower risk for such 
disorders when compared to people with MUO [22]. It appears that maintenance of 
satisfactory levels of physical activity and cardio-respiratory condition in MHO can 
allow for the reduction of CVD risk [22,24]. In children, MHO is linked to lower BMI, 
WC and body fat measurements promoting better outcomes of insulin sensitivity and 
inflammatory status [27]. The growing aspect accompanying this age group is also 
taken into account where visceral fat can be seen reducing due to its observed 
expansion [27] due to both weight gain, but also developmental growth. Similar to the 
case in the adults, data from the GENOBOX study also showed that children with MHO 
and greater physical activity showed better status than their peers with MUO [29]. 
Roberge et al further demonstrated that children with obesity who adhered to 
healthier diet (i.e. increased consumption of fruit and vegetables and lower intake of 
fats and sugars) had lower changes of developing MUO than children with MHO and 
adherence to an unbalanced diet.  
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 It is worth mentioning that similar discrepancies are also detected among 
individuals with increased weight when compared to persons with normal weight. The 
notion described as the “obesity paradox” is used to summarize findings indicating 
better cardiometabolic or mortality outcomes or prognosis in individuals with 
increased weight than people with a BMI below 25kg/m2 [23, 30]. Indeed, patients 
with overweight and other disease have presented lower all-cause mortality that 
patients with normal BMI [31, 32]. 

Although several factors can be considered in promoting this phenomenon [eg 
increased metabolic reserve, muscle mass and strength, use of pharmaceutical 
medication and less cachexia in the overweight or obesity state [31], it is mostly 
possible that cardio-related positive outcomes are accredited to the effect of other 
factors indirectly related to obesity like physical activity, respiratory and liver function, 
the smooth maintenance of which probably positively affects the preservation of a 
good cardiometabolic profile, rather than obesity presence in itself. Additionally, a 
different phenotype described as metabolic obese normal weight (MONW) is also 
used for individuals with a BMI in the normal weight range but who present increased 
disrupted cardiometabolic profile when compared to people with overweight or 
obesity [33]. Therefore, the advantage noticed in the case of overweight or obesity 
could also be attributed to the existence of altered cardiometabolic status in 
individuals with normal weight. This is why more studies are needed to specify the 
definition criteria for each phenotype as well as how each might prevail to the others.  

Such findings underline the need for the proper acquisition of all information 
related to weight and body composition by emphasizing that individual evaluation 
should consider detailed both from BMI calculation, as well as the use of a body 
composition analysis method with information on body tissue content and ratios. In 
the case of overweight or obesity, special attention is given to the evaluation of body 
fat using a variety of methods deriving from different principal bases. While using 
skinfold measurements to assess body fat is a relatively straightforward and easy-to-
apply method, employment of methods which assess body composition using 
different compartment sections is more widely used in current practice.  

Figure 6. Body component models and respective body composition methods [34]. 
Kasper et al. describe the compartment models of body composition and further 
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categorize assessment methods based on invasiveness. The only direct method refers 
to cadaveric dissection, while the remaining methods are separated to indirect 
(skinfold thickness measurements, hydrodensitometry, air displacement, 
plethysmography, ultrasounds and DEXA) and double indirect methods, where 
predictive equations are additionally used to estimate tissue levels (BIA, photonic 
scanning and body fat percentage estimated via ultrasound or skinfolds) [34, 35]. 

Use of the latter methods is based on the models dividing body composition in 
distinct components, according to which: a) the two-component (2-C) model focuses 
on fat distribution by referring to a fat-mass and fat-free mass component; b) the 
three-component (3-C) model describes the body at fat-mass, fat-free mass and bone 
mineral content (BMC) levels and; c) the four-component (4-C) model further divides 
the body at fat mass, metabolic tissue, BMC and total body water (TBW) separate 
compartments (Figure 6) [34]. Different, multi-component models further separate 
body compartments, a) by highlighting the existence of essential and non-essential 
lipid, total body water, protein, bone mineral, soft-tissue mineral and glycogen 
components or b) by referring to atomic, molecular, cellular, tissue-system and whole-
body levels [35]. 

Indicatively, methods to evaluate body composition based on the 2-C model 
include: a)  hydrodensitometry, which is considered the most reliable and, thus, the 
gold-standard standard method. Based on the Archimedes’ principle on water 
displacement, in hydrodensitometry an individual’s weight is calculated both outside 
and inside water and the difference between the two values reflects the power of 
buoyancy to determine body density; b) plethysmography, which is based on Boyle’s 
law of perfect gases and where body density is the ratio of body mass to body volume; 
and c) calculation of radio-isotopes, which estimates fat and fat-free mass via 
measurement of total body water or potassium isotopes [36]. Despite their increased 
accuracy and validity, the aforementioned do not represent the go-to assessment 
methodology due to their invasive nature, extensive need for appropriate machinery 
and increased cost.  

Use of methods based on more component models is widely met both in current 
practice and research, primarily due to their increased accessibility and relatively 
increased accuracy of quick results. Bioelectrical impedance analysis (BIA) constitutes 
a widely implemented approach where a weak electrical current is applied to the 
individual, structured on the principle that water, as opposed to fat tissue, is a good 
conductor of electricity. Therefore, fat, muscle and body water densities are measured 
according to the observed resistance to the current’s flow. A different approach refers 
to the implementation of the Dual-energy X-ray absorptiometry (DEXA) method. 
Through using low-power x-ray beams, DEXA measures body fat and fat-free mass, in 
addition to bone mineral density. Given its increased predictive value, DEXA is 
extensively used in cases focusing on bone density assessment [34-36].  

Similarly based to multi-component principles as in the case of DEXA and primarily 
used in the evaluation of abdominal obesity, use of computerized tomography (CT) or 
magnetic resonance imaging (MRI) can increase the individual’s detailed assessment 
due to their ability to differentiate between visceral and subcutaneous fat [34-36].  
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1.1.3. Body Weight Regulation 

Body weight is mainly dependent on the hormonal regulation of energy 
homeostasis. Homeostatic mechanisms surrounding metabolism heavily involve the 
reciprocal cooperation of multiple organ systems, namely the nervous, the endocrine 
and the gastrointestinal ones. Multiple hormonal peptides included in key processes 
(i.e. cortisol, ghrelin and leptin) are further subject to circadian regulation, i.e. the 24-
hour periodic variation of substances involved in numerous human biological 
procedures  [37]. Pathways regulating systemic metabolism operate under the control 
of the autonomous nervous system via involvement of the vagus nerve, as well as 
afferent and non-afferent nerves, responsible for receiving endocrine and paracrine 
signals and subsequently regulating brain-controlled metabolic responses [36,37]. Via 
both mobilizing and responding to hormonal signals related to food intake, energy 
homeostasis is dependent on brain-controlled metabolic pathways mainly located on 
the hypothalamus’ arcuate nucleus (ARC), the paraventricular nucleus (PVN), the 
brainstem’s nucleus tractus solitarii (NTS) and nucleus accumbens (Acb). This 
approach to energy regulation involving multiple organ systems under control of the 
brain is summarized in what is known as “Homeostatic Control/Mechanism of Energy 
Balance” [36,37].  

Energy control centers around the anorexigenic effect of the proopiomelanocortin 
(POMC)  neurons and the opposite orexigenic influence of the neuropeptide Y (NPY) 
and agouti-related protein expressing (AgRP) neurons. The latter stimulate the 
production for the anorexigenic a-melanocyte-stimulating hormone (α-MSH), which 
promotes catabolic processes and satiety via binding to the corresponding 
melanocortin receptors located throughout the nervous system (Melanocortin 3 and 
Melanocortin 4 receptors – MC3R, MC4R) [36]. In a similar manner, a different 
hormone, the Brain-derived Neurotrophic Factor (BDNF), also promotes MC4R 
activation and subsequent anorexigenic signaling by responding to peripheral 
hormone production such as leptin. Similarly, expression of the cocaine-and 
amphetamine regulated transcript (CART) in the brain’s ARC, PVN and Acb, has also 
been shown to associate with anorexigenic effects, while presenting co-storage in 
regions with high POMC neuron content [38]. On the contrary, the same MC4R 
receptor antagonist agouti protein, which is produced by NPY and AgPR, promotes 
food consumption by increasing orexigenic stimuli [36,39] (Figure 7).    
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Figure 7. Hormonal regulation of energy metabolism [36]. 

 
Energy intake is a multi-sectoral process, where the interaction between 

hormones secreted throughout the gastrointestinal tract and the vagus nerve 
instrument collaborative procedures in promoting food consumption or  satiety and 
dictate macronutrient storage or breakdown. Key substances involved in energy 
regulation follow the order of the digestive system (Figure 37), where more 
specifically:  

• oxyntic glands in the stomach produce ghrelin in response to absence of food, 
which prompts orexigenic signaling to promote food consumption via binding 
to vagus nerve receptors. Ghrelin binding to the (Growth Hormone 
Secretagogue Receptors 1a- (GHSR) affects the vagus nerve projections to the 
ventromedial hypothalamic nucleus (VMN) and the dorsal vagal complex of the 
brain (DVC), where orexigenic NPY and AgPR neurons are stimulated; 

• small intestine I-cells secrete cholecystokinin (CCK) which stimulates the 
production of amylase, lipase, bile and other pancreatic enzymes and 
responsively binds to vagus nerve receptors to inhibit further food intake; 

• enteroendocrine L-cells in the small intestine and colon produce the glucagon-
like peptide-1 enzyme (GLP-1), promoting glucose and lipid metabolism while 
simultaneously acting as an anorexigenic agent; 

• enteroendocrine L-cells in the ileum and colon of the large intestine cells 
produce the YY peptide (PYY) and oxyntomodulin prompting satiety via binding 
to the vagus nerve.  

A dual role for both the digestive and the endocrine system is found in the function 
of pancreas, where secretion of the pancreatic peptide (PP) by the pancreatic 
polypeptide cells stimulates bile release and vagovagal afferent signals in promoting 
anabolic processes, while production of insulin in response to glucose presence 
promotes glucose metabolism and storage [36]. Moreover, large contribution is 
attributed to adipose tissue-derived hormones called adipokines, such as leptin and 
adiponectin. Production and binding of the former to the leptin receptors (LepR) in 
the brain induces satiety and energy expenditure, while secretion of the latter 



39 
 

promotes insulin-controlled glucose anabolism and lipid metabolism [36,40]. More 
specifically, leptin is produced by adipose tissue cells, crosses the blood-brain barrier 
and enters the hypothalamus, where it binds to the leptin receptor and contributes 
to: i) signalling the suppression of energy intake; ii) inhibiting the expression of the 
orexigenic Neuropeptide Y (NPY); iii) inducing the expression of further anorexigenic 
peptides, such as proopiomelanocortin (POMC) and α-Melanocyte-stimulating 
hormone (α-MSH) (under the control of the MC3R and MC4R genes). On the contrary, 
ghrelin is an orexigenic hormone produced by the stomach, which increases the 
expression of other such molecules, like NPY. Although the levels of direct ghrelin 
transport to the brain are potentially quite low, ghrelin is one of the hormones which 
can cross the brain-blood barrier (BBB) and directly induce brain responses to food 
intake [41]. Another orexigenic peptide is the melanin-concentrating hormone (MCH), 
which contributes to appetite and the beginnings of eating episodes [42,43] (Figure 
8).   

 
Figure 8. Stages of hormonal control of energy homeostasis in the different human 
organs [42]. 

 
Another pillar affecting metabolic regulation and energy homeostasis refers to 

implications involving the gut. Energy homeostatic mechanisms involve the activation 
of the bidirectional gut-brain axis (GBA) leading to a cascade of events affecting 
metabolic pathways, macronutrient synthesis and breakdown and, even, 
inflammatory response. The secretion of various hormones from endocrine cells 
throughout the gastrointestinal tract as a response to nutrient influx, acts as a stimulus 
to responses of the enteric (ENS) and subsequently the autonomous and central 
nervous systems, via endocrine or paracrine functions from enteroendocrine cells 
(EECs) to vagal afferents of the GI epithelium and simultaneous activation of pathways 
in multiple visceral organs [41, 44]. The latter extend to brain regions such as the NTS 
which, in turn, affect hypothalamus, ARC and PVN, essentially uniting the two systems 
in regulating metabolic responses based on the existing food availability [45].  

Hormonal activation of brainstem-derived neurons of vagal afferents spread 
throughout the gastrointestinal tract (GI tract) is central in the stimulation of the gut-
brain axis. One of the greatest examples lies in the activities of the intestine-secreted, 
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anorexigenic CCK. With its levels rising after meal intake, the latter promotes satiety 
and suppresses further food consumption both directly via increase in the peripheral 
regulation which ultimately creates responses reaching the CCK receptors located in 
the brain, and indirectly through activation of vagal afferents connected to the gut 
and ultimately reaching the NTS. Through its role in the activation of the neural-gut 
connections, CCK is further implicated in more mechanisms responding to food intake, 
such as the post-prandial suppression of the production of glucose in the liver [41, 46]. 
A different mechanism refers to the anorexigenic actions of the GLP-1 peptide, the 
secretion of which appears to be stimulated by neural signals even in the early stages 
of the nutrient influx in the GI tract. GLP-1 binds to the GLP-1 receptors located in 
neurons of vagal afferents throughout the GI tract and brain regions, directly 
stimulating the responses to food presence and regulating the glycemic metabolic 
responses. Lastly, although studies remain inconclusive on a definite  role of PYY on 
the activation of the axis, the current notion supports that the intestine-produced 
peptide YY can act in promoting long-term satiety by activating vagal afferents leading 
to stimulation of POMC neurons through inhibition of NPY [41, 46] . It is worth 
mentioning that the pathways via which the stimulation of hormonal secretion occurs 
can be differentiated based on the different macronutrients metabolized. For 
example, glucose-stimulated release of CCK or GLP-1 from the intestinal cells takes 
place via different pathways than the one initiated by long-chain fatty acids (LCFA) 
[41]. However, as food intake predominantly involves the simultaneous metabolism 
of the different quantities of all macronutrients, it is possible that all candidate 
pathways are activated at the same time in an effort to promote the systemic 
responses needed to promote satiety and suppress further food intake.  

Furthermore, essential to the role of the nutrient-stimulated hormones is the 
function of gut-microbiome affected-chemoreceptors located throughout the GI tract. 
The symbiotic association between the host and gut microbiota creates a bilateral 
environment, where nutrient influx affects microbiome development and microbiota 
subsequently affect metabolic and immune pathways [41]. The crucial role of gut 
microbiota in the activation of the gut-brain axis is summarized in the following 
actions, the up- or down-regulation of each one can directly impact the regulation of 
all others. More specifically, GBA is involved in: i) the modulation or production of 
multiple metabolites, such as SCFA, tryptophan, gamma-aminobutyric acid (GABA), 
catecholamines and bile acids), which further affect metabolic and physiological 
pathways; ii) the modulation of 5-hydrotryptamine -or serotonin- production from 
intestinal cells, which is positively influenced by other gut metabolites (i.e. bile acids 
and SCFA) and, in turn, impacts the activation of enteric nervous system (ENS) or vagal 
afferents [41]; iii) the impairment in the function of ENS through production of 
lipopolysaccharides (LPS) by Gram-negative gut bacteria [41,45]; and iv) the indirect 
activation of the hypothalamus-pituitary-adrenal (HPA) axis through production of 
multiple metabolites.  

Modulation and production of metabolites is key in the gut-associated activation 
of metabolic cascades. BAs can bind in corresponding receptors in the ECCs or even 
increase their transcription factors (G protein-coupled bile acid receptor-1), 
promoting the production of GLP-1 [41]. Production of SCFAs such as butyrate, acetate 
and propionic acids resulting from the breakdown of complex carbohydrates, can also 
bind to ECC and vagal receptors [41] and help regulate glucose metabolism and the 
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enteral stimulation of production of metabolic hormones such as the GLP-1 or PYY 
[45].  Propionate is used in gluconeogenesis, while acetate passes to the peripheral 
circulation and can even cross the BBB and directly affect energy homeostatic 
pathways [46]. Moreover, gut-derived neurotransmitters, such as GABA, which is 
produced by bacterial strains like Bifidobacterium and Lactobacillus [41, 45], can also 
cross the BBB and directly enter the brain affecting multiple metabolic- and other 
type- metabolic responses [45]. To boot, microbial byproducts like the LPS are  
recognized by the ENS and lead to the activation of a cascade of signals increasing 
cytokines and immune system activation [45]. As it will be further analyzed below, 
these functions are most apparent in the existence of external stressors -such as stress 
and high fat diets- and can be further associated with activation of the HPA via 
increase in stress-related hormones like the adrenocorticotropic hormone (ACTH) 
[45]. 

Weight gain occurs during a 
steady state of positive energy 
balance, where the individual’s 
EI is greater than their energy 
expenditure (i.e. the sum of Basal 
Metabolic Rate-BMR, Diet-
Induced Thermogenesis-DIT and 
the Thermic Effect of Food-TEF). 
The latter leads to the creation of 
energy surplus to be stored in 
the form of glycogen (muscle 
tissue) or triglycerides (muscle 
and adipose tissues) [47] (Figure 
9). Increased EI and storage 
inevitably lead to the 
augmentation of fat cells in the 
respective different kinds of 
adipose tissues, subsequently 
increasing the production of 
adipose tissue-related hormones 
(Figure 10). 
 
Figure 9. Energy Balance during A. Optimal metabolic Status and B. During increased 

energy intake [47] 
 
Both the white and the brown adipose tissues (WAT and BAT) contribute to energy 

metabolism through their ability to store fat cells and participate in fat oxidation and 
thermogenesis, respectively. For that reason and given the increased endocrine and 
paracrine metabolic action observed throughout its entirety, adipose tissue is 
nowadays viewed as an active endocrine gland. Behaviors surrounding food intake 
entail multiple individual factors, such as genetic predisposition or health status, but 
also involve contextual determinants, like environmental factors or socioeconomic, 
family and education status. Originally, research focused on the role of CNS in the 
pathogenesis of obesity due to its central part in maintaining energy homeostasis and 
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dictating switches on food consumption. In an effort to unravel the neural parameter 
of food intake, various patterns have been used to describe the human eating 
tendencies, namely: i) the model of “reflexive eating”, which emphasizes on the 
human proclivity to overeat as a means to prepare for potential future circumstances 
of food scarcity and has been shown to implicate brain region like the ARC and the 
brainstem; and ii) the model of “reflective” eating, which further takes into account 
cognitive parameters on health and social status related to body shape [48].  

 
Figure 10. Effect of energy surplus on energy metabolism [49]. 

 
The role of the human factor in ultimately shaping metabolic processes was 

further highlighted in the context of the “Hedonic Mechanism of Energy Balance”, 
which differentiates itself from the aforementioned Homeostatic Mechanism, by 
underlining the importance of complementary brain regions, such as the hippocampus 
and amygdala, in dictating food behavior by shaping the will and not the need for food 
consumption [50]. Thusly, various studies have focused on the potential impact of key 
brain regions directly or indirectly involved in the regulation of metabolic pathways 
such multiple brain cortices, which are also implicated in biological processes affected 
or connected to emotional response (e.g. sadness or reward seeking behavior). In this 
context, the central role of the brain’s anterior and posterior cingulate cortices (ACC 
and PCC) in emotional regulation is mainly attributed to their ability to receive 
information and extend projections to the hypothalamus [51], ACC’s ability to control 
reward-related actions and outcomes, as well as PCC’s capacity as an action-
coordinating domain [17]. Davidson et al. first focused on the potential interaction 
between altered brain activity and energy homeostasis [52]. Indeed, hippocampal 
activity was variously related to food intake, namely due to the negative effect of 
increased fat intake on BDNF expression, the existence of receptors for insulin and 
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leptin, and its sensitivity to satiety stimuli. The latter promote brain-gut-axis activity 
via gut-hippocampal signaling and subsequent interactions between the hippocampus 
and other brain regions involved in energy regulation [51]. Studies in rats further 
supported that altered hippocampal activity was associated to energy regulation, 
potentially due to the disrupted function of learning processes that, in turn, affect 
appetite and consumption [53,54]. Similarly, the amygdala region is also shown to 
interact with energy-related metabolites. Pineda et al highlighted the anorexigenic 
effect of the POMC neurons that are projected from ARC to the amygdala as well as 
the potential effect of amygdala-located NPY receptors. Additionally, α-MSH binding 
to MC4Rs expressed in the amygdala, also demonstrated a potential effect on the 
regulation of feeding behavior [55]. A different study in mice demonstrated the 
positive association between activation of amygdala-located neurons that implicated 
in neurotensin expression with preference for increased-energy consumption and 
hedonic eating [56].   

Another connective link between emotional state and energy metabolism might 
refer to the role of the cingulate cortex, due to the ACC’s association to food-related 
stimuli, emotional processing and subsequent decision-making, and PCC’s projections 
to the hippocampus [57]. Indeed, individuals with higher BMI, obesity or binge-eating 
disorder have repeatedly shown disrupted brain and ACC activity [58-60]. Whiting et 
al demonstrated that patients with anorexia showed increased ACC activity in 
response to food images and hypermetabolic activity in the hippocampus and 
amygdala [61]. A different study in men of normal weight showed an association 
between ACC activation and ad libidum food consumption [62] and other studies have 
directly looked at the effect of emotions on BMI levels or presented a partly 
physiologically-attributed, positive relationship between overeating and BMI in 
individuals with depression. Furthermore, sums of reactions associated to emotional 
stimuli are now regarded as part of corresponding “systems” entailing relative 
cascades of physiological and metabolic responses, such as the PANIC/GRIEF and the 
SEEKING systems. Activation of the PANIC/GRIEF system occurs in emotional states of 
sadness and can provoke hormonal adaptations, which can, in turn, affect metabolic 
pathways related to energy homeostasis. By principle, increased corticotropin 
releasing factor (CRF) levels (noticed during PANIC/GRIEF system stimulation) lead to 
decreased feelings of appetite and prolactin, which are associated with lower food 
intake. At the same time frame but on a contradictory action, the decreased levels of 
oxytocin observed during the PANIC/GRIEF activity might increase the need for food 
consumption [63]. Complementing the action of the PANIC/GRIEF system, the arousal 
of the SEEKING system during the first stages of feeling emotions of despair might 
increase the drive for food-seeking behavior and thus elevate food consumption. Such 
notions can be further supported by the hypothalamic and dopamine-regions’ 
imbalance observed in orexin during depression [64]. 

Presence of obesity directly leads to hormonal imbalances, especially in hormones 
of the adipose tissue. Individuals with excessive weight show a progressive decline in 
post-prandial ghrelin levels which results in prolonged tolerance and promotion of its 
orexigenic signal [36].  Although leptin levels are elevated due to the increase in the 
number and size of adipocytes, as fat tissue expands the intensity of the hormone’s 
anorexigenic effect appear to grow weaker [36] (i.e. leptin resistance). The observed 
increase in leptin levels shows presents a dual metabolic disadvantage, as it not only 
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negatively influences appetite suppression but also leads to establishment of low-
grade inflammation. As a consequence to elevated leptin, T-cells, Natural Killer (NK) 
cells, macrophage proliferate and cytokine production grows (eg Tumor Necrosis 
Factor α -TNF-α, Interleukin 6 -IL-6), aiding the establishment of oxidative stress and a 
low-grade, but continuous inflammatory state [65]. 

Another pillar in excessive weight presence refers to its reciprocal relationship 
with misaligned circadian rhythms. In the case of humans, the circadian clock refers 
to the mammal’s innate capacity to regulate the stable secretion of various hormones 
according to external environmental stimuli, such as light presence or absence, during 
the 24-hour-day period. On the one hand, disrupted circadian rhythms due to factors 
unrelated to weight at first reading, such as sleep disturbances, can indirectly lead to 
increase of weight due to the observed metabolic imbalances of circadian hormones 
[66]. Conversely, the existence of obesity and the cascade of metabolic dysregulation 
that come with it and aggravate circadian disturbances and lead to further 
homeostatic misalignment [67]. 

Lastly, another major connective point with weight imbalances refers to 
disruptions in the gut-brain axis leading to alterations in gut microbiome [68]. In a 
reciprocal manner similar to the ones previously analyzed, excessive weight also 
affects the gut microbiota-host relationship disrupting the latter’s part in 
macronutrient metabolism [69]. Indicatively, gut microbiota are responsible for 
carbohydrate fermentation and the production of metabolic byproducts rendering 
them indispensable in the maintenance of gastrointestinal tract homeostasis [69]. 
Changes in the intake of dietary compounds such as carbohydrates, fiber and fat 
directly affects microbiome metabolic procedures and subsequent glucose and fat 
homeostasis by increase or decrease of produced substances, such as the fiber-
enhanced production of SCFA [70,71]. Presence of obesity has been connected to 
altered microbiome profile, with literature dictating increases in strains such as the 
Firmicutes/Bacteroidetes ratio [72]. These can, in turn, affect metabolic and 
inflammatory pathways aiding in further metabolic dysregulation.  Figure 11 presents 
the transition from the interaction between gut macronutrient metabolism in normal 
weight versus in the presence of obesity.  
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Figure 11. Gut-brain axis in energy metabolism in general versus [41] versus B. gut-
brain axis in energy metabolism in the presence of obesity [45]. 
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1.1.4. Genetics and Epigenetics of Overweight and Obesity  

Obesity can be a result of multidisciplinary etiology. Different types of obesity 
presence concern: i) obesity associated with the existence of a specific syndrome- 
syndromic obesity; ii) obesity attributed to the effect of a single gene-monogenic 
obesity; and obesity related to the simultaneous and reciprocal influence of multiple 
genes-polygenic obesity.  
 
Syndromic Obesity 

Regarding the first category, syndromic diseases are usually inheritable in 
autosomal or sex-linked dominant or recessive manners and the severity of their 
symptoms can vary according to the degree of genetic penetrance and expressivity.  
The term syndromic obesity refers to the presence of obesity as a phenotype in the 
context of the manifestation of a diagnosed syndrome along with other signs and 
symptoms usually involving disabilities, organ abnormalities and/or developmental 
delay and mental disability [73]. This type of obesity can result from changes in the 
number or structure of chromosomes [36] or the pleiotropic action of one or multiple 
genes [36, 73].  

One of the most well-studied cases of syndromic obesity concerns the Prader-Willi 
Syndrome (PWS). The disorder is attributed to the loss of gene function of 
chromosome 15 due to paternal genomic imprinting. This affects hypothalamic 
function, resulting in reduced expression of growth hormone and disruptions in 
metabolic pathways related to energy homeostasis and food consumption [36]. 
Children with PWS  present high rates of morbid obesity due to excessive appetite and 
overeating appearing after the age of 4, as well as developmental delay, growth 
abnormalities and learning and behavioral difficulties [74]. In an attempt to further 
understand the genetic aspects and interactions involved in the disorder, in 2021, the 
Foundation for Prader-Willi Research announced the PWS Genome Project; the first 
attempt to conduct whole genome sequencing in PWS patients [36].  

A similar case of syndromic obesity is encountered in the presence of the Bardet-
Bield Syndrome (BBS) which is caused by multiple mutations in the BBS1-BBS21 
chromosomic region and is inherited in an autosomal recessive manner [36]. The 
disorder is characterized by disrupted vision, cardiac and kidney functions, central 
obesity and hypogonadism [36]. Due to the observed disruption in energy 
homeostasis and the high penetrance of genetic mutations related to insulin 
resistance, patients with BBS present a high risk for type 2 diabetes [36]. 

 Other disorders where the obesity phenotype is manifested as part of 
syndromic genetic disruption include: i) the Albright Hereditary Osteodystrophy (AHO) 
syndrome which is inherited in an autosomal dominant manner due to maternal 
genomic imprinting and includes disruptions in the metabolism of parathormone and 
growth hormone; ii) the Alstrom Syndrome (ALMS) inherited in an autosomal 
recessive way and related to disrupted vision, hearing and glucose metabolism; iii) the 
fragile X syndrome, which is attributed to repetitions of the CGG triplet in the FMR1 
gene, related to mental disability and associated with the presence of a Prader-Willi-
like obesity phenotype; iv) the Wilms Tumor Aniridia, Genitourinary abnormalities, 
mental retardation syndrome (WAGR) which is inherited in an autosomal recessive 
manner and accompanies disruptions in BDNF expression due to loss of genes in the 
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chromosome 11; v) the Angelman syndrome caused by maternal genomic imprinting 
in chromosome 15 and associated with mental and developmental retardation; and 
vi) the Smith-Magenis syndrome, which might occur either randomly or via autosomal 
dominant inheritance and entails deletions and mutations in chromosome 11 [36]. 

 
Monogenic Obesity 

Moving on from syndromic obesity, increased weight can further be a result of the 
disruptive function of a single key-gene. The term monogenic obesity is used to 
describe the existence of the disorder being attributed to the altered function of one 
single gene, usually involved in key metabolic pathways. Most forms of monogenic 
obesity are associated with mutations in genes implicated in the leptin-melanocortin 
pathway, such  the leptin (LEP), leptin receptor (LEPR), POMC,  the Proprotein 
Convertase Subtilisin/Kexin Type 1 (PCSK1), BDNF, neurotrophic receptor tyrosine 
kinase 2 (NTRK2), the Single-minded homolog 1 (SIM1), and MC4R genes (Table 3) 
[75,76]. Given the fact that most such mutations are inherited in a recessive manner, 
homozygote status is a-priori associated with heavy phenotypic manifestations and 
increased symptom severity. However, cases of heterozygotes may also present 
“intermediate” phenotypes, where symptom gravity can resemble the one attributed 
to susceptibility to common obesity [75].   

The most well-studied genes related to this rare form of obesity concern the 
presence of mutations in genes involved in leptin transcription and expression 
pathways, namely the LEP and LEPR genes. Congenital leptin deficiency is a 
characteristic example resulting in monogenic obesity, where individuals do not 
produce sufficient amounts of the hormone due to disruptions in LEP expression [77]. 
LEP mutations are inherited in an autosomal recessive manner and are further 
responsible for the presence of hyperphagia in the early stages of life, leading to 
severe obesity, as well as hyperinsulinemia leading to an increased risk for T2D 
development [78]. Their presence can also lead to accompanying phenotypes like 
hypogonadism and late puberty onset attributed to general disruptions in hormones 
of the HPA axis such as the follicle-stimulating hormone, luteinizing hormone, thyroid-
stimulating hormone and growth hormone-releasing hormone [36]. Additionally, 
deficiency of the hormone can also generate disruptions in immune responses due to 
reduction in inflammatory cell and cell regulators’ inhibitors protecting tissue damage 
(e.g. serine protease inhibitor a1-antitrypsin). Simultaneously, accumulation of 
inflammatory cell regulators triggers further metabolic disruptions leading to an 
increased state of inflammation, such as insulin resistance or hepatic steatosis [78]. In 
reviewing cases of leptin deficiency, Rodrigues Salum et al underlined the potential 
effect of the different kinds of mutations in differentiating the severity of the observed 
manifestations, highlighting the association between mutation homozygote status 
and increased expression of weight-related altered phenotypes. As of 2021, the study 
reported a total of 17 different mutations in 67 individuals across the globe [78]. 

Also inherited in an autosomal recessive manner, mutations in the LEPR 
additionally promote the onset and establishment of monogenic obesity by inhibiting 
hormone binding and subsequent signaling. Compared to leptin deficiency alone, 
reduction in the receptor expression has been associated with the expression of more 
severe neuroendocrine disruptions (eg more severe hypogonadotropic 
hypogonadism),  potentially due to the loss of its ligand-independent activity [77]. 
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Mutations in LEPR are fairly uncommon, with less than 100 cases having been 
reported worldwide [36,76].  

 POMC is a different gene heavily implicated in energy metabolism, mutations 
in which can be inherited in an autosomal manner (dominant or recessive). 
Disruptions in POMC expression affect leptin signaling-due to leptin influencing 
POMC-expressing neurons- and MC4R neurons’ activations via reduction of α-MSH 
production [76].  Newborns with POMC mutations will soon present cortisol and ACTH 
deficiency, mild central hypothyroidism and hyperphagia leading to the establishment 
of severe obesity [76,79]. Interestingly, reduction of α-MSH signaling has been 
associated with the presence of red hair in Caucasian populations [80], providing 
evidence for the potential effect of different ancestry in phenotype expressivity.  

To boot, PCSK1 expression is involved in the production of the prohormone 
convertase 1/3 family who are, in turn, implicated in the cleavage of metabolism-
related prohormones and the subsequent activation of multiple functioning 
hormones, such as insulin, glucagon, GLP-1, α-MSH, TSH and GnRH [36,76]. Mutations 
in the PCSK1 gene are subsequently associated with severe obesity and consequences 
following the disruption of the HPA axis, similar to the ones mentioned above (e.g. 
hypogonadotropic hypogonadism, adrenal insufficiency [79].  

Apart from genes solely involved in energy homeostatic mechanisms, mutations 
in genes related to neurophysiological activity are also shown to affect the onset of 
severe obesity. Rare cases of mutations in the BDNF and the NTRK2 gene have been 
observed and associated with the presence of severe obesity and cognitive 
impairment in two cases of young children (an 8-year-old girl presenting insufficiency 
of BDNF and an 8-year-old boy presenting hyperphagia and obesity with a de novo 
mutation in NTRK2) [76,79]. In more detail, the NTRK2 gene is responsible for 
expressing both BDNF and its tropomyosin-related kinase B receptor, being, thus, 
involved in energy metabolism through MC4R-affected cascades [79]. More cases of 
less severe mutations in its entirety have been observed in patients with obesity or 
cognitive impairment, without, however, their direct effect on the obesity phenotype 
to have been fully elucidated [79]. A different characteristic example of gene 
mutations involved in neurological functions involved in energy homeostasis refer to 
mutations in the SIM1 gene. As the latter is involved in the development of PVN and 
subsequent cascade of POMC signaling, mutations in its entirety have been associated 
with obesity phenotypes, hyperphagia and other neurological dysfunctions. Those 
can, in turn, affect brain centers indirectly related to energy homeostasis, such as 
regions affecting cognitive abilities, memory and hypopituitarism [76,79]. 

Finally, also autosomal inherited, monogenic obesity-related mutations are 
further observed in the MC4R gene. Innately implicated in energy homeostasis, MC4R 
mutations are account for 0.2-5.8% of severe obesity cases [80] and are heavily 
involved in disrupted satiety signaling, leading to severe obesity onset due to 
hyperphagia; a tendency which appears to reduce over the aging years. Homozygote 
status appears to be of importance in phenotype severity, as heterozygotes for MC4R 
mutations can present great variability in weight-related phenotypes and allelic 
heterogeneity appears to be related with different pathogenic mechanisms [76]. As it 
will be further analyzed below, such mutations penetrance and expressivity greatly 
varies also based on the interactive effect of environment. MC4R mutations are, 
therefore, placed in the range between monogenic and polygenic obesity, with 
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Huvenne et al characterizing them as contributing to “oligogenic” obesity [79]. 
Oligogenic obesity, such as melanocortin 4 receptor(MC4R)-linked obesity, is 
characterized by a variable severity of obesity, partly dependent on environmental 
factors and the absence of a specific phenotype. This type of obesity is responsible for 
2–3% of obesity in adults and children [79].  

 
Table 3. Genes implicated in monogenic obesity [36, 76]. 

Gene Chromosomic 
position 

Inheritance 
Manner 

Obesity-related phenotypes 

LEP 7:128241278-
128257629 

Autosomal 
Recessive 

Morbid Obesity, Hyperphagia, Hyperinsulinemia, 
Hypogonadotropic Hypogonadism, observed within 
days after birth 

LEPR 1:65420652-
65641559 

Autosomal 
Recessive 

Morbid Obesity, Extreme Hyperphagia, 
Hyperinsulinemia, Hypogonadotropic 
Hypogonadism, observed within days after birth  

POMC 2:25160853-
25168903 

Autosomal 
Dominant or 

Recessive 

Morbid Obesity, Hyperphagia, Hyperinsulinemia, 
observed within months after birth 

PCSK1 5:96390333-
96434143 

Autosomal 
Recessive 

Hyperphagia, Hyperinsulinemia, HPA axis 
disturbance, observed during early childhood 

BDNF 11:27654893-
27722058 

- Morbid Obesity, Hyperphagia, observed during 
childhood/adulthood 

NTRK2 9:84668375-
85095751 

- Hyperphagia, increased weight gain, observed 
within months after birth 

SIM1 6:100385009-
100464921 

- Hyperphagia, increased weight gain, observed 
during childhood 

MC4R 18:60371062-
60372775 

Autosomal 
Dominant or 

Recessive 

Hyperphagia, increased weight gain, observed 
during early childhood 

 
Polygenic Obesity 

The majority of cases of overweight or obesity are, however, attributed to the 
cumulative action of a multitude of genes, usually exerting an aggravated impact in 
the presence of favorable contextual factors such as unbalanced diet or lack of 
physical activity. Obesity is, thus, viewed as a multifactorial disorder with many an 
interesting approach attempting to lay the ground for the principles of its 
understanding. Perhaps two of the most well-known theories surrounding obesity 
etiology lie in the “Thrifty” and “Drifty” gene hypotheses. The former argues that the 
existence of genes implicated in the etiology of diabetes survived through the ages via 
the process of natural selection. In this way, sufficient weight gain and fat 
accumulation promoted survival in times when food intake or availability were scarce 
[36,81]. Due to the lack of backing evidence such as the fact that not all people who 
have survived presented the same “protective” genotype as the “Thrifty” hypothesis 
would dictate, the “Drifty” hypothesis rose to eminence. The  latter argues that  the 
observed increase in obesity prevalence derives from the  genetic drift favoring 
appetite-regulating genes , which cannot be controlled under the process of natural 
selection [36, 82]. A milestone in the research surrounding the genetic effect on 
obesity incidence concerns the creation of the Genetic Investigation of 
Anthropometric Traits (GIANT) consortium [83]. To date, GIANT constitutes the 
cornerstone of BMI-related genetic research, by accumulating the majority of 
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genome-wide association studies (GWAS) in large populations from around the world. 
Evidently, it is found that approximately 40-70% of the variation in BMI levels can be 
attributed to genetic factors, while the same percentage reaches the 30-60% range 
when it comes to WHR [83,84].  

It  is, therefore, arguable that the action of genes participating in energy-regulating 
metabolic pathways lies in the center of the synergistic procedures taking place for 
the onset and the establishment of polygenic obesity. As shown in Tables 4 and 5 
current literature has identified a multitude of observed SNPs  located in key genes 
affecting the regulation of energy-related hormones. A key gene in the research 
surrounding obesity onset and gravity concerns the cornerstone fat mass and obesity- 
associated (FTO) gene. GWAS conducted during the past two decades has 
demonstrated constituent associations between SNPs located in this chromosome 16 
gene and an increased risk for commo obesity, elevated BMI, body fat accumulation 
[85], cardiometabolic or T2D risk [86] and even cancer onset [87-89]. Despite 
exhaustive efforts in rodents and humans, the mechanisms by which FTO SNPs 
contribute to obesity establishment have yet to be fully elucidated [85]. Current 
evidence suggests that FTO presents significant enzymatic activity, in turn affecting 
pathways related to energy metabolism. One of its most significant roles discovered 
to date concerns its potential epitranscirptomic action as a N6-methyl-adenosine 
(m(6)A) RNA demethylase promoting m(6)A demethylation, which is essential for fat 
metabolism and adipogenesis [90,91]. Moreover, the FTO-produced protein has been 
implied to play a part in mRNA regulating factors, therefore centrally shaping RNA 
transcription and translation processes [90,91]. Recent systematic reviews and meta-
analyses have underlined the effect of several FTO SNPs on obesity-related outcomes, 
namely the rs9939609, rs1421085, rs8050136, rs17817449, rs1121980 [90,91]. Out of 
those, the former constitutes perhaps the most well-known one, with Ali et al 
underlining the distinct association between presence of the A risk allele and 
increased chances for obesity, in their recent 2021 meta-analysis [92]. Table 6 
summarizes the properties of the most well-identified, obesity-related FTO variants.  
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Table 4. List of SNPs in hormonal regulation-related genes and their associations with obesity-related traits. 

Hormone Function Gene Name Chromosomic 
position 

Associated 
SNPs 

Alleles MAF Associated Index Effect 
Allele 

Direction of Effect 

Ghrelin Orexigenic Ghrelin and 
Obestatin 

Prepropeptide 
(GHRL) 

3:10285666-
10292947 

rs143729751 G/T 0.002 (T) Ghrelin levels T Negative (β=-0299) 

GRP - Gastrin Releasing 
petide (GRP) 

18:59220158-
59230774 

rs7243357 T/G 0.19 (G) BMI, ΒΜΙ-
adjusted-for-

smoking 

T Positive (β= 0.015 to 
0.025) 

rs1517037 C/T 0.24 (T) Adult Body Size C Positive (β= 0.009) 
CCK Anorexigenic Cholecystokinin 

(CCK) 
3:42257825-

42266185 
rs8192473 C/T 0.05 (T) BMI T Positive (β= 0.035) 
rs754635 C/A/G/

T 
0.23 (C) BMI G Positive (β= 0.036) 

rs10460960 G/A/T G (0.24) BMI A Positive (β= 0.02) 
rs9839267 T/A/G G (0.18) BMI T Positive (β= 0.02) 
rs4377469 G/A/C/T G (0.27) BMI T Positive (β= 0.04) 

rs75128851 C/A/G C (0.23) Body Weight G Negative (β= -
0.017) 

rs111768603 G/A/T T (0.14) Adult Body Size G Positive (β= 0.016) 
rs111768603 G/A/T T (0.14) Visceral Fat T Positive (β= 0.024) 

rs8192472 C/G/T T (0.40) zBMI A Negative (β= -4.85) 

PYY Anorexigenic Peptide YY (PYY) 17:43952733-
44004469 

rs116953263 C/T 0.01 (T) Bone Mineral 
Density 

T Positive (β= 0.091) 

PP Anorexigenic Pancreatic 
Polypeptide (PPY) 

 
17:43940804-

43942476 
Insulin Indirectly 

anorexigenic 
Insulin (INS) 11:2159779-

2161221 
rs3213225 G/A 0.45 (A) Birth Weight A Positive (β= 0.009) 

rs11564722 C/T 0.33 (T) HC-adjusted-for-
BMI 

T Negative (β= -0.024) 

rs35506085 G/A 0.28 (A) HC-adjusted-for-
BMI 

A Negative (β= -0.027) 

rs4244808 T/A/G 0.35 (G) HC-adjusted-for-
BMI 

G Negative (β= -0.017) 
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rs1003484 A/G/T 0.40 (A) HC-adjusted-for-
BMI 

A Negative (β= -0.021) 

Leptin Anorexigenic Leptin (LEP) 7:128241278-
128257629 

rs28954105 G/T 0.03 (T) Leptin 
Measurements 

T Negative (β= -0.218, 
0.049-0.063) 

rs12537573 A/G/T 0.26 (G) Leptin 
Measurements 

A Negative (β= -0.06) 

rs791600 G/A 0.44 (A) Leptin 
Measurements 

A Negative (β= -0.043 
– 0.088) 

rs104878505 G/C/T 0.50 (G) Leptin 
Measurements 

G Positive (β= 0.033) 

rs104878505 G/C/T 0.50 (G) Leptin 
Measurements- 

adjusted-for-BMI 

G Positive (β= 0.023 
0.033) 

rs791600 G/A 0.44 (A) Leptin 
Measurements- 

adjusted-for-BMI 

A Negative (β= -0.054, 
-0.118) 

rs17151919 G/A 0.03 (A) Leptin 
Measurements- 

adjusted-for-BMI 

A Negative (β= -0.233 
-0.333) 

rs104878505 G/C/T 0.50 (G) BMI C Positive (β= 0.061 – 
0.07) 

rs104878505 G/C/T 0.50 (G) BMI G Negative (β= -0.046 
-0.055) 

Leptin Anorexigenic Leptin Receptor 
(LEPR) 

1:65420652-
65641559 

rs12077336 G/T 0.14 (T) Leptin Receptor 
Levels 

T Negative (β= -1.398) 

rs10789188 A/C/G/T 0.30 (A) Leptin Receptor 
Levels 

G Negative (β= -0.36) 

rs191246201 G/A 0.001 (A) Leptin Receptor 
Levels 

A Negative (β= -1.064) 

rs9436748 G/A/T 0.23 (T) Leptin Receptor 
Levels 

T Negative (β= -0.337) 

rs3790438 T/A/G 0.14 (A) Leptin Receptor 
Levels 

A Negative (β= -1.37) 

rs34291655 T sequence Leptin Receptor 
Levels 

CT Negative (β= -0.34) 
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rs183790625 G/A 0.10 (A) Leptin Receptor 
Levels 

A Negative (β= -1.32) 

rs11805970 T/C/G 0.15 (G) Leptin Receptor 
Levels 

G Negative (β= -1.44) 

rs114123539 G/A/T 0.004 (T) Leptin Receptor 
Levels 

T Negative (β= -1.065, 
1.20) 

rs6588147 G/A 0.37 (G) Leptin Receptor 
Levels 

G Positive (β= 0.314) 

rs143288541 A/G 0.006 (G) Leptin Receptor 
Levels 

G Negative (β= -1.094) 

rs17097193 T/C 0.05 (C) Leptin Receptor 
Levels 

C Positive (β= 0.381) 

rs72683113 T/C 0.09 (C) Leptin Receptor 
Levels 

C Positive (β= 0.341) 

rs145770123 A/G 0.008 (G) Leptin Receptor 
Level 

G Negative (β= -0.74) 

rs10889560 C/A 0.16 (A) Leptin Receptor 
Level 

A Positive (β= 0.341) 

rs7535099 A/G 0.22 (G) Leptin Receptor 
Level 

G Positive (β= 0.345) 

rs174412403 T/C 0.21 (C) Leptin Receptor 
Level 

C Negative (β= -0.328) 

rs17415296 C/A 0.10 (A) Leptin Receptor 
Level 

A Negative (β= -1.4) 

rs112585178 G/T 0.01 (T) Leptin Receptor 
Level 

T Negative (β= -0.97) 

rs12116840 G/A/C 0.19 (C) Leptin Receptor 
Level 

C Positive (β= 0.236) 

rs76962533 C/T 0.01 (T) Leptin Receptor 
Level 

T Negative (β= -0.03) 

rs11208660 C/T 0.13 (T) BMI T Negative (β= -0.019) 
rs9436303 A/G 0.28 (G) BMI G Positive (β= -0.07) 
rs2767486 A/G 0.31 (G) BMI (age=3, 6m, 

1, 1.5, 3y) 
A Negative (β= -0.12, 

0.14) 
rs2767486 A/G 0.31 (G) BMI 

(age=3,6,8m, 1y) 
G Positive (β= 0.128, 

0.169) 
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rs10889551 A/C/G 0.37 (A)  
BMI (age=3, 6m, 

1.5, 2y) 

A Negative (β= -0.063, 
0.088) 

rs9436299 C/A/T 0.36 (C) BMI-adjusted-
for-WHR 

A Positive (β= 0.011) 

rs2767486 A/G 0.31 (G) Body Size 
(age=10y) 

A Negative (β= -0.797) 

rs12409877 A/G 0.43 (G) HC A Positive (β= 0.041) 
rs141707226 T sequence WHR-adjusted-

for-BMI 
GT Positive (β= 0.029) 

rs7511672 A/G 0.46 (G) WHR-adjusted-
for-BMI 

A Positive (β= 0.015) 



 

 

Table 5. List of SNPs in key genes associated with obesity-related traits [36]. 

 

Table 6. List of FTO SNPs associated with obesity-related traits [36].  

 

Obesity Epigenetics 

Another pillar in obesity establishment concerns the role of epigenetic 
modifications. The latter mainly refer to mechanisms surrounding DNA methylation in 
region rich in C/G bases (CpG sites), histone modifications and the activity of non-
coding microRNAs. As it will be further analyzed below, the manifestation of the 
gravity of epigenetics in obesity prevalence derives from the impact of contextual 
determinants both in a direct and in an indirect way [93]. It is now established that 
environmental parameters, such as the quantity and quality of the consumed food, 
PA, smoking or other lifestyle habits can disrupt circadian regulation, increase DNA 
methylation rates and affect post-translational histone modifications. Therefore, the 
impact of nutritional compounds is located in the center of stimulation of epigenetic 
processes, with literature dictating the vital role of environmental characteristics 
during the first days of life after conception in the establishment of epigenetic 
procedures shaping disease predisposition. The Developmental Origins of Health and 
Disease (DOHaD) approach, highlights that the origins of various types of adult disease 
can be traced back to endometrial life, with nutrition throughout all stages of 

SNP Gene Chr Chromosomic 
Position 

Alleles MAF Effect 
Allele 

Related 
Phenotypes 

rs2815752 NEGR1 1 1:72346757 G/A/C G:0.32 Α BMI 

rs2568958 NEGR1 1 1:72299433 G/A/C G:0.32 A Obesity, BMI 

rs6548238 TMEM18 2 2:634905 Τ/C/G T:0.12 C Obesity, BMI 

rs7561317 TMEM18 2 2:644953  A/G/T A:0.16 G BMI, Body 
weight 

rs6265 BDNF 11 11:27658369 C/T T:0.20 C BMI, WC, WHR 

rs925946 BDNF 11 11:27645655  Τ/Α/C/G T:025 T BMI 

rs7498665 SH2B1 16 16:28871920 A/G/T G:0.26 G BMI 

rs17782313 MC4R  18 18:60183864  T/A/C C: 0.24 C Obesity, BMI 

rs12970134 MC4R  18 18:60217517  G/A A: 0.21 A BMI, WC, T2D 

rs52820871 MC4R  18 18:60371599  Τ/G G:<0.01 G Obesity 

rs2229616 MC4R  18 18:60372043 C/T T:0.01 T Obesity, WC 

rs1805081 NPC1 18 18:23560468  T/C C:0.22 A Obesity 

rs11084753 KCTD15 18 19:33831232  A/C/G/T A:0.43 G BMI 

rs29941 KCTD15 19 19:33818627 A/G/T A:0.39 G BMI 

SNP Chromosomic 
Position 

Alleles MAF Effect 
Allele 

 

Related Phenotypes 

rs9939609 16:53786615 Τ/Α A:0.34 Α Increased BMI and risk for T2D 
rs1421085 16:53767042 T/C C:0.23 C Obesity, increased BMI, WC,HC 

and risk for T2D 
rs9930506 16:53796553 A/G G:0.29 G Obesity 
rs7202116 16:53787703 Α/G G:0.34 G Increased BMI 
rs3751812 16:53784548 G/T T:0.22 T Increased BMI 
rs17817449 16:53779455 T/A/G G:0.31 G Obesity, increased BMI 

https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=1:72346707-72346807;source=dbSNP;v=rs2815752;vdb=variation;vf=2041120
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=1:72299383-72299483;source=dbSNP;v=rs2568958;vdb=variation;vf=1829795
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=2:634855-634955;source=dbSNP;v=rs6548238;vdb=variation;vf=184383788
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=2:644903-645003;source=dbSNP;v=rs7561317;vdb=variation;vf=184874902
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=11:27658319-27658419;source=dbSNP;v=rs6265;vdb=variation;vf=164412388
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=11:27645605-27645705;source=dbSNP;v=rs925946;vdb=variation;vf=165188756
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=16:28871870-28871970;source=dbSNP;v=rs7498665;vdb=variation;vf=730151055
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=18:60183814-60183914;source=dbSNP;v=rs17782313;vdb=variation;vf=74626226
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=18:60217467-60217567;source=dbSNP;v=rs12970134;vdb=variation;vf=74481309
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=18:60371549-60371649;source=dbSNP;v=rs52820871;vdb=variation;vf=75197268
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=18:60371993-60372093;source=dbSNP;v=rs2229616;vdb=variation;vf=72551939
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=18:23560418-23560518;source=dbSNP;v=rs1805081;vdb=variation;vf=72406087
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=19:33831182-33831282;source=dbSNP;v=rs11084753;vdb=variation;vf=203692572
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=19:33818577-33818677;source=dbSNP;v=rs29941;vdb=variation;vf=201713052
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=16:53786565-53786665;source=dbSNP;v=rs9939609;vdb=variation;vf=730602335
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=16:53766992-53767092;source=dbSNP;v=rs1421085;vdb=variation;vf=729134873
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=16:53796503-53796603;source=dbSNP;v=rs9930506;vdb=variation;vf=730517324
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=16:53787653-53787753;source=dbSNP;v=rs7202116;vdb=variation;vf=730092558
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=16:53784498-53784598;source=dbSNP;v=rs3751812;vdb=variation;vf=729548565
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=16:53779405-53779505;source=dbSNP;v=rs17817449;vdb=variation;vf=731376935
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endometrial and early life to have been found associated with different birth 
phenotypes, which are, in turn, related to environmental adaptations during 
infanthood and childhood, and, even, metabolic abnormalities or mental health in 
adulthood [94]. Furthermore, perinatal factors can also affect epigenetic changes. One 
of the most well-known nutrition-related factors concerns the period of breastfeeding 
[95]. The benefits of breastfeeding are well-documented with children who have been 
breastfed to have been consistently showing protective effects in later-on 
manifestation of inflammatory or cardiometabolic disorders [95]. Data obtained by 
animals show that human breast milk reduces chance for adult obesity due to its fat 
components activating the PPARγ receptor which de-methylases the Fgf21 factor; a 
procedure known to be associates with lower chances for adult obesity [36]. 
Generally, the epigenetic processes appear associated with the metabolic procedures 
of the fat tissue and subsequent levels of adipose tissue hormones, such as leptin.  

Nutritional practices or macronutrient/micronutrient compounds have also 
specifically been connected to metabolic procedures via their impact on epigenetic 
mechanisms [36]. It is interesting that the different compounds can oppositely affect 
disease risk by increasing or decreasing the same epigenetic processes. Naturally, 
nutrients such as SFA, sugars or dietary patterns such as the WD have been associated 
with increased oxidative stress and subsequent inflammation rates, as well as an 
elevated risk for cardiometabolic disorders and obesity establishment. On the 
contrary, beneficial dietary compounds such as MUFA, PUFA, fiber, vitamins or dietary 
regimens like the Mediterranean Diet-MD present protective effects by reducing 
oxidative stress and preventing metabolic disorders such as insulin resistance, 
cardiovascular disease and obesity [36]. 
 

1.1.5. Metabolomics of Overweight and Obesity  

The need to deepen the understanding of the multifactorial obesity etiology led 
the focus of research to multiple fields related to disease-associated biomarkers’ 
discovery. Recently, studies in the field of metabolomics – the profiling of molecules 
associated to traits of interest- yielded significant findings regarding indices associated 
with weight gain. Traditionally, metabolite identification occurs via use of mass 
spectrometry or nuclear magnetic resonance targeted or non-target metabolomic 
analyses [96-98] but different methods such as machine learning have been employed 
for the discerning of novel biomarkers [99].   
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Presence of obesity or weight gain is imprinted on perturbed metabolic signatures 
of indices implicated in various protein, lipid and glucose metabolic pathways, such as 
branched-chain amino acids (BCAA) or short-chain fatty acids (SCFA) breakdown, the 
urea or Krebs cycles, as well as biological processes involved in inflammation, oxidate 
stress and immune system or mitochondrial function [100]. By and large, during the 
generalized disturbed metabolic state that is obesity, a continuous and reciprocal 
circumstance 
is observed 
where 
increase of 
one 
metabolite can 
cause a 
cascade of 
events leading 
to the 
disturbance of 
the production 
of multiple 
other 
substances, in  

 

Figure 12. Obesity-related metabolomic biomarkers [101] 

 
turn bilaterally affecting the secretion of the former and vice versa. In a systematic 

review of obesity metabolomics, Payab et al showed that presence of obesity or 
metabolic syndrome was associated with elevated levels of several amino acids, 
namely the leucine, isoleucine and valine branched-chain amino acids (BCAAs), 
phenylalanine, tyrosine, glycine and glycerol, among other amino acids. The study 
presented that anthropometric indices such as fat mass and waist circumference 
measurements were further associated with increase in BCAAs, tyrosine, 
phenylalanine, alanine and glutamic acid but decrease in glycine and choline (Figure 
12) [101]. Furthermore, emphasis was also given on the altered levels of lipids such as 
lysophospatidylocholines [101].  

Similar findings were presented by a different systematic review from 2019 which 
also highlighted the role of BCAAs and further supported the existence of increased 
levels of tryptophan,  citrulline, acylcarnitines, ketoglutarate, serotonin and lipids like 
saturated or polyunsaturated fatty acids (SFA and PUFAs) and phospholipids such as 
sphingomyelins and lysophospholipids. The study additionally underlined the possibly 
dual role of adenosine, which increases in obesity presence but can ignite a 
compensatory effect in reducing further obesity establishment [102]. 

In like manner, Dias-Audivert et al used machine learning techniques to identify 
novel biomarkers related to weight gain. Their analyses indicated the role of five 
biomarkers associated with inflammatory and disturbed metabolic pathways, namely: 
Argininosuccinate, 3- carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), 
Dihydrobiopterin, a leukotriene metabolite and aprostaglandin (PGB2) [99]. 
Moreover, Vijay et Valdes underlined the possible effect of gut microbiome- affected 
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biomarkers, such as SFCA, on metabolic changes during weight gain via implicating key 
energy-related molecules, such as insulin [100].  

The metabolomic profile of obesity has also been specifically studied in younger 
populations. Handakas et al distinctively presented a collective sample of increased 
BCAA, phospholipid and steroid levels in children with obesity [103]. The same study 
also underlined the findings of Lopez-Contreras et al who showed an inverse relation 
between presence of obesity and levels of the gut microbiome Bacteroides plebeius 
and Christensenellaceae strains, as well as the negative relations of the latter with the 
positively-related with obesity phenylalanine levels [103,104]. In like manner, levels 
of the weight-gain-related and microbial strain-influenced urine trimethylamine N-
oxide (TMAO) index were also linked with childhood obesity, where increased 
amounted were related with higher BMI [102].  

Altered obesity metabolomic profiling has also presented differences between 
men and women, again implicated in multiple pathways of amino acid, glucose, lipid 
and gut-microbiome-related metabolism [105]. In a sample of adult female 
participants of the TwinsUK study, Menni et al showed positive associations between 
30 metabolites and weight indices, with four out of them maintaining associations in 
replication analyses in the KORA cohort. More specifically, increased urate, valine and 
butyrylcarnitine levels were positively associated with weight gain, whereas elevated 
3-phenylproprionate presented negative relations [106]. Similarly, results from 
metabolomic analyses in children from the Childhood Overweight BioRepository of 
Australia (COBRA) cohort 
revealed differentiated 
associations between males and 
females, with the former 
showing relations between 
increased BMI z-score and very 
low density lipoprotein (VLDL) 
content [107].   

In 2018, Cirruli et al used 
non-targeted metbaolomics 
approached to attempt to 
decipher the metabolomic 
perturbations observed in 
obesity indices of participants of 
the TwinsUK cohort. The study 
identified a 48-metabolite 
metabolome signature  

 
Figure 13. Metabolomic markers and obesity phenotypes [98]. 

 
consisting of BCAAs and other substances implicated in DNA and RNA processes to 

be strongly associated with BMI and BMI-related metabolic factors (Figure 13) [98]. It 
is worth noting that the percentage of BMI variation explained by a model containing 
age, sex and the 49-metbaolite signature lied in an impressive 43%   [Figure 13) [98]. 
Overall, these findings could potentially be used as predictors and facilitators of 
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obesity prevention and treatment and be further combined in investigating the gravity 
of the effect of lifestyle choices in modifying the magnitude of the associations.  

 
1.1.6. The Role of Lifestyle in Overweight and Obesity 

Genetic predisposition, alone, is not always the main reason leading to the 
establishment of conditions associated with increased weight. Naturally, diet is one of 
the cornerstones of overweight and obesity development, where positive energy 
balance and excessive dietary intake of foodstuffs with high fat or sugar content can 
directly lead to weight gain.  

Diet Quality 

There are multiple measures used to assess diet quality, primarily based on the 
macronutrient content of the consumed food groups. Measures such as the Alternate 
Healthy Eating Index (AHEI); the Diet Quality Index (DQI); the Healthy Diet Indicator, 
and the Mediterranean Diet Score (MedDietScore) are considered the original, key-
indicators for diet quality assessment, consisting of the aggravation of the 
consumption of food groups (i.e. protein sources, fruits and vegetables, among others) 
and even micronutrients (i.e. total cholesterol-TC, SFA, PUFAs or MUFAs, among 
others), to provide a summed score reflecting satisfying or poor levels of diet quality 

[108]]. In their 2017 systematic review, Asghari G et al overall demonstrated that 
higher score values (denoting better diet quality due to higher consumption of 
healthier foods) were generally associated with better adult anthropometric 
measurements, lower weight and increased health status, while also presenting 
variations in the observed relations based on sex, origin and other individual and 
lifestyle characteristics [109]. A different systematic review focusing on children and 
adolescent populations identified 128 pediatric indices used to assess diet quality, 
with half of them including dietary intakes and increased levels of which were 
positively associated with better anthropometric, cardiometabolic and cognitive 
measurements [110].  

In general, apart from the use of diet quality indicators, the role of dietary 
regimens consisting of increased consumptions of high-fat or sugar sources, shows a 
direct cause-and-effect relationship with increased levels of BMI and higher risk for 
BMI-related disorders. A characteristic example of increased BMI-related regimens 
lies in the adoption of the WD. The latter specifically refers to increased caloric intake 
via intake of “unhealthy”, processed foods with high caloric, fat, sugar and/or sodium 
content (i.e. red or processed meat, fast food, ready-to-make meals and sweets, 
among others), along with a simultaneous reduced intake of unprocessed, high-in-
fiber and vitamin food groups, such as fruits and vegetables. Studies in both sexes and 
populations of multiple origins have shown that attrition to WD can be directly 
associated with higher BMI values, in a dose-responsive manner. In fact, recently, Eng 
JY et al showed that adults in the highest quartile for adherence to WD showed a 14-
fold increased chance of presenting overweight or obesity [111]. In a similar context, 
analyses identifying dietary patterns have also highlighted associations between 
patterns including WD components -usually incorporating the term WD in the 
pattern’s name- and elevated BMI scores or direct existence of overweight or obesity 
[112].  
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On the contrary, adherence to diets or dietary patterns comprising healthy, 
low-fat content foods like fruit and vegetables, appear to be associated with lower 
risks for overweight or obesity presence. “Prudent” dietary patterns are regularly 
related with better quality of anthropometric and biochemical measurements in 
literature, with the most characteristic example referring to the holistic adoption of 
the MD, the health advantages of which have been extensively described in current 
literature [113].  MD is characterized by the timely and balanced consumption of all 
food groups by: i) minimizing the intake of potentially detrimental food stuffs like 
processed foods or red meat (recommended consumption: one portion per week); ii) 
centrally including the frequent consumption of vitamin and micronutrient-rich 
groups, such as fruits and vegetables (recommended consumption: three portions 
each per day), grains (recommended consumption: two portions per week) or low-fat 
dairy (recommended consumption two portions per day); iii) focusing on the 
consumption of natural ingredients with better quality of fat  and micronutrient 
sources, such as olive oil and nuts (PUFA, MUFA and micronutrient source) instead of 
butter (source SFA and trans-FA), or chicken and fish (recommended consumption: a 
minimum of two portions per week) instead of meat; and iv) focusing on minimizing 
the consumption of high-sugar, processed or fast foods to few times per month. MD 
is, therefore, largely considered one of the most metabolically beneficial food 
regimens, not only due to its balanced macronutrient content, but also due to its 
sustainable nature which renders is easy and efficient to adopt. Accordingly, in their 
2020 “umbrella” review, Seifu et al demonstrated that systematic reviews showed MD 
being inversely associated with obesity presence and better diet quality being 
associated with lower risk for increased weight or BMI and/or weight gain [114]. 

Furthermore, apart from the MD, other beneficial regimens have also been 
reported in literature, where it is natural that diets emphasizing on the consumption 
of high quality, unprocessed food groups and the restriction of high-calorie foodstuffs 
present positive associations with better weight status. Koutras et al emphasized that 
dietary patterns with increased content of unprocessed sources were related with 
better adult weight status, and the adoption of a “lacto-vegetarian” pattern was 
associated with reduced long-term weight gain and more steady weight maintenance 
[115]. Additionally, a 2022 systematic review by Jarvis SE et al underlined the 
protective association between plant-based diets and weight gain, with the effect 
more strongly shown for plants of better overall quality [116].  

The Obesogenic Environment 

Apart from the role of individual choice in the formation of dietary habits, the 
latter is further largely influenced by other environmental factors pertaining to the 
formation of diet and weight-related daily patterns. The term “obesogenic 
environment” is used to describe contextual/ environmental circumstances 
determining nutrition and other weight-related parameters in a way which promotes 
unbalanced dietary intake and reduced energy expenditure, thus aiding overweight 
and obesity establishment [117]. Nowadays, establishment of obesogenic 
environments is multifold and partly attributed to globalization trends which have led 
to the massive commercialization of WD in the majority of developed countries, 
allowing for the creation of new eating styles including both Western characteristics 
and country-specific patterns. By familiarizing more populations with the principles of 
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high-fat and sugar consumption observed in the context of WD, both local and global 
diet quality reduces, subsequently strengthening the further establishment of 
obesogenic contexts. Moreover, obesogenic circumstances are further promoted due 
to financial aspects shaping local food environments, for example via reduced 
accessibility to high-quality, expensive food, versus the high and easy accessibility to 
low-cost fast food or ready-to-make meals, in neighborhoods with low levels of 
socioeconomic status (SES) [118]. Especially in populations such as children and 
adolescents who are both in need of high-quality foodstuffs to ensure proper 
development, but also sensitive to the effect of external stimuli, the effect of food 
accessibility and promotion has been multiply demonstrated. Living in neighborhoods 
with easier access to super-markets, rather than fast-food restaurants was associated 
with lower z-BMI levels in children [119].To boot, Osei-Assibey et al showed that 
individuals of those age groups are most susceptible to exposures concerning portion 
sizes, sugar-sweetened beverages and food promotion [120], while Goncalves et al, 
showed the importance of food exposure in the school context on the formation of 
adolescent weight status [121].  

Obesogenic circumstances can further affect weight status by pertaining to 
other health parameters like the natural environmental context via air pollution or 
sunlight exposure, with Wilding et al showing that local residence greenspace 
observed at the time of birth was negatively associated with the chance of presenting 
overweight or obesity at ages 10-11 [122]. Although lack of measure uniformity and 
built environment diversity across different countries hinder the creation of a 
conclusive body of evidence to support direct causal relationships between 
environment and obesity [123-125] contextual factors such as urban-sprawl and the 
built-in environment appear to be able to influence and aggravate the obesogenic 
effect [124,125]. The latter is, thus, considered to be able to affect lifestyle parameters 
such as PA; however, it appears that personal choice can reverse potentially negative 
effects, in cases where individuals make conscious attempts to overcome physical 
obstacles and adhere to healthier lifestyle routines.  

Physical Activity 

PA habits constitute another distinct pillar in the formation of weight levels, 
with a standard recommendation of 20-30 minutes of moderate physical activity 
provided to sustain good health [126]. As expected, due to the provoking increase in 
energy expenditure, recreational PA or PA not aiming at muscle mass increase, is 
directly inversely associated with body fat and obesity presence [127]. Either alone or 
when combined with increased caloric intake in the context of generalized lower level 
of life quality, reduced levels of physical activity or exercise (defined as a minimum of 
10 continuous minutes of conscious physical activity) can lead to weight gain and 
aggravate overall individual health status. The beneficial effects of PA on overall 
quality of life via improvement of health status are even seen in individuals with 
increased weight, where PA is generally recommended or recreationally conducted, 
without being necessarily associated with weight loss purposes. A recent systematic 
review by Pojednic et al, showed that physical activity in people with obesity can 
present beneficial physiological, cardiorespiratory, cardiometabolic and 
immunological effects, irrespective of observed weight loss [128]. Similarly, Soares et 
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al showed that recreational PA is associated with amelioration in body composition of 
children and adolescents with overweight or obesity [129].  

Smoking Habits 

A different aspect pertains to individuals’ smoking habits, the negative effects 
of which on overall health status, disease risk and mortality rates are already well-
known [130]. As evidenced by current literature, smoking and lifestyle are involved in 
a bidirectional relationship, where unfavorable contextual determinants (eg stress or 
other psychological conditions) can promote or increase smoking practice, which can, 
in turn, influence the quantity and quality of food intake or PA. Smoking directly 
impacts metabolic regulation through nicotine’s effect on homeostatic and hedonic 
pathways related to food intake [131]. Smoking affects the secretion of appetite 
hormones, in ways such as increasing leptin and down-regulating ghrelin production 
[132]. In their 2019 review, Chao et al showed that adult tobacco smokers tended to 
present higher levels of BMI compared to individuals who did not smoke, whereas 
smokers presented a significant weight gain after proceeding to smoking cessation, 
due to the observed metabolic dysregulations [132].  

Sleeping Habits 

Subsequently, the cumulative impact of such unfavorable habits can promote 
more unhealthy lifestyle routines, which can, in turn, further enhance the 
establishment of metabolic dysregulation related to obesity phenotypes. One 
example of this pertains to sleep quality and habits, where we observe a reciprocal 
interplay between sleep irregularities and body weight outcomes. As previously 
mentioned, sleep plays a major part in sustaining metabolic functions, as circadian 
rhythms are directly related to energy metabolic pathways [37]. Sleep disruptions 
such sleep deprivation or decreased quality of sleep can result in disruptions in 
neuroendocrine functions, hormonal and glucose metabolism, directly increasing 
inflammatory stress and cardiometabolic risk [133]. In their 2018 review, Cooper et al 
showed that adults sleeping for less than 7 hours per night presented higher chance 
of having increased BMI and obesity, compared to the ones who slept more [134]. On 
the other hand, increased weight can also affect the quality and/or quality of sleep. In 
the most characteristic manifestation of the observed bidirectional effect, individuals 
with increased weight are more likely to show symptoms of sleep disorders, the most 
noteworthy one being obstructive sleep apnea (OSP) [135]. Weight loss is 
subsequently the primary modifiable factor considered for amelioration of the 
disorder due to the profound impact of the observed fat accumulation and 
accompanying inflammatory response to the symptoms of the disease [136,137]. 
Proper sleep habits are, therefore, situated in the center of an overall good health 
status. Notably, regular sleep habits are central in maintaining well-regulated 
metabolic pathways even in the presence of increased body weight. This can, in turn, 
even be essential in predicting the outcome of success in efforts related to 
amelioration of cardiometabolic risk, eg dietary interventions for weight loss. 
Therefore, it appears that it is rather a holistic unhealthy lifestyle approach consisting 
of the interplay of multiple determinants which aggravates the establishment of 
increased weight, than the sole effect of separate risk factors. The impact of this 
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interaction subsequently extends to additional parameters of life quality, the 
worsening of each can reciprocally further aid the disruption of lifestyle habits 
pertaining to more weight-related metabolic alterations.  
 

1.1.7. Gene-lifestyle Interactions in Overweight and Obesity 

In light of the aforementioned, literature has focused on the combined effect 
of gene-environment interactions (GEI), with special focus on the modifying or 
mediating effect of the obesogenic environment on the penetrance and expressivity 
of genes associated with obesity susceptibility. A growing body of evidence has, 
therefore, focused on highlighting the role of GEI in obesity and cardiometabolic 
phenotypes. More specifically, studies have focused on the effect physical activity 
habits or gene-diet interactions in obesity-associated phenotypes.  Although a  
positive energy balance and an excess in the dietary intake of foodstuffs with high fat 
or sugar content can directly lead to increased weight, it is further their subsequent 
interplay with a favorable genetic background that ultimately leads to establishment 
of weight disorders, as well as determining their respective gravity. The field of 
nutrigenetics investigates the impact of the genetic factor on the metabolic and other 
responses to food intake. In similar context but on the opposite side, the term 
nutrigenomics is used to describe the field specializing in unraveling the modifying role 
of nutritional components in gene expression.  

In 2011, Kilpelainen et al used data from approximately 218.200 adults to 
conclusively demonstrate that presence of physical activity successfully attenuated 
the favorable effect of the rs9939609-A allele in increasing obesity risk [138]. Similar 
findings were reported by Xi et al for five obesity-related variants (i.e. rs7138803, 
rs1805081, rs6499640, rs17782313, rs6265), where the effect of which tended to be 
more evident in children with low versus children with increased PA [139]. An early 
20212 review by van Vliet-Ostaptchouk et al highlighted a multitude of GEI 
interactions, with emphasis of the effect of macronutrient intake or physical activity 
habits [140]. Unhealthy lifestyle choices including a sedentary way of living or 
increased energy or fat intake were associated with increased risk for obesity in 
carriers or BMI- or fat raising alleles of variants in genes such as the ADRB2 and PPARγ 
ones [140]. Moreover, interactions between fat intake and obesity-favorable 
genotypes in the apolipoprotein genes were further associated with obesity 
phenotypes [140]. In 2009, Sonestedt et al used data from 4939 participants of the 
Malmo Diet and Cancer study to examine FTO gene-diet interactions in BMI levels. The 
study found that an obesity-favorable FTO genotype was not associated with BMI in 
participants who reported lower fat intakes versus the ones who reported higher 
ones. Additionally to that, it was further shown that the genetic impact was more 
evident to individuals with lower rather than the ones with higher PA levels [141]. 

Qi et al attempted to shed a light on the potential impact of sugar sweetened 
beverages on genetic predisposition for obesity. Data from almost 11.000 participants 
showed a stronger impact of a 32-SNP GRS for BMI in obesity presence when reporting 

higher consumption of the beverages [142,143]. In 2015, Kontinnen et al investigated 
the effect of appetite-dictated tendencies on the effect of genetic susceptibility for 
obesity using data for approximately 5900 individuals from the Dietary, lifestyle and 
genetic determinants of obesity and metabolic syndrome Study and the FinnTwin12 
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Study. The study showed that the effect of a 90-SNP GRS for BMI was partly mediated 
by emotional or excessive eating [144,145].  Similarly, Brunner et al showed that 
disinhibition mediated the effect of a 92-SNP GRS for BMI in the 5-year BMI 
trajectories of 2464 adults [145, 146]. In 2023, Nakamura et al accordingly showed a 
significant interaction between a 76-SNP GRS for BMI and SFA intake in increasing the 
risk for obesity presence [147]. In like manner, in their 2019 review, Ahmad et al 
conclusively demonstrated the modifying effect of the dietary component on the 
genetic susceptibility to obesity in populations of South Asians [148]. 

Gene-diet interactions can also have effects on various characteristics of 
quality of life. GWAS on characteristics of sleep quality and quantity have identified 
various loci presenting strong associations. A 2016 meta-analysis of GWAS on sleep 
duration and morningness, investigated previously shown associations with genetic 
variants and further identified novel loci for both traits [149]. Another 2016 GWAS 
identified various genetic loci associated with sleep duration, insomnia and sleepiness 
during daytime, as well as loci related to more than one sleep quality characteristics 
[150]. A different GWAS by Lane JM et al, in 2019, further identified 57 loci related to 
insomnia [151]. Other studies have highlighted that gene-sleep interactions may 
attenuate genetic susceptibility to obesity when favorable sleep habits are present 
[152]. In the same context, depression symptoms have also shown a positive 
association with overweight/obesity existence [153] and a reciprocal interplay 
between the two has also been suggested [154]. GWAS and meta-analyses of GWAS 
on depression symptoms, have shown associations with more than 80 replicated 
genetic loci [155] and associations with 102 independent variants, respectively [156]. 
GWAS have investigated relations of genetic loci, namely, with stressful life events 
[157] and bipolar major depressive disorder [158].  

Figure 14 summarizes the cascade of events followed by macro- and 
micronutrient intake, placing diet in the center of the interactions with other factors 
affecting metabolic pathways. Gene-diet interactions are simultaneously implicated in 
inflammatory, metabolic, epigenetic and gut microbiome-related procedures, 
ultimately modifying the risk, onset and gravity of cardiometabolic and inflammation-
related disorders. The role of nutrigenetics and nutrigenomics is, therefore, deemed 
increasingly essential in both understanding disease etiology but also further 
proceeding to the creation of prevention and treatment strategies [159]. When 
discussing the role of gene-diet interactions in complex disease, Qi et al concluded 
that the collection of nutrigenetic data would enhance healthcare via means of 
identifying high risk individuals and/or individuals who would differently benefit from 
the adoption of various dietetic approaches. Qi’s study concludes by emphasizing the 
encouragement of the National Human Genome Research Institute in putting the 
collection of genomic information in the center of strategies concerning behavioral 
interventions [160]. 
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Figure 14. Basis of gene-diet interactions based on current literature [36]. 

 

1.1.8. Genetic Risk Scores in the field of Weight Management 

The following information in 1.1.8. constitute information published under the publication. J 
Atherosclerosis Prev Treat. 2023; Jan-Apr;14(1):35-43. doi.: 10.53590/japt.02.1045 and can be found 

in Appendix A. 

Deciphering disease etiology by quantifying the impact of genetic 
predisposition constitutes the focal point in the conduct of research surrounding 
genetics during the last years. Identifying and investigating the effect of disease-
associated single nucleotide polymorphisms (SNPs), as well as using them to create 
aggravated genetic scores, provided encouraging results in the field of cardiovascular 
(CVD) and cardiometabolic disease [161,162]. Those findings shed a quantifiable light 
on the role of genetic makeup while expanding the horizons for the potential creation 
of new and personalized treatment approaches. The construction of polygenic risk 
scores (PRSs) thus quickly expanded to the notion of potentially contributing to 
determining disease risk and subsequently contributing to effective disease 
prevention, diagnosis and even treatment [161-163]. The need for more extensive 
research resulted in the gradual evolution of continuously enhanced methodological 
approaches for PRS extraction [164]. As the latter examine the effect of multiple 
variants on the outcome of interest based on a large SNP pool in populations of 
increased size, their creation and use were extensively investigated through genome-
wide association studies (GWAS) in large consortia. The increasing presence of PRSs 
for multiple phenotypes in the current literature ultimately led to the creation of  PGS 
catalog; an inclusive database comprising of all PRS entries created to date [165]. 

Discussion and research around PRS use as a prediction and treatment tool has 
recently yielded encouraging results, with studies reporting beneficial effects in 
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cardiovascular and cardiometabolic disease [161,1622]. Provision of lifestyle 
recommendations appeared to significantly contribute to obesity treatment [2] and 
coronary artery disease (CAD) prediction and greatly benefit individuals with high PRS 
across the spectrum of CVD, with PRSs even constructed for stroke and hypertension 
[161,163]. In like manner, the American Heart Association recently focused on the 
potential utility of PRS in CVD and other cardiometabolic disorders such as type 2 
diabetes (T2D), underlining the need for the conduct of additional research to 
strengthen PRS inclusion in current practice [162]. Subsequently, discussion around 
the integration capacity of PRSs as a way to promote precision medicine and 
personalized nutrition is ongoing, with special attention to ameliorating relevant 
challenges, namely the differentiational influencing capacity following interaction 
with environmental stimuli, the diverse methodological approaches in PRS extraction 
and the understanding of the true meaning of genetic information both from 
professionals and patients alike.  

PRS and weight-related parameters 

Evaluation of genetic risk in the form of summed risk scores primarily treated 
CVD danger but quickly expanded to other disorders of cardiometabolic profile [162]. 
The conduct of extensive GWAS was accompanied by the development and expansion 
of the GIANT consortium [83]. This led to the identification of multiple Body Mass 
Index (BMI)-associated loci with the milestone discovery of the first 97 loci accounting 
for about 2.8% of the marker’s variation [166]. Nowadays, approximately 6% of BMI 
variance is explained by 785 near-independent genome-wide significant SNPs [8,9]. 
Thus, the beginning approaches of quantifying genetic predisposition mainly involved 
the literature-based, a priori selection of disease-related variants and the subsequent 
investigation of the impact of their added effects. Therefore, various genetic risk 
scores of tens of SNPs were created and used in the examination of associations 
between increased genetic risk and disease manifestation or severity. In like manner, 
research on personalized approaches for combatting cardiometabolic and weight-
related disorders primarily focused on examining the combined effect of target SNPs 
with different dietary regimens. In this context, the first large initiatives such as the 
FOOD4ME project and the POUNDS lost clinical trial [167,168], attempted to unveil 
the interactive role of genetic makeup and nutritional habits in overweight and 
obesity. Focusing on target SNPs and macronutrient content, the projects provided 
limited, but encouraging, evidence on the effect of gene-diet interactions on 
anthropometric traits.  

Based on GIANT-derived information or the conduct of independent GWAS, 
different teams proceeded to the development of PRSs for BMI in populations of 
various sizes. To date, PRSs associated to anthropometric traits and body 
measurements account for 154 of the database entries [165]. Indeed, nowadays, 
attempting to decipher the multifactorial obesity etiology using genetic information 
has become central in research surrounding BMI, with efforts made to explain the 
polygenic prediction of weight formation throughout the life course [169,170] Khera 
et al. highlighted the role of including a multi-variant PRS in explaining weight variance 
in populations ranging from birth cohorts to middle-aged individuals [169]. 
Correspondingly, Shi et al recently constructed a different BMI PRS to investigate 
potential associations with overall cardiometabolic health from early age to 
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adulthood. The study revealed significant associations between the score and other 
indices of cardiometabolic profile, namely fasting glucose and systolic blood pressure 
[170]. Building on the data and the role of genetic makeup in overweight or obesity 
presence, current research also focuses on the potential influence of genetic markers 
on weight loss. A study by de Toro-Martín investigating the extent of the genetic effect 
on the success of bariatric surgery, showed an increase in the prediction model 
accuracy when including PRSs, as well as significant interactions between the scores 
and the reduction in post-surgery recovery and surgery type [171]. In the same 
context, Katsareli et al showed that adults with increased genetic risk score for obesity 
noted a decrease in post-bariatric surgery loss of excess weight, with each unit of the 
score being associated with a 4.618% decrease in the 12-month observed weight loss 
[172].   

In the same spectrum and building on the findings of previous key projects, 
emphasis should also be given on studies looking into the potential interactions 
between genetic scores and macronutrient content [112]. Moreover, studies focusing 
on the genetic influence on the observed weight loss after lifestyle interventions to 
combat overweight and obesity even outside of a clinical environment are also 
needed. Research on this field could unravel the gene-diet interactions surrounding 
weight management and loss and ultimately maximize the impact of individualized 
recommendations using genetic data to determine optimal treatment strategies. As a 
result, effectively unravelling the genetic proportion of body weight variance could 
progressively allow for the formation of more inclusive strategies to its management.  

 
PRS Interactions with Lifestyle Determinants 

In addition to accounting for the risk attributed to genetic makeup, the impact 
of PRS interactions with lifestyle factors such as diet, ultimately influencing weight 
management have also been studied.  In a 2021 study by Wang et al, a 60-SNP PRS 
was constructed using variants found to be associated with birth weight and later-life 
disease. The interactions between the genetic score and dietary parameters showed 
that healthy habits during early life, such as breastfeeding, were beneficial in reducing 
the risk for worse lipidemic profile in adult life in participants with higher genetic risk 
[173]. The significant modifying effect of diet was also demonstrated by Tan et al, who 
showed that individuals with higher PRS for obesity indeed presented higher levels of 
C-reactive protein but those levels appeared reduced in the presence of high dietary 
protein intake [174]. Similarly, middle-aged individuals with a higher genetic risk score 
for thinness presented lower body weight; an association aggravated with high 
protein and low carbohydrate intake, among others [175]. The multidisciplinary 
character of genetic risk-associated interactions is evident throughout the reciprocal 
interplay between the formation of anthropometric characteristics’ levels and the 
formation of the lifestyle choices surrounding them. In adult populations, Dashti et al. 
showed that adults with higher genetic risk for obesity were less likely to make 
healthier food choices at workplace and more likely to purchase more food and 
adhere to unhealthy dietary habits such as delaying or skipping breakfast and 
homemade meals [176]. However, Lee et al showed that BMI PRSs were related to 
body weight in Korean adults, but not to their respective caloric or macronutrient 
intake [177]. Similarly, Konttinen et al highlighted that elevated genetic risk was more 
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correlated with increased weight gain during a 7-year period in individuals not 
demonstrating restrained eating than those who adhered to it. However, the study 
attributed the effect to the role of previous processes entailing weight gain and 
nutritional habits, rather than a separate factor which would influence future weight 
gain [178]. Extended associations have also been explored, with Park et al showing 
that individuals with a high genetic risk for BMI, early menarche and attrition to an 
unhealthy diet (i.e. high consumption of fried foods and low consumption of fruits and 
vegetables) presented an increased obesity risk compared to those with late 
menarche and attrition to a healthier diet [179]. A different study focusing on 
European children and adolescents, underlined the modifying effect of diet, where 
genetic influence was attenuated by fiber intake in participants presenting higher 
genetic risk for obesity [180].  

To boot, PRS-lifestyle interactions constitute a focal point across the spectrum 
of understanding more weight-related diseases. The emphatic effect of nutrition is 
underlined in studies of approximately 70000 participants of the UK Biobank, where 
adherence to a healthier diet was associated with reduced risk for cardiovascular 
disease, even in individuals with a high genetic risk score. Similarly, adoption of a 
healthier lifestyle was linked to lower CVD risk and overall mortality, again irrespective 
of genetic danger. [181,182]. Moreover a different large study with data for almost 
340000 UK Biobank participants showed that increased genetic risk for type 2 diabetes 
(T2D) was associated with higher chances for CVD manifestation; an effect reduced in 
individuals with better quality of lifestyle [183]. With regards to T2D alone, increased 
values of a PRS for the disease and attrition to the Western dietary pattern  were 
associated with higher levels of fasting glucose [184]. Likewise, López-Portillo et al 
demonstrated that fasting glucose levels were higher in non-diabetic individuals with 
increased genetic risk for T2D and higher consumption of sugary beverages, compared 
to those with lower genetic risk scores and reduced intakes of the latter [185]. 
Biochemical interactions have also been studied, where PRS for T2D have been found 
to significantly interact with triglyceride and cholesterol levels in the subsequent 
formation of fasting glucose levels [186]. Merino et al showed the dominating effect 
of unhealthy diet in increasing T2D risk even by 30%, again irrespective of genetic risk 
[187]. Additionally, although Zhang et al did not show significant interactions between 
genetic risk and adherence to the plant-forward EAT-Lancet diet for T2D onset, their 
study did note that individuals with increased genetic risk and lower attrition to the 
dietary pattern did present the highest risk for T2D presence during a 24-year follow-
up period [188]. Correspondingly, PRS-diet interactions have been evident in more 
disorders, such as cancer and dementia, where an increased diet quality lower the 
chances for disease onset, even in individuals of high genetic risk [189-191]. In a similar 
context, lifestyle can also indirectly affect the gravity of genetic risk on actual disease 
manifestation via increase in weight-related anthropometric measurements alone. 
Esteve-Luque et al showed that higher values of BMI significantly interacted with 
genetic risk in increasing triglyceride levels and the subsequent risk for 
hypertriglyceridemia [192]. A different study underlined that obesity presence led to 
higher risk for T2D, even in individuals with lower genetic risk and better lifestyle 
quality [193].  

 
PRS Utility in Personalized Recommendations 
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Research around the potential role of PRS use in clinical practice has shown 
that inclusion of PRSs in models for cardiometabolic disorders such as cardiovascular 
disease (CVD) can account for risk prediction in a manner similar to established 
contributing factors such as cholesterol levels [194-196]. The Task Force of the 
International Common Disease Alliance has further underlined the importance of PRS 
inclusion in increasing the accuracy of predicting CVD disease risk and severity, 
throughout one’s lifetime [197], and the weighted contribution of PRS to maximizing 
patient outcomes [197]. Given the potential increase in accuracy observed in 
prediction models after the addition of PRS, testing their potential utility has also 
expanded to the field of anthropometrics. Choe et al showed that a BMI PRS was 
associated not only with longitudinal BMI change, but also with other cardiometabolic 
phenotypes, such as fatty liver [198]. A similar attempt was made by Padilla-Martinez 
et al., who displayed significant associations between PRSs for T2D and obesity and 
manifestations of prediabetes and other disrupted cardiometabolic parameters [199].  

In this context, PRS use could be seen as a useful tool to increase disease 
prevention through successful prediction and/or early detection. This notion carries 
both favorable effects for public health and financial parameters of healthcare 
systems, as well as optimizing individual understanding and ability to choose and 
decide optimal combatting strategies [200]. Although the inclusion of PRSs and 
relevant interactions can explain cardiometabolic disease risk [45], the conversation 
around its clinical validity underlines the importance of real-time context on PRS 
information evaluation and decision-making in order to avoid confusion with genetic 
determinism [200,201]. This sheds a light on the vital role of both development of 
valid methodologies to increase PRS reliability, transferability and accuracy, as well as 
the professionals’ familiarization with the interpretation of its information. This is also 
why the education of healthcare professionals is put in the center of integrating 
genetic information into daily practice.  

Furthermore, taking PRS information into account can prove beneficial on its 
own accord in patients with extremely high genetic risk [201] and, thus, PRS utility is 
also discussed at personal level [38]. PRS information can be differentially valuable to 
each individual, according to both their personal interest and understanding of the 
information, as well as relevant genetic risk in outcomes of interest. The latter might 
not always correlate to matters of clinical importance, but do account for increasing 
awareness on genetic predisposition for various matters significant to the individual. 
It is therefore why, a reliable approach to PRS calculation for various traits, with easily 
understandable and interpretable results is central in future research surrounding PRS 
use [195]. Especially in cases regarding cardiometabolic disorders such as overweight, 
obesity and type 2 diabetes, finding ways to efficiently include PRS prediction in easily 
applicable risk tools is considered a priority for the maximization of PRS efficacy.  

 
Challenges in PRS Construction and Interpretation 

Although inclusion of PRSs in disease prognosis can be beneficial, several 
considerations arise when discussing the methodological aspect of PRS construction, 
the efficacy of the various PRS development methodologies presented in current 
literature and the real-time interpretation capacity in clinical and non-clinical settings. 
Firstly, the fundamental limitation of PRS’ universal application concerns the 
underrepresentation of data used from populations of different genetic ancestry 
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[200]. To date, although several attempts for PRS construction using data from various 
populations have been made, PRSs presented in literature mainly focus on European 
ancestry. The lack of existent PRSs deriving from large cohorts of global populations 
affects their translational capacity in less frequently examined populations where 
contextually phenotype-associated variants, SNP linkage disequilibrium (LD) or allele 
frequency may vary. Therefore, a preceding necessity for developing more PRSs using 
data from populations around the globe is formed before discussing their maximum 
use, in order to ensure universal application capacity. 

Another pillar of PRS development refers to the biases of the different 
methodological approaches undertaken in calculating the scores [200]. Diverse 
current practices consist of: i) the replication of simple aggravations of the risk-alleles 
for phenotype-associated variants using their respective effect sizes from current 
literature (i.e. consortia such as the GIANT one or data from large studies such as the 
UKBiobank [46] or the Twins Early Development Study -TEDS [203] ) ; and ii) the 
conduct of novel GWAS in populations of sufficiently large sample sizes, extraction of 
summary statistics, subsequent identification of phenotype-associated variants and 
their risk alleles’ aggravation in a holistic score. As PRS development and phenotype 
examinations are ongoing, research may simultaneously focus on the identification of 
novel phenotype-associated variants and the replication of previously identified ones. 
As a result, the statistical design and assessment may significantly differ across studies 
and the final choice for the optimal model to be used may lie in the discretion of the 
researcher according to the needs of the research question at hand. Additionally, 
differences in samples sizes significantly matter in effective PRS validation. Although 
the effect of using target-SNPs outside of reference populations can be limited, 
current discussion around the role of population size has shown that cohorts with a 
few thousands of participants can be of use in replicating results and using SNPs from 
PRSs deriving from even larger populations [204]. Moreover, the additional variety in 
statistical methods (i.e. p-value thresholds, clumping, Bayesian or lasso-based 
penalization), packages (eg PRScs, LDpred2) and assessment applied can largely affect 
the end product which may be ultimately differentiated across studies. It is therefore 
highlighted that standardization of the PRS extraction process [205] is central to 
facilitating their validation and sequentially increasing their predictive ability. 
Additionally, in this context, attempts to practically compare PRS results and 
methodology [164, 203-205] can provide useful data for the next steps in the need for 
a unified, applicable approach to allow for PRSs capable of yielding rapid but reliable 
results and effective comparisons of findings between populations of different 
characteristics.  

Moreover, familiarization with the true meaning deriving from the information 
of the PRS is vital in its correct interpretation. Understanding the potentially indirect 
effects of SNPs included in the models and weighing the environmental factor in are 
key considerations in constructing future PRSs as reliable disease prediction risk tools. 
Apart from the technical aspects, a different cornerstone of practical PRS use 
appertains to the familiarization of healthcare professionals with the field. Proper 
assuefaction with the practical meaning of PRS information is critical for professionals 
to address disease risk and convey the appropriate message to patients. The delicate 
understanding of individual risk and its practical meaning in ultimate disease 
manifestation can be challenging in cases where the risk is small or the patient is not 
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properly acquainted with the details of their genetic profile. As a result, both 
professional and patient education and perceptions around PRS utility are integral in 
its successful use as a disease screening and treatment tool [196,200]. 

 
PRS and Nutrigenetics/Nutrigenomics in Future Healthcare Practice 

Although there is a limited number of studies investigating and discussing the 
extent of PRS effective translation to date, future directions can be encouraging on 
the incorporation of PRS methodologies in the daily practice [161-163]. PRS inclusion 
in disease screening and the formation of personalized recommendations could 
potentially offer 
a solution to the 
growing pressure 
applied to 
healthcare 
systems for more 
inclusive 
strategies and 
efficient use of 
financial 
resources [49]. In 
the field of 
nutrigenetics 
(i.e. the impact 
of SNPs on 
certain nutrient  

Figure 15. Polygenic Risk Score (PRS) in Personalized Recommendations (created 
with BioRender.com). 

 
interaction or role in metabolic pathways) and nutrigenomics (i.e. the impact of 
nutrients on gene expression), PRS use can be considered as a promising tool in the 
advancement of personalized nutrition.  
Understanding the connective links between research conduct and translation is 
substantial in order to be able to reinforce PRS practical use. An integral part to such 
an effort would be the effective translational communication between bioinformatics 
and healthcare sectors in order to enhance proper PRS use and interpretation [205]. 
Especially when referring to the use of PRSs in cardiometabolic and weight-related 
disorders, understanding, quantifying and translating the contribution of genetic 
predisposition is vital in interpreting genetic impact. Incorporating genetic 
information in medical and nutritional advice can maximize the success of the 
proposed strategies, while informing the individuals in main aspects of their genetic 
profile. In this spectrum, PRS interpretation in weight-related disorders can only be 
effective when conducted and evaluated alongside the effect of other lifestyle 
determinants (Figure 15). This can allow for increased motivation on behavioral 
change and lifestyle adaptations [197] to the proposed measures, which can 
subsequently strengthen the disorders’ effective management. 

In an attempt to dissect the steps of including genetic details in current 
practice and promote personalized nutrition, in 2022 the Academy of Nutrition and 
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Dietetics published the creation of a Nutrigenomics Care Map specifying the timeline 
of nutrigenetic information integration in nutritional assessment [209]. The map puts 
professional formation on the forefront of the practice, by inserting the sufficient 
nutrigenomics training prerequisite as the first out of the four steps of the process. 
Patient screening, genetic testing and communication of genetic profiling results as 
part of the nutritional assessment and the setting of SMART (specific, measurable, 
attainable, relevant and time-based) goals complete the suggested procedure [209]. 
Such an approach aims to maximize nutritional consulting by actively involving the 
patient in the formation of goals and dietary regimens optimally corresponding to 
their genetic profile.  Integration of PRSs in this effort could allow the practice to move 
forward from personalized advice provided only based on specific genotypes of key 
genes associated to body weight or obesity [210,211]. As a result, more research in 
the form of Randomized Clinical Trials (RCTs) is needed, regarding the interactions 
between BMI PRSs and dietary regimens in order to establish the evidence-based 
approaches required for the nodes of individualized advice. Such efforts would 
subsequently enhance our understanding and forming of optimal recommendations, 
each-time targeting the outcome of interest and adopting the literature-based, 
corresponding strategy (eg advice on adherence to a dietary regimen of specific 
macronutrient content for the achievement of weight loss in individuals with specific 
PRS for obesity). Due to the current increase observed in the offer of nutrigenetic 
services, establishment of scientific, quality guidelines for directing healthcare 
professionals is vital [212].   

Furthermore, on principle, the meaning of PRS information differentiates itself 
according to the nature of the disorder in reference. For example, a PRS will be 
differently interpreted in cases of monogenic rather than polygenic diseases, such as 
the cardiometabolic and weight-related ones. The multidisciplinary character of those 
disorders therefore reciprocally affects the creation of the appropriate framework in 
which it will be communicated. This interplay between genetic information 
communication and healthcare setting factors centrally affects both the formation 
and the influencing capacity of public health policies in precision medicine and 
nutrition [194-196]. The latter, thus, re-enforces the need for sectors simultaneously 
operating on unravelling the relations between the creation, interpretation and 
communication of genetic information across healthcare professionals. These could, 
in turn, be incorporated into screening tools for multiple traits and contribute to the 
creation of individualized disease prevention or treatment strategies.  

Future incorporation of PRS information in the daily healthcare practice could 
present considerable advantages to advancing precision medicine and personalized 
nutrition. Creation of sound methodologies, accounting for the extent of the impact 
for environmental stimuli and simultaneously able to allow for the effective inclusion 
of PRS results in disease prediction, diagnosis and prognosis is deemed vital in bringing 
PRS research and application forward. PRS information on cardiometabolic and 
weight-related disorders can increase the prognostic validity of already existent tools 
and the fruitful formation and implementation of individualized recommendations. 
However, sufficient familiarization of healthcare professionals with the meaning and 
contextual translation of PRS results plays a major part in its proper communication 
where attention must be given in the role of the interactions between SNPs, 
environment and lifestyle determinants in ultimate disease manifestation. Future 
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initiatives should aim at uniformly enhancing both methodology development and 
educational formation in attempting to firmly establish, integrate and distribute PRS 
use as a daily practicum.  

1.2.  Connective dots between body weight and cardiometabolic risk factors 

1.2.1 Glycemic and Lipidemic Profile 

 Presence of overweight or obesity and the accompanying increase in fat 
accumulation exerts significant effects in metabolic parameters [213] (Figure 16). 
Essentially, presence of increased body weight presents deleterious effect in most 
metabolic pathways, practically affecting the function of most organs to some extent. 
Either directly or indirectly, 
obesity affects peripheral 
health elevating the risk 
for most types of NCDs (i.e. 
T2D, CVD, NAFLD, 
respiratory, 
neurodegenerative, 
digestive and other). 

As shown in Figure 17, 
(24), the previously 
discussed unfavourable 
combination of genetic 
makeup, presence of low 
PA and a chronic positive 
energy balance led to 
increase in fat deposition 
and elevated ectopic fat 
accumulation. The 
establishment of systemic,  

Figure 16. Major obesity-related diseases 
 
low-grade inflammation follows, promoting disrupted hormonal and metabolic signals 
which ultimately result in the manifestation of additional metabolic disorders. As 
previously mentioned, the adipose tissue is currently viewed as an active endocrine 
gland, with the majority of its secreted hormones playing significant roles in energy 
regulation. Expansion of the adipose tissue in the presence of increased weight is 
associated with: i) disrupted production of adiponectin (known as 
“metainflammation” [214] ; ii) increase in the adipocyte determination and 
differentiation factor-1/sterol regulatory element-binding protein-1c transcription 
factor which increases lipogenesis and reduces fat oxidation; iii) reduction in the 
expression of IRS-1 in adipocytes and subsequent reduction of the PI3K activity and 
reduction of PI3K activity in the skeletal muscle; and iv) increased production of 
inflammatory cytokines like TNF-α [215]. 
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Figure 17. Linking mechanisms of obesity and cardiometabolic diseases [24]. 
 

Those effects directly impact glucose metabolism by decreasing insulin sensitivity 
and progressively strengthening the presence of insulin resistance as the 
establishment of obesity and the expansion of fat tissue continue uninterrupted. In 
like manner, fat metabolism also appears dysregulated in the obese state. Obesity is 
accompanied by elevated levels of circulating FFAs and increased production of TGs 
as a means to metabolize the circulating glucose not properly uptaken due to the 
insulin resistant state [215]. 

In this context, we can argue that obesity can be viewed as sine que non for other 
cardiometabolic disease. A combined cluster of overweight/obesity presence and 
their interplay with obesity-related traits related to the observed fat accumulation and 
subsequent insulin resistance, can further increase the risk for cardiovascular disease, 
through establishment of the metabolic syndrome (MetS) [216]. Based on the ATP III 
criteria for the Clinical Identification of the Metabolic Syndrome [217], the latter is 
defined as having 2 or more of the following traits: i) WC higher than 102 cm for men 
and 88 cm for women; ii) TG levels ≥ 150mg/dL; iii) HDL-C below 40mg/dL for men and 
50mg/dL for women; iv) SBP ≥ 130mmHg and diastolic pressure ≥ 85mmHg; v) fasting 
glucose levels ≥ 110 mg/dL. As globesity further establishes, MetS presence steadily 
increases with its global prevalence ranging from 10 to 84 %, as of 2014 [218]. In 2021, 
Bagheri et al examined progression pathways for the MetS and concluded that 
hyperglycemia was the primary factor if not accounting for any prior effect or activity 
(Markovian approach), whereas overweight/obesity led the way for MetS 
establishment according to the non-Markovian approach [219]. Presence of the 
syndrome is accompanied by metabolic or metabolomic dysfunctions that may not be 
observed in the presence of obesity alone. For example,  presence of MetS has been 
associated with systemic mitochondrial dysfunction. Further analysis has also shown 
that modifying the availability or metabolism of compounds such as SFA may even 
limit the inflammation associated with obesity leading to metabolic syndrome [105]. 
Interestingly, apart from the obvious associations with hyperlipidemia, insulin 
resistance and hypertension, a 2016 systematic review in almost 62.000 patients with 



 

75 
 

MetS showed that the disorder is also associated with a lower quality of life, either 
directly or indirectly through effects on BMI or even depression [220]. 

This cluster of abnormal pathogenetic mechanisms directly elevates the risk for 
more obesity-related disorders. In addition to the finding that suggests that 
metabolomic risk observed in the obese state can also cause other cardiometabolic 
disruptions like T2D [221], several compounds of the MetS have been associated with 
increased risk for T2D. Data from 95756 individuals of the Copenhagen General 
Population Study showed that a 1-unit increase in each of the MetS parameter was 
associated with vastly increased observational risk for T2D. Interestingly, only the 
increase in WAC and glucose levels also denoted an elevated genetic risk, whereas 
similar elevation for the other indices was not associated with corresponding increase 
in genetic risk [222]. Nowadays, MetS is considered to be a modifiable risk factor for 
T2D, capable of even being used as a prediction or management tool [223]. 

In 2015, the International Diabetes Federation (IDF) showed a 8.8% global 
prevalence of T2D among adults in the age range of 20-79 years old [218]. In their 
2020 systematic review, Regufe et al showed that presence of MetS in a favorable 
environment (eg with increased genetic predisposition or other comorbidities 
present) constitutes an important factor to T2D development [218]. As described 
above, accumulation of excess ectopic fat burdens the proper function of multiple 
organs and obesity-associated presence of T2D is promoted by a cascade of events. 
Excess fat in liver or pancreas can lead to metabolic shift, where disrupted blood flow 
and lipotoxicity result in hepatic steatosis and disruptions in the production of insulin 
from the pancreatic β-cells. This can lead to a compensatory increase in insulin 
secretion to maintain the rate of glucose breakdown. Progressively and as insulin 
levels rise, the observed resistance to its function is aggravated up to the point where 
the metabolic demands can no longer be met with its innate production [214]. At the 
same time, the low-grade inflammatory response inducted by excessive fat leads to 
increased levels of adipokines, which, in turn, promote the deterioration of β-cell 
function via increasing cell death and inducing hypoxia. At this point, untreated 
hyperglycemia in the obese state gradually leads to the establishment of T2D [214]. 

1.2.2.  Inflammatory Status 

As previously described, obesity is considered a state of low-grade 
inflammation. Presence of excessive weight and fat increases inflammatory cytokine 
production, resulting in cell death and disruptions in glucose homeostasis [224]. The 
enlargement of fat tissue results in elevated production of chemoattractants which 
further activate the migration of macrophage cells in the adipose sites (Adipose Tissue 
Macrophages). Subsequently, the latter proceed to production of a variety of pro-
inflammatory cytokines, such as CRP, TNF-α and IL-6, which further induce 
inflammation [225]. Such substances appear to up-regulate the expression of genes 
implicated in lipid and glucose metabolism, in a way that enhances lipid synthesis by 
suppressing insulin-mediated glucose metabolism and causing a state of glucotoxicity 
[226]. As a result, obesity progressively brings about insulin resistance which can 
promote degradation in the functions of multiple organs, such as hepatic steatosis and 
pancreatic dysfunction [226]. Simultaneously, the expansion of adipose tissue is 
accompanied by reduced blood supply causing a state of observed hypoxia [224]. This 
effect can cause distinct oxidative stress (OS) and further disrupt the production of 
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other adipose tissue-secreted hormones, such as adiponectin. It is, therefore, logical 
to argue that once entering this vicious circle,  the cascade of inflammation-promoting 
events only aggravates the cardiometabolic dysregulations and risk to multimorbidity. 

 
The following information constitute information published under the publication Nutrients 2023, 

15, 1884. https://doi.org/10.3390/nu15081884 and can be further found in Appendix D. 

Vascular endothelial growth factor A (VEGF-A) is involved in various biological 
functions, primarily as a major contributor to angiogenesis induction which extends 
its activities to cell proliferation, migration and even differentiation [227-229]. Due to 
its versatile roles in endothelial function [230], its involvement in activating the 
cortisol–adrenocorticotrophic hormone (ACTH) stress axis, its promotion of 
aldosterone [231] production as well as its multifactorial influence on energy 
homeostasis [228,232, 233], insulin resistance [228,234] and cardiac function [235], 
VEGF-A is involved in various reciprocal relationships influencing cardiovascular and 
cardiometabolic risk factors such as glucose sensitivity, lipidemic profile, obesity and 
blood pressure. Altered VEGF-A expression is observed in the presence of disturbed 
cardiometabolic states, denoting a requited relationship between the biomarker’s 
levels and disrupted cardiometabolic profile. For example, VEGF-A is known to be 
involved in glucose homeostasis, where both its over- and under-expression can affect 
glucose tolerance [234], as well as lipid metabolism, through its regulation of lipases 
and the creation of chylomicrons [233]. In a similar manner, VEGF-A is highly 
expressed in the adipose tissue, where an increase in the number of adipocytes 
signifies increased VEGF-A and subsequent angiogenesis and further cell proliferation 
and differentiation [227]. Circulating VEGF-A levels have been conclusively 
demonstrated as greatly heritable [10]. The past decades have marked the conduct of 
large meta-analyses of multiple genome-wide association studies (GWAS), revealing 
key variants significantly associated with the marker’s levels. More specifically, 
Debette and Visvikis-Siest et al. brought four key single-nucleotide polymorphisms 
(SNPs) to light, collectively explaining 48.7% of VEGF-A variation [236]. Subsequent 
studies have unveiled additional VEGF-A-related SNPs, which have, in turn, been 
further associated with adult cardiometabolic indices [237,238] and even the 
presence of neurodegenerative disorders such as Alzheimer’s disease [239]. Selected 
VEGF-A-associated SNPs have even been directly linked to the presence of 
hypercholesterolemia and metabolic syndrome in adults [240,241]. In addition, the 
interplay between VEGF-A SNPs and dietary components has also been associated 
with multiple metabolic syndrome determinants [242,243]. An example of the 
importance of the interplay between VEGF-A, anthropometric indices and dietary 
compounds was recently highlighted in the finding that the effect of VEGF- A variants 
on circulating iron levels might depend on anthropometric indices (i.e., BMI [244]. 

 
1.2.3. Genetics of Cardiometabolic Risk Factors 

 As in the case of obesity, genetics also play a major part in the onset and gravity 
of other cardiometabolic disorders. In the case of T2D, literature highlights that 
despite its heterogeneity, the heritability of the disease lies in the impressive range of 
30-70% [245]; a fact potentially denoting the large window or opportunity for the 
manifestation of contextual modifying effects, such as nutritional or exercise habits.  
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The effect of genetic makeup on glucose levels and even type 2 diabetes onset 
have been extensively researched through various GWAS. Indeed, about 143 loci have 
been identified having associations with type 2 diabetes onset [246], as well as loci 
directly associated to glycemic traits in general or β-cell function [247]. SNPs of 
indicative genes associated with type 2 diabetes of glycemic traits are presented in 
Table 7. GWAS have now located over 700 T2D-associated loci across populations with 
a range of diverse ancestries [245, 248]. 

Naturally, as previously explained, genetic makeup can affect the interplay 
between the fat accumulation accompanying overweight/obesity development and 
insulin resistance, among other glycemic traits. A shared genetic background is 
implicated in the pathogenesis of T2D and obesity presence, as the latter is based on 
pillars directly associated to glucose and fat metabolism (Figure 18). Currently, an 
increasing number of GWAS reveals loci that contribute to T2D onset and BMI 
variation [249].  Indicatively, the Stratification of Obese Phenotypes to Optimize 
Future Obesity therapy (SOPHIA) project sought out to unravel the genetic 
architecture connecting obesity to T2D onset [250]. The ongoing project sheds a light 
on the combined effect of genetic, transcriptomic and metabolomic factors in T2D 
pathogenesis highlighting the favorable effect of distinct, obesity-related geno- and 
phenotypes [250]. 

 

 
Figure 18. Overlap between obesity-related genes and genes implicated in T2D 
pathogenesis [251]. 



 

 

Table 7. List of indicative genes and single nucleotide polymorphisms (SNPs) associated with T2D and glycemic traits 
Hormone Function Gene Name Chromosomic 

position 
Associated 

SNPs 
Alleles MAF Associated Index Effect 

Allele 
Direction of Effect 

PP Anorexigenic Pancreatic 
Polypeptide (PPY) 

 
17:43940804-

43942476 

rs9957145 G/A 0.18 (A) Type 2 Diabetes G - 
rs9319943 T/C 0.25 (C) Type 2 Diabetes C Negative (β= -0.03) 
rs1517037 C/T 0.24 (T) Type 2 Diabetes C Positive (β= 0.037) 
rs9957320 G/T 0.18 (T) Type 2 Diabetes G Positive (β= 0.055) 

Insulin Indirectly 
anorexigenic 

Insulin (INS) 11:2159779-
2161221 

rs689 A/G/T 0.35 (A) Type 1 Diabetes T - 
rs3842753 T/A/G 0.35 (T) Type 1 Diabetes G Positive (β= 0.308) 
rs1004446 G/A 0.33 (A) Type 1 Diabetes C/G - 
rs3741208 A/G/T 0.33 (A) Type 1 Diabetes T - 
rs4244808 T/A/G 0.35 (G) Type 1 Diabetes G - 
rs4366464 G/A/C 0.10 (G) Type 1 Diabetes C - 
rs3842727 G/T 0.36 (G) Type 1 Diabetes 

in HLA 
individuals 

A/T - 

rs3842752 G/A 0.13 (A) Type 2 Diabetes  Negative (β= -0.016) 
rs3842753 T/A/G 0.35 (T) Type 2 Diabetes G - 

rs149483638 C/T 0.02 (T) Type 2 Diabetes C - 
Leptin Anorexigenic Leptin (LEP) 7:128241278-

128257629 
rs4731420 G/C 0.17 (C) Type 2 Diabetes C - 
rs791595 A/C/G/T 0.23 (A) Type 2 Diabetes A - 

Leptin Anorexigenic Leptin Receptor 
(LEPR) 

1:65420652-
65641559 

rs10889560 C/A 0.16 (A) Type 2 Diabetes C Negative (β= -0.047, 
0.088) 



 

 

1.3. Weight Loss 
 

1.3.1.  Influencing Parameters of Weight Loss  

Determinants of Weight Loss and Weight Loss Maintenance 

Over the years, attempts to combat obesity by achieving weight loss mainly 
refer to the adoption of hypocaloric dietary regimens, the impact of which appears 
enhanced when combined with other healthy choices, such as increased PA. A 
different approach to more severe obesity cases such as the presence of morbid 
obesity and BMI levels of above 40kg/m2, call for more drastic approaches like 
bariatric surgery [214].  

Naturally, the reduction of fat mass accompanying weight loss is greatly 
beneficial to obesity-related comorbidities, as well as all-cause mortality in individuals 
with obesity [214]. Reductions in fat mass benefit the individuals’ glycemic control  
and lipidemic profile by improving levels of TG, TC, LDL-C and HDL-C [214]. In reporting 
findings from Ebbert et al, Uranga et Keller underline that losing approximately 3kg of 
weight can results in reductions in TG and LDL levels and increase in HDL levels; such 
measurements present even enhanced improvement when a weight loss of 8kg is 
observed [214]. Although one would expect that lipidemic profile improves as weight 
loss increases, such a notion is not backed by current literature which hints to the 
potential existence of a weight loss threshold, higher values of which present smaller 
alterations in the improved indices observed [214].     

The approaches adopted are not the sole determinant of a successful weight 
loss attempt. Metabolic risk factors also dictate the success of weight loss initiatives 
to some extent, with Stroeve et al attributing them 57% of successful weight loss 
variation [102]. The genetic factor also plays a major part in such efforts, with multiple 
obesity-related loci to have also displayed associations with rates of achieved loss in 
body weight. In their 2015 review, Martinez et Milagro investigated the effect of 
variants located in popular obesity-related genes, such as FTP, MC4R POMC, LEP, 
ADIPOQ and PPARγ, among others [252]. As it will be further analyzed below, their 
study showed multiple nutrigenetic effects, with obesity predisposing alleles being 
attenuating the effect of hypocaloric diets or significantly interacting with specific 
macronutrients in increasing or decreasing the rates of the observed weight loss [252]. 
In 2019, Lamiquiz-Moneo et al examined the effect of a 25-SNP GRS in the observed 
weight loss of 788 patients with overweight and obesity following a weight loss 
intervention program. The study found individuals with lower levels of the genetic 
score presented greater weight loss at a mean follow-up of approximately 6 years 
[253]. A similar attempt in a population of 1429 children of the  Long-term Effects of 
Lifestyle Intervention in Obesity and Genetic Influence in Children (LOGIC) study 
showed significant associations between 2 (out of 56) examined SNPs and lower 
reduction in body weight for the risk alleles in the LOC100287559-rs7164727 and the 
RPTOR-rs12940622 variants [254]. 

Another pillar of weight change is located in the role of gut microbiome and 
their interaction with metabolic and metabolomic changes. Data from the TwinsUK 
cohort showed no associations between weight change and energy intake, while 
noting that only 41% of weight change was attributed to genetic factors. This, thus, 
led to the notion that the remaining proportion of weight change might be deriving 
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from other factors such as the role of gut microbiota [255]. Based on these principles, 
Cuevas-Sierra et al even proceeded to the creation of a predictive model including 
individual genetic and microbiome characteristics to determine optimal weight loss 
approaches in patients with overweight or obesity [256]. The study investigated 
relations between responses to either a high-protein or a low-fat diet and microbiota 
strains, ultimately creating two different predictive models.  Use of those models 
combined with genetic information increased the selection of the diet most likely to 
succeed in both men and women [256].  

Maintaining weight loss after the adoption of a behavioral intervention or the 
conduct of bariatric surgery has been a subject of discussion during the past decades. 
Weight loss is followed by body adaptations attempting to restore balance and 
prevent starvation and maintaining energy stores (eg increase in ghrelin and decrease 
in leptin). Therefore, periods of weight loss can induce compensatory mechanisms 
which, in turn, attempt to prevent further weight loss and make weight loss 
maintenance even more difficult [257]. In the case of lifestyle interventions, it is 
observed that only a quarter of individuals achieving weight loss after adhering to a 
hypocaloric diet manage to preserve that loss in the long run [258]. In a meta-analysis 
of almost 22.000 patients, Ge et al argued that most weight loss effects observed by 
behavioral interventions disappear at an approximate time of 12 months after 
program completion [259]. Similarly, a 2022 meta-analysis by Flore et al showed the 
importance of the intensity of the intervention followed, highlighting that more 
intense approaches resulting in increased weight loss early or during the intervention 
might benefit the maintenance of the weight loss observed during the acute 
intervention phase [258]. In an attempt to pinpoint the determinants that affect a 
successful maintenance of weight loss, Varkevisser et al highlighted the importance of 
cognitive and behavioral parameters in promoting practices of control of energy 
intake and increase of energy expenditure can benefit  weight loss maintenance [260]. 
This finding is also backed by the systematic review by Ramage et al which underlines 
that successful interventions were mainly characterized not only by dietary 
components (i.e. energy deficit and increased intake of specific macronutrients like 
fiber), but also by increase in behavioral training and self-monitoring techniques [261]. 
Consequently, the adoption of healthy lifestyle strategies such as increase in PA or 
adherence to a balanced diet can only positively affect long-term weight loss 
maintenance.  

Another important factor in the discussion of successful behavioral 
interventions lies in the delivery style of each approach. In 2016, Kelly et al assessed 
the effectiveness of electronically delivered dietary interventions for combatting 
chronic diseases in adults. The review showed that diet quality and several clinical 
indices (eg body weight, WC, TG, TC, SBP) were improved after following a telehealth 
intervention [262]. Similar findings of low-to-moderate quality were reported in a 
different 2022 meta-analysis by Barnett et al [263]. Apart from the obvious 
advantages of eliminating space-induced barriers, long-distance delivery can even 
present financial advantages; Moin et Mangione discussed the delivery of in-person 
compared to electronically delivered intervention for reduction in CHD risk, showing 
that the latter proved to be just as beneficial but, obviously, more cost-effective than 
the other [264]. 
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In the question of whether macronutrient composition plays a part in 
promoting the latter, findings from the Diogenes study showed that individuals who 
had adherence to a 6-month hypocaloric diet of increased protein content presented 
lower weight regain at 12 months, when compared to participants of the low-protein 
diet group [265]. However, consistent results have yet to be yielded on specific 
macronutrient intake, allowing us to currently focus on the benefits of an overall 
balanced dietary regimen, rather than a specific macronutrient ratio. Regarding 
potential sex-differences, although women tend to present greater organization and 
motivation skills during weight loss interventions [266], men tend to present better 
results in weight loss leading to greater weight loss that men [267]. However, weight 
loss maintenance rates do not present significant differences between the two [266].   

It is worth mentioning that in the case of bariatric surgery, better weight loss 
maintenance and metabolic profile are observed in the years following the surgery, 
with special attention to the Roux-en-Y bypass type [268]. This finding is in line with 
the fact that this type of surgery leads to a significant reduction in weight, usually 
larger than the one observed after adhering to behavioral interventions. We could, 
therefore, argue that although weight loss maintenance in this case can present better 
results, we must always keep in mind the weight loss and regain-ed at the end of the 
follow-up periods. Current evidence is limited in the 6-year follow-up period and do 
not allow for generalized conclusions on the success of long-term maintenance to be 
drawn. Jones et al also highlighted that a passive stance in the period after the 
bariatric surgery also negatively affects the maintenance and further pinpoint the role 
of active self-management skills in enhancing the observed maintenance [269]. We 
could, therefore, argue that approaches aiming at substantially shaping the 
individuals’ conscientious understanding and practicing of healthy lifestyle 
approaches (i.e. healthy eating, exercising, reducing stress and having good sleep 
habits, among others), irrespective of undergoing a bariatric surgery or not, might 
present better chances of achieving both weight loss and long-term maintenance.  

Dietary Interventions for Weight Loss 

Naturally, energy deficit is essential in achieving weight loss. Meta-analyses 
have shown the superiority of following very low energy diets with less than 800 kcal 
per day (VLEDs) compared to low energy diets (LEDs) containing 800-1200 kcal per 
day, in achieving greater weight loss [270]. However, the differences between the two 
strategies appear to decline over time, seeing as individuals having followed LED 
present comparably similar rates in sustaining long-term weight loss to the ones 
having adhered to VLEDs [270]. However, the impact of VLEDs on body composition 
constitutes a matter of discussion, with Steur giving special focus on the potentially 
detrimental effects of such diets on skeletal muscle [271].  

Another approach concerns the adoption of intermittent fasting techniques, 
where energy intake is limited within a specific time frame, usually concerning a 6- or 
8-hour permissible window per day, or a 24-hour fasts on alternate days or even a 2-
non-consecutive-day fast during the week [272]. In 2021 umbrella review, Patikorn et 
al showed that the practice was indeed associated with ameliorations in the 
modifications of multiple obesity-related traits [273]. In their 2020 review, Welton et 
al showed that IF techniques resulted in significant weight loss, but not substantially 
differentiated than the one compared to caloric restriction strategies. In this case, IF 
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was found to relate to better glycemic control in individuals following the practice 
[272]. Similar results were reported by Gu et al who showed no differences in weight 
loss between IF and caloric restriction, but an amelioration in glycemic indices such as 
HOMA-IR and insulin [274]. Interestingly, the study showed that IF provided 
significantly different results when compared to no intervention diets, meaning that 
practicing IF can be more beneficial than following other types of isocaloric regimens 
[274]. In this spectrum, Varady et al highlight the beneficial effect of IF not only on 
short-term weight loss but overall improvement of clinically-related, cardiometabolic 
factors [275]. 

Apart from caloric restriction in whichever form, several specific dietary 

regimens have been examined, with special focus on investigating the effects of low 

carbohydrate (<45% of total energy intake) or low fat content (<30% of total energy 

intake), or even comparing the two approaches. Table 8 summarized key dietary 

interventions in the field.  

Table 8. Summary of key dietary interventions investigating the effect of different 
macronutrient content on weight loss. 

Name Proposed Intervention Duration Participants Outcome 

DPP Placebo vs Metformin vs 
Intensive Lifestyle 

Intervention (Hypocaloric, 
low-fat diet) 

9 months 3234 individuals at 
high risk for T2D 

High-
carbohydrate, 

low-fat diet 
associated with 

increased weight 
loss 

Look AHEAD Lifestyle intervention 
(Hypocaloric, low-fat diet 

and increased PA) 

6 months 
with 

follow-ups 
up to 4 
years 

5145 participants 
with 

overweight/obesity 

Low-fat diet 
associated with 

increased weight 
loss 

POUNDS 
lost 

Dietary Intervention 
[Hypocaloric moderate-
fat, moderate-protein vs 

moderate-fat, high-
protein vs high-fat, 

moderate-protein vs high-
fat, high-protein diets) 

6 months 
up to 2 
years 

811 participants 
with 

overweight/obesity 

No difference in 
weight loss 

between the four 
diet groups 

DIETFITS Dietary Intervention 
(hypocaloric, healthy low-

fat vs healthy low-
carbohydrate) 

12-months 609 individuals with 
overweight 

No difference in 
weight loss 

between the two 
diet groups 

DiOGenes Dietary Intervention 
(Hypocaloric high-protein, 

high-glycemic index vs 
high-protein, low-

glycemic index vs low-
protein, high glycemic 

index vs low-protein, low-
glycemic index 

8-week 
low-calorie 
diet and 26 
weeks ad 
libidum 

932 individuals with 
overweight 

No difference in 
weight loss 

between the four 
diet groups 

DIRECT Dietary Intervention 
(Hypocaloric low-fat vs 
hypocaloric, MD nuts vs 

isocaloric, low-
carbohydrate) 

2 years 332 individuals with 
obesity 

MD and low-
carbohydrate 

diets associated 
with greater 
weight loss 
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PREDIMED Dietary Intervention 
(Hypocaloric MD+EVOO 
vs MD+ mixed nuts vs 

control) 

One-year 
follow-ups 

up to 5 
years 

7447 at high CVD 
risk 

Lower risk of CVD 
incidence in MD 
+EVOO vs MD + 
mixed nuts, vs 

control 

 

Intake of low-carbohydrate regimens has gathered lots of attention, especially 

due to the increasing popularity of adopting schemes such as the Atkins or the 

ketogenic diet to achieve weight loss. Findings regarding long-term weight loss 

maintenance after adherence to low-carbohydrate regimens, such as the Atkins one, 

present contradictory results. In 2021, the Obesity Management Task Force 

proceeded to the publication of guidelines for very low energy ketogenic diets 

(carbohydrate intake usually accounts for 10% of total energy intake), in an effort to 

minimize potential complications and enhance the advantages observed in obesity-

related traits after adherence to such diets. The guidelines suggested that these diets 

results in greater weight loss and improvement of glycemic and lipidemic profile 

compared with other interventions. Overall, the study concluded that the diets can be 

an effective way to achieve weight loss, always under the prism of personalization to 

avoid potential aggravating results in other disorders [276]. Regarding the adoption of 

Atkins diets (macronutrient content may range from 10% to 35% of total energy intake 

deriving from carbohydrates), several studies report better loss maintenance rates in 

the 2-year post-intervention period, while others find no significant differences with 

low-fat regimens [277]. Finally, low glycemic index (GI) diets also appear popular for 

weight loss, with current literature reposting inconsistent results as to their leverage 

over other dietary interventions for weight loss [277]. 

Regarding dietary strategies promoting the adherence to low-fat diets, 

Initiatives such as the Diabetes Prevention Program (DPP) [278] and the Look AHEAD 

study [279] have looked into the effect of the latter compared to standard care 

recommendations. Both studies reported an overall advantage of the low-fat diets in 

achieving great weight loss compared to the control groups [270]. Recent meta-

analyses have showed that adhering to low-carbohydrate diets results in greater 

short-term weight loss compared to the one observed by following low-fat diets 

[280,281]. Multiple intervention trials in adults with obesity have shown favorable 

effects on weight loss after following 6-month hypocaloric diets with a low-

carbohydrate compared to a low-fat content. However, data from 1-year follow ups 

report that weight loss maintenance rates remain comparably similar for the two 

groups [227]. According to Chao et al, low-carbohydrate diets result in higher 6-month 

weight loss by 3 or 4kg [270]. Intervention trials have also been designed to specifically 

test for differences between the two regimens in achieving weight loss in adults with 

overweight or obesity. The Preventing Obesity Using Novel Dietary Strategies 

(POUNDs lost) trial [168] examined the effects of four different hypocaloric dietary 

regimens (2x2 design) in 6-month and 2-year weight loss of adults with obesity. The 

four groups comprised of: i) a low-fat, moderate-protein diet (<20% fat, 15% protein, 

65% carbohydrate); or ii) a low-fat, high-protein diet (20% fat, 25% protein, 55% 

carbohydrate); or iii) an MD-alike, moderate-fat, moderate-protein diet (40% fat, 15% 
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protein, 45% carbohydrate); or iv) an MD-alike, moderate-fat, high-protein diet (40% 

fat, 25% protein, 35% carbohydrate) [168]. The study showed a significant mean 

weight loss of 6kg at the end of the 6-month intervention period, but yielded no 

significant differences between the four dietary groups [168]. In a similar context, the 

Diet Intervention Examining The Factors Interacting with Treatment Success 

(DIETFITS) study sought to investigate the effect of matching different individuals to 

either a healthy low-carbohydrate diet or a healthy low-fat one, in the observed 

weight loss after a 12-month intervention period in adults with overweight or obesity 

[282]. In line with the findings presented by POUNDS lost, DIETFITS showed a mean 

weight loss of 6kg at the end of the 12 months, but without significant differences 

within the two diet groups [283]. With regards to the quality of the pooled data in 

current meta-analyses, Churuangsuk et al highlighted that meta-analyses of good 

quality tended to show no differences in weight loss achieved by the two regimens 

[284]. Overall, a 2020 systematic review by Smith et al highlighted that there are no 

sufficient evidence to argue over the superiority of low-carbohydrate to low-fat diets 

in body mass variation [285]. 

Diets with a high-protein content targeting weight loss are considered a 

potentially resourceful approach due to the proteins’ promoting satiety, having 

markedly higher DIT-inducing capacity and preventing loss of FFM [286]. However, 

meta-analyses in the field have demonstrated little to no significant advantages in the 

weight loss achieved after a high-protein and a high-fat diet [270], with a systematic 

review even demonstrating that low-fat diets can even present a modest advantage 

for short -term weight loss [277]. One of the most well-known studies in the field 

refers to the Diet, Obesity and Genes (DiOGenes) study, which investigated the effect 

of four dietary regimens (high-protein, high-glycemic index vs high-protein, low-

glycemic index vs low-protein, high glycemic index vs low-protein, low-glycemic index) 

in the observed weight loss of 932 adults with overweight after an 8-week 

intervention and a 26-week ad-libidum period. The study did not show significant 

differences in weight loss between the diet groups but showed amelioration of low-

grade inflammation indices after following the low-protein diets [287]. A different 

study assessed data from the Measuring Eating, Activity and Strength: Understanding 

the Response-Using Protein (MEASUR-UP) and Protein Optimization in Women 

Enables Results-Using Protein (POWR-U) studies. The study examined the effects of 

following a hypocaloric, high-protein versus a hypocaloric, control diet for a 6-month 

period, on the observed weight loss 80 adults with obesity, finding no significant 

different in the weight loss observed between the two groups [288]. 

In terms of specific dietary patterns, the Dietary Approach to Stop 

Hypertension (DASH) diet has also gained ground . Initially well-known as the go-to 

dietary strategy for combatting hypertension, DASH has also expanded as an effective 

approach to combating hypertension-related disorders, such as obesity due to its rich 

content in foods inversely associated with increased weight and its low content Two 

systematic reviews in 2016 and 2021 showed that DASH resulted in significant weight 

loss compared to control groups [289]. However, literature has not yielded significant 

superiority over other dietary interventions for weight loss.  
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Lastly, as previously described, the advantages of MD on cardiometabolic risk 

factors are largely known [290]. Additionally, research suggests that adoption of MD 

is even beneficial for the modification of obesity-related traits and achieving optimal 

weight loss. The Dietary Intervention Randomized Controlled Trial (DIRECT) study 

attempted to examined the effects of MD in weight loss of 332 individuals with obesity 

after a 2-year intervention of either a hypocaloric, low-fat diet; a hypocaloric, MD diet 

or a low-carbohydrate, isocaloric diet [291] showed that participants in the last two 

groups achieved greater weight loss and noted better levels of glycemic or lipidemic 

indices, than the ones in the low-fat diet [291]. To boot, the Prevención con Dieta 

Mediterránea (PREDIMED) Study, constituted another a large, randomized clinical trial 

(RCT) targeting prevention of CVD in individuals at high risk for the disease. The study 

examined the intake of MD with olive oil versus MD with mixed nuts, comparing to a 

control group. Although MD was proven beneficial for reducing CVD incidence, no 

significant effects were observed for short- or long-term weight loss [292]. In their 

2011 review, Nordamann et al showed that individuals having following MD 

interventions presenting better weight loss, glycemic, lipidemic and inflammatory 

profile than the ones in low-fat diet regimens at 2-years of follow-up [270]. Finally, Ge 

et al concluded that MD superseded all other dietary regimens, seeing as weight loss 

appeared to diminish for all other types of diets at a time of 12 months after 

intervention completion [293]. 

 
1.3.2.  Metabolomics of Weight Loss 

Continuing the discussion on the existence of specific metabolomic signatures in 
the presence of obesity, the role of metabolomic profile has also been examined in 
weight loss. In line with previous relations discussed, this effect also presents 
bidirectional influences, with findings showing that baseline metabolic profile can 
affect weight loss and, in turn, weight loss can cause differences in the levels of several 
metabolites. Overall, weight change is associated with distinct alterations in 
metabolomic profile either by inducing them or vice-versa. Disruptions in oxidative 
stress, mitochondrial dysfunction and the tricarboxylic acid cycle (TCA) are in the 
forefront of weight change-related metabolomic parameters. Numerous factors 
appear to be at play, with significant interactions observed between proposed 
behavioral interventions aiming at weight loss and changes in metabolites implicated 
in glucose and fat metabolism or even gut microbiota strains [100]  

In patients with morbid obesity, predictive models performed best, including 
metabolites such as ketone bodies, TGs and AAs. In a study by Geidenstam et al, lower 
levels of BCAAs and other AAs, among other metabolites, were associated with greater 
weight loss. Insight on the weight-loss induced metabolomic effects have provided 
implications for several metabolic pathways. For example, administration of 
metformin in combatting obesity was shown to be associated with AMPK activation 
and subsequent increase in FA oxidation, thus promoting weight loss [105]. In a study 
of 3.176 women from the TwinsUK cohort, Menni et al found that urate, γ-glutamyl 
valine and 3-phenylpropionate were independently associated with changes in BMI. 
Specifically, adding the four metabolites in prediction models significantly increased 
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the AUC for BMI change, compared to accounting only for demographic or lifestyle 
variables [106]. 

Observed differences may vary according to the proposed interventions, with 
Rangel-Huerta et al summarizing the findings of current literature in their 2019 review 
[102]. Different studies have demonstrated the effect of energy restriction on changes 
in several metabolite concentrations urine trimethylamine N-oxide (TMAO), SFA, 
MUFA, OUFA and phospholipids, among others [102]. In the case of examining 
different dietary schemes, a hypocaloric diet with increased intake of dairy was 
associated with elevated levels of citrate, urea and creatinine but lower levels of 
TMAO. Results from the POUNDs lost study showed differences in BCAA and several 
AAs following weight loss; findings successfully replicated in the DIRECT study. In the 
case of adopting PA recommendations. 

Metabolomic signatures also appeared altered after weight loss was achieved in 
populations of children and adolescents. Sohn et al showed modifications in 
glutamate, arginine and BCAA metabolic pathways after 6-months of a weight loss 
intervention in 40 children, with significant metabolomic changes also noted in the 6 
to 18-month period following the end of the intervention [294]. Similarly, Rigamonti 
et al showed significant alterations in 64 metabolites of 42 teenagers with obesity 
after adhering to a hypocaloric diet for a total duration of 3 weeks [295]. Interestingly 
both the aforementioned studies showed increase in carnitine and carnitine-
associated metabolites after the end of the proposed interventions, hinting at 
beneficial changes in fat oxidation post weight loss.  
 

1.3.3.  Gene-lifestyle Interactions in Weight Loss 

In line with the insightful findings on the role of gene-lifestyle interactions in 
weight change, current literature presents a vast variety of proposed interventions 
examining different approaches for achieving optimal weight loss. Figure 19 depicts a 
representative network of published research surrounding the field of gene-diet 
interactions in weight loss throughout the past 14-year period.  
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Figure 19. Papers concerning gene-diet interactions in weight loss [created with 
connected papers.com]. 

 

When proceeding to accounting for the additive effect of genetic makeup, 
findings display great interest in its implications on diet’s mediating or modifying 
effects. Nutrigenetic interactions are observed in the manifestations of various 
obesity-related traits, whether they be of anthropometric or even behavioral nature. 
Rivera-Iniqguez et al investigated nutrigenetic associations in rewarding behaviors, 
among others, highlighting the influence of dietary acceptability and genetic 
compatibility in modifying eating behavior [296]. This constitutes a promising field of 
interest for future research surrounding the role of gene-diet interactions in 
intermediate or psychological phenotypes affecting obesity traits via impact on 
dietary habits. 

In large, nutrigenetic effects have been studied in the context of either cross-
sectional or retrospective analyses, or dietary interventions investigating the effect of 
hypocaloric diets or diets of different macronutrient content. A meta-analysis on data 
from 33.187 participants of the National Heart, Lung, and Blood Institute Trans-Omics 
for Precision Medicine cohorts showed a significant, UKBB-replicated interaction 
between the rs79762542 variant and carbohydrate intake in influencing HbA1c levels 
[297]. Dietary interventions have examined the combined impact of genetic factors 
and diets of various macronutrient composition on the modifications of body weight 
or other cardiometabolic risk factors, by providing advice based on genetic 
characteristics (nutrigenetic advice) (Table 9). Frankwich et al examined the impact of 
administering diets of different macronutrient contents but combined with 
nutrigenetic advice on weight loss, without observing vast differences in post-
intervention results [297]. A different well-known study concerns the PREVENTOMICS 
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initiative. This study sought to examine the effect of providing personalized vs 
standard advice for 10-week period, on the observed weight loss of 100 individuals 
with overweight or obesity [298]]. Similarly to above, PREVENTOMICS did not show 
significant differences in the observed weight loss of the two groups [298]. 
Furthermore, the Nutrigenomics, Overweight/Obesity and Weight Management 
(NOW) RCT, built on the advice given in the aforementioned DPP trial (the Group 
Lifestyle Balance-GLB) and additionally provided recommendations based on genetic 
information. The trial managed to show increased fat reduction in the group receiving 
GLB and nutrigenetic advice, compared to GLB alone [299].      

Moreover, the NUGENOB and Obekit initiatives attempted to investigate the 
effect of genetic variants in the observed weight loss of participants following a 
hypocaloric low-fat diet vs a moderate-fat (NUGENOB) [300] or a high-protein diet 
(Obekit) [301]. The former yielded no differences in weight loss between the two 
diets, but showed nominal associations between BMI-risk alleles and reduced weight 
loss in participants in the low-fat group [302]. Interestingly, findings from the study 
showed that participants with the AA genotype for the TFAP2B variant presented 
greater weight loss in the low-fat group, whereas GG homozygotes showed increased 
weight loss in the high fat group [303]. In a similar context, the Obekit trial showed 
that homozygotes for the rs1042713 variant showed lower reductions in TC and LCL-
C in the low-fat compared to the moderately high-protein group [301].  

 

  



 

 

Table 9. Summary of key personalized or nutrigenetic interventions investigating the 
effect of different macronutrient content on weight loss. 

Name Proposed Intervention Duration Participants Outcome 

     
Frankwich et al  Lifestyle Intervention 

(Nutrigenetic diet -i.e. 
balanced vs low-fat vs low 

carbohydrate vs MD vs 
standard recommendations) 

8 weeks 
(primary) 

and 24 
weeks 

51 
individuals 

with 
overweight 
or obesity 

No difference in 
weight loss 

between the five 
diet groups 

PREVENTOMICS Lifestyle Intervention 
(Personalized diet vs 

standard recommendations) 

10 weeks 100 
individuals 

with 
overweight 
or obesity 

No difference in 
weight loss 

between the two 
diet groups 

NOW Lifestyle Intervention (GLB vs 
GLB + nutrigenomics 
recommendations) 

12 months 140 
individuals 

GLB + 
nutrigenomics 

group reduced fat 
intake at 12 

months 
NUGENOB Lifestyle Intervention 

(Hypocaloric low-fat vs 
moderate-fat diet) 

10 weeks 771 
individuals 

with obesity 

No difference in 
weight loss 

between the two 
diet groups 

Obekit Dietary Intervention 
(Hypocaloric moderately 

high-protein vs low-fat diet) 

4-month 
intervention 
period and 

6-month 
follow-up 

260 
participants 
with obesity 

Various changes 

 
Generally, regarding the role or genetic variation on weight changes induced 

by lifestyle interventions, a 2018 systematic review by Tan et al highlighted the 
versatility of current results and the fact that most studies up to that point, mainly 
reported findings on the interaction between specific candidate variants and dietary 
parameters in the modification of anthropometric measurements [304]. The most 
representative example concerns the case of SNPs in the FTO gene. Interestingly, 
carriers of the BMI-related, rs9939609-A allele have shown greater reductions in body 
weight after following hypocaloric dietary interventions in a limited number of RCTs 
[277, 305, 306]. To boot, several RCTs have shown no significant interaction between 
the variant and macronutrient composition in differentiating responses to weight loss 
attempts  [277, 307, 308]. However, the POUNDS lost study demonstrated a significant 
increase in weight loss among carriers of the risk allele of the rs1558902 variant who 
adhered to the high-protein diet for the 2-year period [DOI 10.1007/s13668-013-
0061-3]. Interestingly, the same study also yielded important results for other obesity-
related loci. Presence of the obesity-related rs2943641-C and rs2287019- T alleles was 
associated with elevated weight loss and glycemic profile improvement in participants 
adhering to the low-fat diet, with findings pertaining mostly to the short-term (6-
month) rather the long-term (2-year) intervention period [277]. Regarding FTO and 
glycemic profile, a recent meta-analysis by Parastouei et al reported no statistically 
significant differences between the risk allele carriers and non-carriers in changes 
observed for fasting glucose or HOMA-IR after dietary interventions with hypocaloric 
regimens [309].  In 2015, Martinez et Milagro explicitly summarized nutrigenetic 
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interactions observed in dietary interventions targeting weight loss as a way to set 
bases for personalized management strategies [252] Table 10 summarizes the findings 
presented in the study denoting significant interactions between genetic variants and 
dietary components in modifying adult weight loss. Overall, the gene- or GRS-diet 
interactions reported in the literature present contradictory results with many efforts 
showing significant interactions between the two factors and other yielding no 
statistically important findings. The thorough review concludes by highlighting the 
need for more research in populations of large sample size to validate current findings 
and provide more robust results [252].  

 
Table 10. Table adapted from Martinez et Milagro, summarizing gene-diet 
interactions in the weight loss observed in adults following lifestyle interventions 
[252]. 

Gene SNP Proposed 
Intervention 

Participants Outcome 

GIPR rs228719 Four diets with 
different 

macronutrient 
content 

757 
individuals 

with 
overweight 

rs228719-T allele x low-
fat diet resulted in 

increased weight loss 

GNAS G(-1211)A 7-day fasting 87 
individuals 

GG genotype associated 
with increased weight 

loss 
MC4R rs1943218, rs17066866, 

rs17066856, rs9966412, 
rs17066859, rs8091237, 
rs7290064, rs12970134 

6-14 month DPP 3234 
individuals 
with T2D 

Interactions between diet 
and variants in increasing 

weight loss 

PLIN1 11482G->A 1-year 
hypocaloric diet 

150 
individuals 

with obesity 

11482-A allele associated 
with weight loss 

resistance 
PPARG Pro12Ala Diet and exercise 1456 

inidivduals 
Ala12 x high-fat intake 

resulted in lower weight 
loss 

TCF7L2 rs7903146 10-week 
hypocaloric low- 
vs high-fat diet 

771 
individuals 

with obesity 

TT genotype x low-fat 
resulted in increased 

weight loss 
TCF7L2 rs7903146 9-month fat 

reduction and 
fiber increase 

304 
individuals 

TCF72L x fiber affected 
weight loss rates 

TFAP2B rs987237 8-week 
hypocaloric  with 
low- vs high-fat 

diet 

771 
individuals 

rs987237 x energy deficit 
affected the impact of fat 

intake on weight loss 

UCP1 -3826A/G 2-month diet 17 women 
with normal 

weight 

-3826-G resulted in lower 
weight loss 

UCP3 CGTACC haplotype 1-month VLED 214 women CGTACC resulted in 
increased weight loss 

FABP2 Ala54Thr 3-month 
hypocaloric diet 

111 
individuals 

with obesity 

Thr54 resulted in 
increased weight loss 

In a nutshell, the conduct of nutrigenetic studies has, so far, provided limited 
but encouraging findings on the effects of the interactions on anthropometric 
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parameters. Exploring future directions, with emphasis on dietary regimens with 
evidence-based beneficial characteristics, such as MD [310], poses a promising 
direction with extensions in effective  obesity-combatting strategies. 

1.4. Current Gaps in Literature and Thesis Research Questions  

The purpose of the study is to assess the interaction of genetic makeup and 
lifestyle determinants, including gene-diet interactions, on obesity-related traits of 
healthy adolescents and adults with overweight or obesity. Following the literature 
review, the research questions constituting the cornerstone of the present thesis will 
attempt to decipher the following: i) the examination of associations between dietary 
and lifestyle habits and anthropometric and lifestyle indices in Greek adults with 
overweight or obesity; ii) the investigation of the impact of hypocaloric diets of 
different macronutrient content in the anthropometric, body composition and 
lifestyle parameters of Greek adults with overweight or obesity; iii) the effect of 
genetic makeup on the response to the hypocaloric diets and the observed 
modifications of the weight-related indices; iv) the identification of dietary patterns in 
adolescents and their associations with cardiometabolic indices and interactions with 
VEGF-A-related genetic variants; and v) the effect of genetic makeup on the BMI levels 
of Greek adults.  

The innovation of the present thesis rests in: i) the first dietary intervention 
for weight loss examining two different dietary regimens in Greek adults with 
overweight or obesity; ii) the use of an online assessment tool to deliver the 
intervention and assess intervention outcomes; iii) the first analyses for gene-diet 
interactions following the hypocaloric diets in Greek adults with overweight or 
obesity; iv) the comparative evaluations of the dietary habits of adolescent 
populations of different origin; v) the never-before-conducted attempted evaluation 
of the role of VEGF-A variants in adolescent cardiometabolic profile; and vi) the 
creation of the first PRS for BMI in a Greek population of adults. 

 

1.5. Thesis Aims and Objectives   

The aim of the present Dissertation is to investigate the influence of genetic 
background and lifestyle factors (e.g. dietary habits) and their respective synergistic 
effect on obesity-related traits, such as body weight regulation and body composition 
measurements and levels of glycemic and lipidemic indices, in several age groups. For 
those purposes, the objectives of the present Dissertation are hereby summarized in 
the following: 

i. To conduct a dietary intervention for weight loss using hypocaloric dietary 
regimes with difference macronutrient content, in adults with overweight or 
obesity, in the context of the iMPROVE Study [112]; 

ii. To investigate the effect of dietary habits and the dietary intervention for 
weight loss on anthropometric, cardiometabolic and lifestyle indices in adults 
with overweight or obesity, in the context of the iMPROVE Study [112]; 

iii. To investigate the effect of BMI-related genetic variants and their interactions 
with lifestyle characteristics on anthropometric, cardiometabolic and lifestyle 
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indices in adults with overweight or obesity, in the context of the iMPROVE 
Study; 

iv. To investigate the effect of dietary habits on the levels of glycemic, lipidemic 
and inflammatory indices in adolescent populations using data from the Greek 
TEENAGE and the French STANISLAS Family Study, in the context of the 2018 
Chair Gutenberg project [311]; 

v. To investigate the effect of VEGF-A-related variants and their interactions 
dietary habits on the levels of glycemic, lipidemic and inflammatory indices in 
adolescents from the Greek TEENAGE study, in the context of the 2018 Chair 
Gutenberg project [312];  

vi. To develop a PRS for BMI, using data from the Greek studies of NAFLD, THISEAS 
and OSTEOS Studies [208]; 

For these reasons, the aims and objectives of the present Dissertation are 
summarized in greater detail according to each of the three projects, in the 
sections below.  
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2. Methodology 

2.1. The iMPROVE Study 

2.1.1 Ethics, Study Registration and Study Aims and Objectives  

The iMPROVE study constitutes a clinical trial, a dietary intervention created to 
investigate the synergistic effect of genetic background and lifestyle characteristics on 
body weight regulation, body composition, biochemical profile and lifestyle 
parameters.  The study was conducted according to the principles laid out in the 
Declaration of Helsinki and was approved by the Ethical Review Board of Harokopio 
University of Athens, with a protocol number of 1800/13-06-2019 (see Appendix B1). 
The iMPROVE study design has been registered to the ClinicalTrials.gov database of 
clinical studies (ClinicalTrials.gov Identifier: NCT04699448). 

Accordingly, the aim of the study was to investigate the effect of genetic 
background and adherence to hypocaloric dietary regimes with difference 
macronutrient content on the body weight regulation, the body composition, the 
glycemic and lipidemic profile and lifestyle characteristics of an adult, Greek 
population with overweight or obesity. 
The objectives of the study were, thus, shaped as follows: 

i. To investigate the effect of adherence to two different hypocaloric dietary 
regimes on the body weight regulation of Greek adults with overweight or 
obesity; 

ii. to investigate the effect of genetic makeup on the body weight regulation, 
biochemical profile and lifestyle parameters of Greek adults with 
overweight or obesity, by examining BMI-related variants and constructing 
GRSs for BMI; and 

iii. to investigate the synergistic effect of genetic makeup and dietary intake 
on the body weight regulation, biochemical profile and lifestyle parameters 
of Greek adults with overweight or obesity, by examining interactions 
between BMI-related variants and GRSs and dietary factors. 

As of 2023, relevant project proceedings included in the present thesis have 
already been published in a peer-reviewed article [112, Appendices].   
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2.1.2. Study Design and Study Population 

In this context, the iMPROVE study was designed as a three-month dietary 
intervention, with a maximum participation of six months, including Greek adults 
with overweight or obesity, who fulfilled the following eligibility criteria for 
inclusion in the study: 

i. Age in the spectrum of 18 to 65 years old; 
ii. Existence of overweight or obesity (i.e. BMI of more than 25 kg/m2);  

iii. No extreme weight loss in the 3 to 6 months prior to the beginning of 
the intervention; and  

iv. Maintenance of a stable level of physical activity for the duration of the 
intervention 

Exclusion criteria for participation in the study included: 
i. Presence of pregnancy, lactation or desire to become pregnant in the near 

future (i.e. during the intervention period); 
ii. Presence of unregulated comorbidities or chronic or other diseases, which 

can influence dietary intake (i.e. existence of type 1 or type 2 diabetes, 
cardiovascular disease, gastrointestinal disorders, mental illness, dietary 

disorders, cancer of any form); 
iii. Parallel intake of supplements targeted at weight loss; and 
iv. Parallel participation in a different research study targeted at weight loss. 

Eligible volunteers were recruited for participation in the study. Oral information 
on the study protocol and the research aims and objectives was provided to all 
volunteers by health professionals (i.e. dietitians and nutritionists) and nutrition 
science undergraduate and/or graduate students, prior to the volunteers’ providing 
written consent for their participation in the study.  All volunteers included in the 
intervention and the analyses present hereby provided written consent prior to 
enrolling in the intervention. 

Following their enrolment, eligible volunteers participated in the baseline in-
person meeting with trained health professionals (i.e. dietitians and nutritionists) and 
nutrition science students. Volunteers further participated in at least one more in-
person follow-up meeting at the end of the 3 months after intervention onset. More 
specifically, at baseline, participants were randomly allocated to one of the two groups 
adhering to hypocaloric dietary regimes with different macronutrient content 
(Figure 20), as follows: 
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i. Regimen 1: 60% of 
daily dietary intake 
provided from 
carbohydrates, 
18% of daily dietary 
intake provided by 
protein and 22% of 
daily dietary intake 
provided by fat.  

ii. Regimen 2: 40% of 
daily dietary intake 
provided from 
carbohydrates, 
30% of daily dietary 
intake provided by 
protein and 30% of 
daily dietary intake 
provided by fat.  

 
Figure 20. Macronutrient distribution of the proposed diets [112]. 

Daily dietary requirements were calculated for each volunteer based on their BMR 
and physical activity level (PAL). Individual daily needs were calculated with a target 
of achieving an anticipated weight loss of 0.5 to 1kg per week, which was translated 
to a 500kcal reduction in each participant’s daily dietary intake. Three types of diets 
were created for each macronutrient group, with a daily caloric content of 1500 
kcal/day, 1800kcal/day or 2000kcal/day. All proposed diets adhered to the principles 
of the Mediterranean diet (i.e. proposing consumption of red meat once a week; 
consumption of fish once or twice per week; consumption of grains two or three times 
per week and consumption of three portions of fruits and three portions of vegetables 
per day) and were composed of 5 or 6 meals throughout the day, including easy-to-
make and traditional-for-the-Greek-population food combinations and recipes. Each 
participant was provided with the diet of caloric content most closely corresponding 
to their calculated caloric needs. 

At baseline, participants provided fasting blood samples (23mL) and underwent 
assessment of body composition (see below). Moreover, all volunteers were required 
to fill in questionnaires regarding anthropometric and lifestyle data during the entirety 
of the intervention period. For the purposes of facilitating the long-distance collection 
of all relevant data, as well as the provision and renewal of the proposed diets, our 
team proceeded to the development of an original online assessment tool available 
at: http://83.212.122.254/ (Figure 21). All participants were informed on the use of 
the online platform during the baseline meeting. Access to the online tool was granted 
with unique usernames and passwords for each volunteer. During the baseline 
session, each volunteer was informed on the use of the platform by the healthcare 
professional and by being taken on a virtual tour and explicitly shown how to access 
and use it. 

At baseline, participants were called to provide information on:  i) their medical 
history; ii) demographic characteristics; iii) feeling of satiety, by completing a 5-scale 

http://83.212.122.254/
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short questionnaire; iv) adherence to the Mediterranean dietary pattern, by 
completing the questionnaire of the MedDiet Score [313]; v) depression 
characteristics, by completing the CESD-R-10 Questionnaire [314]; (vi) characteristics 
of quality of life and health status, by completing the short version of the SF-12 
Questionnaire which results in the estimation of a physical (SF PCS 12) and a mental 
(SF MCS 12) component [315]; vii) characteristics of quality of sleep, by completing 
the Athens Insomnia Scale Questionnaire [316]; viii) dietary habits, by completing a 
69-item Food Frequency Questionnaire (FFQ) [317]; and ix) physical activity habits, by 
completing the short version of the IPAQ Questionnaire [318] (see Appendix F). 
Completion of the SF-12, AIS and IPAQ questionnaires and completion of information 
on the participants’ anthropometric measurements (i.e., current weight, waist and hip 
circumference measurements), feeling of satiety and self-reported adherence to the 
proposed diet on a monthly basis was also a prerequisite prior to the renewal of the 
proposed diet. The latter was administered to the participant via access to the 
platform and was  
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B.

 



 

98 
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D.

 
Figure 21. iMPROVE Study Online Questionnaire Tool, found at 
/http://83.212.122.254/. A. Welcome Page with links to baseline questionnaires, 
monthly questionnaires and the proposed dietary regimens; B. Page depicting the 
required baseline questionnaires to be filled out; C. Page showing the monthly 
questionnaires to be filled out; and D. page showing the links to download the 
proposed diet (only one link allowed to open per participant).        

 
renewed monthly, once all questionnaires of the preceding month were filled out in 
the online tool and checked by the nutrition expert.  

At the end of the baseline meeting, each volunteer was allocated a nutrition-
expert contact who monitored their adherence to the proposed patterns and 
intervention progress by: i) conducting biweekly follow-up phone calls and monthly 
24-h dietary recalls in order to discuss the potential concerns and provide advice; ii) 
monitoring the monthly completion of all online questionnaires; iii) evaluating the 
participant’s self-reported monthly body measurements; and iv) renewing and 
allowing access to the proposed diet in the online tool.  
 
2.1.3 Project Outcomes  

The primary outcome of the study lied in the change in body weight after the 
proposed dietary intervention (minimum of three months). Its secondary 
outcomes are summarized in modifications of the following:  

i. Changes in anthropometric measurements and body composition (i.e. WC, 
WHR, body fat percentage and visceral fat); 

ii. Changes in biochemical profile (e g. TC, TG, glucose, HDL-C, LDL-C) 
iii. Change in lifestyle parameters (i.e. sleep quality, overall health status and 

depression symptoms). 
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2.1.4 Anthropometric, Body Composition and Dietary Assessment  

In all in-person meetings, basic anthropometric measurements were collected 
for each participant, by a trained health professional (i.e. dietitian or nutritionist) or a 
nutrition science student. Blood pressure was also measured, using an electrical 
sphygmomanometer, with the volunteer in a sitting position, without crossed legs, at 
the left-hand side, where the left arm stands relaxed on a surface at the height of the 
position of the heart. Body weight was measured in kg, via use of electronic scales 
with the participants in light clothing (clothing weight calculated at 0.5kg). Height was 
measured in cm using a stable stadiometer, where the participants were barefoot, 
with their shoulders in a relaxed position and while looking ahead. Waist 
circumference (WC) and hip circumference (HC) were measured in cm and in the 
nearest 0.1 cm, using a non-retractable body soft tape measure. The former was 
measured between the iliac crest and the twelfth rib and the later in measured at the 
point of the hips presenting the widest extension. Both measurements were taken 
when participants were standing straight, relaxed and with their hands parallel to their 
body. During all in-person measurements, guidance and reminders were provided in 
the participants so as to be able to conduct the measurements themselves on a 
monthly basis and report them in the online monthly questionnaires.  

Body composition was analysed using a bioelectrical impendence analysis 
machine (Tanita Body Composition Analyzer BC-418), where the participants were in 
light clothing and without any metal objects on them. As described above (see 1.1.2. 
Body Weight and Composition Assessment Methods) he method of analysing body 
composition via use of bioelectrical impedance analysis is based on the principle of 
measuring the body resistance to circulating electrical currents and the fact that, 
contrary to muscle tissue containing water, adipose tissue presents high electrical 
resistance. Participants were informed not to consume any food or drink and not 
undergo mediocre or intense physical activity/exercise for at least 2 hours prior to the 
analysis. Body composition analysis provided data on the individual’s ΒΜΙ as well as 
total and departmental body fat, muscle and water percentage.  

Assessment of dietary intake at baseline took place via online completion of a 
the validated 69- item Food Frequency Questionnaire (FFQ). Dietary assessment and 
evaluation of the adherence to the proposed diet took place monthly via: i) a 24-h 
dietary recall, carried out by the nutrition expert; and ii) the online completion of the 
5-scale self-reported adherence questionnaire. 
 

2.1.5 Laboratory Analyses 

Blood samples (23mL) were collected for each participant in all in-person 
meetings. Volunteers had been instructed to come to the meeting following a 12-hour, 
overnight fast. All blood samples were collected in daytime until 10.30 am; two of 
them in EDTA blood collection tubes and one in a non-EDTA containing vacutainer. 
Part of the samples (~ 250μL) was immediately sent for blood tests (i.e. red and white 
blood cells, platelets, hemoglobin and hematocrit). The other EDTA-containing tube 
and the non-EDTA containing tube underwent centrifuging at 1500rpm, at a 
temperature of 4oC for 10 minutes. Plasma, buffy coat and red blood cells were 
collected from the former and serum was collected from later. Samples were stored 
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at -80oC until being sent for further biochemical testing (i.e. measurements for TC, TG, 
HDL-C, LDL-C, glucose etc) by an external collaborator. 

The buffy coat samples collected after centrifuging of the blood samples were 
used for DNA extraction. Part of the samples were extracted using the Invitrogen iPrep 
Purification Instrument and the Invitrogen iPrep PureLink gDNA Blood Kit [319], in the 
following steps:  

i. The instrument was cleaned using a clean pad with 96% ethanol. The 
corresponding disc for DNA extraction from buffy coat samples was 
inserted in the machine and the “On” button was pressed. 

ii. One iPrep™ PureLink® gDNA Blood Cartridge per sample was inserted in 
each one of the instrument positions.   

iii. One iPrep™ Sample and Elution Tube containing the sample in the heated 
tube position of cartridge and one empty collection tube was inserted of 
each of the Cartridges used. 

iv. Each one of the empty collection tubes samples’ caps was placed in the 
instrument’s T2 position. 

v. The instrument was closed and the extraction was ran for approximately 
thirty minutes.  

vi. After the end of the extraction, samples and cartridges were collected and 
removed from the machine. The instrument was cleaned using a clear pad 
with 96% ethanol and turned off. The disc for DNA extraction from buffy 
coat samples was removed and properly stored in a separate case. 

vii. The DNA extracted samples were placed in room temperature (25oC) for 
24 hours. 
viii. After the incubation, sample were placed in the magnetic 

instrument to remove remaining magnets and the content of the sample 
was transferred to a clean collection tube prior to measuring DNA 
concentration using a spectrophotometer. 

 
Furthermore, DNA extraction took place manually for a small part of the 

samples, using the PureLink® Genomic DNA kits in the following steps: 
i. 200μL of each sample were collected followed by addition of 20μL 

Proteinase K and 20μL RNaseA. The sample underwent short vortexing and 
was then left to incubate at room temperature ( 25oC) for two minutes.  

ii. 200μL of PureLink® Genomic Lysis/Binding Buffer was added to each 
sample, followed by a short vortexing and a 10-minute incubation at 55 oC. 

iii. 200μL 96% ethanol was added to each sample, followed by short vortexing. 
iv. The entire content of each sample (~640μL) was transferred to a PureLink® 

Spin Column Collection Tubes and was further centrifuged at 10.000 rpm 
for one minute at room temperature ( 25oC) 

v. After centrifugation, the Collection Tube for each sample was discarded 
and replaced with a new PureLink® Collection Tube.  

vi. 500μL of the Wash Buffer 1 was added to each tube, followed by another 
centrifugation at 10.000 rpm for one minute, at room temperature (25oC) 

vii. After centrifugation, the Collection Tube for each sample was discarded 
and replaced with a new PureLink® Collection Tube.  



 

102 
 

viii. 500μL of the Wash Buffer 2 was added to each tube, followed by another 
centrifugation at 10.000 rpm for three minutes, at room temperature 
(25oC). 

ix. After centrifugation, the column containing the DNA sample was 
transferred to a new microcentrifuge tube, followed by addition of 50μL of 
the PureLink® Genomic Elution Buffer and another centrifugation at 
maximum speed (11000 rpm) for one minute at room temperature ( 25oC). 

Quantification of the extracted DNA took place via use of a spectrophotometer 
in the following steps: 

i. The instrument was cleaned using a clean pad with 96% ethanol and, then 
opened. 

ii. The option for measuring Nucleic Acids and ssDNA was selected. 
iii. Using a 10μL pipette, one microliter of the black solution was used to 

μηδενίζω the device prior to measuring sample DNA concentrations.  
iv. Using a 10μL pipette, one microliter of each sample was placed in the head 

of the photometer and the “Sample” button was pressed. 
v. Sample absorbance at 260nm, 280 nm and 230nm (ratios 260/280 and 

230/260) was recorded in a lab book for each of the samples. The 260/280 
ratio is used to assess DNA sample purity and a ratio of 1.8-2.0 is 
considered to declare good sample quality. Lower 280/260 ratios indicate 
presence of other substances such as protein, phenols or other 
contaminants absorbing at or near 280nm [320]. The 260/230 ratio is used 
as a secondary measure to indicate sample clarity, with the range of 2 to 
2.2. considered to be indicating a sample of good purity. Higher 260/230 
ratios are considered to indicate the presence of contaminants absorbing 
at higher nm. Accordingly, lower ratios indicate the presence of substances 
absorbing at or lower than 230nm, such as carbohydrates and phenols 
[320].  

All DNA samples were then stored at -20oC for a maximum duration of 2 
months up to being sent for further analyses and genotyping. If needed to be stored 
for more than 2 months, samples were stored at -80oC.  

Genotyping of at least 50ng/μL of the extracted DNA samples took place via: i) 
use of the Axiom Precision Medicine Diversity Research Array (PMD Research Array), 
containing more than 800.000 SNPs, deletions and copy number variations from the 
1000Genomes Project Phase III [321], for a part of the extracted samples ; ii) use of 
the Axiom Precision Medicine Diversity Research Array (PMRA), containing more than 
800.000 markers, for a different  groups of extracted samples; and iii) GSA Erasmus 
MC. Following completion of the genotyping, imputation analyses took place using the 
1000 genomes Phase 3 panel and the IMPUTE2 software.  
   
2.1.6 Statistical Analyses  

The entirety of phenotypic data analyses was conducted using the Statistical 
Package for Social Sciences (SPSS), version 23 [322], the R statistical package [323] and 
the STATA statistical software [324]. Variable distribution was evaluated using the 
Shapiro–Wilk, Kolmogorov–Smirnov tests and Q-Q plots. Mean values and standard 
deviation are presented for variables following the normal distribution, while median 
and interquartile range are presented for variables not normally distributed. Body 
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Mass Index (BMI) was calculated as weight divided by height (kg/m2) and LDL-C was 
calculated using the Friedewald Equation, where LDL − C = (TC) − (HDL − C) − (TG/5) 
[325]. Differences in mean/median values of variables within different groups (i.e. BMI 
groups, sex or diet groups) were evaluated using the non-parametric Mann–Whitney 
and Kruskal-Wallis tests. Multivariate linear regressions were employed to test for 
potential associations between the various phenotypic variables and are presented as 
beta coefficients (β) and standard error (SE). Variables not following the normal 
distribution were log-transformed.  

Information on dietary habits deriving from the collected FFQs and 24-hour 
dietary recalls were analyzed using the Nutritionist Pro software [326]. The dietary 
patterns for the iMPROVE cohort were extracted by conducting principal component 
analysis (PCA) on 32 food groups deriving from the FFQ information. The Varimax 
orthogonal rotation was used and the Kaiser-Mayer-Olkin KMO and Bartlett’s test was 
implemented to evaluate data adequacy. Five dietary patterns were set to be 
extracted with Eigen values bigger than 1. Potential associations between the 
extracted patterns and several indices were examined by separating them into tertiles 
and testing for associations using the parametric ANOVA test and the non-parametric 
Kruskal–Wallis test, depending on the distribution of the examined variable. 
Multivariate linear regressions were used to examine relations with anthropometric, 
biochemical and lifestyle indices, adjusting for three models of confounding factors 
(i.e. Model 1: age, sex; Model 2: age, sex, smoking habits, physical activity level and 
logBMI; and Model 3: age, sex, smoking habits, physical activity level, logBMI, 
education years, family and professional status). The level of statistical significance for 
all analyses was set at α = 0.05 and results were also interpreted for the adjusted cut-
off value of a = 0.05/number of patterns extracted (i.e., a = 0.05/5 = 0.01). 

Following the extraction of the dietary patterns, we included them in using 
Pearson’s chi-square test values to investigate all phenotypic variables for potential 
correlations to logBMI and/or body fat percentage. We used statistically significantly 
correlated variables to construct a novel Lifestyle Index (LI) where higher values 
indicated favorable effects. We further proceeded to test for potential associations 
with anthropometric and biochemical indices using multivariate linear regressions 
adjusting for age and sex (Model 1), as well as age, sex and BMI (Model 2).  

We further proceeded to using the information on baseline physical activity 
levels and the calculated MedDiet Score into creating 4 groups of high or low PAL and 
high or low adherence to the Mediterranean diet. We subsequently used the Kruskal-
Wallis test to assess within-group differences in anthropometric characteristics and 
conducted multivariate linear regressions to examine associations between the 
groups and anthropometric, biochemical and lifestyle indices, adjusting for age and 
sex (Model 1), as well as age, sex and BMI (Model 2). 

Proceeding to the observed results of the dietary intervention, we used the 

non-parametric Mann-Whitney test to assess differences between the two sex and 

diet groups and the non-parametric Wilcoxon signed-rank test to assess differences 

pre- and post-intervention, as well as differences between baseline and the end of 

each examined month. In order to account for the missing values observed post-

intervention, we used the STATA software to perform imputation of missing values, 

using the multiple imputation method conducted in the three following steps: i) the 

imputation step, where n completed imputed datasets are generated; ii) the 
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estimation step, where the desired analysis is performed separately to each of the 

imputations; and iii) the pooling step, where the results obtained from the estimations 

of Step 2 are combined into a single multiple-imputation model. Hereby, the missing 

data mechanism was assumed to be missing-at random (MAR), as the loss to follow 

up did not differ between the two diet groups and no other known parameter (across 

the variables) was correlated with loss to follow-up. Additional performed several 

sensitivity analyses were performed in order to verify the stability of inferences 

produced at the pooling step. The correlation of body weight at baseline and the 

change in body weight at 3 months with categorical variables was investigated with 

Student’s t-test or Mann-Whitney test and the non-parametric Kruskal Willis test. The 

correlation of body weight at baseline and the change in body weight at 3 months with 

numerical variables was investigated with Spearman’s rho. The imputation step was 

performed for the body weight at 1st, 2nd and 3rd month of follow-up simultaneously 

using a multivariate normal regression model. When more than one variable contain 

missing values, it is advisable to impute the missing values in one analysis. As weight 

did not follow the normal distribution in the imputation model the logarithm of weight 

at month 1, 2 and 3 was imputed for the following scenarios: i) Weight Baseline, Sex, 

Age, Diet Group; ii) Weight Baseline, Sex, Age, Diet Group, Live alone; iii) Weight 

Baseline, Sex, Age, Diet Group, Live alone, education years; and iv) Base case: Weight 

Baseline, Sex, Age, Diet Group, Live alone, Fat (%) baseline. For each case, 20, 50 and 

100 imputations were estimated, with the latter presenting robust results. The 

imputation model was a multivariate normal regression model using an iterative 

Marcov chain Monte Carlo (MCMC) procedure to generate impute values. For all 

cases, we assumed a burn-in period of 10,000 iterations, 1,000 iterations between 100 

imputations, and a non-informative prior distribution (Jeffreys). The noninformative 

priors provide no extra information about model parameters beyond that already 

contained in the data.  This model should be checked for convergence (i.e., if the 

produced distribution converges to a stationary distribution). For each one of the 100 

datasets that were produced, we converted back the logarithm of weight in its normal 

scale for each month. Next, the change in weight was computed as the difference of 

the weight at 3rd month (for every one of the 100 imputations) minus the baseline 

weight. Model convergence was checked with trace and autocorrelation plots 

(Supplementary table A1 in Appendix). At the pooling step, a null linear regression 

model was used to estimate the mean (95% CI) change in body weight at 3 months of 

the total sample. An additional linear regression model was fitted to investigate the 

difference of mean change in body weight at 3 months between the two diet groups. 

The results of this step are presented as beta coefficients (95% CIs). 

In order to investigate the effect of genetic predisposition in the examined 
indices at baseline and post-intervention, we set out to explore the effect of candidate 
genetic variants in two ways: i) via the construction of an unweighted and a weighted 
genetic risk score (uGRS and wGRS) using the well-known SNPs related to BMI 
published by Locke et al [326] (Supplementary Table S1); ii) via use of 10 target 
variants known for their associations with BMI, based on current literature (Table 11); 
and iii) via use of 10 target variants known for their associations with body fat indices 
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(Table 12), based on current literature. Regarding the changes in weight observed 
post-intervention, we proceeded to calculating an uGRS and a wGRS for BMI, using 
the BMI-related SNPs first identified In the cornerstone analyses of 2015 by Locke et 
al [326]. 

We used the available imputed data for the iMPROVE cohort. For missing SNPs, 
we included relevant proxies with an observed R2 of above 0.8, using LDlink. Details 
on the SNPs and SNP proxies included in the wGRS and uGRS are presented in 
Supplementary Table S1. We used a threshold of 0.8 for the imputation INFO score for 
all SNPs included in the analyses. Quality control for sample and SNP exclusion criteria 
consisted of: i) Sample call rate at 95%; ii) genotyping call rate at 98%; iii) Hardy 
Weinberg Equilibrium (HWE) exact p<0.0001; and iv) minor allele frequency at 1%. 
After QC, we used the available data for 84 out of the 97 primary SNPs. Construction 
of the GRSs took place after coding each SNP genotype with 0,1 or 2 based on the 
copies of the effect allele (i.e. 0 for a homozygote without a copy of the effect allele, 
1 for a heterozygote and 2 for a homozygote with 2 copies of the effect allele). 
Creation of the uGRS included the aggregation of all coded SNPs in an additive 
variable, while for the wGRS a subsequent multiplication took place using the SNPs’ 
respective effect size according to the European sex-combined results provided from 
Locke et al [326]. The final, cumulative wGRS variable was, thus, presented in the form 
of: 

𝑤𝐺𝑅𝑆 = 𝑆𝑁𝑃1 𝑥 𝛽1 + 𝑆𝑁𝑃2 𝑥 𝛽2 + ⋯ + 𝑆𝑁𝑃84 𝑥 𝛽84. 
 



 

 

Table 11. List of the BMI-related SNPs (n=10) investigated for associations in the iMPROVE cohort. 
Consortial Summary Statistics iMPROVE 

Cohort 
 

SNP Gene Chr Position (bp) Alleles MAF Effect 
Allele 

Direction of 
effect for BMI 

MAF  Ref 

 rs6548238_T LINC01875, 
TMEM18 

2 2:634905 T/C/G 0.12 (T) C Positive T: 0.095 GIANT Consortium  

 rs1801282_G PPARG 3 3:12351626 C/G 0.07 (G) G Positive G: 0.053 GIANT Consortium 

 rs2241766_G APIPOQ 3 186853103 T/A/C/G 0.15 (G) G Positive G: 0.45 GIANT Consortium 
 rs925946_T BDNF 11 11:27645655 T/A/C/G/ 0.25 (T) T Positive  T: 0.103 GIANT Consortium  

 rs1421085_C FTO 16 16:53767042 T/C 0.23 (C) C Positive C: 0.26 GIANT Consortium 
 rs1121980_A FTO 16 16:53775335 G/A/C 0.37 (A) A Positive A: 0.28 GIANT Consortium 

 rs17817449_G FTO 16 16:53779455 T/A/G 0.31 (G) G Positive G: 0.28 GIANT Consortium 
 rs3751812_T FTO 16 16:53784548 G/T 0.22 (T) T Positive T: 0.25 GIANT Consortium 
 rs9939609_A FTO 16 16:53786615 T/A 0.34 (A) A Positive A: 0.26  GIANT Consortium 

 rs17782313_C MC4R 18 18:60183864 T/A/C 0.24 (C) C Positive C: 0.13 GIANT Consortium 

SNP: Single Nucleotide Polymorphism, Chr: Chromosome, bp: base pairs, MAF: Minor Allele Frequency (as shown in GWAS Catalog), Ref: Reference 
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Table 12. List of the fat-related SNPs (n=10) investigated for associations in the iMPROVE cohort. 
 

Consortial Summary Statistics iMPROVE 
Cohort 

SNP Gene Chr Position (bp) Alleles MAF Effect Allele Direction of 
effect for fat-

related indices 

MAF  

 rs574367_T LINC01741, SEC16B 1 1:177904075 G/T 0.15 (T) T Positive T: 0.13 

 rs2605100_A LYPLAL1-AS1,ZC3H11B 1 1:219470882 A/G 0.19 (A) G Positive A: 0.22 

 rs4846567_T LYPLAL1-AS1,ZC3H11B 1 1:219577375 G/T 0.22 (T) G Positive T: 0.15 
 rs10195252_T COBLL1 2 2:164656581 T/C 0.40 (C) T Positive T: 0.25 
 rs206936_G NUDT3,RPS10-NUDT3 6 6:34335092 A/G 0.43 (G) G Positive G: 0.10 

 rs4994_G ADRB3 8 8:37966280 A/G 0.12 (G) G Positive G: 0.04 

 rs11191548_C CNNM2 10 10:103086421 T/C 0.15 (C) C Positive C: 0.06 
 rs6265_T BDNF-AS,BDNF 11 11:27658369 C/T 0.20 (T) T Negative T: 0.19 

 rs1443512_A HOXC12,HOXC13 12 12:53948900 A/C/G/T 0.34 (A) A Positive A: 0.14 

 rs12970134_A RNU4-17P 18 18:60217517 G/A 0.21 (A) A Positive A: 0.20 

SNP: Single Nucleotide Polymorphism, Chr: Chromosome, bp: base pairs, MAF: Minor Allele Frequency (as shown in GWAS Catalog), Ref: Reference 



 

 

We proceeded to testing for associations between the GRSs and the baseline 
anthropometric and lifestyle indices post-intervention, using multivariate linear 
regressions adjusting for age and sex (Model 1) and PAL and smoking (Model 2), in the 
R statistical package. We further investigated potential associations between the 10 
BMI-related and the 10 fat-related target variants and the corresponding examined 
indices via multivariate linear regressions adjusting for age and sex (Model 1), as well 
as PAL and smoking (Model 2), using the PLINK toolset version 1.9. In order to examine 
the effect of gene-diet interactions in the tested indices, we investigated the impact 
of the interactions between the GRSs (using the R package) or the candidate variants 
(using the PLINK toolset) and the extracted dietary patterns for the baseline 
measurements. Again, we used multivariate linear regressions adjusting for age, sex, 
each GRS and dietary pattern (Model 1), as well as age, sex, PAL, smoking, each GRS 
and dietary pattern (Model 2). The levels of statistical significance for each 
examination were set as follows: i) for the baseline interactions between the GRSs and 
the five extracted patterns α was set at 0.01 (i.e. a = 0.05/5 = 0.01); and ii) for the 
baseline interactions between the 10 BMI or 10 body fat-related candidate variants 
and the five extracted patterns α was set at 0.003 (i.e. a = 0.05/15 components = 
0.003).  

In order to assess the genetic effect on the changes observed post-
intervention, we first used the imputed data for the weight loss observed at three 
months to conduct multivariate linear regressions in the STATA software to examine 
the effect of the GRSs and the 10 BMI-related SNPs, adjusting for three models of 
confounding factors (Model 1: Adjusted for age, sex; Model 2: Adjusting for age, sex, 
PAL, smoking; Model 3: Adjusting for age, sex, PAL, smoking and diet group). 
Subsequently, we used the observed data for weight loss to assess potential 
differences within groups of high or low uGRS or wGRS (separated using the sample 
median) and the different genotypes of the 10-BMI related variants. Differences were 
examined using Mann-Whitney and the Kruskal-Wallis tests. We further investigated 
potential associations between the 10 BMI-related and the 10 fat-related target 
variants and the changes in the examined indices via multivariate linear regressions 
adjusting for age and sex (Model 1), as well as PAL and smoking (Model 2), using the 
PLINK toolset version 1.9.  

In order to examine the effect of gene-diet interactions in the tested indices, 
we investigated the impact of the interactions between the GRSs (using the R package) 
or the candidate variants (using the PLINK toolset) and diet group for the changes 
observed post-intervention. Once more, we used multivariate linear regressions 
adjusting for age, sex, each GRS and diet group (Model 1), as well as age, sex, PAL, 
smoking, each GRS and diet group (Model 2). The level of statistical significance for 
the associations between the post-intervention changes and the 10 BMI or 10 body 
fat-related candidate variants was set at 0.005 (i.e. a = 0.05/10 variants = 0.005). 
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2.2. The 2018 Gutenberg Chair Project: TEENAGE and STANISLAS Cohorts  
2.2.1. Ethics and Registration of Studies and Project Aims and Objectives 

The aim of the 2018 Gutenberg Chair Project concerned the retrospective 
analysis of the lifestyle habits of two adolescent European populations and their 
potential associations with genetic variants and cardiometabolic indices. The 
project concerned the analysis of data collected for the adolescents of the Greek 
TEENAGE study and the French STANISLAS Family Study. The objectives of the 
project were, thus, shaped as follows: 

i. To identify the dietary patterns followed in the two populations; 
ii. to investigate the interaction between the dietary habits and indices of 

cardiometabolic profile; 
iii. to assess the effect of genetic variants on the formation of adolescent 

anthropometric and cardiometabolic indices. 
For the purposes of investigating gene-diet interactions on anthropometric 

and biochemical profile, we built on our team’s previous expertise and sought to 
examine the combined effect of VEGF-A-related variants, due to its previously-
established impact on the indices.   

In this context, data from the Greek TEENAGE and the French (Suivi 
Temporaire Annuel Non Invasif de la Sante des Lorrains Assures Sociaux 
(STANISLAS) Family Study were analysed. The TEENAGE study involved adolescent 
participants from the region of Attica, Greece and was conducted according to the 
principles laid out by the Declaration of Helsinki. The study was approved by the 
Institutional Review Board of Harokopio University [protocol number 20/29-05-
2008] and the Greek Ministry of Education and Religious Affairs. Prior to study 
enrolment, all adolescent participants and their parents received information on 
the study protocol and procedures with teenagers proceeding to providing gave 
verbal consent, followed by their respective guardians’ written consent. 

The STANISLAS Family study involved a 10-year longitudinal cohort including 
families from the regions of Vosges and the South of Meurthe and Moselle, France. 
The study was approved by the advisory committee for the protection of people 
in biomedical research in Nancy, France and all study protocols were approved by 
the institutional ethics committees. All STANISLAS volunteers provided written 
informed consent prior to study enrolment, while consent for underage 
participants was provided by their respective parents/legal guardians. 

As of 2023, relevant project proceedings included in the present thesis have 
already been published in peer-reviewed articles [311,312].   

 

 
2.2.2. Study Designs and Study Populations  

The TEENAGE (Teens of Attica: Genes and Environment) study was a cross-
sectional study conducted in the Attica region during the period 2008-2010. The 
study consisted of healthy teenagers, students of schools in Attica aged 13 to 15 
years old. The aim of the study was the assessment the teenagers’ anthropometric 
measurements, body composition, biochemical profile, dietary and physical 
activities habits and eating behaviours and investigation of their potential 
relations with genetic background.  
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Details on the TEENAGE study design and research have already been 
described elsewhere [328-330]. For the purposes of the study, all the teenagers 
and their parents received information on the study protocol and procedures and 
provided written consent prior to their enrolment. Overall, 857 adolescents from 
schools of Attica were recruited. All participants underwent a 2-stage, baseline in-
person session with a healthcare professional (nutritionist or paediatric health 
care professional), during which they provided the written consent, followed by 
collection of anthropometric, dietary, physical activity and clinical assessment data 
and blood samples, were collected. After a 10-period following the baseline 
meeting, participants were telephonically contacted by the healthcare 
professionals, to conduct a secondary dietary and physical activity assessment (i.e. 
via 24-hour recalls). 

Regarding the STANISLAS Family study, details on its design and research have, 
also, already been described elsewhere [331-333]. The study constituted a 10-year 
longitudinal study conducted in the region of Vosges and the South of Meurthe 
and Moselle (East part of France), first recruiting volunteers during the period 
1993-1995. The study consisted of healthy nuclear families, with parents up to the 
age of 65 years old and children older than 6 years of age, living in the above 
region. Available volunteers participated in three 5-year-follow-ups until the 
period 2003-2005 for participants living in the region of Nancy, France. All 
participants were of European-Caucasian origin, without reporting existence of 
chronic disorders (CVD, cancer, diabetes, hypertension etc.). Overall, 1006 families 
were recruited.  
 

2.2.3. Project Outcomes  

The primary outcome of the present study analyses using data from both the 
TEENAGE and the STANISLAS cohorts, concerns the assessment of dietary habits 
in the formation of teenage cardiometabolic indices. Furthermore, the study 
secondary outcomes include: the assessment of genetic variants on adolescent 
cardiometabolic profile and the subsequent investigation of their combined effect 
with lifestyle characteristics. 

 
2.2.4. Anthropometric and Lifestyle Assessment  

For the nodes of the TEENAGE study, anthropometric data were collected as 
follows: i) weight measurements, in kg (via use of scales, were the participants 
were in light clothing and barefoot); ii) height measurements, in cm (using a 
portable stadiometer, where volunteers barefoot, with relaxed shoulders and 
while looking ahead); waist and hip circumference measurements, in cm (via use 
of a soft tape, at the twelfth rib and the iliac crest for the former and at the widest 
point of the hips for the later). Skinfold measurements for the triceps, subscapular 
and suprailiac skinfolds were collected using a Lange skinfold calipers.   

Dietary habits were assessed via provision of a 24-hour dietary recall during 
the assessment meeting and a second 24-hour recall in the 10-day period after the 
in-person session. Dietary data were analysed using the Nutritionist Pro software 
[326] and mean intakes of energy, macronutrients and micronutrients were 
provided for each participant.  
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In the context of the STANISLAS Family Study, all participants underwent an in-
person session with trained professionals during which anthropometric, dietary, 
lifestyle and clinical examination data and blood samples, were collected. 
Anthropometric data were collected as follows: i) weight measurements, in kg; ii) 
height measurements, in cm; waist-to-hip ratio measurements. WC was measured 
at the midpoint between the lower margin of the last palpable rib and the top of 
the iliac crest. All measurements were recorded by trained professionals to the 
nearest 0.1 cm. Dietary habits were assessed by completion of a 3-day food 
consumption diary at baseline. Analysis of the dietary data was conducted using 
the GENI package {52}, nutritional database program and mean intakes of energy, 
macronutrients and micronutrients were provided. Body Mass Index (BMI) for 
both studies was calculated as weight divided by height (kg/m2). 

 

2.2.5. Laboratory Analyses 

Regarding the TEENAGE Study, blood samples were collected during the in-
person session with each adolescent in every participating school. DNA samples 
were collected for each participating adolescent and were further genotyped via 
use of the Illumina HumanOmniExpress BeadChips (Illumina, San Diego, CA, USA) 
at the Wellcome Trust Sanger Institute, Hinxton, UK [328-330.]. Imputation of the 
genotyped data was conducted using the Haplotype Reference Consortium (HRC) 
panel. For the STANISLAS Family Study, blood samples were collected during the 
baseline meeting and all related measurements were conducted at the laboratory 
of the Centre for Preventive Medicine (CMP) in Vandoeuvre lès Nancy, France 
[331-333] 

 

2.2.6. Statistical Analyses 

All data phenotypic analyses were carried out via use of the Statistical Package 
for the Social Sciences (SPSS), version 23 [322] and the R Packages [323], while 
genetic data were analyzed using the PLINK: Whole genome data analysis toolset 
version 1.9 [333]. Assessment of phenotypic variables’ distribution was conducted 
via use of the Shapiro–Wilk and Kolmogorov-Smirnov tests. Variables displaying 
normal distribution are presented as mean and standard deviation (SD), whereas 
the median and interquartile range (IQR) is shown for all variables not following 
the normal distribution (Shapiro–Wilk/ Kolmogorov-Smirnov p > 0.05). Non-
normal variables were log-transformed for normal distribution. We used the  
Student’s t-test for parametric and the Mann–Whitney test for all non-parametric 
hypotheses testing for continuous variables. LDL-C was calculated for the 
STANISLAS adolescents using the Friedeweld Equation [LDL − C = (TC) − (HDL − C) 
− (TG/5)] [324] and pulse pressure (PP) was calculated for the TEENAGE subjects 
as systolic blood pressure (SBP in mmHg) -D diastolic blood pressure (DBP in 
mmHg). 

We used dietary data from the 24-hour dietary recalls of 766 teenagers from 
the TEENAGE Study and 3-day food diaries from 287 adolescents from the 
STANISLAS Family Study, to proceed to identification of food groups and conduct 
PCA to extract all dietary patterns for both populations. PCA is a widely-used 
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epidemiological tool, implemented in the assessment of dietary data and the 
subsequent extraction of dietary patterns [35], having been previously tested in 
large young populations [36]. PCA was conducted on 15 food groups for the 
TEENAGE study population and 15 food groups for the STANISLAS Family study 
population, based on the available data for the cohorts. The varimax orthogonal 
rotation was used for the extraction of the patterns and the Kaiser criterion was 
set at retaining 5 components with Eigen values bigger than 1 

Testing for phenotypic associations between the extracted patterns and the 
cardiometabolic indices took place via multiple linear regressions in the TEENAGE 
cohort and linear mixed modeling in the STANISLAS cohort, due to the latter 
consisting of family members and the subsequent need for correction of family 
bias of siblings included in the analyses. Associations were investigated, adjusting 
for 4 different models of confounding factors. Model 1 included adjustment solely 
for the age and sex of the participants; Model 2 included adjustment for sex, age 
and level of physical activity; Model 3 consisted of adjustment for their age, sex, 
level of physical activity and BMI; and, finally, Model 4 included adjustment for 
age, sex, physical activity, BMI and energy intake. Multiple linear regression results 
are presented as beta coefficients (β) and standard error (SE). Linear mixed model 
results are presented as estimates and standard error (SE). All statistical analyses 
included the level of nominal significance set at α = 0.05 and the adjusted 
threshold after multiple testing was set to (0.05/5 components examined, i.e., 
dietary patterns = 0.01).    

Based on our team’s previous expertise in VEGF-A research, in order to 
investigate gene-diet interactions, we chose to examine the effect of 11 previously 
VEGF-A-associated variants. We separately examined associations between each 
variant and the indices of interest. We used a threshold of 0.7 for the imputation 
INFO score for all SNPs included in the analyses. Quality control for sample and 
SNP  exclusion criteria consisted of: i) Sample call rate at 95%; ii) Hardy Weinberg 
Equilibrium (HWE) exact p<0.0001; and iii) genotyping call rate at 99%. We 
investigated potential relations between the 11 target SNPs and the 
cardiometabolic parameters, via linear regression analyses. Associations were 
examined after adjusting for 3 different models of confounding factors, namely: i) 
Model 1, which consisted of adjustment for age and sex; ii) Model 2, which further 
included exercise level; and iii) Model 3 additionally incorporating the adjustment 
for the five previously extracted dietary patterns [19]. Multiple linear regression 
results for each SNP are presented as betas [regression coefficients (β)] and p-
values. The threshold for statistical significance was set at 0.05. The adjusted 
threshold for multiple testing was set at 0.005 (0.05/11 components examined).  

We further proceeded to constructing an unweighted genetic risk score (uGRS) 
for VEGF-A using the target-SNPs identified by Choi et al. For the purposes of the 
present analyses, we used the SNPs with available data in the TEENAGE cohort (i.e. 
9 out of 10 variants). The uGRS was constructed via scoring the risk alleles 
positively associated with VEGF-A levels in the following steps:  

i. Each SNP received a score of 0,1 or 2, according to the number of effect 
alleles of the participants’ genotype (i.e. a homozygote for the effect allele 
received a score of 2, a heterozygote received a score of 1 and a 
homozygote for the non-effect allele received a score of 0); 
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ii. Creation of the uGRS took place by adding all coded genotypes in a 
summarized variable of the form  uGRS= SNP1 (coded G1) + SNP2 (coded G2) 
+ … + SNP9 (coded G9). 

Following the associations explored for each SNP separately, we further used 
multiple linear regressions to examine associations between the uGRS and the 
metabolic indices, as well as the potential effect of the interactions between the 
uGRS and the formerly extracted dietary patterns (eg. uGRS*Dietary pattern 1). 
Multiple linear regression results are presented as estimates [beta coefficients (β)] 
and standard error (SE). In the case of examining the interactions, the adjusted 
threshold for statistical significance was set at 0.01 (i.e. 0.05/5 components 
examined).  
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2.3. Polygenic Risk Score for Body Mass Index on the NAFLD, THISEAS and OSTEOS 
studies  
2.3.1. Ethics, Registration for the Studies and Project Aims and Objectives 

The present project constitutes a retrospective analysis using data from three 
previous studies, namely the case-control Greek Non-Alcoholic Fatty Liver Disease 
(NAFLD) study [334,335], the cross-sectional OSTEOS study [336] and the case-
control THISEAS (The Hellenic Study of Interactions between Single Nucleotide 
Polymorphisms and Eating in Atherosclerosis Susceptibility) [337,338] studies. All 
three studies were approved by the Research Ethics Committee of Harokopio 
University of Athens: NALFD protocol number: 38074/13-07-2012; OSTEOS 
protocol number: 15/8-12-2005, 8/12/2005 and THISEAS protocol number: 10/9-
6-2004, 14/6/2004 and all participants provided written consent prior to 
enrolment.   

Hereby, use of part of the studies’ data (i.e. BMI measurements) took place 
with the overall aim of creating a PRS for adult BMI, using a novel method created 
in the nodes of our team’s activities. The project objectives were, thus, shaped as 
follows: 

i. To create a PRS for BMI using data from the NAFLD, OSTEOS and THISEAS 
studies; and 

ii. to investigate the effect of the generated PRS for BMI on the BMI levels of 
our pooled cohort.  

As of 2023, relevant project proceedings included in the present thesis have 
already been published in a peer-reviewed article [208].   
 

2.3.2. Study Designs and Study Populations 

The NAFLD study constituted a cross-sectional study conducted in the region 
of Attica. The study recruited adult participants without liver disease/injury and 
reporting absence of excess alcohol drinking at the time of induction to the study. The 
aim of the study was to assess the effect of genetic background and gene-diet 
interactions in NAFLD presence. Details on the study protocol have already been 
published elsewhere [334, 335]. Briefly, volunteers were recruited from the 
Outpatient Clinics of the First Department of Propaedeutic and Internal Medicine in 
Laiko General Hospital, during the period 2012 to 2015 [334,335]. Recruits were 
further screened for NAFLD through abdominal ultrasound, and deemed as controls 
in the absence of hepatic steatosis or in the presence of mild stage, or cases in the 
presence of moderate or severe hepatic steatosis [334,335]. Overall, 342 participants 
were recruited and proceeded to enrolling in the study.  

The OSTEOS project also constituted a cross-sectional study conducted 
throughout Greece during the 2010–2012 period. The project included community-
dwelling adults from rural and urban areas of Greece. The aim of the study was to 
assess parameters of bone health in adults and investigate the potential effect of 
genetic predisposition. Details on the study protocol have already been published 
elsewhere [336]. Briefly, volunteers were recruited in cooperation with the Hellenic 
Society for the Support of Patients with Osteoporosis and the Laboratory for the 
Research of Musculoskeletal System "Th. Garofalidis", School of Medicine, National 
and Kapodistrian University of Athens and underwent assessment of bone health 
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status using quantitative ultrasound (QUS). Overall, 970 adults were recruited and 
proceeded to enrolling in the study. 

Finally, the THISEAS study was another project of cross-sectional design, 
conducted in the region of Attica during the years 2006–2010. The aim of the study 
was to assess the effect of genetic and lifestyle determinants in CVD and 
atherosclerosis. Details on the study protocol have already been published elsewhere 
[337,338]. Briefly, recruits were mainly assessed using coronary angiography 
information and were categorized as controls if they presented negative coronary 
findings or a negative stress test, or did not report any related clinical symptoms. 
Volunteers were categorized as cases in the presence of acute coronary syndrome or 
stable coronary artery disease (> 50 % stenosis in ≥ 1/3 main coronary vessels) 
[337,338]. Overall, a total of 2565 participants were recruited from three Athenian 
hospitals, open protection centres and municipalities during the project period.   
 

2.3.3. Project Outcomes 
 

The primary outcome of the present study analyses using data from all three 
studies, concerns the creation of a PRS for BMI. Furthermore, as it will be explicitly 
described below, the effect of the developed PRS on the BMI measurements of the 
pooled data was further examined.   
 
2.3.4. Anthropometric Measurements  

Anthropometric measurements of body weight and body height were 
measured for all three studies. Body weight was measured using the TANITA 
Segmental Body Composition Analyzer BC-418 and a calibrated scale to the nearest 
0.1 kg. Height was calculated to the nearest 0.5 cm using a mounted stadiometer. 
Participants were barefoot and maintained light clothing and the measurements 
occurred twice and average values were kept as final in all projects. All measurements 
were conducted by trained professionals. Body Mass Index (BMI) for all studies was 
calculated as weight divided by height (kg/m2). 

 

2.3.5. Laboratory Analyses 

Blood samples were collected at the baseline in-person meetings for all 
volunteers of the three studies. For the NAFLD study, DNA samples were isolated using 
peripheral blood lymphocytes and genotyped via use of the Infinium CoreExome-24 
BeadChip, Illumina genome-wide SNP array (with 567,218 fixed markers). OSTEOS’ 
DNA samples were isolated from buffy coats and genotyped using the Axiom Precision 
Medicine Diversity Research Array [with over 850,000 SNPs, insertions, deletions and 
copy number variations (CNVs)]. DNA samples from the THISEAS study were extracted 
from whole blood and genotyped using the Illumina Metabochip (with about 200.000 
SNPs).  
 
2.3.6. Statistical analyses  

Data analysis was conducted using the R, Plink version 1.9, IMPUTE2 and 
PRSice2 packages. For the genetic data, Plink 1.9 [333] toolset was used to convert all 
relevant files into plink file format (BED+BIM+FAM files). Imputation of missing SNPs 
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for the pooled cohort was conducted using the snpStats and the R package scrime, 
version 1.3.5 packages and extension of the dataset was conducted using the 
IMPUTE2 software [339] (1000 Genomes Project reference panel).  

A threshold of 0.9 for the imputation INFO score was used for all SNPs included 
in the analyses. Quality control for sample and SNP exclusion criteria consisted of: i) 
Sample call rate at 95%; ii) Hardy Weinberg equilibrium exact p-value at < 10−9; iii) 
Minor Allele Frequency at 5%; and iv) genotyping call rate at 90%. To account for 
population stratification, PCA was conducted using the SNPRelate, version 1.30.1 R 
package and the Tracy-Widom statistic was used to assess significant components 
based on eigen values [340]. In an effort to maximise the quality of the extracted PRS 
and simultaneously examine the efficacy of already implemented approaches, 
summary statistics were extracted using General Linear Models (GLM, R version 4.2.0), 
statgenGWAS version 1.0.8. [341], SNPTEST version 2.5.4 [342] and Plink 1.9. 

PRS extraction proceedings took place via use of the PRSice2 package and after 
a repetitive process of the following steps for a total of 100 times:  

i. the overall cohort was split into a training (80% of the samples) and a 
testing set (20% of the samples); 

ii. association tests for each SNP and BMI were performed using all 4 
aforementioned methods, while correcting for confounding factors (i.e. 
sex, age, NAFLD status and the significant PCA-derived components); 

iii. the target set was imported to PRSice2 along with the summary statistics 
from the application of each methodology, where the package extracted 
the optimal number of SNPs to be included in a candidate PRS, along with 
performance metrics on the PRS statistical significance and the percentage 
of additional variance explained (R2), in a variable of the form PRS =

∑
𝛽𝑖𝐺𝑖

𝛮
𝑘
𝑖=1 ; 

Following the extraction of the candidate PRSs, the frequency of each included 
SNP in the PRSs was measured, using a minimum threshold of appearing 5 times to 
further proceed to the downstream procedures. Subsequently, a PRS was constructed 
for each frequency, comprising the multiplication of the SNPs appearing equally or 
above this frequency with their corresponding weights, averaged over the iterations 
where each SNP appears. This was repeated for all observed frequencies creating a 
distribution of PRS R2 value, which were further penalized based on the number of 
SNPs in the PRS. As a result, the PRS with the best performance metrics (R2) was 
chosen for further analysis. For the purposes of present the data, PRS reported values 
were normalized to a range of 0 to 1.  
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3. Results and Discussion 
3.1. The iMPROVE Study 
3.1.1. Baseline Characteristics of the Study Population 

Parts of the following information in 3.1.1. constitute information published under the publication 
Nutrients 2021, 13, 3495. https://doi.org/10.3390/nu13103495 and can be further found in 

Appendix C. 

Out of the 235 volunteers expressing interest to participate in the study, data 
are shown for 202 eligible subjects who successfully attended the baseline meeting, 
completed the majority of the baseline questionnaires using the online tool, and were 
recruited in one of the two intervention arms. The sample size of the 202 individuals 
assures adequate power to detect statistical significance. Table 13 shows that the vast 
majority of the participants were reported as non-smokers (151 non-smokers vs. 50 
smokers, out of 201 participants with available data), with women representing the 
majority of the observed smokers (38 out of 50 overall smokers, 76%). The estimated 
baseline physical activity level showed that roughly half of the subjects were leading 
a moderately active way of life (104 out of the 199 participants with available data), 
with about 32% reporting a sedentary lifestyle (64 out of 199 participants). Volunteers 
reporting vigorous activity represented the smallest sample with only 31 out of 199 
participants. All 202 eligible volunteers were randomly allocated to the intervention 
groups, with 46.5% following the high-carbohydrate/low-fat diet and 53.5% adhering 
to the high-protein diet. 

Table 13.  Baseline characteristics of the iMPROVE cohort, by sex. 
Variable Total Men Women 

Smoking 201 59 142 
       Smokers 50 12 38 
       Non-smokers 151 47 104 

PAL 199 59 140 
        Low 64 20 44 
        Moderate 104 28 76 
        Vigorous 31 11 20 

Diet Group 202 59 143 
     High Carb/Low Fat 94 19 75 
        High Protein 108 40 68 

 
The entirety of the study population’s anthropometric, clinical, dietary, and 

lifestyle characteristics in the whole sample, as well as per weight group (with 
overweight vs with obesity), is presented in Table 14.  Median ± IQR is presented for 
all non-normally distributed variables and mean ± standard deviation (SD) is presented 
for the variables following the normal distribution. Our baseline sample consisted of 
143 women (70.8%) and 59 men (29.2%), with a median age of 47 years old. The 
majority of participants were married (60.9%), with more than half of our sample 
reporting having higher education (61.9%) and less than 3% reporting having no 
acquired education at all. Contrary to the existence of overweight and obesity, 
measurements on the entire sample indicated an overall relatively “healthy” profile, 
given the within-normal-range values for most biochemical and lifestyle indices 
measured.  

Compared to volunteers with overweight, individuals with obesity presented 
statistically significant increased levels of blood pressure measurements (SBP of 123 
vs 119.19, p-value=0.025, DBP of 82.74 vs 80, p-value=0.001). The dominating 
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difference between the two groups was mostly apparent across the spectrum of 
anthropometric indices, where, naturally, individuals with obesity presented higher 
levels of weight and BMI (96kg vs 78.24kg, p<0.001 and 34.3kg/m2 vs 27.82kg/m2, 
p<0.001, respectively). The difference between the two groups was vastly apparent 
on body composition indices where all measured markers presented higher levels in 
the obesity group, with, namely: higher levels of body fat percentage (40.82% vs 
35.45%, p-value<0.001), body fat in kilograms (37.8kg vs 25.85kg, p<0.001), fat-free 
mass (54kg vs 48kg, p-value<0.001), total body water (54kg vs 48kg, p<0.001), visceral 
fat (level 12 vs level 8, p<0.001), percentage of upper body fat (39.52% vs 33%, 
p<0.001), kilograms of upper body fat (20kg vs 14kg, p<0.001), kilograms of fat-free 
mass (30kg vs 27kg, p<0.001), WC (104.5cm vs 93cm, p<0.001), HC (120cm vs 110cm, 
<0.001) and WHR (0.87 vs 0.85, p<0.040). On the contrary, the two groups did not 
present statistically significant different levels of biochemical indices or lifestyle 
characteristics, denoting a relative homogeneity for those markers across the entirety 
of the cohort. 

 
Table 14. Anthropometric, clinical, dietary characteristics and characteristics of depression, quality of 
sleep, and health status in the iMPROVE cohort, by weight group (i.e. with overweight vs obesity). 

Variable Total  With Overweight With Obesity   

 N Median (IQR) N Median(IQR) N Median (IQR) p* 
  Age 202 47 (15) 78 47 (18) 124 47.5(13) 0.855 
  SBP (mmHg) 198 121.00 (21) 77 119.19 (14.87)** 121 123(24) 0.025 
  DBP (mmHg) 198 80.8 (9.8)** 77 80 (11) 121 82.74 (10.19)** 0.001 
  Pulse Rate (Beats per   
minute) 

198 74 (15) 77 73.03 (9.66)** 121 74 (20) 0.125 

Anthropometric Characteristics 
  Weight (kg) 202 87 (26) 78 78.24 (9.52) 124 96(24) <0.001 
  BMI (kg/m2) 202 31.35 (6.9) 78 27.82 (1.32)** 124 34.3 (6.5) <0.001 
  Body fat (%) 202 37.95 (10.8)** 78 35.45 (11) 124 40.82 (10.2) <0.001 
  Body fat (kg) 202 32.95 (13.3) 78 25.85 (4.96)** 124 37.8 (15.1) <0.001 
  Fat free mass(kg) 202 52 (18) 78 48 (17) 124 54 (19) <0.001 
  Total body water (kg) 202 38 (13) 78 35 (13) 124 39.5 (14) <0.001 
  Visceral fat 202 10.00 (6) 78 8 (3) 124 12 (5) <0.001 
  Upper body fat (%) 201 36.7 (6.98) 78 33 (8) 123 39.52 (6.37)** <0.001 
  Upper body fat (kg) 201 18 (7) 78 14 (2) 123 20 (8) <0.001 
  Upper body fat-free mass 
(kg) 

201 29 (9) 78 27 (8) 123 30 (9) <0.001 

  Waist circumference (cm) 183 99.00 (17) 75 93 (12) 108 104.5 (16) <0.001 
  Hip circumference (cm) 183 115 (13) 75 110 (7) 108 120 (15) <0.001 
  WHR 183 0.85 (0.08)** 75 0.85 (0.11) 108 0.87 (0.09) 0.040 

Biochemical Biomarkers 
  Fasting glucose (mg/dL) 193 92.00 (11) 76 92 (10) 117 93 (12) 0.128 
  Urea (mg/dL) 193 28.00 (9) 76 28.9 (7.09)** 117 27 (8) 0.332 
  Creatinine (mg/dL) 193 0.68 (0.21) 76 0.68 (0.21) 117 0.68 (0.21) 0.765 
  Uric acid(mg/dL) 193 4.70 (1.5) 76 4.49 (0.97)** 117 5.02 (1.19)** 0.001 
  Total cholesterol (mg/dL) 193 177.96  (33.58)** 76 177.69 (31.57)** 117 178 (47) 0.967 
  HDL-C (mg/dL) 193 49.00 (17) 76 52.79 (11.82)** 117 47 (14) 0.018 
  LDL-C (mg/dL) 193 105.20 (38.7) 76 107.05 (28.27)** 117 105.6 (31.47)** 0.963 
  Triglycerides (mg/dL) 193 90.00 (65) 76 78.5 (43) 117 96 (80) 0.002 
  Total bilirubin (mg/dL) 193 0.37 (0.23) 76 0.39 (0.25) 117 0.37 (0.23) 0.904 
  Direct bilirubin (mg/dL) 193 0.16 (0.08) 76 0.16 (0.08) 117 0.15 (0.08) 0.762 
  Serum protein (g/dL) 193 6.70 (0.5) 76 6.65 (0.5) 117 6.7 (0.5) 0.755 
  Serum albumin (g/dL) 193 4.20 (0.3) 76 4.29 (0.27)** 117 4.2 (0.4) 0.013 
  SGOT/AST (IU/L) 193 16.00 (6) 76 16 (5) 117 16 (7) 0.314 
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  SGPT/ALT (IU/L) 192 15.00 (12) 76 14.5 (9) 116 15 (15) 0.124 

Lifestyle Characteristics 
  MedDiet Score ** 147 30.85 (3.86)** 59 31.53 (3.64)** 88 30.40 (3.98)** 0.072 
  AIS Score 140 5 (7) 49 6 (7.5) 91 5 (6) 0.584 
  CESD-R-10 Scale 201 6 (5) 78 6 (5) 123 6 (5) 0.586 
  SF PCS 12 Score 145 52 (12) 53 52 (8) 92 51 (12) 0.196 
  SF MCS 12 Score 145 46 (16) 53 49 (19) 92 49 (13) 0.538 

*p: p-value of Mann-Whitney within-group tests 
** The selected variables follow the normal distribution and are presenting as mean ± SD 



 

 

 
Concerning the lifestyle characteristics, calculation of the MedDiet score 

demonstrated mediocre adherence of the overall sample to MD with a mean of 30.85 
out of a scale indicating greatest adherence at a maximum score of 55. At baseline and 
throughout the study period, the 8-item AIS score on evaluation of sleep qualities was 
calculated for participants who reported the selected outcomes more than three 
times per week in the month leading to the score measurement. At baseline and for 
the overall sample, the AIS score presented a median of 5 out of the scale maximum 
scoring of 24 highlighting that, overall, participants did not express significant 
irregularities neither in sleep quality, including sleep induction, total sleep duration, 
and awakenings at night and expressed delayed sleep induction, nor in effects of sleep 
on aspects of the next day (i.e., well-being, overall functioning, and sleepiness). 
Similarly and as evaluated via the CESD-R-10 scale, the majority of the participants did 
not display depression characteristics, such as feelings of fear and helplessness, with 
the overall sample presenting a mean score of 6 and the scale maximum scoring 
calculated at 18. Concerning the quality-of-life measurements evaluated with the SF-
12 short questionnaire, its physical component (SF PCS 12) on self-reported quality of 
life showed a median score of 52 out of a maximum of 100 for the overall sample. As 
the cut-off for a satisfactory physical state is set at 50, the observed median of 52 
denotes a mediocre level of physical functioning. The questionnaire’s mental 
component median of 46 showed that the participants presented a mediocrely 
satisfactory level of mental functioning, as its cut-off of 42 or less implies signs of 
mediocre-to-deteriorating mental functioning state.  

Overweight participants constituted 38.6% of our overall sample, with the 
remaining 61.4% spreading across the three different obesity categories (35.1%, 
14.9%, and 11.4% of the participants classified as Class I, II, or III obese, respectively). 
After investigating within-group potential differences in the lifestyle measurements 
between the extensive categorizations of BMI levels, no statistically significant 
differences were shown (Figure 22). 
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Figure 22. Baseline scoring of the four lifestyle questionnaires, based on extensive BMI 
categories. 

 
Moreover, we moved to conducting multivariate linear regressions to further 

examine the potential effect of the aforementioned lifestyle aspects on the baseline 
logBMI and body fat percentage of the entre cohort. After adjusting for age, sex, 
smoking habits, physical activity level and education years, a statistically significant 
association was shown only for the SF-PCS-12, displaying a negative effect on both 
logBMI and body fat percentage values (β = −0.003, p < 0.001 and β = −0.204, 
respectively). 

Table 15. Multivariate linear regression analyses on the relation between lifestyle 
characteristics and BMI and body fat baseline values. 

Variable Model 1 * 

β SE p-Value 
logBMI    
  AIS Score 0.001 0.001 0.609 
  CESD-R-10 Scale 0.002 0.001 0.188 
  SF PCS 12 Score −0.003 0.001 <0.001 
  SF MCS 12 Score 0.001 0.001 0.232 
Body fat (%) 
  AIS Score 0.174 0.125 0.167 
  CESD-R-10 Scale 0.163 0.099 0.102 
  SF PCS 12 Score −0.204 0.057 <0.001 
  SF MCS 12 Score 0.062 0.053 0.249 

Model 1: Adjusted for age, sex, smoking, physical activity level and education years 
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Baseline Dietary Patterns for the iMPROVE cohort 

Following the collection of data on the 202 participants’ dietary intake using 
the 69-item FFQ, we proceeded to conducting PCA on 32 identified food groups. The 
analysis resulted in the identification of five dietary patterns accounting for 40.34% of 
the sample’s total variance. The KMO and Bartlett’s Test (p < 0.001) presented a ΚΜΟ 
Measure of 0.726, indicating sufficient data adequacy. All factor loadings for each 
component were above or approaching a value of 0.3. As shown in Table 16, the 32 
food groups reflected the variety of foodstuffs consumed by the sample population, 
including both widely consumed food categories such as meat and cereals, as well as 
traditional Greek recipes (i.e., pastitsio, spinach rice, and homemade pies). Alcohol 
and beer reported servings were included in the analysis, due to the sample’s low 
median values (2 and 16 mL/d, respectively) and the lack of heavy drinkers. 



 

 

Table 16. Mean consumption and PCA factor loadings of the 32 FFQ-derived food groups. 

   Components 

 Mean Consumption 
(Median. IQR) 

Food Group 1 2 3 4 5 

Croissant (g/d) 5.2 (11.56) Sweets 0.705     
Chocolate (g/d) 12.85 (8.85)     
Tarts (g/d) 10.00 (10.00)     
Ice cream (g/d) 7.66 (24.64)     
Mayonnaise (g/d) 1.11 (2.02) * Mayonnaise 0.664     
White bread (g/d) 19.28 (17.28) Refined Cereals 0.643     
Cereals (g/d) 4.28 (4.28)     
White rice (g/d) 10.53 (23.32)     
Barley (g/d) 9.33 (30.00)     
Burger bread (g/d) 3.00 (10.44) *     
Chips (g/d) 4.66 (4.66) Salty Snacks 0.628     
Crackers (g/d) 1.33 (4.28)     
Honey (g/d) 1.07 (4.66) Sugary Snacks 0.596     
Soft drinks (mL/d) 28.69 (72.42) *     
Fruit compost (g/d) 7.58 96.66) *     
Tray Sweets (g/d) 10.00 (10.00) Tray Sweets 0.584     
Pastitsio (g/d) 10.00 (10.00) Pastitsio 0.493     
Potatoes (boiled. 
cooked. not fried) (g/d) 

11.53 (25.53) Potatoes (boiled, 
cooked, not fried) 

0.469     

Chicken (g/d) 32.14 (0.00) Chicken 0.388     
Seed oil (g/d) 3.23 (8.09) * Seed oil, margarine,  

butter 
0.374     

Margarine (g/d) 1.03 (2.46) *     
Butter (g/d) 0.50 (1.00)     
Light mayonnaise (g/d) 0.71 (1.84) * Light Products 0.367     
Light cold cuts (g/d) 2.00 (6.42)     
Light soft drinks (g/d) 22.00 (70.71)     
Sausage (g/d) 1.08 (1.45)     −0.342  
Tomatoes (g/d) 64.28 (42.85) Vegetables  0.640    
Lettuce (g/d) 34.28 (34.28)     
Broccoli (g/d) 21.42 (14.76)     
Spinach (g/d) 6.00 (13.28)     
Full fat milk (mL/d) 43.46 (71.26) Dairy  0.568    
Low fat milk 51.42 (154.28)     
White cheese (g/d) 6.42 (17.28)     
Eggs (g/d) 10.71 (7.38) Eggs  0.562    
Oranges (g/d) 36.42 (97.95) Fruits  0.525    
Apples (g/d) 30.00 (80.66)     
Bananas (g/d) 21.42 (57.61)     
Winter fruit (g/d) 32.14 (86.42)     
Summer fruit 32.14 (64.28)     
Whole bread (g/d) 19.28 (17.28) Non-refined cereals  0.443    
Brown rice (g/d) 6.72 (14.73)  *     
Whole pasta (g/d) 8.54 (9.33)     
Large fish (g/d) 10.00 (22.14) Large fish  0.432    
Olive oil (g/d) 45.00 (45.00) Olive oil  0.345    
Dried fruit (g/d) 3.35 (6.88) * Dried fruit  0.330    
Coffee (mL/d) 240.00 (240.00) Caffeinated 

Beverages 
   −0.504  

Tea (mL/d) 16.00 (51.42)     
Seafood (g/d) 10.00 (10.00) Seafood   0.685   
French Fries (g/d) 4.83 (15.53) French Fries   0.648   
Homemade pies (g/d) 10.00 (0.00) Pies   0.510   
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Other pies (g/d) 10.00 (10.00)     
Beef (g/d) 10.00 (22.14) Red Meat   0.499   
Minced beef 25.71 (17.71)     
Pork (g/d) 10.00 (22.14)     
Lamb (g/d) 5.83 (13.84)     
Alcohol (mL/d) 2.00 (6.42) Alcohol and Beer   0.398   
Beer (mL/d) 16.00 (51.42)     
Legumes (g/d) 64.28 (44.28) Legumes    0.698  
Spinach and Rice (g/d) 16.66 (53.57) Traditional, Greek 

recipes 
   0.695  

Green Peas (g/d) 42.85 (29.52)     
Olives 1.00 (3.21) Olives     0.645 
Small fish (g/d) 10.00 (32.14) Small fish     0.584 
Nuts (g/d) 3.33 (28.81) Nuts     0.343 
Fruit Juice (g/d) 16.00 (51.42) Fruit Juice     0.311 
Total Variance  
Explained (%) 

  14.74% 9.87% 6.26% 4.96% 4.49% 

* The selected variables follow the normal distribution and are presenting as mean ± SD 



 

 

Based on the inclusion of corresponding food groups in the PCA, the five dietary 
patterns identified were categorized as follows: 

i. a “Mixed” dietary pattern, consisting of light products and processed products 
high in fat and sugars (i.e., sweets, mayonnaise, refined cereals, salty snacks, 
sugary snacks, tray sweets, the Greek pastitsio, potatoes, chicken, seed oil, 
margarine, butter, light products, and sausage), (explaining 14.74% of the total 
variance);  

ii. a “Mediterranean-proxy” (or Med-proxy) pattern including the consumption 
of food groups usually found in the Mediterranean diet, such vegetables, dairy, 
eggs, fruits, non-refined cereals, large fish, olive oil, dried fruit, and caffeinated 
drinks, such as coffee and tea (explaining 9.87% of the total variance); 

iii. an “Eating out” pattern, consisting of food group combinations frequently 
consumed outside the household, i.e., seafood, French fries, pies, red meat 
and alcohol (explaining 6.26% of the total variance); 

iv. a “Traditional, vegetarian-alike” pattern reporting consumption of legumes 
and traditional Greek recipes (i.e., spinach rice and cooked green peas) 
(explaining 4.96% of the total variance); and 

v. a “High in unsaturated fats and fruit juice consumption” pattern, including 
olives, small fish, nuts and fruit juice, with the first, high in unsaturated fats 
and fruit juice consumption (explaining 4.96% of the total variance). 

 
Following the extraction of the dietary patterns, we proceeded to conducting 

multiple linear regressions adjusting for the 3 models of the confounding factors [i.e. 
Model 1: Adjusting for age and sex; Model 2: Adjusting for age, sex, smoking habits, 
physical activity level and logBMI (except for logBMI values); Model 3: Adjusting for 
age, sex, smoking habits, physical activity level, logBMI, education years, family and 
professional status]. As shown in Table 17: i) the “Mixed” pattern was associated with 
increased logBMI (Model 1: β = 0.018, p < 0.001, Model 2:β = 0.017, p < 0.001, Model 
3: β = 0.015, p-value = 0.009); increased body fat percentage (Model 1: (β = 1.191, p = 
0.002); increased logVisceral fat values (Model 1: β = 0.031, p = 0.001); increased 
logTriglycerides (Model 1: β = 0.038, p = 0.008); increased logSGPT values (Model 1: β 
= 0.052, p < 0.001, Model 2: β = 0.048, p = 0.002, Model 3: β = 0.069, p < 0.001); and 
decreased logHDL cholesterol values (Model 1: β = −0.020, p = 0.005); and ii) the 
“Med-proxy” pattern was associated with decreased levels of logTotal Bilirubin 
(Model 2: β = −0.044, p = 0.009). Moreover, nominal associations (p < 0.05) are were 
observed for the following: i) the “Mixed” pattern and increased levels of logSerum 
protein (Model 1: β = 0.004, p = 0.037, Model 3: β = 0.005, p = 0.029); as well as 
increased levels of logSGOT/AST (Model 1: β = 0.024, p = 0.028, Model 2: β = 0.024, p 
= 0.042, Model 3: β = 0.028, p-value = 0.022);  ii) the “Med-proxy” pattern and lower 
logCreatinine, (Model 3: β = −0.014, p = 0.020), as well as lower values of logTotal 
Bilirubin (Model 1: β = −0.037, p = 0.021, Model 3: β = −0.043, p = 0.016); iii) the 
“Traditional, vegetarian-alike and reduced levels of body fat percentage (Model 1: β = 
−0.795, p = 0.039, Model 2: β = −0.495, p = 0.021); decreased logVisceral fat values, 
(Model 2: β = −0.008, p = 0.033); as well as increased levels of logHDL (Model 2: β = 
0.017, p = 0.018, Model 3: β = 0.016, p = 0.040).   

 
 



 

 

Table 17. Multivariate linear regressions between the extracted dietary patterns and indices of 
anthropometric and biochemical characteristics. 

 Model 1 Model 2 Model 3 

 β SE p Β SE p β SE p 
LogBMI          
Mixed Pattern 0.018 0.005 <0.001 0.017 0.005 0.001 0.015 0.005 0.009 
Med-proxy Pattern −0.002 0.005 0.752 <0.001 0.005 0.927 −0.001 0.006 0.844 
Eating-out Pattern 0.004 0.005 0.363 0.004 0.005 0.429 0.001 0.005 0.772 
Traditional, vegetarian-alike  
Pattern 

−0.005 0.005 0.272 −0.008 0.005 0.131 −0.008 0.005 0.132 

High in unsaturated fats and fruit 
juice consumption Pattern 

−0.005 0.005 0.338 −0.006 0.005 0.266 −0.006 0.005 0.275 

Body Fat (%)          
Mixed Pattern 1.191 0.387 0.002 −0.124 0.222 0.576 −0.163 0.247 0.512 
Med-proxy Pattern −0.057 0.416 0.892 0.316 0.225 0.162 0.410 0.242 0.092 
Eating-out Pattern 0.334 0.395 0.399 0.019 0.209 0.929 −0.039 0.222 0.861 
Traditional, vegetarian-alike  
Pattern 

−0.795 0.382 0.039 −0.495 0.213 0.021 −0.416 0.235 0.067 

High in unsaturated fats and fruit 
juice consumption Pattern 

−0.275 0.396 0.489 0.114 0.213 0.594 0.247 0.226 0.275 

LogVisceral Fat          
Mixed Pattern 0.031 0.009 0.001 −0.002 0.004 0.566 <0.001 0.004 0.898 
Med-proxy Pattern −0.003 0.010 0.733 0.001 0.004 0.745 0.004 0.004 0.390 
Eating-out Pattern 0.010 0.010 0.274 0.002 0.004 0.581 0.002 0.004 0.648 
Traditional, vegetarian-alike  
Pattern 

−0.017 0.009 0.062 −0.008 0.004 0.033 −0.007 0.004 0.088 

High in unsaturated fats and fruit 
juice consumption Pattern 

−0.008 0.010 0.398 0.002 0.004 0.662 0.005 0.004 0.213 

logGlucose(mg/dL)          
Mixed Pattern 0.006 0.004 0.127 -0.001 0.004 0.810 0.001 0.004 0.809 
Med-proxy Pattern <0.001 0.004 0.982 0.002 0.004 0.627 0.002 0.004 0.545 
Eating-out Pattern 0.002 0.004 0.651 0.002 0.003 0.596 0.001 0.004 0.885 
Traditional, vegetarian-alike  
Pattern 

0.003 0.004 0.452 <0.001 0.004 0.995 0.001 0.004 0.861 

High in unsaturated fats Pattern −0.003 0.004 0.362 −0.004 0.004 0.262 −0.005 0.004 0.204 

logUrea (mg/dL)          
Mixed Pattern 0.004 0.007 0.566 0.002 0.008 0.818 0.001 0.009 0.937 
Med-proxy Pattern 0.010 0.008 0.203 0.012 0.008 0.141 0.012 0.009 0.189 
Eating-out Pattern −0.005 0.007 0.479 −0.006 0.007 0.448 −0.008 0.008 0.333 
Traditional, vegetarian-alike  
Pattern 

<0.001 0.007 0.974 −0.001 0.008 0.859 −0.004 0.008 0.629 

High in unsaturated fats Pattern −0.003 0.007 0.733 −0.002 0.008 0.764 −0.004 0.008 0.609 

logCreatinine(mg/dL)          
Mixed Pattern 0.008 0.005 0.141 0.008 0.006 0.156 0.012 0.006 0.054 
Med-proxy Pattern −0.009 0.005 0.110 −0.011 0.006 0.049 −0.014 0.006 0.020 
Eating-out Pattern −0.001 0.005 0.871 0.001 0.005 0.870 0.001 0.005 0.876 
Traditional, vegetarian-alike  
Pattern 

−0.003 0.005 0.585 −0.007 0.005 0.163 −0.008 0.006 0.153 

High in unsaturated fats and fruit 
juice consumption Pattern 

0.002 0.005 0.746 0.001 0.005 0.908 <0.001 0.006 0.996 

logUric Acid(mg/dL)          
Mixed Pattern 0.005 0.006 0.396 −0.006 0.007 0.337 −0.004 0.007 0.589 
Med-proxy Pattern −0.005 0.007 0.480 −0.002 0.007 0.746 -0.001 0.007 0.919 
Eating-out Pattern 0.003 0.006 0.595 0.002 0.006 0.741 −0.001 0.006 0.831 
Traditional, vegetarian-alike  
Pattern 

−0.002 0.006 0.762 −0.004 0.006 0.519 −0.004 0.007 0.513 
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Total Cholesterol (mg/dL)          
Mixed Pattern −0.247 2.402 0.918 1.304 2.575 0.613 0.953 2.916 0.744 
Med-proxy Pattern −3.167 2.521 0.211 −2.753 2.612 0.293 −3.480 2.847 0.224 
Eating-out Pattern −0.099 2.395 0.967 −0.302 2.415 0.901 −0.668 2.601 0.798 
Traditional, vegetarian-alike  
Pattern 

2.295 2.320 0.324 3.770 2.465 0.128 4.722 2.619 0.073 

High in unsaturated fats Pattern −0.185 2.447 0.940 0.837 2.521 0.740 0.139 2.715 0.959 

logHDL-C (mg/dL)          
Mixed Pattern −0.020 0.007 0.005 −0.013 0.007 0.081 −0.016 0.008 0.060 
Med-proxy Pattern −0.004 0.008 0.552 −0.009 0.008 0.265 −0.010 0.008 0.257 
Eating-out Pattern 0.009 0.007 0.214 0.011 0.007 0.124 0.013 0.008 0.077 
Traditional, vegetarian-alike  
Pattern 

0.013 0.007 0.056 0.017 0.007 0.018 0.016 0.008 0.040 

High in unsaturated fats and fruit 
juice consumption Pattern 

0.006 0.007 0.440 0.006 0.007 0.401 0.004 0.008 0.625 

logLDL-C (mg/dL) 
Mixed Pattern −0.007 0.010 0.495 0.005 0.010 0.607 0.002 0.011 0.869 
Med-proxy Pattern −0.008 0.010 0.450 −0.004 0.010 0.672 −0.007 0.011 0.593 
Eating-out Pattern −0.003 0.010 0.743 −0.004 0.009 0.648 −0.006 0.010 0.546 
Traditional, vegetarian-alike  
Pattern 

−0.006 0.009 0.539 0.002 0.010 0.815 0.005 0.010 0.625 

High in unsaturated fats and fruit 
juice consumption Pattern 

−0.010 0.010 0.324 −0.003 0.010 0.761 −0.003 0.011 0.756 

logTriglycerides(mg/dL)          
Mixed Pattern 0.038 0.014 0.008 0.021 0.015 0.161 0.032 0.016 0.051 
Med-proxy Pattern −0.009 0.015 0.543 −0.003 0.015 0.819 −0.003 0.016 0.868 
Eating-out Pattern <0.001 0.014 0.997 −0.003 0.014 0.808 −0.007 0.015 0.625 
Traditional, vegetarian-alike  
Pattern 

0.009 0.014 0.498 0.006 0.014 0.652 0.015 0.015 0.312 

High in unsaturated fats and fruit 
juice consumption Pattern 

0.002 0.014 0.908 <0.001 0.015 0.987 −0.005 0.016 0.746 

logTotal Bilirubin(mg/dL)          
Mixed Pattern −0.002 0.015 0.901 <0.001 0.017 0.988 0.013 0.018 0.490 
Med-proxy Pattern −0.037 0.016 0.021 −0.044 0.016 0.009 −0.043 0.018 0.016 
Eating-out Pattern −0.005 0.015 0.739 −0.001 0.015 0.945 −0.005 0.016 0.781 
Traditional, vegetarian-alike  
Pattern 

0.032 0.015 0.031 0.030 0.016 0.058 0.033 0.016 0.046 

High in unsaturated fats and fruit 
juice consumption Pattern 

0.017 0.016 0.274 0.014 0.016 0.380 0.015 0.017 0.385 

logSerum protein(g/dL)          
Mixed Pattern 0.004 0.002 0.037 0.002 0.002 0.190 0.005 0.002 0.029 
Med-proxy Pattern −0.001 0.002 0.557 −0.001 0.002 0.710 <0.001 0.002 0.817 
Eating-out Pattern −0.001 0.002 0.603 −0.001 0.002 0.595 −0.002 0.002 0.274 
Traditional, vegetarian-alike  
Pattern 

0.002 0.002 0.161 0.002 0.002 0.214 0.003 0.002 0.135 

High in unsaturated fats and fruit 
juice consumption Pattern 

0.001 0.002 0.537 0.001 0.002 0.542 <0.001 0.002 0.809 

logAlbumin(g/dL)          
Mixed Pattern 0.002 0.004 0.665 0.003 0.004 0.413 0.003 0.002 0.206 
Med-proxy Pattern −0.002 0.004 0.697 −0.002 0.004 0.595 0.002 0.002 0.297 
Eating-out Pattern <0.001 0.004 0.920 0.001 0.004 0.775 <0.001 0.002 0.960 

Traditional, vegetarian-alike  
Pattern 

0.003 0.004 0.361 0.003 0.004 0.501 0.003 0.002 0.109 

High in unsaturated fats Pattern −0.002 0.004 0.591 −0.003 0.004 0.427 0.001 0.002 0.789 

LogSGOT/AST(IU/L)          
Mixed Pattern 0.024 0.011 0.028 0.024 0.012 0.042 0.028 0.012 0.022 
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Med-proxy Pattern 0.003 0.011 0.781 0.004 0.012 0.724 0.002 0.012 0.881 
Eating-out Pattern −0.011 0.011 0.288 −0.010 0.011 0.357 −0.014 0.011 0.191 
Traditional, vegetarian-alike  
Pattern 

0.003 0.010 0.784 −0.003 0.011 0.820 −0.003 0.011 0.751 

High in unsaturated fats and fruit 
juice consumption Pattern 

0.005 0.011 0.642 0.003 0.011 0.780 0.001 0.011 0.895 

logSGPT/ALT (IU/L)          
Mixed Pattern 0.052 0.014 <0.001 0.048 0.015 0.002 0.069 0.016 <0.001 
Med-proxy Pattern −0.009 0.015 0.567 −0.004 0.016 0.788 −0.005 0.016 0.756 
Eating-out Pattern −0.004 0.015 0.766 −0.006 0.015 0.660 −0.010 0.015 0.509 
Traditional, vegetarian-alike  
Pattern 

0.002 0.014 0.876 0.001 0.015 0.966 <0.001 0.015 0.954 

High in unsaturated fats and fruit 
juice consumption Pattern 

0.004 0.015 0.783 0.005 0.015 0.762 −0.003 0.015 0.823 

logAIS          
Mixed Pattern 0.038 0.029 0.194 0.025 0.032 0.445 0.026 0.034 0.435 
Med-proxy Pattern 0.010 0.030 0.738 0.021 0.032 0.509 0.029 0.035 0.401 
Eating-out Pattern -0.039 0.039 0.305 -0.035 0.041 0.390 -0.028 0.044 0.528 
Traditional, vegetarian-alike  
Pattern 

-0.017 0.029 0.569 -0.039 0.032 0.231 -0.032 0.035 0.355 

High in unsaturated fats and fruit 
juice consumption Pattern 

-0.002 0.031 0.937 -0.011 0.032 0.721 -0.018 0.034 0.604 

LogCESD-R-10          
Mixed Pattern 0.053 0.022 0.017 0.047 0.024 0..051 0.053 0.027 0.051 
Med-proxy Pattern 0.008 0.023 0.737 0.018 0.024 0.447 2.032e-

02 
2.604
e-02 

0.436 

Eating-out Pattern 0.009 0.022 0.657 0.005 0.023 0.829 0.005 0.024 0.851 
Traditional, vegetarian-alike  
Pattern 

-0.011 0.022 0.607 -0.009 0.023 0.692 -0.005 0.025 0.851 

High in unsaturated fats and fruit 
juice consumption Pattern 

-0.010 0.023 0.644 -0.005 0.023 0.846 -0.002 0.025 0.929 

LogSF-PCS-12          
Mixed Pattern -0.017 0.007 0.013 -0.006 0.007 0.401 -6.972e-

03 
7.475
e-03 

0.353 

Med-proxy Pattern 0.010 0.008 0.229 0.006 0.008 0.427 0.002 0.008 0.833 
Eating-out Pattern 0.002 0.007 0.761 0.003 0.007 0.679 0.006 0.007 0.374 
Traditional, vegetarian-alike  
Pattern 

-0.008 0.007 0.252 -0.004 0.007 0.549 -0.003 0.007 0.647 

High in unsaturated fats and fruit 
juice consumption Pattern 

-0.004 0.007 0.557 -0.007 0.007 0.323 -0.006 0.007 0.441 

LogSF-MCS-12          
Mixed Pattern -0.001 0.008 0.887 0.01 0.008 0.942 1.277e-

03 
9.224
e-03 

0.892 

Med-proxy Pattern 0.128 0.009 0.187 0.005 0.009 0.586 2.685e-
03 

1.041
e-02 

0.767 

Eating-out Pattern 0.009 0.008 0.232 0.013 0.008 0.100 0.014 0.008 0.092 
Traditional, vegetarian-alike  
Pattern 

-0.001 0.008 0.890 0.002 0.009 0.773 4.018e-
03 

9.138
e-03 

0.661 

High in unsaturated fats and fruit 
juice consumption Pattern 

0.012 0.008 0.140 0..013 0.008 0.122 0.013 0.009 0.159 

Model 1: Adjusting for age and sex; Model 2: Adjusting for age, sex, smoking habits, physical activity level and logBMI (except for 
logBMI values); Model 3: Adjusting for age, sex, smoking habits, physical activity level, logBMI, education years, family and 

professional status 



 

 

Construction of a Lifestyle Index (LI) 

In an effort to further investigate the potential impact of the participants’ 
lifestyle characteristics on their indices of anthropometric and biochemical profile, we 
proceeded to examining associations between different sets of variables. For this 
purpose, we investigated potential correlations between the reported lifestyle 
questionnaire scores, the extracted dietary patterns, and basic aspects, such as 
smoking and physical activity habits, with anthropometric indices, such as BMI and 
body fat percentage. All variables under examination were divided into categories, 
with higher values indicating favorable effects. The association between dietary 
patterns and investigated indices took place via categorization of attrition to the 
pattern in tertile groups. Continuous and nominal variables displaying positive 
correlations were further dichotomized based on the sample’s reported median 
values (attribution of a value of 1 for scores below the sample’s median and a value 
of 2 for scores above the observed median).  

Variables displaying statistically significant (p < 0.05), positive correlations with 
either logBMI of body fat percentage values included: the “Mixed” and “Med-proxy” 
dietary patterns, the CESD-R-10 depression scale score and the physical component 
of the SF-12 scored questionnaire. Subsequently, a Lifestyle Index (LI) was created, 
based on the sum of the aforementioned, dichotomized variables and physical activity 
categories, as shown in below. The LI was calculated for 141 participants and the 
sample presented a median score of 8 and an IQR of 2, with an overall maximum score 
calculated at the value of 11. 

𝐿𝑖𝑓𝑒𝑠𝑡𝑦𝑙𝑒 𝐼𝑛𝑑𝑒𝑥 (𝐿𝐼)

=  𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 + ”𝑀𝑖𝑥𝑒𝑑”𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑑𝑖𝑐ℎ𝑜𝑡𝑜𝑚𝑖𝑧𝑒𝑑 𝑠𝑐𝑜𝑟𝑒

+ ”𝑀𝑒𝑑 − 𝑝𝑟𝑜𝑥𝑦”𝑑𝑖𝑐ℎ𝑜𝑡𝑜𝑚𝑖𝑧𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 + 𝐶𝐸𝑆𝐷 − 𝑅

− 10 𝑑𝑖𝑐ℎ𝑜𝑡𝑜𝑚𝑖𝑧𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 + 𝑆𝐹 − 𝑃𝐶𝑆 𝑑𝑖𝑐ℎ𝑜𝑡𝑜𝑚𝑖𝑧𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 

 

  
Consequently, we used multivariate linear regressions adjusting for age, sex 

and BMI, in order to investigate for potential associations between the newly 
constructed LI and multiple indices of body composition and biochemical profile. As 
shown in Table 18, LI presented strong associations, including inverse correlations 
between: i) logBMI (Model 1: β = −0.010. p=0.022); ii) body fat percentage (Model 1: 
β=-0.903, p-value=0.007); iii) logVisceral fat (Model 1: β=-0.018, p=0.018); iv) 
logFasting glucose (Model 1: β=-0.009, p=0.004, Model 2: β=-0.007, p=0.023); v)  
logUric acid (Model 1: β=-0.012, p=0.030); vi) logAlbumin (Model 2: β=-0.008, 
p=0.032); and vii)logSGPT (Model 1: β=-0.026, p=0.027, Model 2: β=-0.026, p=0.030).  
 
  



 

 

Table 18. Multivariate linear regressions between anthropometric and clinical characteristics and the 
constructed lifestyle index. 

  Model 1  Model 2 

 β SE p Β SE p 
logBMI       
Lifestyle Index -0.010 0.004 0.022 − − − 

Body fat (%)       
Lifestyle Index -0.903 0.328 0.007 −0..242 0.186 0.197 

LogVisceral Fat       
Lifestyle Index -0.018 0.008 0.017 -0.001 0.003 0.712 

logFasting glucose (mg/dL)       
Lifestyle Index −0.009 0.003 0.004 −0.007 0.003 0.023 

logUrea (mg/dL)       
Lifestyle Index 0.002 0.007 0.728 0.004 0.007 0.608 

logCreatinine (mg/dL)       
Lifestyle Index 0.006 0.004 0.150 0.005 0.004 0.210 

logUric acid (mg/dL)       
Lifestyle Index -0.012 0.005 0.030 -0.009 0.005 0.103 

Total cholesterol (mg/dL)       
Lifestyle Index -1.210 2.248 0.591 -1.833 2.306 0.428 

logHDL-C (mg/dL)       
Lifestyle Index <0.001 0.006 0.957 -0.001 0.007 0.878 

logLDL-C (mg/dL)       
Lifestyle Index -0.001 0.009 0.937 -0.004 0.009 0.698 

logTriglycerides(mg/dL)       
Lifestyle Index -0.023 0.012 0.062 -0.021 0.013 0.097 

logTotal Bilirubin(mg/dL)       
Lifestyle Index -0.022 0.012 0.069 -0.023 0.013 0.066 

logSerum protein(g/dL)       
Lifestyle Index -0.002 0.001 0.124 -0.002 0.002 0.217 

logAlbumin(g/dL)       
Lifestyle Index -0.007 0.004 0.073 -0.008 0.004 0.032 

logSGOT (IU/L) 
Lifestyle Index −0.006 0.009 0.515 −0.008 0.009 0.373 

LogSGPT (IU/L) 
Lifestyle Index -0.026 0.012 0.027 -0.026 0.012 0.030 

Model 1: Adjusted for age, sex; Model 2: Adjusting for age, sex, BMI 



 

 

Assessment of adherence to the Mediterranean Diet and Physical Activity Habits 

Finally, in the effort to holistically assess the effect of the participants’ 

characteristics on the measured indices, we proceeded to conducting another 

categorization involving the volunteers’ adherence to MD, as measured by the 

MedDiet score, and their self-reported level of physical activity, as measured by the 

short IPAQ. We separated the participants on high and low adherence to MD groups, 

based on the sample MedDiet score median, as well as sedentary versus active 

physical level, based on their reported PAL (all participants with low PAL were 

classified as sedentary, whereas participants with moderate or vigorous PAL were 

classified as “active”). Subsequently, four categories were created, namely: i) the "Low 

Adherence/Sedentary (LA/S)"; ii) the "High adherence/Sedentary (HA/S)” ; iii)the "Low 

Adherence/Active (LA/A)"; and v) the "High Adherence/Active (HA/A)" groups. Out of 

the144 participants with available baseline data, 27 individuals belonged in the first 

group, 22 in the second, 41 in the third and 54 in the fourth category. 

As shown in Figure 23., Kruskal-Wallis tests performed to assess within-group 

differences showed statistically significant, negative associations between 

categorization in the higher groups and anthropometric indices, namely BMI levels 

(p=0.003) and total body fat in kilograms (p=0.004). Categorization to the different 

groups did not present statistically significant associations for waist measurements, 

namely WC (p=0.10) and WHR (p=0.67). 

A.  
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B.  

C.  

D.  
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Figure 23.  Clustered boxplots depicting A. BMI, B. WC, C. WHR and D. body fat in kg, 

per MedDiet Score/ PA group, at baseline  

As such, we conducted a last set of multivariate regressions to test for the 

potential effect of adherence to MD and physical activity habits by examining the 

groups as a factor variable on the levels of the anthropometric, biochemical and 

lifestyle indices. Table 19 shows the associations with the examined variables, where 

no additive effect of PA and diet is shown and the associations with the examined 

indices appear to be mainly driven by the MedDietScore. More specifically, 

participants in the High Adherence/Active group displayed significantly reduced levels 

in anthropometric indices such as logBMI (Model 1: β=-0.059, p=0.0002, Model 2: β=-

0.060, p=0.0002), logWHR (Model 1: β=-0.019, p=0.019, Model 2: β=-0.018, p=0.02), 

log of body fat in kilograms (Model 1: β=-0.108, p=0.0008, Model 2: β=-0.107, 

p=0.0009), log of visceral fat (Model 1: β=-0.103, p=0.001, Model 2: β=-0.102, 

p=0.001). Out of the biochemical indices examined, participants in this group only 

displayed statistically significantly lower levels of logglucose (Model 1: β=-0.039, 

p=0.002, Model 2: β=-0.040, p=0.0015). Interestingly, the HA/A group presented a 

better profile of mental health, displaying associations with lower levels of CESD-R10 

scores (Model 1: β=-0.167, p=0.025, Model 2: β=-0.167, p=0.026) and increased levels 

of the SF-MCS-12 (Model 1: β=0.071, p=0.01, Model 2: β=0.072, p=0.009). 



 

 

Table 19. Multivariate linear regressions between anthropometric and clinical characteristics and the 
constructed MedDiet score/PA groups. 

  Model 1  Model 2 

 β SE p β SE p 
logBMI       
 HA/S Group -0.067 0.018 0.0004 -0.067 0.019 0.0004 
 LA/A Group -0.029 0.016 0.072 -0.029 0.016 0.078 
 HA/A Group -0.059 0.015 0.0002 -0.060 0.016 0.0002 

logWHR       

  HA/S Group -0.018 0.009 0.05 -0.018 0.009 0.043 
  LA/A Group -0.014 0.008 0.09 -0.016 0.008 0.049 
  HA/A Group -0.019 0.008 0.019 -0.018 0.007 0.02 

logBody fat (kg)       
  HA/S Group -0.108 0.037 0.005 -0.109 0.038 0.004 
  LA/A Group -0.06 0.033 0.068 -0.064 0.033 0.05 
  HA/A Group -0.108 0.032 0.0008 -0.107 0.032 0.0009 

LogVisceral Fat       
  HA/S Group -0.121 0.037 0.001 -0.121 0.037 0.001 
  LA/A Group -0.054 0.032 0.09 -0.05 0.032 0.09 
  HA/A Group -0.103 0.031 0.001 -0.102 0.031 0.001 

logFasting glucose (mg/dL)       
  HA/S Group -0.026 0.015 0.088 -0.024 0.014 0.099 
  LA/A Group -0.037 0.013 0.005 -0.033 0.013 0.011 
  HA/A Group -0.039 0.013 0.002 -0.040 0.012 0.0015 

logUrea (mg/dL)       
  HA/S Group -0.013 0.029 0.667 -0.013 0.029 0.6722 
  LA/A Group -0.022 0.025 0.389 -0.022 0.026 0.4021 
  HA/A Group -0.023 0.025 0.346 -0.024 0.025 0.3458 

logCreatinine (mg/dL)       
  HA/S Group 0.001 0.021 0.948 2.747e-03 2.128e-02 0.8975 
  LA/A Group 0.023 0.018 0.214 2.705e-02 1.863e-02 0.1489 
  HA/A Group 0.014 0.018 0.444 1.237e-02 1.788e-02 0.4904 

logUric acid (mg/dL)       
  HA/S Group -0.029 0.024 0.2412 -0.029 0.024 0.240 
  LA/A Group -0.018 0.021 0.3882 -0.019 0.022 0.379 
  HA/A Group -0.034 0.021 0.098 -0.034 0.021 0.102 

Total cholesterol (mg/dL)       
  HA/S Group 3.5896 10.170 0.724 3.6494 10.215 0.721 
  LA/A Group -9.464 8.843 0.286 -9.296 8.94 0.300 
  HA/A Group -1.019 8.541 0.905 -1.084 8.583 0.899 

logHDL-C (mg/dL)       
  HA/S Group 0.013 0.030 0.648 0.016 0.029 0.604 
  LA/A Group 0.0001 0.026 0.997 0.005 0.026 0.844 
  HA/A Group 0.020 0.025 0.407 0.019 0.025 0.449 

logLDL-C (mg/dL)       
  HA/S Group 0.037 0.04 0.362 0.037 0.041 0.365 
  LA/A Group -0.009 0.035 0.792 -0.009 0.036 0.790 
  HA/A Group 0.002 0.034 0.947 0.002 0.035 0.946 

logTriglycerides(mg/dL)       
  HA/S Group -0.080 0.057 0.1685 -0.081 0.058 0.166 
  LA/A Group -0.082 0.050 0.105 -0.084 0.051 0.099 
  HA/A Group 0.075 0.048 0.1235 -0.074 0.049 0.1295 

logTotal Bilirubin(mg/dL)       
  HA/S Group -0.046 0.058 0.431 -0.044 0.059 0.458 
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  LA/A Group 0.023 0.051 0.654 0.031 0.051 0.550 
  HA/A Group 0.016 0.049 0.748 0.012 0.049 0.794 

logDirect Bilirubin(mg/dL)       
  HA/S Group -0.004 0.053 0.933 -5.875e-04 5.277e-02 0.991 
  LA/A Group 0.054 0.046 0.243 6.525e-02 4.618e-02 0.160 
  HA/A Group 0.042 0.046 0.346 3.824e-02 4.434e-02 0.390 

logSerum protein(g/dL)       
  HA/S Group -0.006 0.007 0.3955 -0.006 0.007 0.0408 
  LA/A Group -0.009 0.006 0.1643 -0.009 0.007 0.1892 
  HA/A Group -0.009 0.006 0.1422 -0.009 0.006 0.1368 

logAlbumin(g/dL)       
  HA/S Group 4.693e-03   1.717e-02 0.785 5.153e-03 1.721e-02 0.765 
  LA/A Group -439e-03 1.493e-02 0.762 -3.247e-03 1.506e-02 0.830 
  HA/A Group 1.527e-02 1.442e-02 0.292 1.478e-02 1.446e-02 0.309 

logSGOT (IU/L)       
  HA/S Group -0.045 0.047 0.341 -0.044 0.047 0.353 
  LA/A Group -0.026 0.041 0.528 -0.023 0.041 0.574 
  HA/A Group -0.019 0.039 0.637 -0.019 0.039 0.620 

LogSGPT (IU/L)       
  HA/S Group -0.044 0.059 0.467 -0.044 0.060 0.4612 
  LA/A Group -0.001 0.052 0.9822 -0.003 0.053 0.9482 
  HA/A Group -0.056 0.050 0.2635 -0.056 0.050 0.2729 

logAIS 
  HA/S Group 0.047 0.128 0.714 0.052 0.129 0.688 
  LA/A Group 0.028 0.101 0.776 0.041 0.104 0.695 
  HA/A Group -0.153 0.105 0.150 -0.15 0.106 0.162 

LogCESD-R-10 
  HA/S Group -0.069 0.09 0.426 -0.072 0.087 0.4145 
  LA/A Group -0.008 0.07 0.907 -0.014 0.075 0.8524 
  HA/A Group -0.167 0.07 0.025 -0.167 0.073 0.026 

LogSF PCS 12 
  HA/S Group 0.028 0.026 0.28 0.031 0.027 0.2488 
  LA/A Group 0.005 0.023 0.83 0.0087 0.023 0.7103 
  HA/A Group 0.038 0.022 0.08 0.038 0.022 0.086 

LogSF MCS 12 
  HA/S Group -0.011 0.032 0.7455 -0.006 0.033 0.8477 
  LA/A Group 0.033 0.028 0.2393 0.039 0.028 0.172 
  HA/A Group 0.071 0.027 0.01 0.072 0.027 0.009 

Model 1: Adjusted for age, sex; Model 2: Adjusting for age, sex, smoking 

  



 

 

3.1.2. Study Results on Body Weight and WHR 
 
Changes observed in collected data for Weight, BMI and WHR 

The entirety of changes in weight, BMI and WHR based on observed 
measurements from baseline up to the end of month 3, is displayed in Tables 20-21. 
Figure 24 shows the analytical CONSORT flow diagram on the trial’s participants. 

 

 

Figure 24. CONSORT 2010 Flow Diagram for the iMPROVE study.  
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For the baseline measurements, we used the data collected in-person during 
the baseline meeting, while self-reported data inserted in the online assessment tool 
by the participants themselves were used for the end of the first and second months 
of the intervention. Regarding the data at the end of month 3, we used the in-person 
measurements for the participants attending the in-person meeting and the online, 
self-reported measurements for the participants who did not attend the in-person 
session.  

As shown in Table 20, in the overall sample, weight and BMI were statistically 
significantly lower at the end of month 3 compared to baseline (83kg vs 87kg, p<0.001 
and 29.32kg/m2 vs 31.35kg/m2, p<0.001, respectively). Table 21 presents the within-
month analyses which showed a similar, statistically significant decrease in weight and 
BMI from baseline up to the end of month 1 (87kg vs 84kg, p<0.001 and 31.35 kg/m2 
vs 30.14 kg/m2, p<0.001, respectively), as well as from the end of month 1 up to the 
end of month 2 (84kg vs 82kg, p<0.001 and 30.14 kg/m2 vs 29.71kg/m2, p<0.001, 
respectively). No statistically significant change was observed from the end of month 
2 up to the end of month 3.   
 
Table 20. Weight, BMI and WHR measurements at the main points of the study. 

Variable Time Total Men Women  

  N Median 
(IQR) 

N Median 
(IQR) 

N Median 
(IQR) 

P* 

Weight Baseline 202 87 (26) 59 103 (30) 143 83 (17) <0.001 
Month 3 84 83 (23) 25 98 (27.5) 59 77 (16) <0.001 

 p**  <0.001  <0.001  <0.001  

BMI Baseline 202 31.35 (6.9) 59 31.2 (7.3) 143 31.4 (6.9) 0.920 
Month 3 83 29.32 (6.03) 25 29.63 (7.46) 58 28.93 

(5.82) 
0.333 

 p**  <0.001  <0.001  <0.001  

WHR Baseline 183 0.86 
(0.13)** 

53 0.93 
(0.08)** 

130 0.83 
(0.09)** 

<0.001 

Month 3 73 0.86 
(0.15)** 

21 0.93 
(0.07)** 

52 0.83 
(0.12)** 

<0.001 

p**  0.003  0.009  0.047  

p*: p-value showing differences within the two sexes, using the Mann-Whitney test. 
p**: p-value showing overall change from baseline using the Wilcoxon signed-rank test. 

** variable follows the normal distribution, so mean ± SD are shown. 

 
Table 21. Weight, BMI, and WHR measurements during the three months of the study. 

Variable Time Total Men Women  

  N Median 
(IQR) 

N Median 
(IQR) 

N Median (IQR) P* 

Weight Baseline 202 87 (26) 59 103 (30) 143 83 (17) <0.001 
Month 1 118 84 (25) 35 101 (21) 83 79 (15) <0.001 
p**  <0.001*  <0.001  <0.001  
Month 2 89 82(25) 27 100 (25) 62 76.50 (13) <0.001 
p**  0.001*  0.009  0.023  
Month 3 84 83 (23) 25 98 (27.5) 59 77 (16) <0.001 

 p**  0.819*  0.925  0.849  

BMI Baseline 202 31.35 (6.9) 25 29.63 (7.46) 58 28.93 (5.82) 0.920 
Month 1 118 30.14 

(6.08) 
35 31.13 (7.51) 83 29.73 (5.87) 0.528 

p**  <0.001  <0.001  <0.001  
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Month 2 89 29.71 
(6.12) 

27 31.01 (7.42) 62 29.33 (5.33) 0.215 

p**  0.001  0.010  0.044  
Month 3 83 29.31 

(6.03) 
25 29.63 (7.46) 58 28.93 (5.82) 0.333 

 p**  0.867  0.955  0.670  

WHR Baseline 183 0.86 
(0.13)** 

53 0.93 
(0.08)** 

130 0.83 (0.09)** <0.001 

Month 1 111 0.87  (0.15) 33 0.95 
(0.06)** 

78 0.84 (0.13) <0.001 

p**  0.349  0.636  0.394  
Month 2 81 0.88 (0.15) 26 0.97 (0.07) 55 0.85 (0.13) <0.001 
p**  0.427  0.353  0.153  
Month 3 73 0.86 

(0.15)** 
21 0.93 

(0.07)** 
52 0.83 (0.12)** <0.001 

p**  0.05  0.038  0.320  

 p*: p-value showing differences within the two sexes, using the Mann-Whitney test. 
p**: p-value showing overall change from the previous month using the Wilcoxon signed-rank test. 

**: variable follows the normal distribution, so mean ± SD are shown. 

 
Regarding the within-diet group changes, both weight and BMI were 

significantly reduced in both groups (Figure 25) from baseline to month 3 (p<0.001 for 
all), whereas WHR showed a statistically significant increase in the high-carbohydrate 
group only (0.85cm vs 0.88cm, p=0.033) (Table 22). Weight was also statistically 
significantly reduced from baseline to month 1 and month 1 to month 2 for 
participants in both groups (p<0.05 for all) (Table 23). Additionally, BMI levels 
decreased for both groups from baseline to the end of month 1 (p<0.001 for both), 
whereas participants in the high protein groups also displayed a statistically significant 
reduction from the end of month 1 up to the end of month 2 (31.18kg/m2 vs 
29.71kg/m2, p=0.006).  
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Table 22. Weight, BMI and WHR measurements at the main points of the study, per 
diet group. 

Variable Time N1 (High 
Carb) 

Median ± IQR N2 (High 
Prot) 

Median ± IQR p* 

Weight Baseline 94 83.50 (26) 108 88.50 (25) 0.014 
Month 3 36 79 (25) 48 84.5 (20.5) 0.178 
p**  <0.001  <0.001  

BMI Baseline 94 30.5 (6.9) 108 32.3 (7.8) 0.920 
Month 3 36 29.21 (6.83) 47 29.32 (6.26) 0.333 
p**  <0.001  <0.001  

WHR Baseline 82 0.85 (0.12) 101 0.86 (0.12) 0.665 
Month 3 31 0.88 

(0.099)*** 
42 0.85 

(0.084)*** 
0.129 

p**  0.033  0.063  

p*: p-value showing differences within the two diet groups, using the Mann-Whitney test. 
p**: p-value showing change from baseline for each group, using the Wilcoxon signed-rank test. 

***: variable follows the normal distribution, so mean ± SD are shown. 

A.  

B.  

Figure 25 Trajectories of weight (25.A) and BMI (25.B) change from baseline up to the 

end of month 3 of the intervention, per diet group (1=high carbohydrate and 2=high 

protein).  
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Table 23. Changes in weight, BMI and WHR per diet group during the three months of 
the study per diet group. 

Variable Time N1(High 
Carb) 

Median ± IQR N2 (High 
Prot) 

Median ± IQR p * 

Weight Baseline 94 83.50 (26) 108 88.50 (25) 0.014 
Month 1 56 81.50 (21) 62 86 (26) 0.173 
p-value**  <0.001  <0.001  
Month 2 42 80 (20) 47 86 (25) 0.149 
p-value**  0.047  0.006  
Month 3 36 79 (25) 48 84.5 (20.5) 0.178 
p-value**  0.478  0.843  

BMI Baseline 94 30.5 (6.9) 108 32.3 (7.8) 0.920 
Month 1 56 29.58 (6.34) 62 31.18 (6.09) 0.249 
p-value**  <0.001  <0.001  
Month 2 42 29.84 (5.43) 47 29.71 (7.02) 0.421 
p-value**  0.088  0.006  
Month 3 36 29.21 (6.83) 47 29.32 (6.26) 0.333 
p-value**  0.458  0.610  

WHR Baseline 82 0.85 (0.12) 101 0.86 (0.12) 0.665 
Month 1 54 0.88 (0.15) 57 0.86 

(0.09)*** 
0.246 

p-value**  0.339  0.726  
Month 2 39 0.89 (0.15) 42 0.86 

(0.16)*** 
0.354 

p-value**  0.839  0.230  
Month 3 31 0.88 (0.099)*** 42 0.85 

(0.084)*** 
0.129 

p-value**  0.049  0.393  

*p: p-value showing differences within the two diet groups, using the Mann-Whitney test. 
p**: p-value showing change from the previous month for each diet group, using the Wilcoxon 

signed-rank test. 
***: variable follows the normal distribution, so mean ± SD are shown. 

 

Imputation of Missing Values for Weight Measurements 

In the effort to enhance the holistic assessment of the effect of the 

intervention on the primary outcomes, we proceeded to applying an imputation 

methodology for filling out the missing values observed for weight at the end of the 

three months (n=202 at baseline vs n=84 at the end of month 3 for weight). The 

imputation step was performed for the logarithm of weight, at the end of the first, 

second and third months, simultaneously, using a multivariate normal regression 

model. 

For the process of the imputation, the role of multiple variables on the primary 

outcomes was examined, including age, sex, physical activity, baseline anthropometric 

measurements (body fat percentage, WC and visceral fat), baseline levels of 

biochemical indices such as total cholesterol, glucose, TG, HDL-C, as well as socio-

economic characteristics like family status and education level. We used data from the 

former to assess the living status of the participants as living alone if they had reported 

to be single, separated, divorced, or a widower/widow or as not living alone if they 

had reported to be in married or in a steady relationship. We further categorized their 

education level on having received no education, having concluded the 1st, 2nd of 3rd 
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grade of education or other characteristics reported. Table 24 shows the comparisons 

between each group of the examined categorical values and the observed change in 

weight at the end of the 3 months. A statistically significant difference was revealed 

in the weight change observed among the participants in the two categories of living 

status, where individuals who were reported to be living alone noted lower change 

compared to the ones living with someone else (change=-1kg vs change=-3kg, 

p=0.003). 

Furthermore, we conducted correlation analyses, in order to assess the 

potential effect of the remaining numerical variables on baseline weight and the 

observed weight change at 3 months (Table 25). Among the numerical variables, body 

fat percentage (p=0.007), WC, visceral fat, glucose, TG and HD-C levels were 

correlated to baseline weight (p<0.001), but not the change of weight at the end of 

the three months.  
 

Table 24. Comparison of baseline weight and change in weight at 3 months across the 
categories of possible categorical predictors.  

 Baseline weight, kg Change in weight at 3 months, kg 

 N Descriptives p N Descriptives P 
Sex  Median (Q1, Q3)   Mean (SD)  

Male  59 103 (90, 120) <0.001* 25 -4.22 (3.96) 0.250** 
Female  143 83 (75, 92)  59 -2.47 (3.29)  

Physical activity  Median (Q1, Q3)   Median (Q1, Q3)  
Sedentary 64 88 (79, 105)  22 -1 (-4, 1)  
Mediocre 104 86 (77.5, 100) 0.369*** 49 -3 (-6, 0) 0.197*** 
Active/intense 31 88 (81, 104)  12 -6.75 (-4.5, 0)  

Live alone  Median (Q1, Q3)   Mean (SD)  
Yes 59 86 (74, 104) 0.231* 21 -1.05 (3.01) 0.003** 
No  142 88 (78, 104)  62 -3.70 (3.52)  

Education level  Median (Q1, Q3)   Median (Q1, Q3)  
No education 8 94.5 (84, 97.5)  6 -5.75 (-6, -3.5)  
1st grade 2 95 (86, 104)  1 3.5 (3.5, 3.5)  
2nd grade 54 87 (78, 110) 0.664*** 22 -2.5 (-4.5, -1) 0.382*** 
3rd grade 125 86 (77, 103)  50 -3 (-6, 1)  
Other  12 86.5 (80, 90)  4 -3.5 (-6.5, 0)  
*: p-value showing differences within the two groups, using the Mann-Whitney test. 

**: p-value showing differences within the two groups, using Student’s t-test. 
***: p-value showing  

 

Table 25. Correlation of baseline weight and change in weight at 3 months with 
possible numerical predictors 

 Correlation with baseline weight Correlation with change in weight 
at 3 months 

 N Spearman’s 
Rho 

p N Spearman’s 
Rho 

P 

Age 202 -0.04 0.563 84 -0.09 0.413 
Body Fat % 202 0.19 0.007 84 0.16 0.149 
WC2 183 0.75 <0.001 77 -0.18 0.114 
Visceral fat3 202 0.79 <0.001 84 -0.22 0.049 
Total cholesterol4 193 -0.07 0.320 83 0.11 0.314 
Glucose5 193 0.25 <0.001 83 -0.10 0.388 
TG6 193 0.31 <0.001 83 -0.01 0.906 
HDL-C7 193 -0.37 <0.001 83 0.14 0.213 
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1: correlated with WC, visceral fat, and HDL. 
2: correlated with % fat, visceral fat, glucose, TG and HDL. 

3: correlated with % fat, WC, glucose, TG and HDL. 
4: correlated with TG and HDL. 

5: correlated with WC, visceral fat, TG and HDL. 
6: correlated with WC, visceral fat, total cholesterol, glucose, and HDL. 

7: correlated with % fat, WC, visceral fat, total cholesterol, glucose, TG, and HDL. 

 

For the determination of the optimal variables to be included in the process, 

we examined 4 different scenarios of examined variables, namely: scenario 1 including 

weight at baseline, sex, age and diet group; scenario 2 including weight at baseline, 

sex, age, diet group and living status; scenario three consisting of weight at baseline, 

sex, age, diet group, living status and education years; and the base case scenario 

including weight at baseline, sex, age, diet group, living status and body fat percentage 

at baseline.  



 

 

Considering all participants, all four schemes displayed a statistically significant reduction in weight, with the base case scenario presenting 

a mean -2.68kg (p<0.0001) reduction (Table 26). An additional linear regression model fitted to investigate the difference of mean change in body 

weight at the 3 months between the two diet groups showed (Table 27) statistically significant changes from baseline but no significance difference 

between the two groups.  

Table 26. Mean change in weight for overall population and the mean difference between diet groups at 3 months (in kg). 
N=202    Change in weight at 3 months 

(kg) 
Crude difference between 

diet groups* 

  M N Mean (95% CI) p b (95% CI) p 
CCS  0 84 -2.99 (-3.77, -2.22) <0.0001 0.23 (-1.34, 1.80) 0.773 

 Covariates used for imputation       
Sc.1 Weight Baseline, Sex, Age, Diet Group 100 202 -2.58 (-3.59, -1.57) <0.0001 0.36 (-1.54, 2.26) 0.704 
Sc.2 Weight Baseline, Sex, Age, Diet Group, Live alone 100 202 -2.64 (-3.56, -1.72) <0.0001 0.36 (-1.39, 2.11) 0.682 
Sc.3 Weight Baseline, Sex, Age, Diet Group, Live alone, education years 100 185 -2.54 (-3.56, -1.53) <0.0001 0.31 (-1.72, 2.34) 0.762 
Base case Weight Baseline, Sex, Age, Diet Group, Live alone, Fat (%) baseline 100 202 -2.68 (-3.55, -1.80) <0.0001 0.39 (-1.29, 2.06) 0.647 

CCS: complete case scenario; M: # of imputations 
* Linear regression model of weight difference at 3 months. Coefficients (weight difference) presented for Diet Group (High protein vs. High Carbohydrate) 

 

An additional linear regression model was fitted to investigate the difference of mean change in body weight at 3 months between the two 

diet groups. The corresponding mean change in weight observed at the end of the 3 months did not differ between the two groups and was measured 

at 0.05kg and 0.03 for the high carbohydrate and protein group respectively. Although statistically insignificant, the mean difference between the 

two diet groups was -0.02kg in favor of the high protein group (p=0.481).  

Table 27. Mean change in weight by diet group at 3 months (in kg). 
N=202 Change in weight at 3 months (kg) High protein High Carbohydrate 

  N Mean (95% CI) p N b (95% CI) p 
CCS  48 -2.90 (-4.03, -1.76) <0.0001 36 -3.13 (-4.18, -2.07) <0.0001 
 Covariates used for imputation       
Sc.1 Weight Baseline, Sex, Age, Diet Group 108 -2.41 (-3.81, -1.02) 0.001 94 -2.77 (-4.19, -1.36) <0.0001 
Sc.2 Weight Baseline, Sex, Age, Diet Group, Live alone 108 -2.47 (-3.75, -1.19) <0.0001 94 -2.83 (-4.12, -1.55) <0.0001 
Sc.3 Weight Baseline, Sex, Age, Diet Group, Live alone, education years 98 -2.40 (-3.82, -0.98) <0.0001 87 -2.71 (-4.20, -1.22) <0.0001 
Base case Weight Baseline, Sex, Age, Diet Group, Live alone, Fat (%) baseline 108 -2.50 (-3.65, -1.34) <0.0001 94 -2.88 (-4.18, -1.59) <0.0001 

CCS: complete case scenario. 



 

 

Assessment of Adherence to the Proposed Diets 

 Following the identification of a statistically significant reduction in body 

weight across the overall sample using both the observed and the imputed phenotypic 

data, we proceeded to additionally examining the effect of the participants’ 

adherence to the two proposed diets. Data deriving from the monthly 24-hour dietary 

recalls conducted throughout the intervention period, revealed the participants’ 

increased adherence to the consumption of the proposed calories but demonstrated 

their difficulty in completely adhering by 100% to the consumption of the increased 

proposed carbohydrate and protein intake. As such, for the purposes of exploring the 

effect of adherence to the proposed diet and primary outcome changes we used the 

data deriving from the self-reported adhrence score provided by the participants on a 

monthly basis via the online platform. The mean adherence score was calculated after 

adding all three rerported scores and diving them by a value of 3. We further 

proceeded to separating the individuals into two categories of “low adherence” or 

“non-adherent” and “high adherence” or “adherent” based on the sample median. 

Table 28 shows that for the overall sample, changes in both body weight and BMI 

differed statistically signifcantly between non-adherent and adherent participants, 

with the latter showing an increase in the 3-month trends of weight and BMI 

reduction. After examining potential differences within the two diet groups, adhrence 

did not appear to significantly affect the changes in the high carbohydrate group 

(p=0.067 and 0.079, respectively), while adherent participants in the high protein 

group displayed increased reduction in both weight and BMI, compared to the group’s 

non-adherent volunteers (p<0.001 for both) (Figure 26). 

Table 28. Differences between weight and BMI change at 3 months per adherence 

and diet groups. 

 

Variable Total High Carbohydrate High Protein 

 Z* p Z* p Z* P 
Weight change at 3 
months 

-4.280 <0.001 -1.830 0.067 -4.076 <0.001 

BMI change at 3 
months 

-4.224 <0.001 -1.775 0.079 -4.094 <0.001 

*Z-statistic from Mann Whitney test 
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A.  

B  
Figure 26. Clustered boxplot depicting the changes in A. weight and B. BMI from 

baseline up to the end of month 3 of the intervention, shown per adherence group 

(Adherent vs Non-adherent participants).  
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3.1.3. Study Results on Secondary Outcomes 

Changes observed in Collected Data for Indices of Body Composition 
Moving on to the study secondary outcomes, at the end of the three months 

of intervention, the overall sample showed statistically significant reductions in total 
and upper body fat (p<0.001, p=0.002, respectively), total and upper body fat-free 
mass (p<0.001 for both), total body water (p<0.001) and visceral fat (p<0.001) (Table 
29). Within-sex comparisons revealed that the changes observed were mainly driven 
by women who constituted the vast majority of the sample, and who were the ones 
to note the observed reductions at the end of the 3 months.  
Table 29. Body composition measurements at the main points of the study. 

 
 Within-diet group analyses (Table 30) did not present any statistically 
significant differences for the majority of the 3-month changes in body composition 
measurements across the two groups. However, participants in the high-protein 

Variable Time Total Men Women  

  N Median 
IQR 

N Median 
(IQR) 

N Median 
(IQR) 

P* 

Body Fat % Baseline 202 38.45 
(10.8) 

59 29.1 (8.9) 143 41.7 (8) <0.001 

Month 3 64 38 (9) 17 30 (10) 47 40(7) <0.001 
p**  0.063  0.234  0.140  

Body Fat (kg) Baseline 202 32.95 
(13.3) 

59 28.9 
(14.2) 

143 35.1 
(12.6) 

0.001 

Month 3 63 31 (12) 16 34.63 
(15.59)** 

47 31 (9) 0.962 

p**  <0.001  0.079  0.001  
Fat-free 
Mass (kg)  

Baseline 202 52 (18) 59 71 (15) 143 49 (7) <0.001 
Month 3 64 49 (16) 17 73.47 

(11.89)** 
47 47 (6) <0.001 

p**  <0.001  0.002  <0.001  
Total Body 
Water (kg) 

Baseline 202 38 (13) 59 52 (11) 143 36 (5) <0.001 
Month 3 64 36 (11) 17 53.71 

(8.75)** 
47 34 (5) <0.001 

p**  <0.001  0.002  <0.001  
Visceral Fat Baseline 202 10 (6) 59 14 (7) 143 9 (4) <0.001 

Month 3 64 10 (6) 17 16.53 
(6.52)** 

47 9 (3) <0.001 

p**  <0.001  0.038  0.001  
Upper Body 
Fat % 

Baseline 201 36.7 
(6.98)** 

59 32.34 
(6.18) 

142 38.51 (8) <0.001 

Month 3 64 36.38 
(6.65)** 

17 33.24 
(7.29)** 

47 37.51 
(6.1)** 

0.032 

p**  0.120  0.039  0.487  
Upper Body 
Fat (kg) 

Baseline 201 18 (7) 59 18 (7) 142 17 (7) 0.288 
Month 3 64 16 (8) 17 20 (10) 47 16 (5) 0.030 
p**  0.002  0.011  0.039  

Upper Body 
Ffm (kg) 

Baseline 201 29 (9) 59 38 (7) 142 27 (3) <0.001 
Month 3 64 27 (7) 17 39.29 

(5.23)** 
47 26 (3) <0.001 

p**  <0.001  0.011  0.001  
p*: p-value showing differences within the two sexes, using the Mann-Whitney test. 

p**: p-value showing overall change from baseline using the Wilcoxon signed-rank test. 
** variable follows the normal distribution, so mean ± SD are shown. 
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group showed a significant reduction in kilograms of upper body fat (18kg at baseline 
vs 16kg at the end of the 3months, p=0.007), compared to the ones in the high-
carbohydrate group. 
 
Table 30. Changes in body composition measurements per diet group, during the 
three months of the study. 

Variable Time N1 (High 
Carb) 

Median ± 
IQR 

N2 (High Prot) Median ± 
IQR 

p* 

Fat % Baseline 94 38.35 
(7.13)** 

108 37.9 
(13.3) 

0.628 

Month 3 27 37.56 
(6.05)** 

37 37.84 
(7.76)** 

0.492 

p**  0.269  0.135  
Fat kg Baseline 94 31.3 

(11.9) 
108 33.95 

(15.1) 
0.381 

Month 3 26 31 (11) 37 32 (12) 0.364 
p**  0.008  0.014  

Ffm kg Baseline 94 50.5 (14) 108 53 (21) 0.019 
Month 3 27 49 (18) 37 49 (18) 0.509 
p**  <0.001  0.001  

TBW kg Baseline 94 37 (10) 108 39 (15) 0.016 
Month 3 27 36 (12) 37 36 (13) 0.479 
p**  <0.001  <0.001  

Visceral 
Fat 

Baseline 94 10 (4) 108 11 (5) 0.041 
Month 3 27 10 (6) 37 10 (6) 0.881 
p**  0.009  0.002  

Upper 
Body Fat 
% 

Baseline 94 36.59 
(6.45)** 

108 36.8 
(7.45)** 

0.778 

Month 3 27 35.63 
(5.7)** 

37 36.92 
(7.3)** 

0.247 

p**  0.374  0.185  
Upper 
Body Fat 
kg 

Baseline 94 16 (7) 107 18 (7) 0.029 
Month 3 27 15 (8) 37 16 (7) 0.190 
p**  0.099  0.007  

Upper 
Body Ffm 
kg 

Baseline 94 28 (7) 107 29 (10) 0.028 
Month 3 27 28 (8) 37 27 (8) 0.561 
p**  0.006  0.002  

*p: p-value showing differences within the two diet groups, using the Mann-Whitney test. 
p**: p-value showing change from the previous month for each diet group, using the Wilcoxon 

signed-rank test. 
***: variable follows the normal distribution, so mean ± SD are shown. 
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Changes observed in Collected Data for Lifestyle Indices 

Concerning the lifestyle measurements,  the overall sample noted a 
statistically significant reduction in AIS score (5 vs 3.5, p=0.033), mainly driven by 
women (5 vs 3, p=0.134), denoting an improvement in sleeping qualities (Tables 31-
32). Although statistically insignificant, the physical component of the SF-12 
questionnaire presented a slight increase in the overall sample (52 vs 52.7, p=0.941). 
The SF mental component showed an insignificant increased from baseline up to the 
three months (49 vs 51.17,p=0.004, Figure 27), but noted a statistically significant 
increase from baseline up to the end of month 1 (49 vs 50.56, p=0.015). 
Table 31. AIS, SF-PCS-12 and SF-MCS-12 measurements at the main points of the 
study. 

 

Table 32. AIS, SF-PCS-12 and SF-MCS-12 measurements during the three months of 
the study. 

Variable Time Total Men Women  

  N Median 
± IQR 

N Median ± 
IQR 

N Median ± 
IQR 

P* 

AIS Baseline 140 5 (7) 42 3.5 (7.3) 98 5 (7) 0.246 
Month 1 99 5 (6) 30 4 (6) 69 5 (6) 0.660 
p**  0.660  0.970  0.642  
Month 2 70 5 (7) 24 4.5 (6) 46 5 (8) 0.586 
p**  0.586  0.555  0.758  
Month 3 62 3.5 (5) 19 4.21 

(3.05)** 
43 3 (5) 0.299 

p**  0.299  0.083  0.651  
SF-PCS-
12 

Baseline 145 52 (12) 45 54 (9) 100 50(11) 0.005 
Month 1 125 52.11 

(9.59) 
38 53.18 

(7.22) 
87 50.68 

(10.46) 
0.699 

p**  0.699  0.530  0.868  
Month 2 94 51.51 

(10.51) 
29 53.18 

(6.34) 
65 50.75 

(11.01) 
0.296 

p**  0.296  0.627  0.365  

Variable Time Total Men Women  

  N Median 
(IQR) 

N Median 
(IQR) 

N Median 
(IQR) 

P* 

AIS Baseline 140 5 (7) 42 3.5 (7.3) 98 5 (7) 0.246 
Month 3 62 3.5 (5) 19 4.21 (3.05)** 43 3 (5) 0.033 

 p**  0.033  0.098  0.134  

SF-PCS-
12 
 

Baseline 145 52 (12) 45 54 (9) 100 50(11) 0.005 
Month 3 80 52.7 (11.17) 22 55.91 (4.76) 58 50.40 

(13.84) 
0.003 

p**  0.941  0.433  0.513  

SF-MCS-
12 

Baseline 145 49 (16) 45 47.04 
(8.13)** 

100 46.83 
(10.31) 

0.806 

Month 3 80 51.17 
(15.32) 

22 48.97 (12.51) 58 51.39 
(15.23) 

0.829 

p**  0.444  0.911  0.324  

p*: p-value showing differences within the two sexes, using the Mann-Whitney test. 
p**: p-value showing overall change from baseline using the Wilcoxon signed-rank test. 

** variable follows the normal distribution, so mean ± SD are shown. 
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Month 3 80 52.7 
(11.17) 

22 55.91 
(4.76) 

58 50.40 
(13.84) 

0.327 

p**  0.327  0.163  0.712  
SF-MCS-
12 

Baseline 145 49 (16) 45 47.04 
(8.13)** 

100 46.83 
(10.31) 

0.806 

Month 1 125 50.56 
(11.22) 

38 52.48 
(10.87) 

87 49.19 
(13.56) 

0.015 

p**  0.015  0.082  0.079  
Month 2 94 50.75 

(10.28) 
29 50.64 

(6.46)** 
65 50.58 

(10.72) 
0.638 

p**  0.638  0.563  0.802  
Month 3 80 51.17 

(15.32) 
22 48.97 

(12.51) 
58 51.39 

(15.23) 
0.327 

p**  0.327  0.124  0.798  
p*: p-value showing differences within the two sexes, using the Mann-Whitney test. 

p**: p-value showing overall change from the previous month using the Wilcoxon signed-rank test. 
**: variable follows the normal distribution, so mean ± SD are shown. 

  

Within the two diet groups (Tables 33-34), lifestyle characteristics did not present 
major changes from baseline up to month three. The statistically significant increase 
of the SF-MCS-12 in the overall sample appears to be driven by the participants in the 
high carbohydrate group, who showed a statistically important change from a mean 
value of 46.35 at baseline to a median of 50.56 at the end of month 1 (p=0.022).  
 

Table 33. AIS, SF-PCS-12 and SF-MCS-12 measurements per diet group at the main 
points of the study. 

Variable Time N1 (High 
Carb) 

Median ± IQR N2 (High 
Prot) 

Median ± IQR p* 

AIS Baseline 67 5 (7) 73 4 (6.5) 0.730 
Month 3 27 4.81 (3.86)*** 35 3 (5) 0.637 
p**  0.272  0.062  

SF-PCS-12 Baseline 62 50 (14) 83 52 (8) 0.272 
Month 3 36 52 (11.67) 44 53.04 (10.58) 0.336 
p**  0.469  0.547  

SF-MCS-12 Baseline 62 46.35 
(9.74)*** 

83 50 (13) 0.507 

Month 3 36 53 (17.71) 44 50.39 (12.46) 0.578 
p**  0.741  0.567  

p*: p-value showing differences within the two sexes, using the Mann-Whitney test. 
p**: p-value showing overall change from baseline using the Wilcoxon signed-rank test. 

** variable follows the normal distribution, so mean ± SD are shown. 

 

Table 34. Changes in AIS, SF-PCS-12 and SF-MCS-12 per diet group during the three 
months of the study. 

Variable Time N1 (High 
Carb) 

Median ± IQR N2 (High 
Prot) 

Median ± 
IQR 

p* 

AIS Baseline 67 5 (7) 73 4 (6.5) 0.730 
Month 1 46 5 (6) 53 5 (5) 0.516 
p-value**  0.693  0.843  
Month 2 33 6 (7) 37 4 (6) 0.210 
p-value**  0.419  0.889  
Month 3 27 4.81 

(3.86)*** 
35 3 (5) 0.637 
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p-value**  0.193  0.979  
SF-PCS-
12 

Baseline 62 50 (14) 83 52 (8) 0.272 
Month 1 58 52.10 (10.9) 67 52.11 (9.01) 0.995 
p-value**  0.637  0.399  
Month 2 42 51.94 (13.23) 52 51.1 (9.13) 0.918 
p-value**  0.723  0.247  
Month 3 36 52 (11.67) 44 53.04 

(10.58) 
0.336 

p-value**  0.869  0.090  
SF-MCS-
12 

Baseline 62 46.35 
(9.74)*** 

83 50 (13) 0.507 

Month 1 58 50.56 (10.89) 67 50.58 
(13.13) 

0.622 

p-value**  0.022  0.243  
Month 2 42 50.75 (13.11) 52 50.78 (9.22) 0.115 
p-value**  0.407  0.159  
Month 3 36 53 (17.71) 44 50.39 

(12.46) 
0.578 

p-value**  0.544  0.080  
*p: p-value showing differences within the two diet groups, using the Mann-Whitney test. 

p**: p-value showing change from the previous month for each diet group, using the Wilcoxon 
signed-rank test. 

***: variable follows the normal distribution, so mean ± SD are shown. 

 

A.  
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B.  

C.  

Figure 27. Trajectories of A. AIS, B. SF-PCS-12 and C. SF-MCS-12 change from baseline 

up to the end of month 3 of the intervention, per diet group (1=high carbohydrate and 

2=high protein).  
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3.1.4. Genetic Predisposition and Anthropometric/Lifestyle Parameters 

3.1.4.1. Baseline Associations 

Proceeding to exploring the effect of genetic predisposition on the population’s 

baseline characteristics, we set out by conducting linear regressions for the baseline 

anthropometric and lifestyle indices displayed in Table 35. Interestingly, both GRSs were 

statistically significantly associated with lower levels of AIS, denoting that an elevated genetic 

risk for increased BMI does not necessarily imply increased risk for disrupted sleep habits. 

Table 35. Associations between the cohort’s baseline characteristics and the uGRS and wGRS. 
 Model 1 Model 2 

 Estimate SE p Estimate SE p 
logWeight 
 uGRS -0.0004 0.001 0.711 -0.0003 0.001 0.749 
 wGRS -0.005 0.037 0.886 -0.003 0.037 0.934 
logBMI 
 uGRS -0.001 0.001 0.328 -8.605e-04 9.847e-04 0.383 
 wGRS -0.026 0.032 0.419 -2.199e-02 3.258e-02 0.501 
logWHR       
 uGRS 0.001 0.001 0.183 -0.009 0.006 0.126 
 wGRS 0.023 0.019 0.233 0.001 0.001 0.128 
logFat_kg 
 uGRS -0.001 0.002 0.513 -0.001 0.002 0.547 
 wGRS -0.020 0.065 0.759 -0.017 0.065 0.793 
logAIS 
 uGRS -0.017 0.005 0.001 -0.017 0.005 0.002 
 wGRS -0.546 0.175 0.002 -0.537 0.178 0.003 
LogCESD-R-10 
 uGRS -0.005 0.004 0.264 -0.005 0.004 0.236 
 wGRS -0.073 0.144 0.612 -9.071e-02 1.469e-01 0.537 
LogSF-PCS-12 
 uGRS 9.574e-05 1.486e-

03 
0.949 -0.001 0.001 0.724 

 wGRS -0.003 0.049 0.951 -0.025 0.048 0.597 
LogSF-MCS-12 
 uGRS 0.002 0.001 0.185 0.002 0.002 0.203 
 wGRS 0.046 0.059 0.439 0.052 0.058 0.369 

Model 1: Adjusted for age, sex; Model 2: Adjusting for age, sex, PAL, smoking 

 

Furthermore, we used the 10 BMI-related and the 10 fat-related SNPs to separately 

examine associations as shown in Table 36. Associations with the forme3r did not present any 

statistically significant trends. Interestingly, carriers of the T allele of the rs6265 steadily 

presented nominal associations with the body fat indices, namely logbody fat in kg (Model 1: 

β=0.037, p=0.027; Model 2: β=0.035, p=0.032),  logVisceral fat Model 1: β=0.039, p=0.016; 

Model 2: β=0.038, p=0.019), and logUpper Body fat in kg (Model 1: β=0.038, p=0.032; Model 

2: β=0.036, p=0.041). 
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Table 36. Associations between the cohort’s baseline characteristics and the 10 candidate, 
fat-related variants. 

 Model 1 Model 2 

 Beta Stat* p Beta Stat* p 
logFat_kg 
 rs574367_T -0.029 -1.506 0.134 -0.027 -1.407 0.161 
 rs2605100_A -0.006 -0.409 0.683 -0.003 -0.157 0.875 
 rs4846567_T 0.010 0.583 0.561 0.015 0.854 0.394 
 rs10195252_T -0.006 -0.374 0.709 -0.009 -0.594 0.554 
 rs206936_G 0.022 0.969 0.333 0.042 1.813 0.071 
 rs4994_G -0.004 -0.127 0.899 0.001 0.023 0.982 
 rs11191548_C -0.001 -0.023 0.982 0.009 0.339 0.735 
 rs6265_T 0.037 2.234 0.027 0.035 2.163 0.032 
 rs1443512_A -0.026 -1.435 0.153 -0.032 -1.767 0.079 
 rs12970134_A -0.018 -1.009 0.314 -0.023 -1.265 0.207 
logVisceral Fat       
 rs574367_T -0.023 -1.183 0.238 -0.021 -1.105 0.270 
 rs2605100_A -0.002 -0.099 0.921 0.001 0.090 0.928 
 rs4846567_T 0.006 0.333 0.739 0.009 0.534 0.594 
 rs10195252_T -0.004 -0.286 0.775 -0.007 -0.486 0.628 
 rs206936_G 0.014 0.657 0.512 0.029 1.254 0.211 
 rs4994_G -0.012 -0.378 0.701 -0.008 -0.262 0.794 
 rs11191548_C 0.002 0.069 0.945 0.008 0.326 0.745 
 rs6265_T 0.039 2.437 0.016 0.038 2.367 0.019 
 rs1443512_A -0.019 -1.113 0.267 -0.025 -1.413 0.159 
 rs12970134_A -0.014 -0.808 0.419 -0.018 -1.042 0.299 
logUpper Body 
Fat kg 

      

 rs574367_T -0.026 -1.262 0.209 -0.024 -1.18 0.239 
 rs2605100_A -0.005 -0.299 0.765 -0.001 -0.055 0.956 
 rs4846567_T 0.007 0.399 0.690 0.013 0.674 0.501 
 rs10195252_T -0.010 -0.6044 0.520 -0.014 -0.866 0.387 
 rs206936_G 0.015 0.635 0.526 0.039 1.593 0.113 
 rs4994_G -0.005 -0.146 0.884 0.001 0.019 0.985 
 rs11191548_C 0.006 0.224 0.823 0.019 0.663 0.508 
 rs6265_T 0.038 2.161 0.032 0.036 2.062 0.041 
 rs1443512_A -0.034 -1.808 0.072 -0.040 -2.099 0.037 
 rs12970134_A -0.019 -1.009 0.314 -0.024 -1.269 0.206 

Model 1: Adjusted for age, sex; Model 2: Adjusting for age, sex, PAL, smoking 
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Interactions between GRSs and Dietary Patterns at Baseline 

 Additionally, in an effort to assess the effect of gene-diet interactions on the examined 
indices at baseline, we proceeded to conducting multivariate linear regressions including the 
effect of the interaction between: a) the constructed GRSs and the extracted dietary patterns 
(statistically significant results shown at Tables 37-38); and b) the selected BMI candidate 
variants and the dietary patterns (Table 39). Interestingly, we found that the interaction 
between the GRSs and adherence to the “Mixed” Pattern was associated with increased levels 
of logSF-PCS-12 (uGRS Model 1: β=0.004, p=0.003; Model 2: β=0.004, p=0.028, wGRS Model 
1: β=0.148, p=0.001; Model 2: β=0.132, p=0.009). 

Table 37. Interactions between the cohort’s baseline characteristics, dietary patterns and the 
uGRS. 

 Model 1 Model 2 

LogSF-PCS-12 
 uGRS* Mixed Pattern 0.004 0.001 0.003 0.004 0.002 0.028 
 uGRS*Med-proxy Pattern 4.824e-04 1.622e-03 0.767 6.089e-05 1.565

e-03 
0.969 

 uGRS* Eating-out Pattern -1.650e-03 2.323e-03 0.479 -0.001 0.002 0.693 
 uGRS* Traditional, 
vegetarian-alike Pattern 

1.976e-03 1.496e-03 0.189 0.0002 0.002 0.870 

 uGRS* High in unsaturated 
fats and fruit juice 
consumption Pattern 

-0.016 0.059 0.781 -0.002 0.002 0.309 

LogSF-MCS-12 
 uGRS* Mixed Pattern -0.001 0.002 0.637 -0.001 0.002 0.795 
 uGRS*Med-proxy Pattern -0.003 0.002 0.174 -0.003 0.002 0.105 
 uGRS* Eating-out Pattern -0.002 0.003 0.532 -0.0004 0.003 0.882 
 uGRS* Traditional, 
vegetarian-alike Pattern 

0.001 0.002 0.454 0.001 0.002 0.524 

 uGRS* High in unsaturated 
fats and fruit juice 
consumption Pattern 

-0.0001 0.002 0.931 -0.001 0.002 0.661 

Model 1: Adjusted for age, sex, uGRS and each dietary pattern; Model 2: Adjusting for age, sex, PAL, 
smoking, uGRS and each dietary pattern 

 

Table 38. Interactions between the cohort’s baseline characteristics, dietary patterns and the 
wGRS. 

 Model 1 Model 2 

 Estimate SE p Estimate SE p 
LogSF-PCS-12 
 wGRS* Mixed Pattern 0.148 0.042 0.001 0.132 0.049 0.009 
 wGRS*Med-proxy Pattern 0.034 0.052 0.519 0.013 0.050 0.792 
 wGRS* Eating-out Pattern -0.107 0.067 0.114 -0.082 0.065 0.215 
 wGRS* Traditional, 
vegetarian-alike Pattern 

7.061e-02 5.223e
-02 

0.179 -0.016 0.059 0.781 

 wGRS* High in unsaturated 
fats and fruit juice 
consumption Pattern 

0.009 0.053 0.858 -0.079 0.055 0.151 

LogSF-MCS-12 
 wGRS* Mixed Pattern -0.006 0.055 0.908 -0.001 0.064 0.992 
 wGRS*Med-proxy Pattern -0.081 0.062 0.191 -0.101 0.06 0.096 
 wGRS* Eating-out Pattern -0.081 0.081 0.323 -0.044 0.080 0.583 
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 wGRS* Traditional, 
vegetarian-alike Pattern 

0.0002 0.064 0.998 -0.011 0.071 0.878 

 wGRS* High in unsaturated 
fats and fruit juice 
consumption Pattern 

-0.024 0.063 0.706 -0.052 0.066 0.437 

Model 1: Adjusted for age, sex, wGRS and each dietary pattern; Model 2: Adjusting for age, sex, PAL, 
smoking, wGRS and each dietary pattern 

 

Interactions between Candidate Variants and Dietary Patterns at Baseline 

Subsequently, a similar set of regressions was conducted to test the interactions 
between the dietary patterns and the BMI-candidate variants. Table 40 shows the statistically 
significant associations observed. Overall, we observe that carriers of BMI-raising alleles 
tended to present higher levels of anthropometric indices and worse lifestyle indices when 
adhering to patterns with increased sugar or fat content, such as the “Mixed” and “High in 
unsaturated fats and fruit juice consumption” ones, and lower such levels when adhering to 
the more balanced patterns like the Traditional, vegetarian-alike one.  

In the case of weight, we observed that carriers of BMI-raising alleles in the variants 
rs1421085 (C), rs1121980 (A), rs17817449 (G), rs3751812 (T), rs9939609 (A) who adhere to 
the “Traditional, vegetarian-alike” pattern tended to display nominally significant associations 
with lower levels of weight (nominal associations of p<0.05 and p<0.01). On the contrary, 
carriers of the BMI-positively associated T allele of the rs3751812 variant who adhered to the 
“High in unsaturated fats and fruit juice consumption” pattern showed increased levels of 
weight, after adjusting for age and sex (Model 1: β=0.022, p=0.048). Similar trends were 
observed for BMI, where rs3751812-T and rs9939609-A allele carriers noted lower levels of 
BMI when adhering to the  “Traditional, vegetarian-alike” pattern p<0.05 and p<0.01, 
respectively) , while rs3751812-T allele carriers consuming the “High in unsaturated fats and 
fruit juice consumption” pattern presented increased BMI. Associations with baseline total 
body fat in kg also presented akin findings with rs3751812_T and rs9939609_A being 
associated with lower levels when adhering to the Traditional patterns, whereas the former 
being associated with higher levels when adhering to the High in unsaturated fats pattern.  

Regarding the lifestyle measurements, attrition to the latter was associated with 
increased CESD-R-10 score in carriers of the BMI-raising T allele of the rs925946 variant. 
Interestingly, the physical component of the SF-12 questionnaire presented most of the 
nominally significant interactions, namely: i) the aggravating effect of the rs1421085 (C), 
rs1121980 (A), rs17817449 (G), rs9939609 (A), rs17782313 (C) variants in SF-PCS-12 scores 
when adherence to the “Mixed” dietary pattern was present; ii) a negative association 
between the rs6548238 T allele and increased BMI values when adhering to the “Mixed” 
pattern; iii) a positive relation between BMI-raising rs3751812- T allele and the score when 
the interaction with the “Mixed” Pattern was present); iv) the aggravating effect of the 
rs1421085 (C), rs1121980 (A), rs17817449 (G) and rs9939609 (C) variants in SF-PCS-12, even 
when adherence to the “Med-Proxy” pattern was present.     
 

Table 39. Statistically significant interactions between the cohort’s baseline characteristics, 
dietary patterns and the 10 candidate, BMI-related variants. 

 Model 1 Model 2 

 Beta Stat* p Beta Stat* p 
logWeight 
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 rs1421085_C* Traditional, 
vegetarian-alike Pattern 

-0.016 -1.945 0.054 -0.017 -2.015 0.046 

 rs1121980_A* Traditional, 
vegetarian-alike Pattern 

-0.017 -1.954 0.053 -0.017 -1.99 0.049 

 rs17817449_G* Traditional, 
vegetarian-alike Pattern 

-0.028 -2.393 0.018 -0.029 -2.487 0.014 

 rs3751812_T* Traditional, 
vegetarian-alike Pattern 

-0.026 -2.307 0.023 -0.026 -2.292 0.023 

 rs9939609_A* Traditional, 
vegetarian-alike Pattern 

-0.003 -2.692 0.008 -0.030 -2.663 0.009 

 rs3751812_T* High in 
unsaturated fats and fruit juice 
consumption Pattern 

0.022 1.997 0.048 0.021 1.862 0.065 

logBMI       
 rs3751812_T* Traditional, 
vegetarian-alike Pattern 

-0.026 -2.307 0.023 -0.023 -2.189 0.030 

 rs9939609_A* Traditional, 
vegetarian-alike Pattern 

-0.030 -2.692 0.008 -0.020 -1.932 0.056 

 rs3751812_T* High in 
unsaturated fats and fruit juice 
consumption Pattern 

0.022 1.997 0.048 0.021 2.06 0.041 

logFat_kg       
 rs3751812_T* Traditional, 
vegetarian-alike Pattern 

-0.047 -2.256 0.026 -0.047 -2.256 0.026 

 rs9939609_A* Traditional, 
vegetarian-alike Pattern 

-0.043 -2.104 0.037 -0.043 -2.075 0.039 

 rs3751812_T* High in 
unsaturated fats and fruit juice 
consumption Pattern 

0.046 2.249 0.026 0.044 2.135 0.035 

LogCESD-R-10       
 rs925946_T* High in 
unsaturated fats and fruit juice 
consumption Pattern 

0.104 2.163 0.032 0.097 2.006 0.047 

LogSF-PCS-12       
 rs6548238_T* Mixed Pattern -0.030 -2.11 0.037 -0.031 -2.151 0.034 
 rs1421085_C* Mixed Pattern -0.026 -3.235 0.002 -0.027 -3.474 0.001 
 rs1121980_A* Mixed Pattern -0.024 -3.056 0.003 -0.026 -3.269 0.001 
 rs17817449_G* Mixed Pattern -0.029 -3.572 0.001 -0.030 -3.821 0.0002 
 rs3751812_T* Mixed Pattern 0.020 2.062 0.042 0.021 2.17 0.032 
 rs9939609_A* Mixed Pattern -0.026 -3.227 0.002 -0.027 -3.455 0.001 
 rs17782313_C* Mixed Pattern -0.030 -2.238 0.027 -0.028 -2.122 0.036 
 rs1421085_C* Med-Proxy 
Pattern 

-0.018 -2.133 0.035 -0.017 -1.912 0.059 

 rs1121980_A* Med-Proxy 
Pattern 

-0.018 -2.029 0.045 -0.016 -1.787 0.077 

 rs17817449_G* Med-Proxy 
Pattern 

-0.022 -2.261 0.026 -0.019 -2.073 0.041 

 rs9939609_A* Med-Proxy 
Pattern 

-0.024 -2.456 0.016 -0.022 -2.231 0.028 

Model 1: Adjusted for age, sex, SNP and each dietary pattern; Model 2: Adjusting for age, sex, PAL, 
smoking, SNP and each dietary pattern 
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3.1.4.2. Associations with changes post-intervention  

Effect of GRSs and Candidate Variants on Imputed Weight Loss 

Proceeding to exploring the effect of genetic predisposition in the changes observed 

after the intervention period, we set out by using the imputed data for weight loss at the end 

of the 3-month period to examine potential associations between the scores and the 

observed changes in the index. As shown in Table 40, neither the uGRS not the wGRS were 

statistically significantly associated with weight change post-intervention. Within-diet group 

analyses also showed no statistically significant relations for weight loss in participants 

following either the high carbohydrate or the high protein diet. 

Table 40. Multivariate linear regressions between the constructed GRSs and imputed weight 

loss post-intervention in the overall sample. 

 Model 1 Model 2 Model 3 

 Coef* SE p Coef* SE p Coef* SE p 
Weight change 
uGRS -0.024 0.084 0.772 -0.023 0.084 0.784 -0.022 0.083 0.789 
wGRS -0.034 2.851 0.905 -0.455 2.854 0.874 -0.0425 2.850 0.882 

*Coef: Coefficient 
Model 1: Adjusted for age, sex; Model 2: Adjusting for age, sex, PAL, smoking; Model 3: Adjusting for age, sex, PAL, 

smoking and diet group 

 

 In a similar manner to the above, we subsequently used the 10 aforementioned, BMI-

related SNPs to separately examine associations with post-intervention weight change, using 

the imputed weight data. As displayed in Table 41, the SNPs did not display statistically 

significant associations for the observed weight change post-intervention. Within-diet group 

analyses also showed no statistically significant relations for weight loss in participants 

following either the high carbohydrate or the high protein diet. 

Table 41. Multivariate linear regressions between the 10 examined SNPs and imputed 
weight loss post-intervention in the overall sample. 

 Model 1 Model 2 Model 3 

 Coef* SE p Coef* SE p Coef* SE p 
Weight change 
rs6548238_C 
 Heterozygote 0.284 2.901 0.922 1.158 3.001 0.700 1.078 3.005 0.720 
 Homozygote 1.716 2.758 0.535 1.158 3.001 0.700 2.468 2.886 0.391 

rs1801282_G          
 Heterozygote -2.658 4.007 0.509 -2.780 3.996 0.489 -2.727 3.999 0.498 
 Homozygote -3.874 3.706 0.299 -4.048 3.709 0.668 -3.962 3.718 0.290 

rs2241766_G          
 Heterozygote -0.163 1.122 0.885 -0.168 1.121 0.881 -0.135 1.122 0.904 
 Homozygote -0.486 1.275 0.707 -0.431 1.288 0.739 -0.409 1.285 0.751 

rs925946_T          
 Heterozygote 0.850 1.068 0.427 0.889 1.061 0.404 0.902 1.059 0.396 
 Homozygote -0.878 2.193 0.690 -1.129 2.194 0.608 -1.177 2.194 0.593 

rs17817449_G          
 Heterozygote -0.077 1.326 0.953 -0.307 1.382 0.824 -0.294 1.381 0.832 
 Homozygote 0.298 1.262 0.813 0.131 1.312 0.921 1.135 1.311 0.918 

rs3751812_T          
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 Heterozygote -0.722 1.463 0.623 -0.551 1.441 0.703 -0.388 1.445 0.789 
 Homozygote -0.544 1.343 0.686 -0.327 1.341 0.808 -0.145 1.362 0.916 

rs17782313_C          
 Heterozygote -1.809 3.404 0.597 -2.353 3.522 0.506 -2.456 3.535 0.490 
 Homozygote -0.591 3.325 0.859 -1.157 3.459 0.739 -1.233 3.469 0.723 

rs9939609_A          
 Heterozygote 0.089 1.394 0.949 -0.105 1.442 0.942 -0.086 1.442 0.952 
 Homozygote 0.237 1.267 0.852 0.481 1.324 0.971 0.068 1.325 0.959 

rs1421085_C          
 Heterozygote -0.309 1.310 0.814 -0.291 1.326 0.827 -0.318 1.325 0.811 
 Homozygote 0.498 1.147 0.665 0.485 1.174 0.680 0.466 1.173 0.692 

rs1121980_A          
 Heterozygote -0.246 1.298 0.850 -0.219 1.311 0.867 -0.238 1.309 0.856 
 Homozygote 0.502 1.148 0.299 0.479 1.174 0.684 0.458 1.173 0.697 

*Coef: Coefficient 
Model 1: Adjusted for age, sex; Model 2: Adjusting for age, sex, PAL, smoking; Model 3: Adjusting for age, sex, PAL, 

smoking and diet group. 



 

 

Effect of GRSs and Candidate Variants on Observed Changes 

Using the observed values for weight and BMI change post-intervention, we 

moved on to splitting the overall sample in categories of either “High” or “Low” uGRs 

and wGRS, based on the observed scores’ sample medians. Although differences 

between the two groups were not statistically significant for both the uGRS and the 

wGRS, a steady decrease was observed in both the weight and BMI change from 

baseline in the high GRS groups (Table 42). Within-diet group analyses also showed no 

statistically significant relations for weight loss in participants following either the high 

carbohydrate or the high protein diet (p=0.273 and p=0.639 for the uGRS and p=0.777 

and p=0.207 for the wGRS, respectively). Similarly to above, although statistically 

insignificant, a steady decrease in changes was observed in groups with high GRSs for 

both diet categories (Figure 28). 

 

Table 42. Mean changes in weight and BMI post-intervention, per GRS groups in 
the overall sample. 

Variable Low GRS High GRS  

 N Mean (SD) N Mean (SD) P* 
Weight Change 
uGRS 34 3.53 (3.69) 42 2.57 (3.47) 0.289 
wGRS 31 3.61 (3.77) 44 2.55 (3.46) 0.245 
BMI Change      
uGRS 34 1.17 (1.24) 41 0.94 (1.23) 0.444 
wGRS 31 1.19 (1.26) 43 0.93 (1.23) 0.390 
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B.  

C.  

D.  

Figure 28.  Clustered boxplots depicting A. 3-month weight loss per uGRS and diet 

group, B. 3-month BMI change per uGRS and diet group, C. 3-month weight loss per 

wGRS and diet group and D. 3-month BMI change per wGRS and diet group. 

Additionally, we proceeded to examining potential differences in post-

intervention weight and BMI within the separate groups of genotypes for the 10 

candidate, BMI-related variants (Table 43). Kruskal-Wallis tests revealed statistically 

significant differences in the observed weight change across the groups of the 
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rs1421085 and the rs17782313 variants. Carriers of the BMI-raising C allele of the 

former displayed statistically significantly lower change in weight post-intervention 

(p<0.036, Figure 29). Similarly, carriers of the BMI-positively associated C allele of the 

rs17782313 SNP also showed statistically significantly lower weight changes after the 

3-month period (p=0.043, Figure 29). 

Table 43. Mean changes in weight and BMI post-intervention, per groups of the 
10 candidate variants in the overall sample. 

Variable Homozygotes for 
the non-effect 

allele 

Heterozygotes Homozygotes for 
the non-effect 

allele 

 

 N Mean (SD) N Mean (SD) N Mean (SD) P* 
Weight Change 
rs6548238_C 2 5.5 (2.12) 10 4.7 (4.64) 71 2.9 (3.35) 0.161 
rs1801282_G 2 0.5 (2.12) 4 1 (2.94) 77 2.99 (3.60) 0.310 
rs2241766_G 14 1.86 (3.68) 47 2.96 (3.79) 22 3.18 (2.99) 0.575 
rs925946_T 66 2.61 (3.73) 14 3.36 (2.79) 3 5.33 (2.08) 0.237 
rs1421085_C 10 4.2 (3.82) 21 4.19 (3.89) 52 2.02 (3.17) 0.036 
rs1121980_A 10 4.2 (3.82) 23 3.96 (3.80) 50 2.04 (3.23) 0.056 
rs17817449_G 10 4.2 (3.82) 23 3.70 (4.16) 50 2.16 (3.09) 0.091 
rs3751812_T 8 2.5 (3.30) 23 2.91 (3.30) 52 2.85 (3.76) 0.876 
rs9939609_A 10 4.2 (3.82) 21 3.29 (4.39) 52 2.38 (3.09) 0.246 
rs17782313_C 2 7 (1.41) 17 4.17 (4.00) 64 2.34 (3.33) 0.043 

BMI Change        
rs6548238_C 2 1.50 (0.69) 10 1.66 (1.50) 70 0.86 (1.18) 0.411 
rs1801282_G 2 0.27 (0.98) 4 0.26 (1.09) 76 1.04 (1.24) 0.327 
rs2241766_G 14 0.70 (1.33) 46 1.03 (1.31) 22 1.07 (1.03) 0.381 
rs925946_T 65 0.91 (1.30) 14 1.22 (0.99) 3 1.66 (0.44) 0.238 
rs1421085_C 10 1.36 (1.34) 21 1.42 (1.27) 51 0.73 (1.15) 0.119 
rs1121980_A 10 1.36 (1.34) 23 1.35 (1.24) 49 0.74 (1.17) 0.125 
rs17817449_G 10 1.35 (1.35) 23 1.25 (1.37) 49 0.79 (1.13) 0.163 
rs3751812_T 8 0.86 (1.17) 22 1.07 (1.20) 52 0.97 (1.28) 0.744 
rs9939609_A 10 1.35 (1.35) 21 1.09 (1.43) 51 0.87 (1.13) 0.212 
rs17782313_C 2 2.32 (0.05) 17 1.44 (1.32) 63 0.82 (1.18) 0.063 
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B.  

Figure 29.  Clustered boxplots depicting3-month weight loss A. per genotype groups 

of the rs1421085 SNP and B. per genotype groups of the rs17782313 SNP. 

 

Additionally, we conducted multiple linear regressions using the observed data 
to examine further associations between the tested variants and changes in the 
observed indices (Table 44). Presence of the T allele of the rs6548238 variant was 
nominally associated with increased change in total body fat in kg, after adjustment 
for both models of confounding factors (Model 1: β=2.329, p=0.016; Model 2: 
β=2.639, p=0.006).  Presence of the aggravating G and A alleles of the rs17817449 and 
rs9939609 SNPs were also nominally associated with lower changes in the SF-PCS-12 
across both adjusting Models (p<0.01 for all associations). Interestingly, presence of 
the BMI-raising alleles for the rs1421085 (C), rs1121980 (A), rs17817449 (G), 
rs9939609 (A) SNPs were nominally associated with increased changes in SF-MCS-12 
post-intervention. Finally, out of the selected fat-related variants, presence of the G 
allele of the rs4995 SNP was found nominally related with lower change in upper body 
fat in kg (Model 2: β=-1.715, p=0.033). No statistically significant associations were 
observed between the changes post-intervention in fat-related indices and the 10 
candidate, fat-related variants. 

   
Table 44. Associations between the changes observed post-intervention and the 
10 candidate, BMI-related SNPs. 

 Model 1 Model 2 

 Beta Stat* p Beta Stat* p 
BMI Change 
 rs6548238_T 0.530 1.599 0.114 0.607 1.828 0.072 
 rs1801282_G -0.516 -1.397 0.166 -0.582 -1.538 0.128 
 rs2241766_G -0.143 -0.675 0.502 -0.153 -0.724 0.471 
 rs925946_T 0.301 1.101 0.2744 0.318 1.15 0.254 
 rs1421085_C 0.382 1.95 0.055 0.306 1.437 0.155 
 rs1121980_A 0.359 1.833 0.071 0.279 1.325 0.189 
 rs17817449_G 0.301 1.531 0.129 0.209 0.957 0.342 
 rs3751812_T 0.013 0.062 0.950 0.055 0.259 0.796 
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 rs9939609_A 0.199 0.997 0.323 0.091 0.411 0.683 
 rs17782313_C 0.650 2.338 0.022 0.576 1.905 0.061 
WHR Change       
 rs6548238_T 0.046 0.489 0.627 0.015 1.045 0.300 
 rs1801282_G 0.11 0.863 0.394 0.016 0.836 0.407 
 rs2241766_G 0.063 0.837 0.408 -0.004 -0.469 0.640 
 rs925946_T 0.015 0.177 0.861 0.028 2.244 0.029 
 rs1421085_C -0.013 -0.178 0.859 0.011 1.043 0.301 
 rs1121980_A -0.013 -0.178 0.859 0.006 0.625 0.534 
 rs17817449_G 0.012 0.176 0.862 0.019 1.925 0.059 
 rs3751812_T 0.111 1.276 0.211 0.002 0.153 0.879 
 rs9939609_A -0.013 -0.178 0.859 0.015 1.441 0.155 
 rs17782313_C -0.043 -0.433 0.668 0.021 1.497 0.139 
Fat_kg Change 
 rs6548238_T 2.329 2.497 0.016 2.639 2.873 0.006 
 rs1801282_G -1.658 -1.839 0.071 -1.724 -1.872 0.067 
 rs2241766_G -0.235 -0.408 0.685 -0.296 -0.515 0.609 
 rs925946_T 0.457 0.616 0.541 0.495 0.667 0.507 
 rs1421085_C 1.019 1.903 0.061 0.811 1.354 0.181 
 rs1121980_A 0.988 1.848 0.069 0.773 1.302 0.198 
 rs17817449_G 0.837 1.562 0.124 0.517 0.843 0.403 
 rs3751812_T 0.3675 0.660 0.512 0.561 1.005 0.319 
 rs9939609_A 0.715 1.32 0.192 0.409 0.668 0.507 
 rs17782313_C 1.393 1.877 0.066 1.035 1.27 0.209 
AIS Change 
 rs6548238_T 0.435 0.434 0.667 0.284 0.281 0.780 
 rs1801282_G 0.233 0.137 0.892 1.106 0.597 0.554 
 rs2241766_G 0.726 1.3 0.201 0.629 1.091 0.282 
 rs925946_T 0.532 0.774 0.444 0.580 0.837 0.408 
 rs1421085_C -0.473 -1.027 0.311 -0.838 -1.703 0.097 
 rs1121980_A -0.473 -1.027 0.311 -0.828 -1.703 0.097 
 rs17817449_G -0.223 -0.474 0.638 -0.659 -1.245 0.221 
 rs3751812_T -0.614 -1.182 0.244 -0.471 -0.868 0.391 
 rs9939609_A -0.279 -0.575 0.569 -0.808 -1.485 0.146 
 rs17782313_C 0.692 1.019 0.314 1.046 1.422 0.164 
SF-PCS-12 Change 
 rs6548238_T -2.699 -1.134 0.261 -2.407 -0.989 0.327 
 rs1801282_G 0.167 0.055 0.956 -0.156 -0.050 0.960 
 rs2241766_G -0.039 -0.027 0.979 -0.027 -0.018 0.985 
 rs925946_T -1.377 -0.767 0.446 -1.475 -0.804 0.425 
 rs1421085_C -2.356 -1.676 0.099 -2.521 -1.63 0.109 
 rs1121980_A -2.115 -1.507 0.137 -2.194 -1.436 0.157 
 rs17817449_G -3.758 -2.681 0.009 -4.594 -2.91 0.005 
 rs3751812_T -1.882 -1.205 0.233 -1.834 -1.157 0.252 
 rs9939609_A -3.202 -2.247 0.028 -4.093 -2.474 0.016 
 rs17782313_C -0.151 -0.069 0.945 -1.38 -0.587 0.559 
SF-MCS-12 Change 
 rs6548238_T 5.984 1.916 0.060 5.614 1.737 0.088 
 rs1801282_G -1.161 -0.288 0.775 -0.209 -0.049 0.961 
 rs2241766_G 1.03 0.521 0.605 1.091 0.544 0.589 
 rs925946_T 1.508 0.627 0.533 1.284 0.516 0.608 
 rs1421085_C 4.304 2.337 0.023 4.556 2.223 0.030 
 rs1121980_A 4.108 2.235 0.029 4.266 2.109 0.039 
 rs17817449_G 5.7 3.093 0.003 6.602 3.127 0.003 
 rs3751812_T 0.351 0.166 0.869 0.106 0.049 0.961 
 rs9939609_A 4.921 2.617 0.011 5.781 2.6 0.012 
 rs17782313_C 4.506 1.585 0.118 6.535 2.135 0.037 
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Model 1: Adjusted for age, sex; Model 2: Adjusting for age, sex, PAL, smoking 

 

Interactions between GRSs and Candidate Variants and Diet Groups on Observed 
Changes 

A final set of examinations was conducted to test for the potential effect 
of the interaction between the suggested diet group and genetic background on 
the samples’ observed changes (Tables 45). Overall, no significant associations 
were observed for interactions with the calculated GRSs or the BMI-related 
variants in changes of anthropometric and lifestyle indices post-intervention.  

Table 45. Associations between the changes observed post-intervention and the 
interactions between diet group and the uGRS and wGRS. 

 Model 1 Model 2 

 Beta Stat* p Beta Stat* p 
Weight Change 
 uGRS*Diet Group -6.378 5.445 0.245 -0.125 0.159 0.438 
 wGRS*Diet Group -0.136 0.159 0.398 -5.916 5.509 0.287 
BMI Change       
 uGRS*Diet Group -0.046 0.057 0.427 -0.041 0.057 0.476 
 wGRS*Diet Group -2.096 1.939 0.284 -1.880 1.960 0.341 
WHR Change       
 uGRS*Diet Group -0.0004 0.003 0.873 -0.0004 0.003 0.875 
 wGRS*Diet Group -0.027 0.091 0.771 -0.025 0.095 0.794 
Fat kg Change       
 uGRS*Diet Group -0.106 0.161 0.514 -0.073 0.163 0.660 
 wGRS*Diet Group -4.395 5.632 0.439 -3.306 5.767 0.569 
AIS Change       
 uGRS*Diet Group 0.032 0.192 0.870 -0.078 0.190 0.685 
 wGRS*Diet Group 0.594 7.589 0.939 -7.252 8.495 0.399 
SF-PCS-12 Change       
 uGRS*Diet Group -0.193 0.390 0.623 -0.265 0.386 0.496 
 wGRS*Diet Group -2.298 13.364 0.864 -7.603 13.431 0.574 
SF-MCS-12 Change       
 uGRS*Diet Group 0.855 0.599 0.159 0.878 0.609 0.156 
 wGRS*Diet Group 18.578 20.749 0.370 20.61 21.525 0.343 
Model 1: Adjusted for age, sex, uGRS or wGRS and diet group; Model 2: Adjusting for age, sex, 

PAL, smoking, uGRS or wGRS and diet group 
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Interestingly, the interaction between diet group and the T allele of the fat-

related rs6265 variant was steadily associated with increased changes for all examined 

fat indices (Table 46), namely change in total body fat in kg (Model 1: β=3.282, 

p=0.009; Model 2: β=3.398, p=0.007), change in visceral fat (Model 1: β= 0.947 , 

p=0.043) and change in upper body fat in kg (Model 1: β=2.468, p= 0.002; Model 2: 

β=2.564, p= 0.001). One more nominal association was revealed between the 

rs1443512- T allele and lower change in visceral fat, after adjusting for age and sex 

(Model 1: β= -1.043, p= 0.048).  

 

Table 46. Associations between the changes observed post-intervention in fat-related 
indices and the interactions between diet group the 10 candidate, fat-related SNPs. 

 Model 1 Model 2 

 Beta Stat* p Beta Stat* p 
Fat_kg Change 
 rs574367_T*Diet Group -1.304 -0.940 0.351 -1.087    -0.782 0.438 
 rs2605100_A*Diet Group -0.978 -0.718 0.476 -1.979 -1.373 0.176 
 rs4846567_T*Diet Group -1.894 -1.531 0.131 -1.726 -1.343 0.185 
 rs10195252_T*Diet Group 0.113 0.085 0.933 0.425 0.322 0.749 
 rs206936_G*Diet Group -2.466 -1.198 0.236 -2.723 -1.336 0.187 
 rs4994_G*Diet Group -0.713 -0.209 0.835 -0.485 -0.141 0.889 
 rs11191548_C*Diet Group 0.101 0.047 0.963 0.103 0.048 0.962 
 rs6265_T*Diet Group 3.282 2.705 0.009 3.387 2.826 0.007 
 rs1443512_A*Diet Group -2.676 -1.928 0.059 -2.242 -1.567 0.123 
 rs12970134_A*Diet Group -0.404 -0.256 0.799 -0.586 -0.365 0.717 
Visceral Fat Change       
 rs574367_T*Diet Group -0.297 -0.576 0.567 -0.293 -0.559 0.579 
 rs2605100_A*Diet Group -0.473 -0.932 0.356 -0.644 -1.156 0.253 
 rs4846567_T*Diet Group -0.881 -1.936 0.058 -0.823 -1.702 0.095 
 rs10195252_T*Diet Group -0.017 -0.035 0.972 0.052 0.103 0.919 
 rs206936_G*Diet Group -0.955 -1.239 0.220 -0.974 -1.251 0.216 
 rs4994_G*Diet Group -1.636 -1.3 0.199 -1.465 -1.129 0.264 
 rs11191548_C*Diet Group 0.163 0.206 0.838 0.119 0.147 0.884 
 rs6265_T*Diet Group 0.947 2.071 0.043 1.011 2.205 0.032 
 rs1443512_A*Diet Group -1.043 -2.016 0.048 -0.925 -1.703 0.094 
 rs12970134_A*Diet Group 0.087 0.149 0.882 0.136 0.227 0.821 
Upper Body Fat kg Change       
 rs574367_T*Diet Group -1.15 -1.305 0.197 -1.084 -1.218 0.228 
 rs2605100_A*Diet Group -0.593 -0.682 0.498 -1.091 -1.163 0.249 
 rs4846567_T*Diet Group -0.789 -0.987 0.328 -0.631 -0.753 0.455 
 rs10195252_T*Diet Group 0.418 0.488 0.628 0.593 0.694 0.491 
 rs206936_G*Diet Group -1.327 -0.993 0.325 -1.431 -1.071 0.289 
 rs4994_G*Diet Group 2.505 1.17 0.247 3.004 1.388 0.171 
 rs11191548_C*Diet Group -0.311 -0.222 0.825 -0.384 -0.264 0.793 
 rs6265_T*Diet Group 2.468 3.262 0.002 2.564 3.375 0.001 
 rs1443512_A*Diet Group -1.217 -1.336 0.187 -0.914 -0.969 0.337 
 rs12970134_A*Diet Group 0.003 0.003 0.998 -0.042 -0.041 0.968 
Model 1: Adjusted for age, sex, SNP and Diet Group; Model 2: Adjusting for age, sex, PAL, smoking, 

SNP and Diet Group 
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3.1.5. Discussion 

Baseline Characteristics and Dietary Patterns 

The following information in 3.1.5. constitute information published under the publication 
Nutrients 2021, 13, 3495. https://doi.org/10.3390/nu13103495 and can be found in Appendix C. 

The present analyses display the design and the baseline population 

characteristics and dietary habits of the iMPROVE study. Overall, our baseline sample 

of 202 volunteers displayed satisfactory levels of lifestyle quality, with the majority of 

participants not reporting depression symptoms or heavily disrupted sleep quality. 

Five dietary patterns were identified, including: (a) a “Mixed” pattern; (b) a pattern 

including food groups similar to those of the Mediterranean diet, entitled “Med-

proxy” pattern; (c) the “Eating-out” pattern consisting of food combinations usually 

found in restaurants or fast-food environments (i.e., pies); (d) the “Traditional, 

vegetarian-alike” pattern, characterized by plant-based, Greek, traditional recipes; 

and (e) the “High in unsaturated fats and fruit juice consumption” pattern, including 

foods groups with high unsaturated fats and magnesium content (i.e., small fish and 

nuts) and highlighting representative habits of healthy snacking across Greek adults 

(i.e., olives, nuts and fruit juice). Interestingly, while the “Mixed” pattern included a 

vast majority of processed foods with added sugars and high fat content (i.e., 

chocolate, croissants, tray sweets, soft drinks, chips, seed oil, margarine, and butter), 

it was also characterized by light products and chicken and potatoes’ consumption. 

This can be potentially attributed to the representative consumption of specific food 

groups by overweight and obese Greeks, who tend to adhere to short-term, self-

imposed attempts to follow a more balanced diet. The latter do not result in successful 

weight management and/or weight loss efforts, but are exactly characterized by 

increased consumption of light products and simple food combinations, such as 

chicken and potatoes. The “Med-proxy” and the “Traditional, vegetarian-alike” 

patterns are representative of the dietary habits of the Greek population, evidently 

influenced by the Mediterranean diet and its increased content in fruit, vegetables, 

and legumes. Apparently, due to its high sugar and fat content, the “Mixed” pattern 

was associated with higher levels of anthropometric and biochemical characteristics. 

On the other hand, the plant-based, traditional recipes presented negative 

associations with body fat and positive relations with increased levels of HDL 

cholesterol. We further evaluated the within-group tertile categorization of 

adherence to each pattern, showing that higher tertiles were related to stronger 

associations for specific patterns, such as the positive relationship between adherence 

to the “Mixed” pattern and logBMI levels and the negative relationship between the 

increased adherence to the same pattern and logHDL values. The concept of obese 

adults and the effect of dietary intake in the formation of their cardiometabolic profile 

display great interest, with current literature to be reporting similar findings to the 

ones outlined in the present study. Interestingly, the majority of studies aiming at 

identifying dietary patterns in overweight/obese populations, usually provide results 

for dietary habits adhering to the Western diet (including food groups with increased 

https://doi.org/10.3390/nu13103495
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content of processed foods and/or foods in high fat and sugar content) or to a more 

balanced dietary pattern including fruit and vegetables, relating to higher and lower 

values of BMI, respectively [343]. Such patterns may include food combinations each 

time representative of the region of living, while maintaining a strong influence of the 

dietary habits and combinations usually found in the Western and/or the 

Mediterranean diet. A 2021 study by Saghafi-Asi et al. investigating the relationship 

between dietary patterns and biochemical biomarkers of 151 healthy obese Iranian 

adults, also underlined a positive association between a “Western” dietary pattern 

with high fat and sugar content and BMI and body fat levels [344]. Additionally, a 

different study in Romanian obese adults also underlined the identification of a “high 

meat/high fat”, a “Western,” and a “Prudent” pattern [345]. Similar findings were 

reported in a cohort of 410 Polish participants of a case-control study, where 

adherence to a pattern influenced by the Western one was related with higher levels 

of fat tissue and waist circumference, in contrast with the adherence to a “Healthy” 

pattern [345]. In their 2019 longitudinal study, Neri-Sanchez et al. also underlined the 

positive association between adherence to a “Risky” dietary pattern, including high 

fat and high sugar content, with the presence of central obesity in Mexican adults 

[346]. A different pattern consisting of poultry, vegetables, red meat, and red meat 

products, among others, was also associated with obesity in male, Chinese adults, in 

a 2021 study of 1739 adults by Wang et al. [348]. Additionally, a different cross-

sectional study of our group identified similar associations between dietary patterns 

and biochemical biomarkers in the adults of the POMAK population. More specifically, 

the dietary pattern including increased consumption of products high in sugars was 

related to low levels of HDL cholesterol [349]. Similar trends were also noted when 

investigating the dietary patterns of adolescent populations, where a dietary pattern 

with high protein and animal fat content was associated with elevated levels of logBMI 

and logTriglycerides, in French teenagers [311]. Furthermore, the development of the 

novel Lifestyle Index using the data deriving from the study sample, allowed for 

further investigation of the quality of life characteristics on the anthropometric and 

biochemical indices. Consisting of five variables, including two of the present dietary 

patterns extracted, the Index displayed negative associations with logBMI and body 

fat levels, as well as levels of the log-transformed variables of fasting glucose, SGOT, 

and SGPT. Thus, LI confirmed that higher quality of dietary intake and higher levels of 

physical activity reduced depression symptoms and improved self-reported 

conception of health status and may display a protective effect on body composition, 

as well as a favorable influence on improved glycemic profile. Overall, development 

of lifestyle indices as a means of quantifying and evaluating the potential influence of 

specific lifestyle aspects on body weight is mounting, as analyzed in the beginning of 

the paper, lifestyle indices can also incorporate dietary information via calculation of 

diet quality indices. A 2017 systematic review of 34 studies by Asghari et al., sought to 

investigate the effect of diet quality indices in obesity-related traits, showing that 

Healthy Eating Index (HEI) displayed an inverse association with obesity. The same 

review also concluded that different dietary scores, in general, did not efficiently 

assess diet quality, with most significant findings being presented in populations of 
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the United States [350]. Furthermore, different research groups have investigated the 

effect of lifestyle characteristics, such as sedentary behavior and screen-time, in 

adolescent populations [328, 351, 352]. In adults, current research refers to potential 

associations between constructed lifestyle indices and specific diseases or disease-

related outcomes, namely cardiovascular disease [354], cancer [353], and type 2 

diabetes [355]. Lenz et al., showed that creation of a Lifestyle Index for evaluation of 

life quality in adults at risk for cardiovascular disease can be a useful tool [356]. 

Furthermore, in a similar effort to evaluate the lifestyle aspects and weight 

characteristics, Roda et el in 2016, also investigated the potential effect of sleep 

qualities, screen time, and dietary intake, among others, highlighting a strong positive 

association between sedentary behavior and overweight [357].  

 

Baseline Characteristics, MD and PA 

Furthermore, regarding the samples’ baseline characteristics, our findings showed 

that the combination of increased adherence to the MD and elevated physical activity 

was not only associated with lower levels of the core anthropometric indices (i.e. BMI, 

WHR, total body fat and visceral fat), but also a better profile of lifestyle characteristics 

as evidenced by its inverse association with depression characteristics and its positive 

relation with the mental component of the SF-12 short questionnaire. Evidently, apart 

from the well-known effects of MD in reducing cardiometabolic risk and elevating 

overall quality of life [113], literature firmly supports its additional role in the 

construction of a better mental health profile. In their 2020 literature review, 

Ventriglio et al highlighted the beneficial influence of MD adherence in the reduction 

of anxiety symptoms and the overall improvement of outcomes related to disorders 

of psychiatric nature [358]. Similar findings to the ones presented hereby were also 

reported by the SUN project, where adherence to the MD was associated with 

favorable levels for both the physical and the mental component of SF-36, in almost 

10000 adult participants [359]. A different study by Yin et al also demonstrated a lower 

risk for presenting depression symptoms in adult women with high adherence to MD 

compared to the ones demonstrating lower adherence [360]. Similarly, the beneficial 

character of increased PA in overall physical and mental health status has been long 

demonstrated, irrespective of the presence of overweight or obesity. Using data for 

approximately 870.000 adults, Xu et al demonstrated the favorable effects of various 

types of PA on mental health characteristics for people with normal weight, as well as 

obesity [361]. In the case of the latter, Pojednic et al also highlighted that even slight 

increases in physical activity were related with better health outcomes, even in the absence 

of targeting or achieving weight loss [362]. Therefore, naturally, the combination of 

increased adherence to MD and not leading a sedentary lifestyle has been associated 

with enhanced physical and mental health status, with Di Lorenzo et al even showing 

positive results in the anthropometric indices of a cohort of  patients with psychiatric 

disorders [363]. It is therefore interesting to argue that a balanced diet combined with 

increased physical activity can positively influence parameters of mental health in 

populations with increased weight, rather than MD or increased PA alone. This 
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combination could be potentially even brought to the forefront of personalized 

recommendations for populations presenting overweight or obesity, as even the 

slightest increase in following the MD and exercising can massively impact mental 

health status, which could subsequently positively influence physical health by 

practically reducing cardiometabolic risk and by even positively shaping the 

individuals’ relationship with food.  

Intervention Outcomes 

Regarding the outcomes of the proposed hypocaloric intervention, our findings 

showed that participants in the study presented a statistically significant weight loss 

at the end of the 3-month period, irrespective of the proposed dietary regimen (mean 

reduction of 2.68kg, p<0.0001 for all participants). As previously mentioned, research 

on the effect of different macronutrient content for weight loss has not yielded 

significant differences for proposed diets with increased carbohydrate versus 

increased protein content. In line with the results presented hereby, the 

aforementioned POUNDS lost trial reported similar outcomes for the 345 participants 

with available pre- and post-intervention data. The trial noted a similar drop-out rate 

as the one observed for the iMPROVE participants, with 42.55% of the participants 

completing the POUNDS lost trial (811 individuals with baseline data vs 345 individuals 

with data at baseline and end of the 6-month period) and 41.58% of the participants 

completing the iMPROVE trial (202 individuals with baseline data vs 84 individuals with 

data at baseline and end of the 3-month period). Compared to iMPROVE, POUNDS lost 

noted almost double weight loss in the double months of the intervention period, i.e. 

a mean weight loss of 6 kg at the end of the 6 months. In line with the iMPROVE trial 

results, the trial also noted no differences for weight loss within the four groups of the 

different proposed diets [168, 364] Similar findings were also presented by the 

DIETFITS trial, which yielded no statistically significant differences in the weight loss 

observed at the end of the 12-month intervention period between the healthy low-

fat and the healthy low-carbohydrate groups [365].  
Analogous results were also presented by Parr et al, who investigated the effect 

of adhering to a 4-month hypocaloric diet with three groups of different 

macronutrient content, i.e. a high protein, moderate carbohydrate content (30% fat, 

30% protein and 40% carbohydrate); a high protein, high carbohydrate content (15% 

fat, 30% protein, 55% carbohydrate) or a control regimen (30% fat, 15% protein and 

55% carbohydrate) The trial showed a mean 7.7kg weight loss in 89 adults with 

overweight or obesity after the 4-month intervention period, without differences in 

the changes observed within the examined diet groups [366]. Additionally, the older 

NUGENOB project also investigated the effect of a 10-week hypocaloric diet of either 

low fat content (i.e. 20- 25% fat, 15% protein,  ~60 to 65% carbohydrate) or high-fat 

composition (i.e.~40 to 45% fat, 15% protein, ~40-45% carbohydrates) in the observed 

weight loss of 771 adults with obesity. The study showed a respective mean weight 

loss of 6.9kg and 6.7kg for each group, without noting statistically significant 

differences between the two [300,367]. Similar to the findings of the iMPROVE trial, 
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NUGENOB also showed no statistically significant interactions between the suggested 

diet groups and the weight loss outcome [300]. 

In the same trial, Handjieva-Darlenska et al attempted to further evaluate the rate 

of the observed weight loss throughout the intervention period. The authors found 

that a weight loss of less than 4kg mid-way through the 10-week trial could possibly 

be predictive of a lower overall weight loss at the end of the intervention period [300]. 

The authors attributed this to the potential effect of motivation in such intervention 

schemes, where personal incentive appears to be a main contributor in driving 

successful outcomes for each individual. In the present study, we find that changes in 

the primary outcomes (i.e. weight and BMI change) remain statistically significant up 

to the end of month 2 (p<0.05). This finding could potentially strengthen the notion 

that dietary interventions of such nature could be most effective when conducted in 

short time periods where weight loss appears to peak and which are able to maximize 

the enhanced effect of the increased motivation usually observed in participants at 

the beginning of trials targeting weight loss. In this spectrum, a 2020 systematic review 

by Ge et al., showed not only that low-carbohydrate and low-fat diets yielded similar 

results for weight loss at the standard intervention period of 6 months, but also that 

the observed weight loss diminished at a period of 12 months irrespective of the 

dietary regimen followed [259]. On the contrary, use of behavioral treatments has 

shown that weight loss was in fact enhanced later-on during the intervention period, 

with Butryn et al showing that participants following such approaches showed higher 

weight loss closer to the end of the intervention period [368]. This could be potentially 

attributed to the fact that participants in such programs master the proposed 

measures later on within the trial. Ahern et al., attempted to compare different kinds 

of interventions for weight loss, demonstrating that participants in a behavioral arm 

(Weight Watchers) noted higher weight loss at one year compared to those following 

a brief dietary intervention [369]. Therefore, more research is needed to identify 

potential combinations of dietary and behavioral interventions for identifying the 

optimal window to maximize weight loss in intervention trials, capable of leading to 

substantial, beneficial changes in body weight and body composition while ensuring 

long-term loss maintenance.  

In the same spectrum, adherence to the proposed diets varied between the 

individuals, with their self-reporting adherence scores varying throughout the 

intervention period. As participants were closely monitored and communicated bi-

weekly with their allocated nutrition experts, they frequently reported difficulty in 

fully adhering to the proposed meals due to a hectic daily lifestyle, the need to 

organize meals or a false subjective view of increased quantities due to the increased 

meal frequency (i.e. 5 or 6 proposed meals per day). We therefore chose to account 

for their subjective adherence to the proposed diets as a means to more accurately 

capture the role of adherence to their observed changes in weight. Current literature 

has investigated the role of the adherence to dietary interventions in the observed 

results, with Lemstra M et al demonstrating an overall adherence percentage of 60.5% 

in a meta-analysis of 27 studies in the field [370]. In their 2017 paper for identifying 

beneficial strategies to improve adherence, Gibson et Sainsbury highlighted the need 
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for the proposed interventions to account for the increased will to eat observed during 

such attempts to lose weight, as well as tailor proposed suggestions to the individuals’ 

needs while also promoting self-monitoring techniques [371]. 

Proceeding to the intervention results on body composition, WHR did not present 

statistically significant changes at the end of the 3-month period. The slight increases 

in the WHR measurements at the ends of months one and two can be potentially due 

to the marginal error attributed to the fact that the participants performed said 

measurements by themselves. However, participants displayed significant changes In 

fat-related indices post-intervention, including reductions in total body fat, fat-free 

mass and visceral fat (p<0.001 for all). Women noted the majority of the significant 

reductions at the end of the three months, whereas no differentiations were observed 

for the two diet groups. POUNDS lost reported similar findings, with participants 

showing reductions for fat and lean mass, as well as abdominal, subcutaneous and 

visceral fat (p<0.0001 compared to baseline). In line with iMPROVE, women appeared 

to lose more visceral fat than men and no differences were observed for the 4 diet 

groups [372]. Changes in body composition are mostly reported in the literature when 

combining a dietary intervention with recommendations for increased PA. Similarly, 

Rojo-Tirado et al demonstrated that body fat percentage was reduced across 3 groups 

of different PA types (strength, endurance, combination of strength and endurance 

and control group) in 239 adults who followed a 6-month hypocaloric diet and 

exercise-based intervention [373]. We could therefore argue that more evident 

changes in WHR or other anthropometric indices could be achieved if providing 

additional recommendations for PA. 

Moving on to the observed changes in the lifestyle indices, AIS presented a 

statistically significant decrease post-intervention by 1.5 units (5 at baseline vs 3.5 at 

the end of 3 months, p=0.033), without differences observed between the two diet 

groups. As previously mentioned, the bidirectional relationship between sleep and 

weight has been well established in current literature [374]. The present sample did 

not show elevated levels of AIS at baseline, denoting that the majority of participants 

did not demonstrate sleep-related disruptions and the latter would, thus, probably 

not constitute an obstructive or confounding factor in their attempt to lose weight. 

The observed reduction in AIS aligns with the beneficial effect of weight loss in the 

amelioration of sleep qualities, with most studies having reported results for its impact 

on obstructive sleep apnea. In 2021, de Melo et al also demonstrated a beneficial 

effect of adherence to a one-month, hypocaloric, high-protein diet in AOS parameters 

of patients with obesity [374]. Concomitantly, Georgoulis et al showed that a 

behavioral intervention including a 6-month, hypocaloric MD diet for weight loss, was 

associated with enhanced inflammatory levels in patients with Obstructive sleep 

apnea [375]. 

Regarding the remaining changes, a statistically significant improvement for SF-

MCS-12 was observed by the end of the first month of the intervention (46.4 at 

baseline vs 50.56 at the end of month 1, p=0.022), but disappeared by the end of the 

three-month period. It is likely, that the short-term increase in the mental component 

could be associated with the increased participant motivation observed in the 
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beginning of the intervention and the presence of significantly yielded results in 

weight loss by the end of the first month. In their 2024 systematic review, Lasikiewicz 

et al showed that weight loss resulting from dietary or behavioral interventions was 

associated with ameliorations in participants’ psychological characteristics, including 

health-related quality of life [376]. Moreover, Alhalel et al also noted that weight loss 

following a lifestyle intervention was related with improvement in the mental health 

status of 92 adult women with overweight or obesity [377].  

 .   

Associations between genetic makeup and baseline characteristics 

In an effort to holistically assess the potential impact of the genetic factor, we 
chose to examine both the role of a 84-SNP unweighted and weight GRS, as well as 
separate candidate variants known for their relations with BMI and fat-related indices. 
The constructed GRSs did not present statistically significant interactions with the 
baseline anthropometric indices, potentially due to the limited size of the examined 
population. Regarding the examined variants, carriers of the T allele of the BDNF-
located rs6265 SNP demonstrated lower levels for all examined fat-related indices, 
namely total body fat in kg (β=0.035, p=0.032 after adjusting for age, sex, PAL and 
smoking), visceral fat (β=0.038, p=0.019 after adjusting for age, sex, PAL and smoking) 
and upper body fat in kg (β=0.036, p=0.041 after adjusting for age, sex, PAL and 
smoking). Presence of the C allele of the variant has been well-associated with 
increased anthropometric measurements in current literature, namely WHR (β=4.00, 
p=2.00e-7), HC (p<0.05), weight (p<0.001) and BMI levels (p=1.88e-12), in a variety of 

populations with different ancestries [378-381]. As previously mentioned, the 
polymorphism is associated with impaired intracellular signaling and reduced BDNF 
secretion. Therefore, the present finding of the protective T allele being associated 
with lower levels of fat indices agrees with the current literature, given the association 
between the C allele and reduced BDNF levels leading to increased food intake and 
body composition measurements.  

Regarding the observed interactions between the candidate variants and the 
cohort’s baseline dietary patterns, carriers of BMI-raising alleles demonstrated several 
nominal interactions for multiple anthropometric and lifestyle characteristics. 
Interactions between BMI-raising alleles and dietary patterns rich in sugar or fat 
content appeared to aggravate the already existing predisposing effect, while 
adherence to patterns with more balanced meal combinations revealed a protective 
effect of diet in the variants’ impact on anthropometric indices. More specifically, 
interactions between the “Traditional, vegetarian-alike” pattern and several risk 
variants for elevated BMI (i.e. rs1421085-C, rs1121980-A, rs17817449-G, rs3751812-
T, rs9939609-A) were nominally linked to lower levels of body weight and BMI at 
baseline. In a similar manner, rs3751812-T and rs9939609-A alleles were associated 
with lower levels when adhering to the “Traditional, vegetarian-alike” pattern, 
whereas the former was associated with higher levels when adhering to the High in 
unsaturated fats pattern. On the contrary, presence of the BMI-positively associated 
T allele of the rs3751812 variant who adhered to the “High in unsaturated fats and 
fruit juice consumption” pattern showed increased levels of weight and BMI. In our 
case, although we did not observe significant associations for the “Med-proxy” 
pattern, positive associations in attenuating the genetic effect were shown for the 
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“Traditional, vegetarian-alike” pattern, which, in turn, comprises of meal 
combinations, traditional of the Greek daily life and usually presenting high content of 
fiber. Furthermore, the aggravating effect shown for the “High in unsaturated fats and 
fruit juice consumption” pattern could potentially emphasize the effect of rich fat and 
sugar sources, irrespective of fat type (i.e. unsaturated and not saturated, per se). 

This is not the first time that diet appears to either modify or aggravate the 
predisposing effect of genetic makeup. in line with the results presented hereby, a 6-
SNP GRS created by Hosseini-Esfahani et al  created a 6-SNP GRS including the 
rs1421085, rs1121980, rs17817449, rs3751812, rs8050136 and rs9939973, to 
investigate associations between dietary fiber intake and obesity phenotypes. In line 
with the findings presented hereby for the first four SNPs used in this GRS and their 
interaction with the “Traditional” pattern, the latter was found to significantly interact 
with fiber intake in modifying BMI levels [282]. The same team also showed that 
adhering to the WD appeared to aggravate the genetic effect in obesity phenotypes 
of individuals with increased levels of the same GRS [282].  

Previous attempts have also shown concomitant results when investigating 
such associations in cohorts of large populations with multiple thousands of 
participants. In a similar attempt to the present one, Ding et al investigated potential 
interactions between the GRS of the 97 SNPs for BMI identified by Locke et al [326] 
and three indices of diet quality, namely the AHEI,  Alternative Mediterranean Diet 
score (AMED), and the DASH score in approximately 31000 individuals. The study 
showed a consistent attenuation of the genetic effect in the cases where the diet 
scores presented higher values [383]. A similar effect was shown by Wang et al in the 
case of almost 14000 health professionals, where a 20-year follow up showed 
attenuation of the effect of BMI-elevating variants in the individuals with higher AHEI 
scores [384]. To boot, examination of gene-diet interactions in a sample of 68317 
European adults also yielded nominally significant associations between a favorable 
diet score and two BMI-related variants -rs10968576 and rs4771122- in the 
population’s BMI [385].  A different study investigated the effect of the rs17782313 
SNP on depression characteristics of women with overweight and obesity. The study 
showed a significant interaction between presence of the aggravating C allele and 
increased depression scores in women adhering to an unhealthy dietary pattern, 
when compared to the ones following a healthy pattern [386].  

Lastly, a 2022 systematic review by Tan et al also demonstrated the favorable 
effect of adhering to diets with principles similar to the ones of MD or DASH on 
decreasing the risk for increased weight in individuals with BMI-raising alleles in the 
FTO, MC4R, PPARG or APOA5 genes [387].  

Proceeding to the interactions observed for the lifestyle measurements, 
attrition to the “High in unsaturated fats and fruit juice consumption” pattern was 
associated with increased CESD-R-10 score in carriers of the BMI-raising T allele of the 
rs925946 SNP. In 2012, Gyekis et al. examined the potential effect of several BMI-
related polymorphisms on the incidence of major depression highlighting that the 
SNPs, alone, were not associated with the appearance of the disorder [388]. Literature 
has generally highlighted the importance of gene-diet interactions in the appearance 
or the modification of depression-related disorders and subsequent characteristics 
[389, 390]. Subsequently, the finding presented hereby could potentially highlight the 
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connective link in the modifying effect of an unbalanced diet in the final increase of 
depression-related symptoms.  

Another interesting finding presented hereby concerns the gene-diet 
interactions observed for the physical component of the SF-12 questionnaire. More 
specifically, adherence to the “Mixed” pattern in carriers of the BMI-raising 
rs1421085-C, rs1121980-A, rs17817449-G, rs9939609-A, rs17782313-C, rs6548238-C 
alleles was associated with lower levels of SF-PCS-12; this strengthens the notion that 
the combination of obesity-predisposing genotypes and adherence to a WD-alike diet 
can aggravate quality of life, even when comparing to genetic makeup or diet 
separately. Interestingly, we also found that the rs1421085-C, rs1121980-A, 
rs17817449-G, rs9939609-A variants were associated with lower levels of SF-PCS-12 
even when the individuals adhered to the “Med-proxy” pattern. Always taking into 
account the limited percentage of variance explained by the patterns, this finding 
could potentially reveal a greater impact of unhealthy dietary habits on aggravating 
the predisposition for lower quality of life, compared to the potential attenuating 
effect that a healthy diet could potentially present.   

 

Associations between genetic makeup and intervention outcomes 

When looking into the effect of genetic makeup on the observed changes in 

the cohort’s characteristics post-intervention, we detected no statistically significant 

associations with the GRSs or the examined candidate variants, again, potentially due 

to the limited size of our population. However, although statistically insignificant, 

individuals with higher GRSs steadily presented lower rates of weight and BMI change 

when compared to the ones with lower genetic risk. Accordingly, changes in the 

examined indices did not statistically significantly differentiate between the two diet 

groups.  

Using the observed data, within-genotype group tests revealed a statistically 

significant difference between the three groups of genotypes for the FTO rs1421085 

and the MC4R rs17782313 variants and change in body weight (p-0.036 and p-0.043, 

respectively). As mentioned previously, the relationship between both variants and 

increased weight is well-documented in the literature, hence our choosing to 

investigate their potential impact on weight loss. Franzago et al previously 

investigated the impact of 5 target SNPs, among them the in-LD-with-rs1421085 FTO 

rs9939609 SNP and the MC4R rs17782313 variant, in the observed weight loss of 

patients with obesity following a nutritional intervention. Their study showed that 

carriers of the rs9939069-A allele presented lower BMI decrease from baseline up to 

the end of the 12-month of intervention [391].  

Generally, to date, other attempts of dietary interventions targeting weight loss 

have yielded analogous results to the ones of the iMPROVE cohort, with most studies 

investigating and reporting the effect of candidate polymorphisms or GRSs of tens of 

selected variants in outcomes of interest. In its sample of 609 adults with overweight, 

the DIETFITS trial also showed no statistically significant associations between gene-

diet interactions and weight loss at the end of the 12-month intervention period [365]. 

While investigating the potential effect of 42 candidate SNPs in 648 participants, the 
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previously mentioned NUGENOB project also noted only nominally significant 

associations for lower weight loss in participants with the effect alleles who followed 

the low-fat diet [392]. Concomitantly, the trans-NIH consortium for genetics of weight 

loss in response to lifestyle interventions showed that a higher 59-SNP GRS for WHR 

was only limitedly associated with lower WC or WHR reduction in Caucasian 

individuals, after 1 year in the Look AHEAD, DPP, DPS, DIETFITS and PREDIMED-Plus 

interventions [393].  

Interestingly, BMI-raising alleles also presented associations with the 

components of the SF-12 questionnaire, denoting the additional presence of 

corresponding relations in our sample. The FTO rs17817449 and rs9939609 variants 

were associated with reduced changes in SF-PCS-12 post-intervention, potentially 

signifying that although the variants were not associated with the baseline levels of 

the component, they could still negatively affect the potentially positive change 

caused by the weight loss that accompanied the dietary intervention. On the contrary, 

in addition to those two polymorphisms, the FTO rs1421085,rs1121980 and the MC4R 

rs17782313 SNPs presented positive nominal associations for increased changes in the 

mental component of the questionnaire. This could potentially denote that although 

the intervention results might not have been clearly evident on improving the physical 

component, individuals with increased predisposition to obesity were mentally 

benefited by the observed changes post-intervention.  

Regarding the examined interactions with the proposed dietary group, in the 

present study we found no statistically significant associations between the GRSs or 

the BMI-variants and the changes post-intervention. Interestingly, current literature 

focuses on the interaction of the rs17782313 MC4R variant (or other variants in LD 

with the rs17782313) and macronutrient intake on various dietary or cardiometabolic 

indices.  In the POUNDS Lost study, an important relation was demonstrated between 

the MC4R rs17782313 SNP and dietary protein intake in the protein diet groups, 

regarding the increase in appetite and cravings, when using data from 735 participants 

at the end of the 2-year period [394]. In like manner, Adamska-Patruno et al examined 

the effect of four MC4R variants, including the rs17782313 one, in the cardiometabolic 

parameters of 819 individuals with obesity. The study showed that carriers of the C 

allele presented increased visceral fat, glucose and triglyceride levels when noting 

higher levels of protein intake [395]. A different study in 282 Iranian women showed 

a statistically significant association between carbohydrate intake and the presence of 

the C allele in the variant with higher BMI, WC and BMR [396]. An additional finding 

deriving from the POUNDS lost trial concerned the in-LD-with-rs1421085 FTO 

rs1558902 variant. The study showed that carriers of the BMI-raising allele presented 

higher reductions in weight and fat-related indices when adhering to the high-protein 

vs the low-protein diet [397]. We could, therefore, argue that, in our case, associations 

were not presented between the variants and macronutrient intake potentially due to 

the limited sample size.  

Interestingly, the protective T allele of the rs6265 variant presented nominally 

significant interactions with diet group, denoting that T carriers in the high-protein 

group presented enhanced  post-intervention changes observed for total and upper 
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body fat in kg, as well as visceral fat (β=3.387, p=0.007, β=2.564, p=0.001 and β=1.011, 

p=0.032, respectively adjusting for age, sex, PAL and smoking). As previously 

discussed, the role of the variant is central in BDNF production, with Deng et al having 

reported its ability to regulate BDNF protein phosphorylation and even bone mineral 

density [398]. This is not the first time that the variant is found to be interacting with 

macronutrient intake on modifying cardiometabolic determinants. Miksza et al found 

that adult carriers of the C allele presented higher levels of BMI, WC and glucose when 

noting a daily dietary protein intake great than 18% [399]. Furthermore, in a sample 

of 634 diabetic patients, Naeini et al showed that carriers who presented increased 

DQI or PI scores demonstrated higher rates in the reduction of total cholesterol or IL-

18 [400]. Moreover, in a sample of 8840 Korean adults with and without T2D, Daily et 

Park also found consistent interaction between the variant and protein intake in 

modifying the risk for presenting T2D in older adults [401]. In terms of other gene-diet 

interactions for changes in body composition, it is worth mentioning that the POUNDS 

lost trial reported a similar interaction between carbohydrate consumption but the 

FGF21 rs8381147 variants in modifying total fat change in 715 participants at the end 

of the 2-year period. Carriers of the carbohydrate intake-decreasing allele showed 

lower changes in WC and total fat mass when adhering to the low carbohydrate diet 

[402]. Hence, our present findings lays interesting ground for further inquiring the 

interaction between: i) the MC4R variant and protein intake; and ii) future attempts 

for more variants in more anthropometric and cardiometabolic risk factors.  

Interestingly, apart from the present findings displayed for the FTO variants, 

the rs17782313 and rs6265 SNPs demonstrating significant associations in the 

iMPROVE study have also been further specifically examined for their associations 

with increased anthropometrics. Farooq et al chose the two variants as most 

representative to investigate metabolomic pathways implicated in increased BMI 

levels. Interestingly, the study found several associations for both polymorphisms and 

a multitude of metabolites with emphasis on alterations in fat metabolism [403] . This 

research further solidifies the findings presented hereby, demonstrating a dominating 

effect of the two variants in the changes of the anthropometric indices examined post-

intervention.  

Overall, major advantages of the present study are: i) the conduct of the first-ever 

dietary intervention examining the role of macronutrient composition and potential 

gene-diet interaction on weight loss in Greek adults; and ii) the use of the online 

assessment tool, as a means enabling long-distance communication and monitoring, 

during the time of social distancing due to the novel coronavirus disease 19 (COVID-

19) pandemic. On the other hand, limitations of the present study included: i) the 

limited sample size included due to the substantial impact of the COVID-19 pandemic 

on volunteer recruitment rates caused by social-distancing protocols implemented in 

recruitment sites and the limited expression of interest for participation in the study; 

ii) the long-distance maintenance of an increased adherence rate to the proposed 

diets, due to the extended time period between the in-person follow-up meetings; 

and iii) the proper use of the online assessment tool by older adults who had both 

limited access and knowledge on the use of state-of-the-art technological devices and 
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online tools.  The present constitutes the first attempt of its kind in a Greek population 

of adults, yielding significant insights on the associations between genetic 

predisposition and anthropometric and lifestyle indices in this populations. The 

heterogeneity of the results should, thus, be viewed as a strength allowing to lay the 

ground for future work, in line with the procedures and findings of larger, similar 

initiatives such as the POUNDS lost, the DIETFITS and the DiOGenes trials.  
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3.2. The 2018 Gutenberg Chair Project: TEENAGE and STANISLAS Cohorts  

The following constitute information published under the publications Nutrients 2021, 13, 198 
https://doi.org/10.3390/nu13010198 and Nutrients 2023, 15, 1884. 

https://doi.org/10.3390/nu15081884 and can be found in Appendix D. 

3.2.1. Baseline Characteristics and Dietary Patterns of the Studies’ Populations 

We used baseline anthropometric, biochemical and dietary data for all analyses 
on both adolescent cohorts. For the TEENAGE Study, we analyzed data from a total 
sample of 766 adolescents (45.56% boys, 54.43% girls), with a median age of 13.30 
years (Table 47). The sample presented various statistically significant sex-related 
differences, with the boys presenting higher levels of weight (p=0.001), WHR 
(p<0.001), SBP (p=0.001), glucose and CRP (p-values<0.001), compared to girls. On the 
contrary, girls showed increased levels of the HOMA-IR, insulin and HDL-C indices. 
Moreover, the Greek teenagers reported a median energy intake of 1741.00 kcal/d 
(IQR = 760), significantly different between the two genders, with boys reporting a 
higher intake than girls (p<0.001). 

 

Table 50. Baseline characteristics of the  adolescent cohort of the TEENAGE Study 
(n=766).  

 TEENAGE Study   

All Boys Girls  
p *  n Median 

(IQR) 
n Median 

(IQR) 
n Median 

(IQR) 
Age (years) 766 13.30(1.31) 349 13.36 

(1.38) 
417 13.26 

(1.25) 
<0.001 

Weight (kg) 766 55.00 
(14.00) 

349 56.00 
(16.00) 

417 54.00 
(13.00) 

0.001 

BMI (kg/m2) 766 20.88 (4.38) 349 20.85 
(4.45) 

417 20.93 
(4.37) 

0.517 

WHR 763 0.76 (0) 349 0.79 (0) 414 0.73 (0) <0001 
SBP (mmHg) 743 119.00 (16) 335 120.67 

(11.93)** 
408 118.00 (15) 0.001 

DBP (mmHg) 743 70.00 (12) 335 71.00 (12) 408 70.00 (12) 0.825 
Energy Intake 
(kcal/day) 

766 1741.00 
(760) 

349 1939.00 
(779) 

417 1574.00 
(609) 

<0.001 

Glucose (mg/dL),  611 80.00 (12) 283 81.00 (11) 328 79.00 (12) <0.001 
HOMA-IR 539 2.28 (2) 255 2.12 (2) 284 2.37 (2) <0.001 
Insulin (mg/dL) 539 11.00 (7) 255 10.00 (7) 284 12.00 (8) <0.001 
TC (mg/dL) 611 157.00 (33) 283 156.49 

(25.18) ** 
328 157.50 (31) 0.210 

HDL- C (mg/dL) 611 89.20 (27) 283 53.00 (16) 328 56.00 (17) 0.001 
LDL- C (mg/dL) 611 54.00 (16) 283 90.57 

(21.78) ** 
328 88.40 (26) 0.651 

Triglycerides 
(mg/dL) 

611 56.00 (24) 283 55.00 (25) 328 57.00 (24) 0.090 

CRP (mg/dL) 540 0.30 (1) 254 0.45 (1) 286 0.20 (0) <0.001 
* All hypothesis testing took place via use of the Mann–Whitney test. 

** Variable follows the normal distribution and is presented as mean± SD. 
p= p-value, BMI: Body Mass Index, WHR: Waist-to-hip Ratio, SBP: Systolic Blood Pressure, DBP: 

Diastolic Blood Pressure, HOMA-IR: Homeostatic Model Assessment for Insulin Resistance, LDL-C: 
Low-density cholesterol, HDL-C: High-density cholesterol, CRP: C-reactive protein 
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Regarding the STANISLAS cohort, we analyzed a sample of 287 teenagers with 
available dietary assessment data. Our sample composed of 47.73% boys and 52.26% 
girls, with a median age of 13.08 years (Table 48). Overall, as in the case of the 
TEENAGE adolescents, boyo\s presented higher values of WHR, SBP (p< 0.001) and 
glucose (p=0.018), compared to girls. However, in this sample, girls showed higher 
levels of TC and LDL-C (p=0.002, p=0.030, respectively)  than the boys. The French 
teenagers reported a median energy intake of 2056.03 kcal/d (IQR = 662.24), without 
presenting significant differences between sexes. 
 
Table 48. Baseline characteristics of the  adolescent cohort of the STANISLAS Study.  

 STANISLAS Family Study  

All Boys Girls  
p *  n Median (IQR) n Median (IQR) n Median (IQR) 

Age (years) 287 13.08 (2.92) 137 13.08 (2.92) 150 13.08 (2.85) 0.416 
Weight (kg) 263 46.59 (18.10) 129 47.20 (21.90) 134 46.05 (14.84) 0.136 
BMI (kg/m2) 263 18.44 (3.61) 129 18.30 (3.20) 134 18.52 (4.18) 0.853 
WHR 221 0.77 (0.04) ** 110 0.81 (0.03) ** 111 0.75 (0.06) <0.001 
SBP (mmHg) 263 112.00 (14.50) 129 115.60 (11.53) 

** 
134 110.46 (8.76) 

** 
<0.001 

DBP (mmHg) 263 57.00 (15.50) 129 56.69 (16.00) 
** 

134 57.02 (10.23) 
** 

0.829 

Energy 
Intake 
(kcal/d) 

287 2056.03 
(662.24) 

137 2070.99 
(495.20)** 

150 2094.92 
(681.16) 

0.469 

Glucose 
(mg/dL)  

263 88.28 (6.12) ** 129 89.18 (6.48) ** 134 87.38 (5.76) ** 0.018 
*** 

TC (mg/dL) 263 179.15 (40.93) 129 173.36 (30.89) 
** 

134 183.01 (36.29) 0.002 

HDL-C 
(mg/dL) 

263 54.05 (20.08) 129 54.44 (15.44) 
** 

134 56.37 (16.99) 0.222 

LDL-C 
(mg/dL) 

263 116.99 (33.98) 129 113.13 (28.19) 
** 

134 120.85 (32.05) 0.030 

TG(mg/dL) 263 51.33 (33.63) 129 52.21 (38.05) 134 46.56 (30.09) 0.930 
CRP (mg/L) 243 0.30 (0.53) 118 0.32 (0.54) 125 0.26 (0.55) 0.765 
* Hypothesis testing took place via use of the Mann–Whitney test wherever at least one variable did not 

follow the normal distribution. 
** Variable follows the normal distribution and is presented as mean ± SD. 

*** Hypothesis testing took place via the Student’s Independent Samples t-test 
p= p-value, BMI: Body Mass Index, WHR: Waist-to-hip Ratio, SBP: Systolic Blood Pressure, DBP: Diastolic 

Blood Pressure,  HDL-C: High-density cholesterol, LDL-C: Low-density cholesterol, CRP: C-reactive 
protein 
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Baseline Dietary Patterns for the Two Cohorts 

For the TEENAGE study, PCA was conducted on 15 food groups deriving from the 
24-hour dietary recalls.  KMO test was calculated at 0.545 for the TEENAGE teenagers, 
indicating mediocre to sufficient data adequacy. PCA for the TEENAGE cohort resulted 
in the identification of 5 dietary patterns, accounting for 49.35% of the sample’s total 
variance. All food group factor loadings are presented in Table 49. Based on the 
inclusion of corresponding food groups, the five dietary patterns identified were 
categorized as follows: 

i. a “western breakfast” dietary pattern, consisting of cheese, dairy and 
processed meat (explaining 15.61% of the total variance);  

ii. a “legumes and good fat” pattern, with high consumption of legumes, olives, 
olive oil and nuts(explaining 10.32% of the total variance);  

iii. a “homemade meal” pattern, with high consumption of red meat and potatoes 
and associated with lower fish consumption explaining (8.33% of the total 
variance);  

iv. a “chicken and sugars” pattern, with high consumption of chicken and sweets 
and associated with lower the consumption of fruits and juices (explaining 
7.60% of the total variance explained); and 

v. an “eggs and fibers” pattern, with high consumption of non-refined cereals, 
vegetables and eggs and associated with lower consumption of refined cereals 
(explaining 7.47% of the total variance). 
 

Table 49. Principal Components Analysis’ factor loadings for the 15 food groups in the 
TEENAGE study (n = 766). 

 Component 

Food Groups* 1 2 3 4 5 

Cheese 0.897 - - - - 

Dairy 0.863 - - - - 

Processed Meat 0.635 - - - - 

Legumes - 0.739 - - - 

Olives, Olive Oil, 
Nuts 

- 0.668 - - - 

Red Meat - - 0.712 −0.429 - 

Potatoes - - 0.661 - - 

Fish - −0.358 −0.480 - - 

Chicken - - - 0.649 - 

Sweets  - - - 0.518 - 

Fruit and Juices - - - −0.368 - 

Non-refined cereals - - - - 0.674 

Vegetables - - - - 0.342 

Eggs - - - - 0.303 

Refined Cereals 0.512 - - - −0.595 

Total Variance 
Explained (%) 

15.61 10.32 8.33 7.60 7.47 

*Only loadings with an absolute values> 0.3 are presented in the table  

 

Following the extraction of the dietary patterns, we proceeded to conducting 
multiple linear regressions adjusting for all aforementioned models of confounding 
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factors. As shown in Table 50, the “chicken and sugars” pattern was statistically 
significantly associated with lower values of logCRP in all models (Model 1: β = −0.051, 
p-value = 0.006, Model 2: β = −0.057, p-value = 0.004, Model 3: β = −0.050, p-value = 
0.008, Model 4: β = −0.051, p-value = 0.008). The same pattern was nominally 
associated with elevated logGlucose (Model 1 β = 0.015, p-value = 0.017), but lower 
logInsulin after adjusting for Model 1 (β = −0.020, p-value = 0.030), Model 3 (β = 0.018, 
p-value = 0.049) and Model 4 (β = 0.018, p-value = 0.041). Further nominal 
associations were further observed for: i)  the “legumes and good fat” pattern and 
lower values of logBMI (Model 1: β = −0.006, p-value = 0.017) and logInsulin (β = 
−0.020, p-value = 0.030); and ii) the “homemade meal” pattern and lower values of 
logBMI (Model 1: β = −0.005, p-value = 0.042).  



 

 

Table 50. Linear Regression Analyses on the association between the dietary patterns, anthropometric indices and biomarkers of glycemic and 
lipidemic control in the TEENAGE study. 

 Model 1 Model 2 Model 3 Model 4 

 β SE p β SE p β SE p β SE p 
LogBMI            
 Western Breakfast −0.004 0.003 0.150 −0.003 0.003 0.308 - - - - - - 
 Legumes and Good Fat −0.006 0.003 0.017 −0.004 0.003 0.194 - - - - - - 
 Homemade Meal −0.005 0.003 0.042 −0.003 0.003 0.242 - - - - - - 
 Chicken and Sugars −0.005 0.003 0.069 −0.004 0.003 0.128 - - - - - - 
 Eggs and Fibers  0.004 0.003 0.111 0.004 0.003 0.115 - - - - - - 

LogWHR           
 Western Breakfast 0.013 0.012 0.270 0.016 0.13 0.247 0.017 0.013 0.198 0.017 0.014 0.250 
 Legumes and Good Fat −0.006 0.011 0.622 −0.008 0.013 0.527 −0.007 0.013 0.608 −0.007 0.013 0.597 
 Homemade Meal −0.009 0.011 0.445 −0.008 0.013 0.517 −0.007 0.013 0.599 −0.008 0.013 0.562 
 Chicken and Sugars −0.003 0.011 0.760 −0.005 0.013 0.696 −0.003 0.013 0.828 −0.003 0.013 0.800 
 Eggs and Fibers  −0.011 0.011 0.320 −0.001 0.013 0.339 −0.015 0.013 0.268 −0.015 0.013 0.267 

LogSBP           
 Western Breakfast −0.003 0.002 0.085 −0.002 0.002 0.174 −0.002 0.002 0.295 −0.001 0.002 0.646 
 Legumes and Good Fat 0.000 0.002 0.838 0.001 0.002 0.729 0.001 0.002 0.499 0.001 0.002 0.472 
 Homemade Meal 0.000 0.002 0.937 0.000 0.002 0.819 0.001 0.002 0.579 0.001 0.002 0.481 
 Chicken and Sugars 0.002 0.002 0.169 0.002 0.002 0.246 0.003 0.002 0.090 0.003 0.002 0.071 
 Eggs and Fibers  2.294× 10−5   0.002 0.988 −0.001 0.002 0.680 −0.001 0.002 0.409 −0.001 0.002 0.411 

LogDBP           
 Western Breakfast −0.003 0.002 0.224 −0.003 0.002 0.256 −0.002 0.002 0.361 0.000 0.003 0.894 
 Legumes and Good Fat −0.002 0.002 0.482 −0.001 0.002 0.786 0.000 0.002 0.948 −3.047 

× 10−5 
0.002 0.990 

 Homemade Meal 0.001 0.002 0.551 0.003 0.002 0.155 0.004 0.002 0.097 0.004 0.002 0.063 
 Chicken and Sugars 0.001 0.002 0.609 0.001 0.002 0.528 0.002 0.002 0.333 0.003 0.002 0.271 
 Eggs and Fibers  0.001 0.002 0.802 0.000 0.002 0.878 0.000 0.002 0.914 0.000 0.002 0.919 

LogGlucose           
 Western Breakfast −0.003 0.007 0.655 −0.003 0.007 0.632 −0.003 0.007 0.631 −0.004 0.008 0.615 
 Legumes and Good Fat 0.010 0.006 0.120 0.011 0.007 0.111 0.011 0.007 0.110 0.011 0.007 0.111 
 Homemade Meal −0.002 0.006 0.740 −0.004 0.007 0.531 −0.004 0.007 0.531 −0.004 0.007 0.532 
 Chicken and Sugars 0.015 0.006 0.017 0.013 0.007 0.051 0.013 0.007 0.051 0.013 0.007 0.051 
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 Eggs and Fibers  0.003 0.006 0.588 0.003 0.007 0.659 0.003 0.007 0.659 0.003 0.007 0.660 

LogInsulin           
 Western Breakfast −0.015 0.010 0.119 −0.015 0.010 0.139 −0.009 0.010 0.356 −0.007 0.010 0.521 
 Legumes and Good Fat −0.020 0.009 0.030 −0.019 0.010 0.066 −0.017 0.009 0.066 −0.017 0.009 0.064 
 Homemade Meal 0.011 0.010 0.247 0.011 0.010 0.250 0.013 0.009 0.167 0.014 0.009 0.142 
 Chicken and Sugars 0.012 0.009 0.191 0.013 0.010 0.173 0.018 0.009 0.049 0.018 0.009 0.041 
 Eggs and Fibers  −0.015 0.009 0.113 −0.011 0.010 0.281 −0.014 0.010 0.133 −0.014 0.010 0.132 

LogHOMA-IR           
 Western Breakfast −0.016 0.011 0.158 −0.016 0.012 0.180 −0.035 0.011 0.422 −0.004 0.012 0.728 
 Legumes and Good Fat −0.020 0.010 0.054 −0.020 0.011 0.074 −0.019 0.011 0.075 −0.019 0.011 0.072 
 Homemade Meal 0.014 0.011 0.205 0.013 0.011 0.231 0.015 0.010 0.157 0.016 0.010 0.124 
 Chicken and Sugars 0.010 0.010 0.349 0.010 0.011 0.345 0.015 0.010 0.139 0.016 0.010 0.114 
 Eggs and Fibers  −0.018 0.010 0.089 −0.017 0.012 0.157 −0.020 0.011 0.067 −0.020 0.011 0.066 

LogTotalCholesterol           
 Western Breakfast −0.005 0.003 0.066 −0.006 0.003 0.060 −0.006 0.003 0.054 −0.003 0.003 0.422 
 Legumes and Good Fat 0.001 0.003 0.721 0.001 0.003 0.863 0.000 0.003 0.883 0.000 0.003 0.908 
 Homemade Meal 0.002 0.003 0.402 0.002 0.003 0.538 0.002 0.003 0.549 0.003 0.003 0.353 
 Chicken and Sugars 0.000 0.003 0.917 2.502 × 10−5 0.003 0.993 −5.600 × 10−5 0.003 0.985 0.000 0.003 0.868 
 Eggs and Fibers  0.003 0.003 0.269 0.002 0.003 0.521 0.002 0.003 0.511 0.002 0.003 0.511 

LogHDL- C           
 Western Breakfast −0.002 0.004 0.553 −0.002 0.004 0.692 −0.004 0.004 0.313 −0.002 0.005 0.643 
 Legumes and Good Fat 0.006 0.004 0.160 0.005 0.004 0.210 0.004 0.004 0.343 0.004 0.004 0.351 
 Homemade Meal 0.001 0.004 0.832 0.001 0.004 0.900 0.000 0.004 0.919 0.000 0.004 0.958 

 Chicken and Sugars 0.009 0.004 0.022 0.007 0.004 0.080 0.006 0.004 0.153 0.006 0.004 0.128 
 Eggs and Fibers  −0.001 0.004 0.885 −0.002 0.004 0.600 −0.001 0.004 0.761 −0.001 0.004 0.759 

LogLDL- C           
 Western Breakfast −0.008 0.005 0.099 −0.009 0.005 0.053 −0.009 0.005 0.073 −0.004 0.005 0.460 
 Legumes and Good Fat −0.001 0.004 0.761 −0.003 0.005 0.547 −0.002 0.005 0.610 −0.003 0.005 0.586 
 Homemade Meal 0.003 0.004 0.566 0.001 0.005 0.800 0.001 0.005 0.753 0.003 0.005 0.537 
 Chicken and Sugars −0.005 0.004 0.246 −0.005 0.005 0.278 −0.004 0.005 0.324 −0.004 0.004 0.411 
 Eggs and Fibers  0.005 0.004 0.233 0.004 0.005 0.389 0.004 0.005 0.423 0.004 0.005 0.423 

LogTriglycerides           
 Western Breakfast −0.003 0.006 0.632 0.002 0.007 0.747 0.001 0.006 0.831 0.004 0.007 0.573 
 Legumes and Good Fat 0.006 0.006 0.307 0.008 0.006 0.208 0.010 0.006 0.101 0.010 0.006 0.103 
 Homemade Meal −0.005 0.006 0.441 −0.004 0.006 0.550 −0.002 0.006 0.686 −0.002 0.006 0.745 
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 Chicken and Sugars −0.006 0.006 0.329 −0.004 0.006 0.491 −0.002 0.006 0.728 −0.002 0.006 0.764 
 Eggs and Fibers  −0.002 0.006 0.776 −0.005 0.007 0.418 −0.007 0.006 0.288 −0.007 0.006 0.287 

LogCRP           
 Western Breakfast 0.002 0.020 0.939 0.006 0.021 0.775 0.018 0.020 0.383 0.021 0.022 0.349 
 Legumes and Good Fat 0.006 0.019 0.759 0.019 0.021 0.369 0.022 0.020 0.275 0.022 0.020 0.276 
 Homemade Meal 0.015 0.020 0.444 0.005 0.021 0.795 0.007 0.019 0.714 0.007 0.020 0.714 
 Chicken and Sugars −0.051 0.019 0.006 −0.057 0.020 0.004 −0.050 0.019 0.008 −0.051 0.019 0.008 
 Eggs and Fibers  0.016 0.019 0.418 0.029 0.021 0.175 0.023 0.020 0.266 0.023 0.020 0.266 

Model 1: Adjusted for age and sex; Model 2: Adjusted for age, sex, physical activity; Model 3: Adjusted for age, sex, physical activity, BMI; Model 4: Adjusted for age, sex, 
physical activity, BMI, energy intake. 

p= p-value 

 

 

 

 

 

  



 

 

Concerning the analyses of STANISLAS cohort, PCA was conducted based on 15 
food groups deriving from the available dietary data of the 3-day food consumption 
diary. KMO test was set at 0.576, again indicating mediocre to sufficient data quality. 
Five dietary patterns were subsequently extracted, accounting for 46.69% of the 
sample’s total variance (Table 51), namely: 

i. a “western breakfast” dietary pattern, with high consumption of cheese, 
breads and flours, processed meat and vegetables (explaining 10.58% of the 
total variance);  

ii. a “prudent snacking” pattern, with high consumption of eggs and vegetable 
fats and lower consumption of salty snacks (explaining 10.44% of the total 
variance); 

iii. a “high protein and animal fat” pattern, with high consumption of red meat, 
animal fat and milk and yogurt (explaining 9.26% of the total variance);  

iv. a “fish and seafood” pattern, with high consumption of fish and seafood and 
lower consumption of poultry (explaining 8.19% of the total variance); and  

v. a “sugary snacks” pattern, with high consumption of soft drinks, sugars, sweets 
and cereal bars (explaining 8.19% of the total variance). 
 

Table 51. Principal Components Analysis’ factor loadings for the 15 food groups in the 
STANISLAS Family   study (n = 287). 

 Component 

Food Groups 1 2 3 4 5 
Cheese 0.664 - - - - 
Breads and Flours 0.605 - - - - 
Processed Meat 0.523 - - - - 
Vegetables 0.483 - - - - 
Eggs - 0.630 - - - 
Salty Snacks - −0.580 - - - 
Vegetable Fat - 0.576 - - - 
Red Meat - - 0.703 - - 
Animal Fat - - 0.610 - - 
Milk and Yogurt - - 0.473 −0.338 - 
Fish - - - 0.666 - 
Seafood - - - 0.628 - 
Poultry - - - −0.380 - 
Soft Drinks - - - - 0.777 
Sugars, Sweets and 
Cereal Bars 

- - - - 0.746 

Total Variance 
Explained (%) 

10.58 10.44 9.26 8.19 8.19 

*Only loadings with an absolute values >0.3 are presented in the table. 

In the case of STANISLAS teenagers, extraction of the dietary patterns was 
followed by conduct of linear mixed models adjusted for all the models of 
aforementioned confounding factors. Statistically significant associations were 
observed for the “high protein and animal fat” pattern and higher values of logBMI 
(Model 1: est = 0.011, p-value = 0.002, Model 2: est = 0.009, p-value = 0.020), as well 
as higher values of logTriglycerides (Model 1: est = 0.054, p-value < 0.001; Model 2: 
est = 0.049, p-value = 0.001; Model 3: est = 0.045, p-value = 0.002, Model 4:est = 0.041, 
p-value = 0.009). Nominal associations included: i) the “western breakfast” pattern 
and lower logCRP (Model 4: est = −0.076, p-value = 0.024); ii) the “high protein and 
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animal fat” pattern and lower values of logDBP (Model 3: est = −0.010, p-value = 0.045, 
Model 4: est = −0.012, p-value=0.028, respectively); iii) the “fish and seafood” pattern 
and lower logDBP values (Model 1: est = 0.009, p-value = 0.039), in Model 1; and iv) 
the “sugary snacks” pattern and lower values of logHDL-C (Model 3: est = −0.014, p-
value = 0.049) (Table 52).  



 

 

Table 52. Linear Mixed Model Analyses on the association between the dietary patterns and measured indices in the STANISLAS Family 
study. 

 Model 1 Model 2 Model 3 Model 4 

 Estimate SE p Estimate SE p Estimate SE p Estimate SE p 
LogBMI            
 Western Breakfast 0.000 0.003 0.878 0.000 0.005 0.459 - - - - - - 
 Prudent Snacking 0.000 0.003 0.950 0.001 0.003 0.738 - - - - - - 
 High Protein and Animal Fat 0.011 0.003 0.002 0.009 0.003 0.018 - - - - - - 
 Fish and Seafood −0.002 0.003 0.430 -0.001 0.003 0.700 - - - - - - 
 Sugary Snacks -0.001 0.003 0.701 -0.002 0.003 0.437 - - - - - - 

LogWHR           
 Western Breakfast −0.000 0.001 0.800 −0.000 0.001 0.539 −0.000 0.001 0.540 −0.000 0.001 0.840 
 Prudent Snacking 3.965729 × 10−5 0.001 0.976 0.000 0.001 0.809 0.000 0.001 0.797 0.000 0.001 0.722 
 High protein and animal Fat 0.000 0.001 0.723 0.000 0.001 0.616 0.000 0.001 0.757 0.001 0.001 0.486 
 Fish and Seafood 0.001 0.001 0.134 0.002 0.001 0.146 0.002 0.001 0.126 0.002 0.001 0.130 
 Sugary Snacks −0.001 0.001 0.392 −0.001 0.001 0.363 −0.001 0.001 0.409 −0.000 0.001 0.691 

LogSBP           
 Western Breakfast −2.28874 × 10−5 0.002 0.991 0.000 0.002 0.892 0.000 0.002 0.837 −0.000 0.002 0.792 
 Prudent Snacking 0.003 0.002 0.114 0.003 0.002 0.181 0.002 0.002 0.189 0.002 0.002 0.215 
 High protein and Animal Fat 0.000 0.002 0.733 0.000 0.002 0.822 −0.000 0.002 0.802 −0.001 0.002 0.504 
 Fish and Seafood −0.000 0.002 0.751 −0.000 0.002 0.766 −0.000 0.002 0.801 −0.000 0.002 0.794 
 Sugary Snacks 0.000 0.002 0.640 0.000 0.002 0.787 0.000 0.002 0.673 −0.000 0.002 0.894 

LogDBP           
 Western Breakfast −0.000 0.004 0.948 0.003 0.004 0.510 0.003 0.004 0.483 0.003 0.005 0.464 
 Prudent Snacking 0.002 0.004 0.593 0.001 0.004 0.833 0.000 0.004 0.841 0.000 0.004 0.845 
 High Protein and Animal Fat −0.008 0.004 0.089 −0.008 0.005 0.099 −0.010 0.005 0.045 −0.012 0.005 0.028 
 Fish and Seafood 0.009 0.004 0.039 0.008 0.004 0.077 0.008 0.004 0.069 0.008 0.004 0.070 
 Sugary Snacks −0.000 0.004 0.936 −0.002 0.005 0.651 −0.001 0.005 0.718 −0.002 0.006 0.632 

LogGlucose1           
 Western Breakfast 0.000 0.001 0.604 0.001 0.002 0.448 0.001 0.002 0.462 0.000 0.002 0.868 
 Prudent Snacking −0.000 0.001 0.917 −0.000 0.002 0.793 −0.000 0.002 0.805 −0.000 0.002 0.727 
 High Protein and Animal Fat −0.001 0.002 0.428 −0.001 0.002 0.632 −0.000 0.002 0.708 −0.002 0.002 0.365 
 Fish and Seafood −0.002 0.001 0.202 −0.001 0.001 0.331 −0.001 0.001 0.323 −0.001 0.001 0.323 
 Sugary Snacks 0.001 0.001 0.568 0.000 0.002 0.906 0.000 0.002 0.928 −0.001 0.002 0.502 

LogTotalCholesterol1           
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 Western Breakfast −0.001 0.004 0.728 −0.002 0.004 0.644 −0.002 0.004 0.66 −0.002 0.005 0.703 
 Prudent Snacking 0.002 0.004 0.599 0.004 0.004 0.347 0.004 0.004 0.369 0.004 0.004 0.358 
 High Protein and Animal Fat −0.003 0.005 0.490 −0.006 0.005 0.236 −0.007 0.005 0.157 −0.008 0.005 0.151 
 Fish and Seafood 0.005 0.004 0.224 0.006 0.004 0.173 0.006 0.004 0.171 0.006 0.004 0.172 
 Sugary Snacks −0.001 0.004 0.712 6.926 × 10−7 0.005 1.000 0.000 0.005 0.940 0.001 0.006 0.833 

LogHDL- C1           
 Western Breakfast 0.006 0.006 0.303 0.005 0.007 0.426 0.005 0.007 0.443 0.011 0.007 0.139 
 Prudent Snacking −0.005 0.006 0.419 −0.004 0.007 0.547 −0.003 0.007 0.584 −0.003 0.007 0.657 
 High Protein and Animal Fat −0.003 0.007 0.621 −0.002 0.008 0.762 0.000 0.008 0.983 0.004 0.008 0.622 
 Fish and Seafood 0.004 0.006 0.462 0.002 0.006 0.710 0.002 0.006 0.728 0.002 0.006 0.746 
 Sugary Snacks −0.007 0.006 0.237 −0.014 0.007 0.065 −0.014 0.007 0.049 −0.013 0.008 0.114 

LogLDL- C1           
 Western Breakfast −0.006 0.006 0.333 −0.007 0.006 0.275 −0.007 0.006 0.292 −0.060 0.053 0.254 
 Prudent Snacking 0.004 0.006 0.493 0.007 0.006 0.293 0.006 0.006 0.332 0.041 0.047 0.391 
 High Protein and Animal Fat −0.005 0.007 0.472 −0.010 0.007 0.168 −0.013 0.007 0.073 −0.112 0.057 0.050 
 Fish and Seafood 0.004 0.006 0.475 0.007 0.006 0.292 0.006 0.006 0.288 0.035 0.045 0.435 
 Sugary Snacks −0.001 0.006 0.810 0.005 0.007 0.492 0.005 0.007 0.410 0.042 0.059 0.473 

LogTriglycerides1           
 Western Breakfast 0.011 0.012 0.338 0.009 0.013 0.467 0.010 0.013 0.444 −0.001 0.014 0.911 
 Prudent Snacking 0.003 0.012 0.237 0.000 0.013 0.990 −6.768 × 10−5 0.013 0.996 −0.001 0.013 0.893 
 High Protein and Animal Fat 0.054 0.013 <0.001 0.049 0.014 0.001 0.045 0.014 0.002 0.041 0.015 0.009 
 Fish and Seafood 0.014 0.012 0.252 0.019 0.012 0.133 0.020 0.012 0.114 0.021 0.012 0.093 
 Sugary Snacks 0.009 0.012 0.428 0.010 0.013 0.462 0.011 0.013 0.399 −0.002 0.016 0.855 

LogCRP           
 Western Breakfast −0.045 0.029 0.125 −0.053 0.031 0.085 −0.050 0.030 0.096 −0.076 0.033 0.024 
 Prudent Snacking 0.031 0.028 0.274 0.037 0.030 0.217 0.037 0.029 0.201 0.036 0.029 0.222 
 High Protein and Animal Fat 0.009 0.031 0.757 −0.005 0.033 0.873 −0.019 0.032 0.558 −0.033 0.034 0.334 
 Fish and Seafood 0.018 0.029 0.516 0.009 0.030 0.745 0.010 0.029 0.733 0.008 0.030 0.774 
 Sugary Snacks 0.010 0.031 0.743 0.011 0.032 0.729 0.016 0.032 0.603 0.004 0.036 0.905 

1 Original data values in mmol/l were used for creation of the logGlucose, logTotalCholesterol, logHDL- C, logLDL- C, LogTriglycerides variables 
Model 1: Adjusted for age and sex; Model 2: Adjusted for age, sex, physical exercise; Model 3: Adjusted for age, sex, physical activity, BMI; Model 

4: Adjusted for age, sex, physical activity, BMI, energy intake   
p= p-value
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3.2.2. VEGF-A variants and cardiometabolic and dietary parameters in the TEENAGE 

For the purposes of investigating the potential impact of the 11 VEGF-A-related SNPS (Table 53) on the TEENAGE adolescents’ 
cardiometabolic indices, we proceeded to conducting multiple linear regressions for each of the target variants’ risk alleles. The 
rs4416670 and rs7043199 and the variants presented statistically significant associations, where presence of the C allele of the former 
was related with lower logSBP (Model 1: β = -0.007, p = 0.002, Model 2: β = -0.007, p =0.002, Model 3: β = -0.07, p = 0.0035) (Table 54). 
On the contrary, presence of the A allele of the rs7043199 variant was related with increased levels of both logSBP, (Model 2: β= 0.009, 
p = 0.004) and logDBP (Model 3: β= 0.0138, p = 0.0046). 

Table 53. List of the VEGF-A-related Single Nucleotide Polymorphisms (SNPs) (n=11) investigated for cardiometabolic associations in the 
TEENAGE cohort. 

Consortial Summary Statistics TEENAGE  
Cohort 

 

SNP Gene Chr Position Alleles MAF Effect Allele Direction of effect for 
VEGF 

EAF  Ref 

rs114694170 MEF2C,MEF2C-AS1 5   5:88884379 T/C 0.02 (C) T Negative (beta=-0.15) 0.96 [6] 

rs6921438 SCIRT, LOC100132354 6   6:43957870 G/A/C 0.44 (A) A Negative (beta-0.72) 0.39 [6-7] 

rs1740073 LINC02537, SCIRT, 
C6orf223 

6   6:43979661 T/A/C 0.20 (T) T Positive (beta=0.09) 0.35 [6] 

rs4416670 SCIRT 6   6:43982716  T/A/C 0.47 (C) C Negative (beta-0.13) 0.44 [7] 
rs6993770 ZFPM2-AS1,ZFPM2  8   8:105569300  A/T 0.36 (T) T Negative (beta=0.17) 0.31 [6-7] 
rs7043199 VLDLR-AS1 9   9:2621145 T/A 0.11 (A) A Negative (beta=-0.10) 0.19 [6] 

rs10738760 VLDLR, KCNV2 9   9:2691186  A/G 0.41 (G) G Negative (beta=-0.28) 0.46 [7] 

rs2375981 VLDLR, KCNV2 9   9:2692583  C/A/G/T 0.41 (G) C Positive (beta=0.21) 0.44 [6] 
rs74506613 / proxy 

rs10761741 used 
JMJD1C 10 10:63306426  G/T 0.37 (T) T Positive (beta=0.08) 0.47 [6] 

rs4782371 ZFPM1 16   16:88502423  T/A/C/G 0.41(G) T Negative (beta= -0.07) 0.36 [6] 

rs2639990 ZADH2 18   18:75203596  T/C 0.10(C) T Positive (beta=0.11) 0.10 [6] 

SNP: Single Nucleotide Polymorphism, Chr: Chromosome, bp: base pairs, MAF: Minor Allele Frequency (as shown in GWAS Catalog), Ref: Reference 

 

  

https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=5:88884329-88884429;source=dbSNP;v=rs114694170;vdb=variation;vf=193940223
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=6:43957820-43957920;source=dbSNP;v=rs6921438;vdb=variation;vf=170283387
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=6:43979611-43979711;source=dbSNP;v=rs1740073;vdb=variation;vf=168367292
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=6:43982666-43982766;source=dbSNP;v=rs4416670;vdb=variation;vf=169660629
https://www.ebi.ac.uk/gwas/genes/ZFPM2
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=8:105569250-105569350;source=dbSNP;v=rs6993770;vdb=variation;vf=166928152
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=9:2621095-2621195;source=dbSNP;v=rs7043199;vdb=variation;vf=730569661
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=9:2691136-2691236;source=dbSNP;v=rs10738760;vdb=variation;vf=731193828
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=9:2692533-2692633;source=dbSNP;v=rs2375981;vdb=variation;vf=729571017
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=10:63306376-63306476;source=dbSNP;v=rs10761741;vdb=variation;vf=168620455
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=16:88502373-88502473;source=dbSNP;v=rs4782371;vdb=variation;vf=729723402
https://www.ensembl.org/Homo_sapiens/Location/View?contigviewbottom=variation_feature_variation%3Dnormal%2Cseq%3Dnormal;db=core;r=18:75203546-75203646;source=dbSNP;v=rs2639990;vdb=variation;vf=72626024
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Table 54. Associations between the 11 VEGF-A-related SNPs and cardiometabolic indices in the TEENAGE cohort.  
Model 1 Model 2 Model 3 

 beta p-value beta p-value beta p-value 

logBMI 

rs114694170  0.01009 0.3424 0.01317 0.2385 0.01239 0.2707 

rs6921438  -0.00631 0.1131 -0.0053 0.2038 -0.00475 0.2564 

rs1740073  0.005531 0.1785 0.003664 0.3826 0.002784 0.5088 

rs4416670  -0.00698 0.06125 -0.00389 0.3099 -0.00363 0.3452 

rs6993770  -0.00649 0.1252 -0.00866 0.04606 -0.00858 0.0483 

rs7043199  -0.01265 0.01352 -0.01202 0.02304 -0.01185 0.02551 

rs10738760  0.003147 0.4208 0.002341 0.5588 0.00203 0.6125 

rs2375981  0.003426 0.3883 0.002837 0.4846 0.002472 0.5432 

rs10761741  0.003055 0.4467 0.003455 0.3978 0.003062 0.4544 

rs4782371  0.00442 0.2833 0.003158 0.4576 0.002953 0.4892 

rs2639990  -0.00297 0.6463 -0.00232 0.7241 -0.0021 0.7516 

logTriglycerides 
      

rs114694170  0.008907 0.7274 0.02828 0.2978 0.029 0.292 

rs6921438  0.001028 0.9184 0.01319 0.2007 0.01328 0.2003 

rs1740073  0.006261 0.5473 0.002573 0.8058 0.00253 0.8107 

rs4416670  1.83E-05 0.9984 0.00513 0.5827 0.004898 0.6018 

rs6993770  0.006058 0.5595 -0.00307 0.7726 -0.00332 0.7567 

rs7043199  -0.01681 0.1822 -0.01787 0.1588 -0.01938 0.1304 

rs10738760  -0.02382 0.01482 -0.0201 0.04157 -0.0201 0.04306 

rs2375981  -0.01995 0.04558 -0.01675 0.09515 -0.01696 0.09375 

rs10761741  0.004158 0.6738 -0.00254 0.7989 -0.00198 0.844 

rs4782371  -0.00071 0.9448 0.00189 0.8571 0.001944 0.8546 

rs2639990  -0.01428 0.3776 -0.01309 0.4196 -0.0138 0.4033 

logCholesterol 
      

rs114694170  -0.00314 0.7859 -0.00783 0.5438 -0.00896 0.4916 

rs6921438  -0.00051 0.9111 0.000254 0.9586 -9.61E-05 0.9844 

rs1740073  0.000767 0.8706 0.000225 0.9639 -0.00033 0.947 

https://www.ncbi.nlm.nih.gov/snp/rs114694170
https://www.ncbi.nlm.nih.gov/snp/rs6921438
https://www.ncbi.nlm.nih.gov/snp/rs1740073
https://www.ncbi.nlm.nih.gov/snp/rs4416670
https://www.ncbi.nlm.nih.gov/snp/rs6993770
https://www.ncbi.nlm.nih.gov/snp/rs7043199
https://www.ncbi.nlm.nih.gov/snp/rs10738760
https://www.ncbi.nlm.nih.gov/snp/rs2375981
https://www.ncbi.nlm.nih.gov/snp/rs10761741
https://www.ncbi.nlm.nih.gov/snp/rs4782371
https://www.ncbi.nlm.nih.gov/snp/rs2639990
https://www.ncbi.nlm.nih.gov/snp/rs114694170
https://www.ncbi.nlm.nih.gov/snp/rs6921438
https://www.ncbi.nlm.nih.gov/snp/rs1740073
https://www.ncbi.nlm.nih.gov/snp/rs4416670
https://www.ncbi.nlm.nih.gov/snp/rs6993770
https://www.ncbi.nlm.nih.gov/snp/rs7043199
https://www.ncbi.nlm.nih.gov/snp/rs10738760
https://www.ncbi.nlm.nih.gov/snp/rs2375981
https://www.ncbi.nlm.nih.gov/snp/rs10761741
https://www.ncbi.nlm.nih.gov/snp/rs4782371
https://www.ncbi.nlm.nih.gov/snp/rs2639990
https://www.ncbi.nlm.nih.gov/snp/rs114694170
https://www.ncbi.nlm.nih.gov/snp/rs6921438
https://www.ncbi.nlm.nih.gov/snp/rs1740073
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rs4416670  0.001849 0.6564 0.004052 0.3602 0.004303 0.3322 

rs6993770  0.0042 0.3709 0.002885 0.567 0.002729 0.5901 

rs7043199  -0.00066 0.908 -9.11E-05 0.9879 -0.00107 0.8596 

rs10738760  -0.00256 0.5642 -0.00355 0.4489 -0.00351 0.4558 

rs2375981  -0.00357 0.4299 -0.00446 0.3497 -0.00424 0.3768 

rs10761741  -0.00642 0.1503 -0.00856 0.0695 -0.0087 0.06685 

rs4782371  0.003328 0.4736 0.001601 0.7478 0.002173 0.6649 

rs2639990  -0.00337 0.645 -0.00521 0.4986 -0.00315 0.6864 

logSBP 
      

rs114694170  0.004856 0.4602 0.01095 0.1322 0.01002 0.1704 

rs6921438  -0.00528 0.03273 -0.00571 0.03214 -0.00614 0.02126 

rs1740073  0.006211 0.01456 0.007036 0.008435 0.007113 0.007929 

rs4416670  -0.00707 0.002172 -0.00744 0.002407 -0.00716 0.003524 

rs6993770  -0.005 0.05437 -0.00489 0.07711 -0.005 0.07093 

rs7043199  0.007357 0.02104 0.009594 0.004338 0.009446 0.005093 

rs10738760  -0.00105 0.6643 -0.00018 0.9445 -0.0002 0.9368 

rs2375981  -0.00048 0.8464 0.000475 0.8549 0.000676 0.7948 

rs10761741  0.004394 0.07559 0.003574 0.1711 0.003634 0.1643 

rs4782371  -0.0017 0.5082 -0.00148 0.5885 -0.00099 0.7192 

rs2639990  -0.00027 0.9467 -0.00181 0.6667 -0.00112 0.7913 

logDBP 
      

rs114694170  -0.00538 0.5747 -0.00023 0.9829 -0.00073 0.945 

rs6921438  -0.00617 0.08685 -0.00804 0.03627 -0.00845 0.0283 

rs1740073  0.005599 0.1311 0.006755 0.07975 0.006983 0.07167 

rs4416670  -0.00556 0.09872 -0.00686 0.05272 -0.00661 0.06318 

rs6993770  -0.00621 0.101 -0.0043 0.281 -0.00443 0.2685 

rs7043199  0.01191 0.01033 0.01359 0.005051 0.0138 0.004611 

rs10738760  6.32E-06 0.9986 0.001639 0.6575 0.001642 0.6579 

rs2375981  -0.00022 0.9508 0.001781 0.6339 0.002048 0.5851 

rs10761741  0.005385 0.135 0.006435 0.08701 0.006501 0.0848 

rs4782371  0.000505 0.8928 0.002055 0.6027 0.002789 0.4824 

https://www.ncbi.nlm.nih.gov/snp/rs4416670
https://www.ncbi.nlm.nih.gov/snp/rs6993770
https://www.ncbi.nlm.nih.gov/snp/rs7043199
https://www.ncbi.nlm.nih.gov/snp/rs10738760
https://www.ncbi.nlm.nih.gov/snp/rs2375981
https://www.ncbi.nlm.nih.gov/snp/rs10761741
https://www.ncbi.nlm.nih.gov/snp/rs4782371
https://www.ncbi.nlm.nih.gov/snp/rs2639990
https://www.ncbi.nlm.nih.gov/snp/rs114694170
https://www.ncbi.nlm.nih.gov/snp/rs6921438
https://www.ncbi.nlm.nih.gov/snp/rs1740073
https://www.ncbi.nlm.nih.gov/snp/rs4416670
https://www.ncbi.nlm.nih.gov/snp/rs6993770
https://www.ncbi.nlm.nih.gov/snp/rs7043199
https://www.ncbi.nlm.nih.gov/snp/rs10738760
https://www.ncbi.nlm.nih.gov/snp/rs2375981
https://www.ncbi.nlm.nih.gov/snp/rs10761741
https://www.ncbi.nlm.nih.gov/snp/rs4782371
https://www.ncbi.nlm.nih.gov/snp/rs2639990
https://www.ncbi.nlm.nih.gov/snp/rs114694170
https://www.ncbi.nlm.nih.gov/snp/rs6921438
https://www.ncbi.nlm.nih.gov/snp/rs1740073
https://www.ncbi.nlm.nih.gov/snp/rs4416670
https://www.ncbi.nlm.nih.gov/snp/rs6993770
https://www.ncbi.nlm.nih.gov/snp/rs7043199
https://www.ncbi.nlm.nih.gov/snp/rs10738760
https://www.ncbi.nlm.nih.gov/snp/rs2375981
https://www.ncbi.nlm.nih.gov/snp/rs10761741
https://www.ncbi.nlm.nih.gov/snp/rs4782371
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rs2639990  0.004213 0.4671 0.003025 0.6163 0.003598 0.5553 

logPP 
      

rs114694170  0.02169 0.1799 0.03011 0.0877 0.02892 0.1044 

rs6921438  -0.00429 0.4814 -0.00136 0.8342 -0.00166 0.7989 

rs1740073  0.008354 0.1826 0.008206 0.2063 0.007979 0.223 

rs4416670  -0.01232 0.03026 -0.01075 0.07144 -0.0104 0.08316 

rs6993770  -0.0003 0.9623 -0.00313 0.6417 -0.0031 0.6466 

rs7043199  -0.00119 0.8798 0.002393 0.77 0.001466 0.859 

rs10738760  -0.0021 0.7244 -0.00156 0.8026 -0.00142 0.8201 

rs2375981  -0.00033 0.9559 -0.00017 0.9786 9.90E-05 0.9875 

rs10761741  0.005041 0.4081 0.000931 0.8832 0.000839 0.8954 

rs4782371  -0.00663 0.2943 -0.00846 0.2027 -0.00844 0.2076 

rs2639990  -0.00571 0.5596 -0.00865 0.3943 -0.00733 0.4765 

logGlucose 
      

rs114694170  0.01915 0.4259 0.01844 0.488 0.01499 0.5762 

rs6921438  -0.00684 0.4689 -0.01078 0.2855 -0.01227 0.2245 

rs1740073  0.00942 0.3361 0.007099 0.4879 0.006708 0.5143 

rs4416670  0.000832 0.9235 0.000346 0.9698 0.000223 0.9806 

rs6993770  -0.01043 0.2856 -0.00569 0.5839 -0.00679 0.5148 

rs7043199  0.008424 0.4782 0.008428 0.4973 0.006293 0.6144 

rs10738760  0.006866 0.457 0.003822 0.6927 0.002642 0.7852 

rs2375981  0.007188 0.445 0.004344 0.6588 0.003512 0.722 

rs10761741  0.003465 0.7095 0.004664 0.6322 0.006317 0.5187 

rs4782371  -0.01497 0.1213 -0.00968 0.3456 -0.00954 0.3557 

rs2639990  -0.00127 0.9336 -0.0042 0.7913 -0.00359 0.8233 

logLDL       

rs114694170 -0.0082 0.6443 -0.02002 0.3046 -0.02187 0.2661 

rs6921438 -0.00502 0.4711 -0.00418 0.573 -0.00419 0.5718 

rs1740073 0.000988 0.8914 -0.00091 0.9035 -0.0022 0.7704 

rs4416670 0.001987 0.7558 0.006226 0.3529 0.006893 0.3039 

rs6993770 -0.00281 0.6968 -0.00581 0.4461 -0.00551 0.4718 

https://www.ncbi.nlm.nih.gov/snp/rs2639990
https://www.ncbi.nlm.nih.gov/snp/rs114694170
https://www.ncbi.nlm.nih.gov/snp/rs6921438
https://www.ncbi.nlm.nih.gov/snp/rs1740073
https://www.ncbi.nlm.nih.gov/snp/rs4416670
https://www.ncbi.nlm.nih.gov/snp/rs6993770
https://www.ncbi.nlm.nih.gov/snp/rs7043199
https://www.ncbi.nlm.nih.gov/snp/rs10738760
https://www.ncbi.nlm.nih.gov/snp/rs2375981
https://www.ncbi.nlm.nih.gov/snp/rs10761741
https://www.ncbi.nlm.nih.gov/snp/rs4782371
https://www.ncbi.nlm.nih.gov/snp/rs2639990
https://www.ncbi.nlm.nih.gov/snp/rs114694170
https://www.ncbi.nlm.nih.gov/snp/rs6921438
https://www.ncbi.nlm.nih.gov/snp/rs1740073
https://www.ncbi.nlm.nih.gov/snp/rs4416670
https://www.ncbi.nlm.nih.gov/snp/rs6993770
https://www.ncbi.nlm.nih.gov/snp/rs7043199
https://www.ncbi.nlm.nih.gov/snp/rs10738760
https://www.ncbi.nlm.nih.gov/snp/rs2375981
https://www.ncbi.nlm.nih.gov/snp/rs10761741
https://www.ncbi.nlm.nih.gov/snp/rs4782371
https://www.ncbi.nlm.nih.gov/snp/rs2639990
https://www.ncbi.nlm.nih.gov/snp/rs114694170
https://www.ncbi.nlm.nih.gov/snp/rs6921438
https://www.ncbi.nlm.nih.gov/snp/rs1740073
https://www.ncbi.nlm.nih.gov/snp/rs4416670
https://www.ncbi.nlm.nih.gov/snp/rs6993770
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rs7043199 0.006725 0.4431 0.006013 0.5094 0.005337 0.5605 

rs10738760 -0.01029 0.1306 -0.01186 0.09438 -0.01145 0.1071 

rs2375981 -0.01274 0.06626 -0.01425 0.04787 -0.01372 0.05769 

rs10761741 -0.00519 0.4493 -0.00794 0.2667 -0.0091 0.2047 

rs4782371 0.01135 0.1115 0.007783 0.3015 0.008257 0.2758 

rs2639990 -0.00388 0.7136 -0.00713 0.517 -0.00744 0.5042 

logHDL       

rs114694170 0.001151 0.9449 -0.00031 0.9867 -0.00111 0.9524 

rs6921438 0.002231 0.7332 0.00056 0.9363 -0.00014 0.9837 

rs1740073 0.002099 0.7572 0.005597 0.4303 0.00606 0.3951 

rs4416670 0.002402 0.6887 0.000127 0.984 -0.00021 0.9737 

rs6993770 0.01151 0.08893 0.0148 0.03953 0.01427 0.04781 

rs7043199 -0.00711 0.3875 -0.00429 0.6186 -0.00585 0.4992 

rs10738760 0.01409 0.02729 0.01249 0.06206 0.01223 0.06815 

rs2375981 0.01261 0.05275 0.01139 0.09454 0.01129 0.09822 

rs10761741 -0.01029 0.1098 -0.01098 0.1037 -0.00975 0.15 

rs4782371 -0.00762 0.2552 -0.0072 0.3117 -0.0068 0.3417 

rs2639990 -0.00388 0.7136 -0.00713 0.517 -0.00744 0.5042 

logCRP       

rs114694170 -0.0379 0.6541 -0.04237 0.6554 -0.03521 0.711 

rs6921438 -0.0418 0.1947 -0.04414 0.2017 -0.04039 0.241 

rs1740073 -0.00433 0.8972 -0.0181 0.606 -0.02466 0.482 

rs4416670 -0.0194 0.511 -0.01528 0.6242 -0.0162 0.6012 

rs6993770 -0.01718 0.6107 -0.00339 0.9251 -0.0048 0.8941 

rs7043199 0.02666 0.5029 0.003378 0.9353 0.000455 0.9913 

rs10738760 0.02319 0.4658 0.02242 0.5016 0.02371 0.4762 

rs2375981 0.02867 0.3747 0.02603 0.441 0.02572 0.4462 

rs10761741 0.0237 0.4588 0.01415 0.6735 0.01207 0.7179 

rs4782371 -0.04092 0.2165 -0.03658 0.3002 -0.03689 0.2958 

rs2639990 -0.05523 0.2803 -0.05647 0.2884 -0.05193 0.3325 

Model 1: Adjusted for age and sex, Model 2: Adjusted for age, sex and exercise, Model 3: Adjusted for age, sex, exercise and dietary patterns, p: p-value 

https://www.ncbi.nlm.nih.gov/snp/rs7043199
https://www.ncbi.nlm.nih.gov/snp/rs10738760
https://www.ncbi.nlm.nih.gov/snp/rs2375981
https://www.ncbi.nlm.nih.gov/snp/rs10761741
https://www.ncbi.nlm.nih.gov/snp/rs4782371
https://www.ncbi.nlm.nih.gov/snp/rs2639990
https://www.ncbi.nlm.nih.gov/snp/rs114694170
https://www.ncbi.nlm.nih.gov/snp/rs6921438
https://www.ncbi.nlm.nih.gov/snp/rs1740073
https://www.ncbi.nlm.nih.gov/snp/rs4416670
https://www.ncbi.nlm.nih.gov/snp/rs6993770
https://www.ncbi.nlm.nih.gov/snp/rs7043199
https://www.ncbi.nlm.nih.gov/snp/rs10738760
https://www.ncbi.nlm.nih.gov/snp/rs2375981
https://www.ncbi.nlm.nih.gov/snp/rs10761741
https://www.ncbi.nlm.nih.gov/snp/rs4782371
https://www.ncbi.nlm.nih.gov/snp/rs2639990
https://www.ncbi.nlm.nih.gov/snp/rs114694170
https://www.ncbi.nlm.nih.gov/snp/rs6921438
https://www.ncbi.nlm.nih.gov/snp/rs1740073
https://www.ncbi.nlm.nih.gov/snp/rs4416670
https://www.ncbi.nlm.nih.gov/snp/rs6993770
https://www.ncbi.nlm.nih.gov/snp/rs7043199
https://www.ncbi.nlm.nih.gov/snp/rs10738760
https://www.ncbi.nlm.nih.gov/snp/rs2375981
https://www.ncbi.nlm.nih.gov/snp/rs10761741
https://www.ncbi.nlm.nih.gov/snp/rs4782371
https://www.ncbi.nlm.nih.gov/snp/rs2639990
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After examining the individual associations between the target variants and the indices in reference (Table 54), we proceeded to 
the creation of the 9-SNP uGRS and the subsequent conduct of multiple linear regressions for all the cardiometabolic indices (Table 55). 
Increased uGRS was associated with increased levels of logBMI (Model 1: β = 0.0044, p-value =0.003, Model 2: β = 0.0043, p-value = 
0.005, Model 3: β = 0.004, p-value = 0.009) and logSBP (Model 1: β= 0.002, p-value = 0.03, Model 2: β= 0.019, p-value = 0.047, Model 3: 
β= 0.002, p-value = 0.037), but decreased values of logHDL (Model 1: β= -0.005, p-value = 0.032) (Table 58). We further used the sample 
median to split the uGRS in two categories of “low” and “high” risk and examine potential differences between the two groups of genetic 
risk. Indeed, the observed associations were additionally noted in the within-group analyses, with logBMI displaying statistically 
significant differences with individuals in the higher category presenting greater logBMI values (p <0.05) (Figure 30). Similarly, individuals 
in the higher percentile of uGRS presented statistically significantly higher values of logSBP compared to the ones in the lower group (p 
< 0.05), while subjects with higher versus lower uGRS displayed statistically significantly lower levels of logHDL (p < 0.05) (Figure 30). 

Table 55. Associations between the 9-SNP uGRS and selected cardiometabolic indices in the TEENAGE cohort. 
  Model 1 Model 2 Model 3 

 
Estimate SE p Estimate SE p Estimate SE p 

logBMI 

9-SNP uGRS for VEGF-A 0.004445 0.001494 0.00305 0.004349 0.001553 0.005277 0.0040937 0.0015678 0.009281 
logTriglycerides 

9-SNP uGRS for VEGF-A 0.005892 0.003854 0.127 0.004260 0.003915 0.2771 0.004650 0.003994 0.2450 

logCholesterol 

9-SNP uGRS for VEGF-A -0.0001979 0.0017479 0.90992 -0.000716 0.001859 0.70024 -0.0007685 0.0018917 0.68474 

logSBP 

9-SNP uGRS for VEGF-A 0.002006 0.000924 0.0303 0.0019840 0.0009974 0.047203 0.0020983 0.0010045 0.037205 
logDBP 

9-SNP uGRS for VEGF-A 0.001891 0.001351 0.161963 0.002211 0.001441 0.12569 0.002365 0.001455 0.10458 

LogPP 

9-SNP uGRS for VEGF-A 0.002425 0.002268 0.2854 0.001599 0.002413 0.50779 0.0015523 0.0024439 0.52558 

LogGlucose 

9-SNP uGRS for VEGF-A 0.0009057 0.0036448 0.804 0.001952 0.003840 0.611 0.0028415 0.0038989 0.4665 

logLDL 

9-SNP uGRS for VEGF-A 0.003038 0.002688 0.2589 0.002300 0.002818 0.4148 0.001733 0.002863 0.5454 
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LogHDL 

9-SNP uGRS for VEGF-A -0.005336 0.002493 0.03279 -0.004999 0.002631 0.05812 -0.004455 0.002673 0.09630 

LogCRP 

9-SNP uGRS for VEGF-A 0.001437 0.012397 0.90778 -0.0001663 0.0131008 0.98988 -0.001631 0.013250 0.90207 

Model 1: Adjusted for age and sex, Model 2: Adjusted for age, sex and exercise, Model 3: Adjusted for age, sex, exercise and dietary patterns. 

p: p-value 
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A. B.  

C.          

Figure 30: Violin plots depicting the distribution 

of A. logBMI, B. logSBP and C. logHDL between 

the two groups of the 9-SNP VEGF-A unweighted 

GRS (low versus high), separated by the sample 

median (p-values < 0.05).  



 

 

Interactions between the uGRS and Dietary Patterns 

In order to test for potential gene-diet interactions, we proceeded to 
conducting multiple linear regressions investigating the impact of the interaction of 
the calculated uGRS and the extracted dietary patterns on the various cardiometabolic 
indices (Table 56). A statistically significant association was revealed concerning the  
interaction between the uGRS and the “Western Breakfast” pattern was associated 
with higher levels of logDBP (Model 1: β = 0.0060, p-value = 4.28e-05, Model 2: β = 
0.00568, p-value = 0.000239). A different nominally statistically significant association 
was found for the interaction between the uGRS and consumption of the “Eggs and 
Fibers” pattern and increased levels of logGlucose (Model 2: β = 0.00883, p-value = 
0.0132).  

Table 56. Associations between the 9-SNP uGRS for VEGF-A and dietary patterns in 
the TEENAGE cohort. 

  Model 1 Model 2 

  Estimate SE p Estimate SE p 

logBMI     

uGRS*Western Breakfast 0.0006259 0.0016544 0.70532 0.0009623 0.0016699 0.564684 
uGRS*Legumes and Good 
Fat 

0.0004362 0.0014115 0.75742 -0.0002951 0.0015027 0.844375 

uGRS*Homemade Meal -0.001836 0.001302 0.15906 -0.001894 0.001326 0.153652 

uGRS*Chicken and Sugars -0.001955 0.001442 0.17566 -0.001508 0.001577 0.339236 

uGRS*Eggs and Fibers -0.000687 0.001204 0.56840 0.0004325 0.0014616 0.767393 

logTriglycerides 

uGRS*Western Breakfast -0.003976 0.004121 0.335 -0.003394 0.004147 0.4135 

uGRS*Legumes and Good 
Fat 

-0.003084 0.003643 0.398 -0.002993 0.003701 0.4192 

uGRS*Homemade Meal -0.0003673 0.0031521 0.907 -0.0004249 0.0031042 0.8912 

uGRS*Chicken and Sugars -0.000562 0.003527 0.873 0.000446 0.003723 0.9047 

uGRS*Eggs and Fibers 0.0004714 0.0029163 0.872 -8.952e-07 3.645e-03 0.9998 

logCholesterol 

uGRS*Western Breakfast -0.0003120 0.0018673 0.86737 -0.0003595 0.0019652 0.85495 

uGRS*Legumes and Good 
Fat 

4.399e-04 1.654e-03 0.79038 0.0006190 0.0017604 0.72529 

uGRS*Homemade Meal 0.0022544 0.0014247 0.11421 0.0024594 0.0014679 0.09455 

uGRS*Chicken and Sugars 0.0005882 0.0015997 0.71324 0.0011419 0.0017668 0.51840 

uGRS*Eggs and Fibers -0.0024429 0.0013171 0.064231 -0.0035654 0.0017221 0.0390 

logSBP 

uGRS*Western Breakfast 0.0019835 0.0010171 0.05164 0.0021791 0.0010716 0.042500 

uGRS*Legumes and Good 
Fat 

0.0009800 0.0008694 0.2601 0.001112 0.000966 0.250296 

uGRS*Homemade Meal -0.0004048 0.0008249 0.6238 -0.0006534 0.0008508 0.442827 

uGRS*Chicken and Sugars 0.0003776 0.0008987 0.6745 0.0003459 0.0010081 0.731659 

uGRS*Eggs and Fibers -0.0011855 0.0007341 0.1068 -0.0018073 0.0009354 0.053889 

logDBP     

uGRS*Western Breakfast 0.0060753 0.0014736 4.28e-05 0.005687 0.001537 0.000239 
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uGRS*Legumes and Good 
Fat 

0.0009039 0.0012713 0.477344 0.001483 0.001396 0.28856 

uGRS*Homemade Meal -0.0008981 0.0012064 0.45691 -0.001097 0.001229 0.37234 

uGRS*Chicken and Sugars 1.822e-05 1.316e-03 0.988960 0.001229 0.001457 0.39932 

uGRS*Eggs and Fibers 0.0001876 0.0010752 0.86156 -0.0009524 0.0013559 0.48273 

logPP 

uGRS*Western Breakfast -0.004375 0.002501 0.08081 -0.003179 0.002602 0.22237 

uGRS*Legumes and Good 
Fat 

0.0006745 0.0021355 0.75221 0.0001765 0.0023393 0.93989 

uGRS*Homemade Meal 0.0001585 0.0020281 0.93772 -5.986e-05 2.067e-03 0.97691 

uGRS*Chicken and Sugars 0.0006736 0.0022094 0.76055 -0.001662 0.002442 0.49637 

uGRS*Eggs and Fibers -0.003235 0.001801 0.07296 -0.002587 0.002269 0.2548 

logGlucose      

uGRS*Western Breakfast -0.0002371 0.0038992 0.952 -0.0006882 0.0040671 0.866 

uGRS*Legumes and Good 
Fat 

-0.004075 0.003441 0.237 -0.002575 0.003628 0.478 

uGRS*Homemade Meal -0.0035228 0.0029773 0.237 -0.003946 0.003039 0.195 

uGRS*Chicken and Sugars 0.003550 0.003317 0.285 0.003922 0.003634 0.281 

uGRS*Eggs and Fibers 5.869e-03 2.745e-03 0.0330 0.008830 0.003550 0.0132 

logLDL      

uGRS*Western Breakfast -0.0003845 0.0028733 0.8936 -0.0008217 0.0029791 0.7828 

uGRS*Legumes and Good 
Fat 

0.001102 0.002545 0.6652 0.001857 0.002669 0.4870 

uGRS*Homemade Meal 0.002229 0.002194 0.3103 0.002617 0.002230 0.2412 

uGRS*Chicken and Sugars 0.0024563 0.0024563 0.9468 0.0008795 0.0026757 0.7425 

uGRS*Eggs and Fibers -0.004027 0.002024 0.0472 -0.005950 0.002606 0.0229 

logHDL      

uGRS*Western Breakfast 0.0007058 0.0026675 0.79145 0.001002 0.002789 0.71958 

uGRS*Legumes and Good 
Fat 

0.0004628 0.0023529 0.84413 -7.341e-05 2.485e-03 0.97644 

uGRS*Homemade Meal 0.003719 0.002032 0.06787 0.003693 0.002080 0.07649 

uGRS*Chicken and Sugars 0.001880 0.002275 0.40903 0.002321 0.002496 0.3529 

uGRS*Eggs and Fibers -0.0003372 0.0018861 0.85819 -0.0007087 0.0024472 0.77227 

logCRP    

uGRS*Western Breakfast -0.009797 0.013082 0.45430 -0.0072781 0.0136345 0.59379 

uGRS*Legumes and Good 
Fat 

0.002883 0.011393 0.80035 -0.0031947 0.0119986 0.79019 

uGRS*Homemade Meal 0.010795 0.009823 0.27239 0.011024 0.010010 0.27144 

uGRS*Chicken and Sugars 0.004140 0.010979 0.70632 -0.0006592 0.0120081 0.95625 

uGRS*Eggs and Fibers -0.006220 0.008995 0.48963 0.0010038 0.011644 0.93135 

Model 1: Adjusted for age, sex, uGRS and each dietary pattern, Model 2: Adjusted for age, sex and exercise. uGRS 
and each dietary pattern 
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3.2.3. Discussion 

Analyses using TEENAGE and STANISLAS Family Study data in the present 
context of the 2018 Chair Gutenberg project aimed at identifying the dietary 
patterns of the two adolescent, European populations and further investigating 
their associations with cardiometabolic indices and their combined interactions 
with VEGF-A-related variants.  

Regarding the dietary intake observed in the two populations, both cohorts 
reported a mediocre energy intake (TEENAGE: 1741.00 kcal/d and STANISLAS: 
2056.03 kcal/d), based on the present dietary guidelines for adolescents [39], a 
generally good health status with BMI values within the normal range (18.5–25 
kg/m2). Five dietary patterns were extracted for in each population. Two of the 
identified patterns adhered to the principles of MD, namely the Greek “eggs and 
fibers” and the French “prudent snacking” patterns, explaining 7.47% and 10.44% 
of the respective total variances and including non-refined cereals, vegetables, 
eggs, and vegetable fats. Another MD-like pattern was observed in the Greek 
teenagers with the consumption of legumes, olives, olive oil and nuts in the 
“legumes and good fat” pattern. The influences of WD were apparent in  French 
teenagers, who demonstrated high consumption of energy-dense food groups, 
such as red meat, animal fat and milk and yogurt in the “high protein and animal 
fat” pattern and soft drinks and sugary snacks in the “sugary snacks” pattern.  

Accordingly, the predominant pattern in both populations (the “western 
breakfast” pattern) was related to WD-related food groups [404], such as cheese, 
processed meat and food items high in carbohydrates. The “western breakfast” 
pattern reflected a higher percentage (15.61%) of the variance explained in the 
Greek population, in comparison to the French one (10.58%). Breakfast habits 
were highlighted in the first 5-year follow-up in the STANISLAS Cohort, which 
underlined the importance of the household environment in dietary habits by 
finding a household variance of 42.5 to 52.9% in the energy intake observed in 
breakfast [405]. The importance of breakfast consumption and its contribution to 
daily energy intake of French children and families, is also supported by another, 
recent cross-sectional survey [406]. Although the western diet has been associated 
with elevated inflammation biomarkers [407], the cohort of the Greek teenagers 
reported no comorbidities and we found no associations between adherence to 
the “western breakfast” pattern and respective CRP levels. Interestingly enough, 
the “chicken and sugars” pattern identified in the Greek cohort was significantly 
associated with lower levels of logCRP (Model 1: β = −0.051, p-value = 0.006, 
Model 2: β = −0.057, p-value = 0.004 and Model 3: β = −0.050, p-value = 0.008). An 
inverse association between the consumption of poultry and CRP levels in 
teenagers has previously been reported, in the general context of adherence to 
the Dietary Approach to Stop Hypertension (DASH) diet regime [408], although a 
recent umbrella review showed Nutrients 2021, 13, 198 14 of 19 no association 
between the DASH diet and CRP levels in adults [409]. On the contrary, an inverse 
association between consumption of sweets and CRP levels is not supported by 
other studies. In fact, consumption of sugars and especially sugar-sweetened 
beverages has previously been associated with higher CRP levels in adults 
[410,411]. In adolescents, a different review has shown a positive association 
between sugar consumption and CRP [412], whereas another review found 
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greater consumption of sugars by normal weight adolescents in comparison with 
overweight ones, but did not find any association between sugar consumption and 
CRP [413]. A cross-sectional study investigating the relation between food intake 
and CRP levels in children also found that consumption of milk, citrus, melons and 
berries displayed associations with lower levels of CRP, potentially due to the 
general high content of fruits and vegetables in antioxidants and the association 
of dairy consumption with greater satiety and potential adherence to a generally 
healthier diet [414].  

Furthermore, our study found that the “high protein and animal fat” pattern 
displayed significant associations with higher logtriglyceride and logBMI levels (p 
< 0.01), for French teenagers. The latter is in accordance with various cross-
sectional studies that have researched the dietary habits of adolescents and their 
potential associations to BMI. A study by Gutiérrez-Pliego et al. unveiled three 
major dietary patterns in a population of 373 Mexican teenagers including a 
pattern high in refined “unhealthy” products, such as snacks, sugars and sweets, a 
pattern with high protein/high fat content and a pattern including high 
consumption of fruits, vegetables, nuts and whole grains. The study found a strong 
relationship (p < 0.01) between higher consumptions of the first two dietary 
patterns and higher BMI [415]. In the same context, a different study in 
Northeastern Brazil investigated data from 1247 adolescents. The study identified 
two dietary patterns, one referring to high consumption of sugars, sweets and 
cakes, amongst others, and one correlated with high consumption of fruits and 
vegetables. Higher adherence to the dietary pattern including “unhealthy” 
products, was, again, positively correlated with higher values of BMI (p = 0.018) 
[416].  

Furthermore, a different study on the dietary habits of female adolescents 
showed that higher adherence to a “Western” pattern referring to increased 
consumption of fat and mediocre consumption of protein, among others, was 
associated with higher levels of BMI, waist circumference, as well as total 
cholesterol levels [417]. Although dietary patterns with a higher consumption of 
fat have generally been positively associated with cardiometabolic risk factors in 
teenagers [418,419], certain diets, including consumption of specific food groups, 
such as the DASH diet [420], have been related with a better metabolic profile 
[421]. Indeed, higher adherence to the DASH diet has been shown to relate to a 
reduced prevalence of metabolic syndrome and increased blood pressure during 
adolescence [404], as well as lower levels of HbA1c and systolic blood pressure, in 
young adults with type 1 and type 2 diabetes, respectively [422]. Better adherence 
to the components of the DASH diet was even associated with a lower risk of being 
a metabolic unhealthy obese, in children and adolescents with increased body 
weight [423]. Additionally, other high protein diets, such as the ketogenic diet and 
the Modified Atkins diet, have been associated with better effects on adolescents 
with epilepsy [424,425], with the ketogenic diet to have been related to reduced 
weight and fasting insulin and HOMA-IR levels in obese teenagers [426]. However, 
the aforementioned diets also usually include consumption of vegetables fats and 
fats derived from nuts, seeds, white meat (such as poultry and fish), as well as food 
groups like grains, vegetable fats, fruits and vegetables, which are not met when 
referring to dietary patterns centered on high protein or animal fat consumption. 
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Furthermore, the aforementioned beneficial associations have been primarily 
observed in adults or obese adolescent populations, who could potentially benefit 
from the adherence to a structured diet with the above food groups. This could 
potentially explain why our study demonstrated positive associations between the 
high consumption of protein and animal fats with BMI and triglyceride levels in 
adolescents mostly displaying BMI of a normal range.  

Moreover, the present study evaluates the adherence to each dietary pattern, 
without comparing them with the respective adherence to the rest of the patterns 
extracted. The identification of dietary patterns of adolescents has generally been 
a subject of interest in recent literature. Gonzalez-Gil et al. investigated the dietary 
patterns of 5328 European adolescents in the context of the cross-sectional 
HELENA study [427]. The latter consisted of adolescent cohorts of 10 different 
European countries, including Greek teenagers from the cities of Athens and 
Heraklion, Crete. The study identified four dietary patterns in teenage boys and six 
dietary patterns in teenage girls. Patterns explaining greater total variance in boys 
referred to consumption of vegetables, pasta, rice, cheese and sweets among 
others, at the same time as dominant patterns in girls referred to consumption of 
Mediterranean-type food items, dairy and consumption of a healthy breakfast 
[428]. Additionally, when investigating the dietary habits of adolescents based on 
data collected in the 1995 Australian National Nutrition Survey, McNaughton et al. 
showed that a dietary pattern rich in fruit, salads, cereals and fish was found to be 
negatively associated with levels of diastolic blood pressure in teenagers older 
than 16 years of age [428]. Our study found no associations between the patterns 
containing fruit, vegetable and fish consumption and the levels of diastolic 
pressure in adolescents younger than 16 years of age. Furthermore, the I. Family 
Study investigated the association between the dietary patterns of 2451 pairs of 
European children and their parents, with regards to the existing food 
environment conditions. The study showed the role of food availability in the 
children’s dietary choices, highlighting that the consumption of soft drinks was 
greatly dependent on their availability in the immediate food environment [429]. 
Moreno LA et al. also showed that increased consumption of sweet beverages was 
also associated with increased risk of adolescent obesity [430]. In our study, the 
“sugary snacks” pattern of the French population, which included consumption of 
sweetened beverages, was not related to logBMI values, but was associated with 
lower values of logHDL-C. However the effect disappeared when taking into 
account the adjusted threshold of statistical significance (0.04 > 0.01). A different 
study of German adolescents demonstrated that higher consumption of dietary 
patterns containing high-fat and high-carbohydrate, energy-dense foods was 
associated with lower socioeconomic levels and a lower intake of various vitamins 
and minerals [431].  

Regarding the examination of the role of VEGF-A-related variants on 
adolescent cardiometabolic profile, two VEGF-A-related SNPs, namely the 
rs7043199 and the rs4416670 variants, presented significant relations with blood 
pressure indices in the TEENAGE adolescents. Moreover, the 9-SNP uGRS 
constructed out of risk variants for higher VEGF-A levels was associated with 
higher levels of logBMI and logSBP but lower levels of logHDL. Furthermore, the 
exploration of associations between the uGRS and the teenagers’ dietary patterns 
revealed a significant relation between the adherence to the “Western Breakfast” 
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pattern and higher logDBP, as well as a nominal association for the “Eggs and 
Fibers” pattern and higher logGlucose. 

In our sample, the negatively associated with VEGF-A levels C allele of the 
rs4416670 SNP was also negatively associated with logSBP levels. Debette et 
Visvikis-Siest et al. previously showed a positive relationship between the allele 
and increased pulse pressure in a healthy population [236]; this could potentially 
be attributed to the relation between lower levels of SBP which would 
subsequently signify greater values of pulse pressure. On the contrary, the A allele 
of the rs7043199 variant, which was previously negatively associated with VEGF-A 
[10,11], was hereby linked with higher levels of logSBP and logDBP. Although not 
as statistically strong (p-value = 0.004), this observed effect could possibly be 
attributed to the yet to be fully elucidated pleiotropic influence of the variant, the 
role of which has been previously investigated for overall risk for other disorders 
related to cardiometabolic profile, namely ischemic heart disease [432] and 
osteoporosis [433].  

To the best of our knowledge, VEGF-A has not been extensively and exclusively 
examined in adolescents and the present constitute the first attempts in 
constructing a uGRS for teenagers using VEGF-A-associated variants. The present 
9-SNP uGRS was linked to higher levels of logSBP (Model 1: β= 0.002, p-value = 
0.03, Model 2: β= 0.019, p-value = 0.047, Model 3: β= 0.002, p-value = 0.037) and 
individuals with high GRS presented greater values compared to the ones with low 
GRS (p-value=0.027), showing that increased genetic predisposition to higher 
levels of VEGF-A is associated with higher blood pressure in adolescents. This 
finding is aligned with the well-known relationship between VEGF-A and 
hypertension, as current literature has shown that inhibition of VEGF-A receptors 
signifies higher levels of circulating VEGF-A which have, in turn, been associated 
with greater risk for hypertension [434-436]. In like manner and supporting the 
reciprocal relationship between the VEGF family and hypertension, Zorena et al 
showed that adolescents with type 1 diabetes and hypertension displayed greater 
levels of VEGF compared to healthy individuals or patients with type 1 diabetes 
but without hypertension [437]. 

Although this is an overall healthy population with most adolescents 
presenting normal weight, the accumulating effect of the 9 examined SNPs from 
Choi et al displayed a statistically significant, positive association with higher 
logBMI values. Additionally to the already underlined positive relationship 
between VEGF-B and VEGF-C levels and obesity presence [438,439], current 
literature further highlights the role of VEGF-A in obesity control [228,440,441]. In 
the presence of obesity and fat cell proliferation, VEGF-A expression increases as 
it participates in angiogenesis, cell differentiation and thermogenesis in the white 
and brown adipose tissues. In this context, VEGF-A contributes to the subsequent 
increase in energy expenditure and attempts to suppress further diet-induced 
increase and ameliorate insulin resistance in a compensatory effect [228,440,441]. 
However, as the increase of adipocytes progresses, VEGF-A is more produced and 
angiogenesis is further promoted in the white adipose tissue, thus allowing for 
further obesity establishment. This cascade of events creates a reciprocal circle 
where obesity presence induces VEGF-A expression and vice-versa. For that 
reason, the effect of VEGF-A on increased weight can be described as reciprocal 
and context-dependent, being mainly influenced by the potential pre-existence of 
increased body weight [227, 440]. Hereby, the positive association between the 
uGRS and logBMI was steadily maintained after adjustments for all three models 
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of confounding factors (Model 1: β = 0.0044, p-value =0.003, Model 2: β = 0.0043, 
p-value = 0.005, Model 3: β = 0.004, p-value = 0.009) and adolescents with high 
versus low genetic risk also presented higher values of logBMI suggesting an 
aggravating effect in BMI as genetic risk for higher VEGF-A increases. In a similar 
context to the present, Novikova et al showed that, compared to individuals of 
normal weight, adolescents with obesity presented a 12-fold increase in 
corresponding VEGF-A levels [442]. To boot, Loebig et al showed a similar positive 
association in heathy young men (aged 18-30 years old) under normal blood sugar 
conditions, where higher levels of VEGF-A were consistently associated with 
increased weight [443]. VEGF-A was also related with abdominal obesity in a 
sample of young individuals, as demonstrated by Guzman-Guzman et al when 
investigating relations with parameters of the metabolic syndrome [444]. Our 
present findings show that increased predisposition to higher levels of VEGF-A is 
related to higher BMI, however according to the aforementioned, it should be 
noted that the reciprocity of the relation remains significant, as increased VEGF-A 
levels can generally be observed due to increased BMI, thus potentially 
aggravating the positive predisposing genetic effect.  

Another significant relation was observed between the uGRS and lower levels 
of logHDL (Model 1: β= 0.005, p-value = 0.032). Although this association was not 
maintained after correction for multiple confounding factors, when looking at 
individuals with higher versus lower genetic risk for increased VEGF-A, the former 
did present lower values of logHDL. When looking into potential associations 
between VEGF-A variants and HDL, both Debette et Visvikis-Siest and 
Stathopoulou et al showed that the negatively associated with VEGF-A A allele of 
rs6921438 SNP was related with lower HDL levels in healthy populations. The 
present finding denoting a positive association between increased VEGF-A and 
lower HDL levels can, thus, potentially be explained by the general overview of the 
role of elevated VEGF-A in worse lipidemic profile, rather than the direct effect of 
VEGF-A on HDL per se [445]. 

Furthermore, taking the biomarker’s role on metabolism into account [228, 
232, 233], we further attempted to unravel the meaning of the interplay between 
genetic predisposition for higher VEGF-A levels and multiple cardiometabolic 
indices by examining the potentially modifying role of dietary habits. In our 
sample, the interaction between the uGRS and the consumption of the “Western 
Breakfast” was associated with higher levels of logDBP (Model 1: β = 0.0060, p-
value = 4.28e-05, Model 2: β = 0.00568, p-value = 0.000239). This finding can be 
explained by the fact that the “Western Breakfast” pattern consists of food groups 
with high fat content, namely cheese, dairy and processed meat [311], which have 
already been shown to associate with increased blood pressure in the literature 
[446]. Hojhabrimanesh et al showed similar significant associations between a 
“Western” dietary pattern and overall and systolic blood pressure in Iranian 
adolescents, as well as a positive but not statistically significant association for 
diastolic pressure [447] Although the pattern was not unilaterally associated with 
blood pressure measurements in our team’s previous analyses [311], increased 
predisposition to higher VEGF-A appears to bring its aggravating effect to the 
forefront and vice-versa. This could be partly attributed to the positive effect of 
Western diet and red meat-derived protein which has been previously shown to 
elevate VEGF-A expression, but among patients with breast cancer [448]. 

What’s more, although the 9-SNP uGRS was not alone associated to glucose in 
our sample, it did present a nominally significant interaction with the protein-rich 
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“Eggs and Fibers” dietary pattern (consisting of non-refined cereals, vegetables 
and eggs) in increasing logGlucose levels (Model 2: β = 0.00883, p-value = 0.0132). 
The involvement of VEGF-A on glucose homeostasis is well-known [234], as low 
levels of the biomarker are linked to insulin resistance, while its overexpression is 
associated with impaired insulin production and increased glucose levels 
[228,234]. Consequently, research in adolescent cohorts to date mainly surrounds 
diabetic individuals or related complications [446, 449] and has yet to yield 
significant results in healthy populations. Although fiber intake is generally 
regarded as having protective effects in the production of inflammatory 
biomarkers [447], the present finding could possibly refer to the reciprocal effect 
of dietary carbohydrate and protein intake on aggravating the genetic risk for 
VEGF-A levels and subsequent influence the elevated glucose levels.  
Moreover, similar gene-diet interactions have also been explored in individuals 
with metabolic syndrome in studies examining target-SNPs for VEGF-A, rather than 
using a holistic genetic risk score approach. Ghazizadeh et al. showed that 
individuals with the AA genotype for the rs10738760 variant, which was also 
included in the present uGRS, and a higher adherence to foods with increased 
sugar and saturated fatty acids, among others, presented greater risk for 
metabolic syndrome [242]. It was further demonstrated that presence of the same 
A allele can significantly interact with even favorable dietary components (eg 
PUFAs) in ultimately elevating the risk for worse glycemic and lipidemic profile 
and, thus, metabolic syndrome [242]. Taking it one step further, Chedid et al., 
showed a significant association between BMI and the rs10738760 polymorphism 
in decreasing iron levels; an effect shown to be more prominent in individuals with 
obesity [244]. Finally, a different relation concerned the observed associations 
between presence of the 9-SNP-uGRS rs6921438 and rs6993770 included SNPs 
and micronutrient contents, namely high manganese, low zinc and low iron intakes 
in patients with metabolic syndrome [448, 4501, 451].  

The strengths of the present study concern: i) its attempt to use previously 
unused nutritional data in identifying adolescent dietary habits and their 
associations with cardiometabolic profile; and ii) its hypothesis of investigating 
demonstrated effects of known VEGF-A variants on the cardiometabolic profile of 
healthy adolescents for the first time. The limitations of the present study are 
summarized in the following: i) presently analyzed phenotypic data for both 
populations were cross-sectionally collected, limiting the potential for generalized 
cause and effect conclusions to be drawn; ii) use of the PCA for the dietary pattern 
extraction, included subjective choices on the number of both analyzed food 
groups and extracted components; iii) comparisons between the two populations’ 
dietary habits might have been affected by the different socio-economic 
conditions existing in the two countries during the mid-1990s for the STANISLAS 
and late 2000s for the TEENAGE study; iv) although attempted to be as maximized 
as possible, the variance explained by both populations’ extracted dietary patterns 
concerned approximately half of each cohort; and v) the overall good health status 
of the populations which might not have allowed for the identification of distinct 
associations with cardiometabolic risk factors, as it would for example be in the 
case of patients with obesity.  



 

 

3.3. Polygenic Risk Score for Body Mass Index on the NAFLD, THISEAS and OSTEOS studies 
 

The following constitute information published under the publication J. Pers. Med. 2023, 13, 327,  doi.org/10.3390/jpm13020327 and can be found in 
Appendix E. 

 
3.3.1. Baseline Characteristics of the Studies’ Populations 

The anthropometric characteristics of the unified sample are described in Table 57. Overall, we used available data from 2083 
participants, namely 342 participants from the NAFLD study, as well as 791 and 950 participants from the OSTEOS and THISEAS studies, 
respectively (Table 57). A total of 841 men and 1242 women were included, with a median age of 53 years (calculated at 2075 
participants) and a median BMI of 27.38 kg/m2 . Within the respective databases, participants presented median BMIs in the spectrum 
of overweight for all three studies (NAFLD median BMI = 26.5 kg/m2 , OSTEOS median BMI = 26.91 kg/m2 and THISEAS median BMI = 
27.81 kg/m2 ). BMI was not statistically significantly different between the NAFLD and OSTEOS studies but did present a statistically 
significant difference between the NAFLD and THISEAS as well as the OSTEOS and THISEAS studies (p < 0.001 for both pairs). Differences 
in age were also statistically significant between all studies (p < 0.001 for the Kruskal–Wallis test). 

Table 57. Descriptive characteristics of the NAFLD, OSTEOS and THISEAS study populations.  
All  NAFLD  OSTEOS THISEAS  

All (n = 
2075 for 
age, n = 
2083 for 

BMI) 

Men  
(n = 
841) 

Women (n 
= 1234 for 

age, n = 
1242 for 

BMI)  

All  
(n = 342) 

Men  
(n = 140) 

Women (n 
= 202) 

All (n = 
783 for 
age, n = 
791 for 

BMI) 

Men  
(n = 101) 

Women (n = 
682 for age, 
n = 690 for 

BMI) 

All  
(n = 950) 

Men  
(n = 600) 

Women  
(n = 350) 

 
Med (IQR) 

Age 53 (18) 54 (19) 52 (19) 47 (18) 44 (17) 50 (16) 50 (18) 
 

47 (28.5) 51 (16.25) 59 (19) 58 (18.75) 60 (21) 

BMI 
(kg/m2) 

27.38 
(6.18) 

27.68 
(5.34) 

27.02 
(7.10) 

26.5 
(6.23) 

26.8 
(4.54) 

25.9 
(6.98) 

26.91 
(6.81) 

26.70 
(5.13) 

26.94 7.01) 27.81 
(5.80) 

27.88 
(5.43) 

27.77 
(6.51) 
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3.3.2. Polygenic Risk Score for Body Mass Index 

Summary statistics for the merged dataset were calculated with BMI 
phenotype as a response variable and using the extended (imputed based on the 1000 
genomes external reference panel) and further filtered genotypic dataset. In order to 
properly estimate the effects of individual SNPs that potentially contributed to the 
BMI phenotype in the unified dataset, we applied four different frameworks for 
summary statistics estimation, namely a simple generalized linear model (GLM) as 
implemented in the R statistical language, the regression algorithm implemented in 
the R package statgen GWAS as well as the SNPTEST software and the more 
generalized PLINK framework. In all cases, the sex, age, NAFLD status and 
cardiovascular disease status of individuals were incorporated in the regression 
models as confounders, along with several automatically selected principal 
components to capture potential underlying population stratifications not reflected 
by the other confounders. The four sets of summary statistics were used as input to 
PRSice2 along with the target samples in an iterative PRS derivation procedure, as 
described in Materials and Methods. To evaluate the performance of each summary 
statistics estimation method, we used the PRS R2 metric returned by PRSice2, which 
measures percentage of BMI variability explained by the PRS in the regression models. 
The PRS R2 values for each method were averaged over 100 PRS derivation iterations 
and the method that yielded the highest PRS R2 was selected to provide the summary 
statistics for final PRS derivation. In our case, SNPTEST yielded the highest average PRS 
R2 (0.012 ± 0.006, pmin = 0.0002, pmedian = 0.0375, pmax = 0.3194), followed by GLM 
(0.011 ± 0.006, pmin = 0.0003, pmedian = 0.0697, pmax = 0.4251) and statgenGWAS 
(0.010 ± 0.006, pmin = 0.0005, pmedian = 0.0718, pmax = 0.3579). PLINK yielded the 
lowest average PRS R2 values but with the smallest variability across 100 iterations 
(0.009 ± 0.004, pmin = 0.0002, pmedian = 0.0802, pmax = 0.5282). 

After completion of the 100 PRS derivation iterations, we assessed the stability 

of the extracted PRSs. In our case, PRS extraction process was highly dependent on 

source (training) dataset summary statistics. As a result, the SNP content of each PRS 

greatly varied between iterations, therefore affecting the performance of the latter 

and its contribution in explaining BMI. In order to mitigate the observed PRS 

instability, the 100 different SNP sets comprising the 100 different PRSs returned by 

PRSice2 with SNPTEST summary statistics were aggregated requiring that an SNP 

considered for inclusion in a PRS candidate should appear at least five times in the end 

of the iterative procedure. Subsequently, several PRS candidates were assembled with 

SNP content based on frequency of appearance of the latter across the aggregated 

SNP set, new regression models were created based on the initial target dataset splits 

used by PRSice2 and PRS R2 values were assembled along with their respective 

significance when compared with the baseline PRSice2 PRS R2 distribution. As our 

goals included derivation of a PRS with a less extended number of SNPs but of high 

predictive value, the new PRS R2 values were further penalized based on the number 

of SNPs that each PRS candidate included. Then, using the resulting distribution of 

penalized PRS R2 values, we detected local maxima, denoting both high predictive 

value and lower SNP content. The number of SNPs yielding an adequately high 

penalized PRS R2 while maintaining significance when compared to the baseline PRS 
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R2 distribution was found to be 343 (PRS R2 = 0.1156 ± 0.0277). Notably, our iterative 

and aggregative PRS derivation process resulted in a PRS with ~10 times improved 

explanatory power (bootstrap p-value = 0) than using PRSice2 alone. 

Next, we further evaluated the final 343-SNPs-selected PRS for BMI using the 

total merged dataset coupled with an iterative 10-fold cross-validation process, 

where, in each iteration of the process, we left out 5–50% of the total dataset samples, 

each time increasing the left-out samples by 5% and creating regression models 

including (full) and excluding (reduced) the PRS while maintaining the other 

covariates. Overall, the PRS increased the predictive power of the models by 31–33%, 

with the minimum PRS R2 value observed at 0.3159 ± 0.0190 (p-value = 4 × 10−87) when 

leaving out 50 of samples, with the maximum value at 0.3279 ± 0.0114 (p-value = 9 × 

10−130). A final regression model using the 343-SNP PRS for BMI with the total merged 

dataset yielded a PRS R2 = 0.3241 (beta = 1.011, p-value = 4 × 10−193). Finally, to 

evaluate the ability of the 343-SNP PRS to characterize close phenotypes, we created 

a regression model with the same covariates but using population weight instead of 

BMI. The model yielded PRS R2 = 0.2313 (beta = 2.702, p-value = 4.15 × 10−158).  

The aforementioned 343-SNP PRS deriving from using SNPTEST displayed a 

statistically significant association for BMI (beta = 1.011, p-value = 4x10-193) and a 

positive correlation, where increased PRS values were associated with increased BMI 

levels. The examined population presented an overall median risk, with most 

observations met in the 0.25–0.50 range. Out of the 343 SNPs identified in the PRS 

(see Supplementary Table S2), automatically identified known associations included 

in the GWAS Catalog were displayed for 16 SNPs, namely rs2710804 (27 associations) 

and rs2955742 (five associations) (see Table 58).  

  



 

 

Table 58. List of PRS SNPs with known associated traits in GWAS Catalog. 

Consortial summary statistics (GWAS Catalog) Known associated traits Unified Cohort Summary 
Statistics 

SNP Nearest 
gene 

Position (Chr:bp) Alleles MAF  Effect Allele Associated Traits Effect allele Beta * 

rs11668205 IZUMO4 19:2096429-
2099593 

G/A 0.09 (A) N/A Abnormality of 
chromosome segregation 

G −0.32575 

rs488248 LOC728192 13:105944370 C/A/T 0.23 (C) T Antineoplastic agent C −0.17048 
rs480039 SLC35F3 1:234290732 G/A/C/T 0.37 (A) N/A Gut microbiome 

measurement 
G −0.17361 

rs2288061 RPL18P13 16:76135833 G/A/C 0.34 (A) G Delta-5 desaturase 
measurement 

G −0.17776 

rs2807854 HLX-AS1 1:220856499 T/C/G 0.25 (T) T LDL, apoB measurements T −0.13816 
rs2955742 TMEM266 15:76153791 G/A 0.10 (A) A Serum urea, cystatin c, 

creatinine, urate, 
glomerular filtration 

measurement 

G −0.19108 

rs2710804 SEPT7,EEPD
1 

7:36044919 T/C 0.23 (C) #N/A Fibrinogen measurement T −0.1356 

rs2710804 N/A 7:36044919 T/C 0.23 (C)  C Serum alanine 
aminotransferase 

measurement 

T −0.1356 

rs2710804 N/A 7:36044919 T/C 0.23 (C)  C Lymphocyte count T −0.1356 
rs2710804 N/A 7:36044919 T/C 0.23 (C)  C Platelet count T −0.1356 
rs2710804 N/A 7:36044919 T/C 0.23 (C)  C Lymphocyte count T −0.1356 
rs2710804 KIAA1706 7:36044919 T/C 0.23 (C)  C C-reactive protein 

measurement 
T −0.1356 

rs2710804 AC083864.3 7:36044919 T/C 0.23 (C)  C Leukocyte count T −0.1356 
rs2710804 N/A 7:36044919 T/C 0.23 (C)  C Neutrophil count T −0.1356 
rs2710804 N/A 7:36044919 T/C 0.23 (C)  C Myeloid white cell count T −0.1356 
rs2710804 N/A 7:36044919 T/C 0.23 (C)  N/A Leukocyte count T −0.1356 
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rs2710804 SEPT7, 
EEPD1 

7:36044919 T/C 0.23 (C)  N/A Fibrinogen measurement T −0.1356 

rs2710804 N/A 7:36044919 T/C 0.23 (C)  C Lymphocyte count T −0.1356 
rs2710804 N/A 7:36044919 T/C 0.23 (C)  C Platelet count T −0.1356 
rs2710804 N/A 7:36044919 T/C 0.23 (C)  T Platelet count T −0.1356 
rs2710804 N/A 7:36044919 T/C 0.23 (C)  C Leukocyte count T −0.1356 
rs2710804 AC083864.3 7:36044919 T/C 0.23 (C)  C Neutrophil count T −0.1356 
rs2710804 N/A 7:36044919 T/C 0.23 (C)  C Serum albumin 

measurement 
T −0.1356 

rs2710804 N/A 7:36044919 T/C 0.23 (C)  C C-reactive protein 
measurement 

T −0.1356 

rs2710804 EEPD1 7:36044919 T/C 0.23 (C)  C Fibrinogen measurement T −0.1356 
rs2710804 N/A 7:36044919 T/C 0.23 (C)  C Neutrophil count T −0.1356 
rs2710804 LOC1019286

18 
7:36044919 T/C 0.23 (C)  T Serum alanine 

aminotransferase 
measurement 

T −0.1356 

rs2710804 N/A 7:36044919 T/C 0.23 (C)  C Myeloid white cell count T −0.1356 
rs2710804 N/A 7:36044919 T/C 0.23 (C)  C Platelet count T −0.1356 
rs2710804 AC083864.3 7:36044919 T/C 0.23 (C)  C Lymphocyte count T −0.1356 
rs2710804 AC083864.3 7:36044919 T/C 0.23 (C)  C Platelet count T −0.1356 
rs2710804 AC083864.3 7:36044919 T/C 0.23 (C)   C Platelet crit T −0.1356 
rs2710804 N/A 7:36044919 T/C 0.23 (C)  C Neutrophil count T −0.1356 
rs2251188 ZNF12, 

ZNF316 
7:6664701 A/C/G/T 0.16 (A) G Basophil count, neutrophil 

count 
A 0.13807 

rs7589592 ENSG00000
237720 

2:2709171 T/A/C 0.41 (C) N/A  Diffuse plaque 
measurement 

T 0.11391 

rs1010304 CHD6, 
EMILIN3 

20:41473007 A/G 0.30 (G) A Memory performance, 
word list delayed recall 

measurement 

A −0.28657 

rs12673506 CHN2 7:29382170 G/A 0.24 (A) A Gut microbiome 
measurement 

G −0.185 

rs17662327 HNRNPA1P4
1,JAK2 

9:4967587 T/C/G 0.16 (C) T Wellbeing measurement T 0.14714 
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rs2485662 MEX3A/LM
NA 

1:156113677 T/C 0.31 (T) N/A Triacylglycerol 48:1, 
triacylglycerol 50:2 

measurements 

T 0.11601 

rs4718965 AUTS2 7:70575462 C/A/T 0.08 (C) C Cortical surface area 
measurement 

C 0.19049 

rs9847987 intergenic/C
FAP20DC-DT 

3:59432807 C/T 0.20 (T) T Neuritic plaque 
measurement 

C 0.26274 

rs10252228 DPY19L1, 
NPSR1 

7:34900427 A/G 0.29 (G) G Exercise A 0.12063 

SNP: single nucleotide polymorphism; Chr: chromosome; bp: base pairs; MAF: minor allele frequency; beta: effect size for BMI 
*Results were derived via linear regressions after adjusting for sex, age, NAFLD status and number automatically selected PCs for population stratifications.  

Effect sizes (betas) and ORs shown for the corresponding SNP and effect sizes (betas) are reported for the respective effect allele. 



 

 

3.3.3. Discussion 

The present study sought to investigate application of an automated pipeline for 
PRS extraction using data from the three Greek studies of NAFLD, OSTEOS and 
THISEAS. In this population of Greek adults, the constructed PRS displayed a 
statistically significant association for BMI, with an R2 of 0.3241 (beta = 1.011, p-value 
= 4 × 10−193). The iterative pipeline presented here attempts to address various 
matters on PRS extraction, namely selection of an appropriate threshold for SNP 
inclusion and prediction accuracy [452] as well as stability of the SNP content of PRS 
candidates across different training and test dataset splits. In attempting to 
strengthen PRS construction methodology [453], this pipeline proposes 
implementation of iterative processes through repetitive steps of sample splitting, 
aggregating SNP frequency and effect size as well as comparative use of summary 
statistic metrics and consideration of lifestyle and genetic covariates. As a result, the 
suggested PRS includes a less extended number of variants but of high explanatory 
power. In this spectrum, this effort aims at facilitating construction of high-validity 
PRSs and subsequently promoting their use as a diagnostic tool accounting for various 
individual characteristics in daily practice. Use of the information of increased or 
reduced genetic risk for elevated BMI values, as demonstrated by the PRS, can 
potentially be translated in clinical practice to intensify (in the case of increased risk) 
or modify and personalize recommendations on lifestyle parameters to combat 
overweight and obesity. To the best of our knowledge, the present study constitutes 
the first attempt to develop a PRS for BMI using data from a Greek population and a 
previous attempt for construction of a PRS has only been referred to once before in 
the current literature, exploring Parkinson’s disease in older Greek adults [454]. 
Implementation of the suggested aggregated methodology refers, among others, to 
(a) repetitive splitting of the overall sample; (b) comparative use of different summary 
statistics in an attempt to reduce population size and SNP selection bias, respectively. 
Thus, future work will concern attempts in replicating the proposed PRS in wider 
populations of different ancestry. Other attempts to create PRSs for BMI in 
populations of European ancestry are extensively described in the current literature, 
with an overall number of 56 BMI-related entries in the PGS Catalog [165]. All referred 
entries include parts of populations of European ancestry but present a wide range in 
the numbers of PRS-included variants, from a few tens up to several thousand or 
millions, with these numbers possibly limiting their effective usage in research or 
clinical settings. Although the PRS proposed here includes only 343 SNPs, the yielded 
R2 of 0.3241 is substantially comparable, and, in some cases, higher, than the ones 
presented in other PRSs from BMI, which include thousands of SNPs [165]. An overall 
advantage is also observed when comparing the present results to other attempts in 
European populations, which have a priori calculated the effect of literature-based 
PRSs using a limited number of SNPs. Use of our proposed pipeline is an advanced tool 
due to the notion that the aggregated approach of splitting processes strengthens 
identification of appropriate and sometimes novel SNPs increases the validity of the 
results and makes up for the need to have a very large sample size. In the current 
study, we observe links for various indices related to cardiovascular profile for twelve 
out of the sixteen variants with GWAS-Catalog-identified associations. The latter could 
be explained by inclusion of data for THISEAS participants with diagnosed 
cardiovascular disease (19.58% of the participants). Although the mediating effect of 
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BMI is usually accounted for when investigating the effect of genetic or polygenic risk 
scores on indices of cardiovascular disease, the reciprocal relation between variation 
in cardiometabolic indices levels and BMI levels has not been extensively 
demonstrated through BMI-PRS-included, CVD-related variants. Out of the associated 
SNPs, the C allele of the rs2710804-included variant presents the majority of reported 
associations, namely with cell count types (platelets, leukocytes, lymphocytes) and 
even measurements of C-reactive protein. In this context, the negative effect of the T 
allele observed in our study (β = −0.1356) could denote a positive relation of the C 
allele with metabolic pathways of inflammation and disturbed immunological 
responses in the subsequent increasing effect of BMI values. Interestingly and among 
this PRS’s novel associations, we find two variants previously linked to gut microbiome 
measurements in populations of European ancestry. More specifically, Rühlemann MC 
et al. previously associated the rs480039 SNP with a 0.082571946 unit increase in 
P_Bacteroidetes abundance among German individuals [455]. Similarly, a 0.1019 unit 
increase in the abundance of parabacteroides in stools of individuals of Finnish 
ancestry for the A allele of the rs12673506 SNP was shown by Qin et al. [456]. 
Comparably, our study showed that the G allele of the rs480039 and rs12673506 
variants was negatively related to BMI levels (β = −0.1736 and β = −0.1850, 
respectively). This is not the first time that the Parabacteroides genus has been linked 
to body weight. The majority of studies denote a higher Firmicutes:Bacteroidetes ratio 
and a generalized reduction in species variation in individuals with increased body 
weight or obesity [457], and different studies have found positive associations 
between genus and normal weight or weight loss in mice, as well as fat loss in humans 
[456-462]. It is plausible that the corresponding SNPs are further linked to BMI 
through the genus’s role in gut production of bile acids and succinate, which have, in 
turn, been associated with reduction in body weight [461]. When referring to SNPs 
related to lifestyle, our suggested PRS included one variant related to well-being 
(variant rs17662327) and one variant associated with exercise (rs10252228). More 
specifically, in our sample, presence of the T allele of the former SNP was linked to a 
0.1471 change in BMI levels. Previously, Okbay et al. demonstrated a 0.0182 unit 
increase in sentiment of life satisfaction or emotional well-being of adults for the T 
allele [462]. Our study further showed that presence of the A allele of the rs10252228 
SNP was related to higher BMI values (β = 0.1206). This finding could be in accordance 
with the 0.027 unit increase in exercise associated with leisure time shown for the 
SNP’s G allele in Japanese adults [463], meaning that the positive effect of the A allele 
on BMI could be mediated by individuals’ low exercise levels. One of the great 
strengths of the present study entails implementation of our novel methodology for 
extraction of PRS, which enables effective management and analysis of the vast 
amounts of genetic data required for such analyses. The automated pipeline enables 
practical application of our suggested holistic approach for extensive examination of 
thousands of SNPs, leading to identification of various novel associations. Through the 
methodological approach of applying a repetitive process of continuous adjustment 
of the R 2 measure for the number of each-time-associated SNPs, the pipeline aims to 
facilitate integration of PRS use in daily healthcare practice, for example as part of 
widely distributed consumer reports. It should be stressed that, as this methodology 
is based on the highest R2 values of the aggregate PRS candidates, it ensures high 
explanatory power of the reduced signature. At the same time, it mitigates any 
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computational and data management burden imposed by PRSs with large (up to 
millions) numbers of SNPs. Limitations of the present study mainly concern power 
given the restrained participant sample size available for conducting analyses. Another 
limitation refers to use of a unified database of participants from three different 
studies. It is possible that variation in participant characteristics and bias 
accompanying use of a large analogic sample size of participants with cardiovascular 
disease played a considerable part in identifying associations between BMI and SNPs 
related to regulation of cardiovascular indices. However, we determined that much of 
the potential variability introduced by the fact of joining three databases was 
successfully captured by one of the PCs incorporated in the model. In addition, 
although the hypothesized pathways through which the identified SNPs potentially 
affect BMI levels provide insight for novel relations, there is little evidence to establish 
direct causal relationships. However, the present analysis sets a foundation for the 
suggested causal SNPs, and further research is also needed to explore the possibility 
of relations through their role as proxies for different associated variants.   
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4. Conclusive Remarks 

The present thesis sought to investigate the effects of genetic and lifestyle 
determinants on obesity-related characteristics and the modification of 
corresponding, cardiometabolic risk factors. The aims of the nodes of this Dissertation 
concerned the conduct of the first-ever dietary intervention examining the effects of 
different-macronutrient-content-hypocaloric diets in adults with overweight or 
obesity; the examination of genetic and lifestyle factors affecting adolescent health 
and cardiometabolic status; and the overall assessment of genetic and gene-diet 
influences in anthropometric and obesity-related traits and modifications.  

The iMPROVE study provides results in line with the ones of similar attempts 
conducted in European and international projects. The study yielded significant 
reductions in body weight and body composition indices after an intervention period 
of 3 months and showed no differentiation between the responses of adults following 
a low-fat, high-carbohydrate or a high-protein group. What’s more, the study showed 
multiple nominal associations between genetic variants and anthropometric or 
lifestyle factors, denoting significant effects of genetic makeup on the modification of 
related indices. More specifically, genetic predisposition can affect changes in weight 
or quality of life, but populations of bigger sample size are needed to allow for more 
elaborate conclusions to be drawn. 

Furthermore, dietary habits appear to influence adolescent health and 
cardiometabolic status, with more balanced regimens associated with better glycemic 
and lipidemic profile. Gene-diet interactions in this crucial-for-development life stage 
show significant influences in the modifications of obesity-related traits, with VEGF-A 
variants yielding significant interactions with teenage profiles for the first time. Lastly, 
in line with international consortia, examining the genetic effect in the form of a 
constructed PRS appears to also provide significant results in the Greek population, 
with a newly constructed PRS accounting for a percentage of its BMI variance.  

Strengths of the present thesis are summarized in its attempts to respond to 
previously untreated research questions and fill existing gaps in current literature. This 
Dissertation attempts to treat a wide range of research questions in an effort to 
holistically understand and assess the effect of genetic makeup, lifestyle, as well as 
their respective interplay in factors of cardiometabolic nature. In this way, and 
building on key-findings in the field of nutrigenetics, the present study aims at 
providing new and somewhat innovative findings, even in this period of vast scientific 
achievement in the field. This study yielded results for multiple initiatives taking place 
for the first time in the examined populations, such as the dietary intervention in the 
Greek adults, the comparative analyses in the adolescent populations, the 
examination of the role of VEGF-A on adolescent parameters and the creation of the 
PRS for adult BMI. Nevertheless, the study presents significant limitations, the central 
one concerning the limited sample size of the iMPROVE population; a consequence 
mainly attributed to its timeframe coinciding with the COVID-19 pandemic and 
consecutive quarantines.  

In addressing the effect of gene and lifestyle factors on obesity characteristics, the 
present thesis lays the ground for further research in the field, building and 
elaborating on its findings. Future directions can concern: i) the investigation of other 
types of hypocaloric diets in the observed weight loss of Greek adults and subsequent 
examination of gene-diet interactions; ii) potential attempts in replicating the 
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constructed GRSs in other populations of different characteristics; and iii) conduct of 
further GWAS in the populations of the TEENAGE and STANISLAS cohorts. Assessment 
of the holistic interplay of gene-lifestyle interactions is of vital importance for the in-
depth understanding of nutrigenetic influences in cardiometabolic modifications, as 
well as in the general context of promoting and maintaining a good health status. In 
the future, integration of nutrigenetic information in obesity-prevention and 
treatment strategies might prove greatly beneficial in successful policy-making and 
tackling of all sorts of coinciding NCDs. 
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AbstrAct
Accounting for the role of genetic variants in disease is increasingly gaining ground as a major contribut-
ing factor to the maximization of successful precision medicine and personalized nutrition approaches. An 
aggregated technique to quantifying genetic effect refers to the development and use of disease-specific 
Polygenic Risk Scores (PRSs) deriving from the sum of the weighted effects of multiple disease-related Single 
Nucleotide Polymorphisms (SNPs), mainly from Genome-Wide association studies (GWAS). Integration of PRS 
use in medical and nutritional practice is largely discussed in current literature, with special attention to: i) 
disease prediction accuracy after PRS consideration and their potential utility; ii) the role of current methodo-
logical approaches used to derive reliable results and the effect of limitations such as ancestry or population 
size; iii) the familiarization of healthcare professionals with the meaning of genetic information; and iv) the 
context-based interpretations of PRS results in the formation of personalized advice. In this context, the present 
short review aims to summarize current findings on PRS use and utility in cardiometabolic, weight-related 
disorders and discuss future directions for their potential integration in the practice of personalized nutrition. 

KEY WOrDs: Polygenic risk scores, cardiometabolic disease, weight management, personalized nutrition

INtrODUctION 

Deciphering disease etiology by quantifying the impact 
of genetic predisposition constitutes the focal point in the 
conduct of research surrounding genetics during the last 

years. Identifying and investigating the effect of disease-
associated single nucleotide polymorphisms (SNPs), as 
well as using them to create aggravated genetic scores, 
provided encouraging results in the field of cardiovascular 
(CVD) and cardiometabolic disease1,2. Those findings shed 
a quantifiable light on the role of genetic makeup while 
expanding the horizons for the potential creation of new 
and personalized treatment approaches. The construction 
of polygenic risk scores (PRSs) thus quickly expanded to 
the notion of potentially contributing to determining 
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disease risk and subsequently contributing to effective 
disease prevention, diagnosis and even treatment1-3. The 
need for more extensive research resulted in the gradual 
evolution of continuously enhanced methodological 
approaches for PRS extraction4. As the latter examine 
the effect of multiple variants on the outcome of interest 
based on a large SNP pool in populations of increased 
size, their creation and use were extensively investigated 
through genome-wide association studies (GWAS) in large 
consortia. The increasing presence of PRSs for multiple 
phenotypes in the current literature ultimately led to the 
creation of  PGS catalog, an inclusive database comprising 
of all PRS entries created to date5.

Discussion and research around PRS use as a predic-
tion and treatment tool has recently yielded encourag-
ing results, with studies reporting beneficial effects in 
cardiovascular and cardiometabolic disease1,2. Provision 
of lifestyle recommendations appeared to significantly 
contribute to obesity treatment2 and coronary artery 
disease (CAD) prediction and greatly benefit individuals 
with high PRS across the spectrum of CVD, with PRSs con-
structed even for stroke and hypertension1,3. In like manner, 
the American Heart Association recently focused on the 
potential utility of PRS in CVD and other cardiometabolic 
disorders such as type 2 diabetes (T2D), underlining the 
need for the conduct of additional research to strengthen 
PRS inclusion in current practice2. Subsequently, discus-
sion around the integration capacity of PRSs as a way to 
promote precision medicine and personalized nutrition is 
ongoing, with special attention on ameliorating relevant 
challenges, namely the differentiational influencing ca-
pacity following interaction with environmental stimuli, 
the diverse methodological approaches in PRS extraction 
and the understanding of the true meaning of genetic 
information both from professionals and patients alike. 

Prs and weight-related parameters

Evaluation of genetic risk in the form of summed 
risk scores primarily treated CVD danger but quickly 
expanded to other disorders of cardiometabolic profile2. 
The conduct of extensive GWAS was accompanied by the 
development and expansion of the Genetic Investigation 
of Anthropometric Traits (GIANT) consortium6. This led 
to the identification of multiple Body Mass Index (BMI)-
associated loci with the milestone discovery of the first 97 
loci accounting for about 2.8% of the marker’s variation7. 
Nowadays, approximately 6% of BMI variance is explained 
by 785 near-independent genome-wide significant SNPs8,9. 
Thus, the beginning approaches of quantifying genetic 
predisposition mainly involved the literature-based, a priori 
selection of disease-related variants and the subsequent 

investigation of the impact of their added effects. There-
fore, various genetic risk scores of tens of SNPs were created 
and used in the examination of associations between in-
creased genetic risk and disease manifestation or severity. 
In like manner, research on personalized approaches for 
combatting cardiometabolic and weight-related disorders 
primarily focused on examining the combined effect of 
target SNPs with different dietary regimens. In this context, 
the first large initiatives such as the FOOD4ME project and 
the POUNDS lost clinical trial10,11, attempted to unveil the 
interactive role of genetic makeup and nutritional habits 
in overweight and obesity. Focusing on target SNPs and 
macronutrient content, the projects provided limited, but 
encouraging, evidence on the effect of gene-diet interac-
tions on anthropometric traits. 

Based on GIANT-derived information or the conduct 
of independent GWAS, different teams proceeded to the 
development of PRSs for BMI in populations of various 
sizes. To date, PRSs associated to anthropometric traits 
and body measurements account for 154 of the database 
entries5. Indeed, nowadays, attempting to decipher the 
multifactorial obesity etiology using genetic informa-
tion has become central in research surrounding BMI, 
with efforts made to explain the polygenic prediction of 
weight formation throughout the life course12,13 Khera et 
al. highlighted the role of including a multi-variant PRS in 
explaining weight variance in populations ranging from 
birth cohorts to middle-aged individuals12. Correspond-
ingly, Shi et al recently constructed a different BMI PRS 
to investigate potential associations with overall cardio-
metabolic health from early age to adulthood. The study 
revealed significant associations between the score and 
other indices of cardiometabolic profile, namely fasting 
glucose and systolic blood pressure13. Building on the 
data and the role of genetic makeup in overweight or 
obesity presence, current research also focuses on the 
potential influence of genetic markers on weight loss. 
A study by de Toro-Martín investigating the extent of 
the genetic effect on the success of bariatric surgery, 
showed an increase in the prediction model accuracy 
when including PRSs, as well as significant interactions 
between the scores and the reduction in post-surgery 
recovery and surgery type14. In the same context, Kat-
sareli et al showed that adults with increased genetic 
risk score for obesity noted a decrease in post-bariatric 
surgery loss of excess weight, with each unit of the score 
being associated with a 4.618% decrease in the 12-month 
observed weight loss15.  

In the same spectrum and building on the findings of 
previous key projects, emphasis should also be given on 
studies looking into the potential interactions between 
genetic scores and macronutrient content16. Moreover, 
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studies focusing on the genetic influence on the observed 
weight loss after lifestyle interventions to combat over-
weight and obesity even outside of a clinical environment 
are also needed. Research on this field could unravel the 
gene-diet interactions surrounding weight manage-
ment and loss and ultimately maximize the impact of 
individualized recommendations using genetic data to 
determine optimal treatment strategies. As a result, effec-
tively unravelling the genetic proportion of body weight 
variance could progressively allow for the formation of 
more inclusive strategies to its management. 

Prs Interactions with Lifestyle Determinants

In addition to accounting for the risk attributed to 
genetic makeup, the impact of PRS interactions with 
lifestyle factors such as diet, ultimately influencing weight 
management have also been studied.  In a 2021 study by 
Wang et al, a 60-SNP PRS was constructed using variants 
found to be associated with birth weight and later-life 
disease. The interactions between the genetic score and 
dietary parameters showed that healthy habits during 
early life, such as breastfeeding, were beneficial in re-
ducing the risk for worse lipidemic profile in adult life 
in participants with higher genetic risk17. The significant 
modifying effect of diet was also demonstrated by Tan et 
al, who showed that individuals with higher PRS for obesity 
indeed presented higher levels of C-reactive protein but 
those levels appeared reduced in the presence of high 
dietary protein intake18. Similarly, middle-aged individu-
als with a higher genetic risk score for thinness presented 
lower body weight; an association aggravated with high 
protein and low carbohydrate intake, among others19. 
The multidisciplinary character of genetic risk-associated 
interactions is evident throughout the reciprocal interplay 
between the formation of anthropometric characteristics’ 
levels and the formation of the lifestyle choices surround-
ing them. In adult populations, Dashti et al. showed that 
adults with higher genetic risk for obesity were less likely 
to make healthier food choices at workplace and more 
likely to purchase more food and adhere to unhealthy 
dietary habits such as delaying or skipping breakfast and 
homemade meals20. However, Lee et al showed that BMI 
PRSs were related to body weight in Korean adults, but 
not to their respective caloric or macronutrient intake21. 
Similarly, Konttinen et al highlighted that elevated genetic 
risk was more correlated with increased weight gain during 
a 7-year period in individuals not demonstrating restrained 
eating than those who adhered to it. However, the study 
attributed the effect to the role of previous processes 
entailing weight gain and nutritional habits, rather than a 
separate factor which will influence future weight gain22. 

Extended associations have also been explored, with Park 
et al showing that individuals with a high genetic risk for 
BMI, early menarche and attrition to an unhealthy diet (i.e. 
high consumption of fried foods and low consumption of 
fruits and vegetables) presented an increased obesity risk 
compared to those with late menarche and attrition to a 
healthier diet23. A different study focusing on European 
children and adolescents, underlined the modifying ef-
fect of diet, where genetic influence was attenuated by 
fiber intake in participants presenting higher genetic risk 
for obesity24. 

To boot, PRS-lifestyle interactions constitute a 
focal point across the spectrum of understanding 
more weight-related diseases. The emphatic effect 
of nutrition is underlined in studies of approximately 
70000 participants of the UK Biobank, where adher-
ence to a healthier diet was associated with reduced 
risk for cardiovascular disease, even in individuals 
with a high genetic risk score. Similarly, adoption 
of a healthier lifestyle was linked to lower CVD risk 
and overall mortality, again irrespective of genetic 
danger25,26. Moreover a different large study with 
data for almost 340000 UK Biobank participants 
showed that increased genetic risk for type 2 dia-
betes (T2D) was associated with higher chances for 
CVD manifestation; an effect reduced in individuals 
with better quality of lifestyle27. With regards to 
T2D alone, increased values of a PRS for the disease 
and attrition to the Western dietary pattern were 
associated with higher levels of fasting glucose28. 
Likewise, López-Portillo et al demonstrated that 
fasting glucose levels were higher in non-diabetic 
individuals with increased genetic risk for T2D and 
higher consumption of sugary beverages, compared 
to those with lower genetic risk scores and reduced 
intakes of the latter29. Biochemical interactions have 
also been studied, where PRS for T2D have been 
found to significantly interact with triglyceride and 
cholesterol levels in the subsequent formation of 
fasting glucose levels30. Merino et al showed the 
dominating effect of unhealthy diet in increasing 
T2D risk even by 30%, again irrespective of genetic 
risk31. Additionally, although Zhang et al did not 
show significant interactions between genetic risk 
and adherence to the plant-forward EAT-Lancet diet 
for T2D onset, their study did note that individuals 
with increased genetic risk and lower attrition to 
the dietary pattern did present the highest risk for 
T2D presence during a 24-year follow-up period32. 
Correspondingly, PRS-diet interactions have been 
evident in more disorders, such as cancer and de-
mentia, where an increased diet quality lower the 
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chances for disease onset, even in individuals of 
high genetic risk33-35. In a similar context, lifestyle 
can also indirectly affect the gravity of genetic 
risk on actual disease manifestation via increase 
in weight-related anthropometric measurements 
alone. Esteve-Luque et al showed that higher values 
of BMI significantly interacted with genetic risk in 
increasing triglyceride levels and the subsequent 
risk for hypertriglyceridemia36. A different study 
underlined that obesity presence led to higher risk 
for T2D, even in individuals with lower genetic risk 
and better lifestyle quality37. 

Prs Utility in Personalized recommendations

Research around the potential role of PRS use in 
clinical practice has shown that inclusion of PRSs in 
models for cardiometabolic disorders such as cardio-
vascular disease (CVD) can account for risk predic-
tion in a manner similar to established contributing 
factors such as cholesterol levels38-40. The Task Force 
of the International Common Disease Alliance has 
further underlined the importance of PRS inclusion 
in increasing the accuracy of predicting CVD disease 
risk and severity, throughout one’s lifetime41, and the 
weighted contribution of PRS to maximizing patient 
outcomes41. Given the potential increase in accuracy 
observed in prediction models after the addition of 
PRS, testing their potential utility has also expanded 
to the field of anthropometrics. Choe et al showed 
that a BMI PRS was associated not only with longi-
tudinal BMI change, but also other cardiometabolic 
phenotypes, such as fatty liver42. A similar attempt 
was made by Padilla-Martinez et al., who displayed 
significant associations between PRSs for T2D and 
obesity and manifestations of prediabetes and other 
disrupted cardiometabolic parameters43. 

In this context, PRS use could be seen as a useful tool 
to increase disease prevention through successful pre-
diction and/or early detection. This notion carries both 
favorable effects for public health and financial parameters 
of healthcare systems, as well as optimizing individual 
understanding and ability to choose and decide optimal 
combatting strategies44. Although the inclusion of PRSs 
and relevant interactions can explain cardiometabolic 
disease risk45, the conversation around its clinical validity 
underlines the importance of real-time context on PRS 
information evaluation and decision-making in order to 
avoid confusion with genetic determinism40,41. This sheds a 
light on the vital role of both development of valid meth-
odologies to increase PRS reliability, transferability and 
accuracy, as well as the professionals’ familiarization with 

the interpretation of its information. This is also why the 
education of healthcare professionals is put in the center 
of integrating genetic information into daily practice. 

Furthermore, taking PRS information into account 
can prove beneficial on its own accord in patients with 
extremely high genetic risk41 and, thus, PRS utility is also 
discussed at personal level38. PRS information can be 
differentially valuable to each individual, according to 
both their personal interest and understanding of the 
information, as well as relevant genetic risk in outcomes 
of interest. The latter might not always correlate to mat-
ters of clinical importance, but do account for increasing 
awareness on genetic predisposition for various matters 
significant to the individual. It is therefore why, a reliable 
approach to PRS calculation for various traits, with easily 
understandable and interpretable results is central in 
future research surrounding PRS use38. Especially in cases 
regarding cardiometabolic disorders such as overweight, 
obesity and type 2 diabetes, finding ways to efficiently 
include PRS prediction in easily applicable risk tools is 
considered a priority for the maximization of PRS efficacy. 

challenges in Prs construction and 
Interpretation

Although inclusion of PRSs in disease prognosis can be 
beneficial, several considerations arise when discussing the 
methodological aspect of PRS construction, the efficacy of 
the various PRS development methodologies presented in 
current literature and the real-time interpretation capacity 
in clinical and non-clinical settings. Firstly, the fundamental 
limitation of PRS’ universal application concerns the under-
representation of data used from populations of different 
genetic ancestry44. To date, although several attempts for 
PRS construction using data from various populations have 
been made, PRSs presented in literature mainly focus on 
European ancestry. The lack of existent PRSs deriving from 
large cohorts of global populations affects their transla-
tional capacity in less frequently examined populations 
where contextually phenotype-associated variants, SNP 
linkage disequilibrium (LD) or allele frequency may vary. 
Therefore, a preceding necessity of developing more PRSs 
using data from populations around the globe is formed 
before discussing their maximum use, in order to ensure 
universal application capacity.

Another pillar of PRS development refers to the biases 
of the different methodological approaches undertaken 
in calculating the scores44. Diverse current practices con-
sist of: i) the replication of simple aggravations of the 
risk-alleles for phenotype-associated variants using their 
respective effect sizes from current literature (i.e. consortia 
such as the GIANT one or data from large studies such as 
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the UKBiobank46 of the Twins Early Development Study 
-TEDS47) ; and ii) the conduct of novel GWAS in populations 
of sufficiently large sample sizes, extraction of summary 
statistics, subsequent identification of phenotype-associ-
ated variants and their risk alleles’ aggravation in a holistic 
score. As PRS development and phenotype examinations 
are ongoing, research may simultaneously focus on the 
identification of novel phenotype-associated variants and 
the replication of previously identified ones. As a result, 
the statistical design and assessment may significantly 
differ across studies and the final choice for the optimal 
model to be used may lie in the discretion of the researcher 
according to the needs of the research question at hand. 
Additionally, differences in samples sizes significantly 
matter in effective PRS validation. Although the effect of 
using target-SNPs outside of reference populations can 
be limited, current discussion around the role of popula-
tion size has shown that cohorts with a few thousands of 
participants can be of use in replicating results and using 
SNPs from PRSs deriving from even larger populations48. 
Moreover, the additional variety in statistical methods (i.e. 
p-value thresholds, clumping, Bayesian or lasso-based 
penalization), packages (eg PRScs, LDpred2) and assess-
ment applied can largely affect the end product which may 
be ultimately differentiated across studies. It is therefore 
highlighted that standardization of the PRS extraction 
process49 is central to facilitating their validation and se-
quentially increasing their predictive ability. Additionally, 
in this context, attempts to practically compare PRS results 
and methodology4,50-52 can provide useful data for the 
next steps in the need for a unified, applicable approach 
to allow for PRSs capable of yielding rapid but reliable 
results and effective comparisons of findings between 
populations of different characteristics. 

Moreover, familiarization with the true meaning deriv-
ing from the information of the PRS is vital in its correct 
interpretation. Understanding the potentially indirect 
effects of SNPs included in the models and weighing the 
environmental factor in are key considerations in construct-
ing future PRSs as reliable disease prediction risk tools. 
Apart from the technical aspects, a different cornerstone 
of practical PRS use appertains to the familiarization of 
healthcare professionals with the field. Proper assuefaction 
with the practical meaning of PRS information is critical 
for professionals to address disease risk and convey the 
appropriate message to patients. The delicate understand-
ing of individual risk and its practical meaning in ultimate 
disease manifestation can be challenging in cases where 
the risk is small or the patient is not properly acquainted 
with the details of their genetic profile. Both professional 
and patient education and perceptions around PRS utility 

are integral in its successful use as a disease screening and 
treatment tool40,44.

Prs and Nutrigenetics/Nutrigenomics in Future 
Healthcare Practice

Although there is a limited number of studies 
investigating and discussing the extent of PRS ef-
fective translation to date, future directions can be 
encouraging on the incorporation of PRS meth-
odologies in the daily practice1-3. PRS inclusion in 
disease screening and the formation of personalized 
recommendations could potentially offer a solution 
to the growing pressure applied to healthcare sys-
tems for more inclusive strategies and efficient use 
of financial resources49. In the field of nutrigenetics 
(i.e. the impact of SNPs on certain nutrient interaction 
or role in metabolic pathways) and nutrigenomics 
(i.e. the impact of nutrients on gene expression), 
PRS use can be considered as a promising tool in 
the advancement of personalized nutrition. 

Understanding the connective links between research 
conduct and translation is substantial in order to be able 
to reinforce PRS practical use. An integral part to such an 
effort would be the effective translational communication 
between bioinformatics and healthcare sectors in order to 
enhance proper PRS use and interpretation49. Especially 
when referring to the use of PRSs in cardiometabolic and 
weight-related disorders, understanding, quantifying and 
translating the contribution of genetic predisposition is 
vital in interpreting genetic impact. Incorporating genetic 
information in medical and nutritional advice can maximize 
the success of the proposed strategies, while informing 
the individuals in main aspects of their genetic profile. 
In this spectrum, PRS interpretation in weight-related 
disorders can only be effective when conducted and 
evaluated alongside the effect of other lifestyle determi-
nants (Figure 1). This can allow for increased motivation 
on behavioral change and lifestyle adaptations41 to the 
proposed measures, which can subsequently strengthen 
the disorders’ effective management.

In an attempt to dissect the steps of including genetic 
details in current practice and promote personalized nu-
trition, in 2022 the Academy of Nutrition and Dietetics 
published the creation of a Nutrigenomics Care Map speci-
fying the timeline of nutrigenetic information integration 
in nutritional assessment53. The map puts professional 
formation on the forefront of the practice, by inserting 
the sufficient nutrigenomics training prerequisite as the 
first out of the four steps of the process. Patient screening, 
genetic testing and communication of genetic profiling 
results as part of the nutritional assessment and the setting 
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of SMART (specific, measurable, attainable, relevant and 
time-based) goals complete the suggested procedure53. 
Such an approach aims to maximize nutritional consult-
ing by actively involving the patient in the formation of 
goals and dietary regimens optimally corresponding to 
their genetic profile.  Integration of PRSs in this effort 
could allow the practice to move forward from personal-
ized advice provided only based on specific genotypes of 
key genes associated to body weight or obesity54,55. As a 
result, more research in the form of Randomized Clinical 
Trials (RCTs) is needed, regarding the interactions between 
BMI PRSs and dietary regimens in order to establish the 
evidence-based approaches required for the nodes of 
individualized advice. Such efforts would subsequently 
enhance our understanding and forming of optimal recom-
mendations, each-time targeting the outcome of interest 
and adopting the literature-based, corresponding strategy 
(eg advice on adherence to a dietary regimen of specific 
macronutrient content for the achievement of weight 
loss in individuals with specific PRS for obesity). Due to 
the current increase observed in the offer of nutrigenetic 
services, establishment of scientific, quality guidelines for 
directing healthcare professionals is vital56.  

Furthermore, on principle, the meaning of PRS infor-
mation differentiates itself according to the nature of the 
disorder in reference. For example, a PRS will be differently 
interpreted in cases of monogenic rather than polygenic 
diseases, such as the cardiometabolic and weight-related 
ones. The multidisciplinary character of those disorders 
therefore reciprocally affects the creation of the appro-

priate framework in which it will be communicated. This 
interplay between genetic information communication 
and healthcare setting factors centrally affects both the 
formation and the influencing capacity of public health 
policies in precision medicine and nutrition38-40. The latter, 
thus, re-enforces the need for sectors simultaneously op-
erating on unravelling the relations between the creation, 
interpretation and communication of genetic information 
across healthcare professionals. These could, in turn, be 
incorporated into screening tools for multiple traits and 
contribute to the creation of individualized disease pre-
vention or treatment strategies. 

cONcLUsIONs

Future incorporation of PRS information in the daily 
healthcare practice could present considerable advan-
tages to advancing precision medicine and personalized 
nutrition. Creation of sound methodologies, accounting 
for the extent of the impact for environmental stimuli 
and simultaneously able to allow for the effective inclu-
sion of PRS results in disease prediction, diagnosis and 
prognosis is deemed vital in bringing PRS research and 
application forward. PRS information on cardiometabolic 
and weight-related disorders can increase the prognostic 
validity of already existent tools and the fruitful formation 
and implementation of individualized recommendations. 
However, sufficient familiarization of healthcare profes-
sionals with the meaning and contextual translation of 
PRS results plays a major part in its proper communication 
where attention must be given in the role of the interac-

FIgUrE 1. Polygenic Risk Score (PRS) in Personalized Recommendations (created with BioRender.com).
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tions between SNPs, environment and lifestyle determi-
nants in ultimate disease manifestation. Future initiatives 
should aim at uniformly enhancing both methodology 
development and educational formation in attempting 
to firmly establish, integrate and distribute PRS use as a 
daily practicum. 
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ΠΕΡΙΛΗΨΗ
Πολυγονιδιακοί Δείκτες Κινδύνου και προσωποποιημένες προσεγγίσεις 
στην πρόληψη και την αντιμετώπιση καρδιομεταβολικών ασθενιεών: 
Σύντομη Ανασκόπηση

Μαρία Καφύρα1, Γεώργιος Δεδούσης1,2

1Τμήμα Επιστημής Διαιτολογίας-Διατροφής, Σχολή Επιστημών Υγείας και Αγωγής, Χαροκόπειο 
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Η διερεύνηση του ρόλου των γενετικών παραλλαγών στην εμφάνιση ασθενειών χρησιμοποιείται ολοένα και 
περισσότερο με στόχο τη βελτιστοποίηση των επιτυχών προσεγγίσεων στα πεδία της ιατρικής ακριβείας και 
της προσωποποιημένης διατροφής. Μια συγκεντρωτική τεχνική για την ποσοτικοποίηση της γενετικής επί-
δρασης αφορά στην ανάπτυξη και τη χρήση ειδικών-για-κάθε-ασθένεια Πολυγονιδιακών Δεικτών Κινδύνου 
(ΠΔΚ), μέσω τους αθροίσματος της επίδρασης συσχετιζόμενων μονονουκλεοτιδικών πολυμορφισμών  (ΜΝΠ) 
προερχόμενων από μελέτες σάρωσης του γονιδιώματος. Η σύγχρονη βιβλιογραφία πραγματεύεται εκτενώς 
την ενσωμάτωση της χρήσης των ΠΔΚ στην ιατρική και διαιτολογική πρακτική, με ιδιαίτερη έμφαση: i) στην 
προβλεπτική ακρίβεια εμφάνισης ασθενειών έπειτα από την ενσωμάτωση της πληροφορίας των ΠΔΚ σε 
αντίστοιχα μοντέλα, ii) στο ρόλο των σύγχρονων μεθοδολογικών προσεγγίσεων για την εξαγωγή αξιόπιστων 
αποτελεσμάτων και την αντίστοιχη επίδραση περιορισμών όπως η γενεαλογική καταγωγή και το μέγεθος του 
πληθυσμού αναφοράς, iii) στην εξοικείωση των επαγγλματιών υγείας με τη σημασία της γενετικής πληρο-
φορίας και iv) στην κάθε φορά προσαρμοσμένη στα υπάρχοντα πλαίσια ερμηνεία των αποτελεσμάτων των 
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Abstract: Background: Dietary and lifestyle habits constitute a significant contributing factor in the
formation of anthropometric and biochemical characteristics of overweight and obese populations.
The iMPROVE study recruited overweight and obese Greek adults and investigated the effect of
gene–diet interactions on weight management when adhering to a six-month, randomized nutritional
trial including two hypocaloric diets of different macronutrient content. The present paper displays
the design of the intervention and the baseline findings of the participants’ dietary habits and
their baseline anthropometric and biochemical characteristics. Methods: Baseline available data
for 202 participants were analyzed and patterns were extracted via principal component analysis
(PCA) on 69-item Food-Frequency Questionnaires (FFQ). Relationships with indices at baseline
were investigated by multivariate linear regressions. A Lifestyle Index of five variables was further
constructed. Results: PCA provided 5 dietary patterns. The “Mixed” pattern displayed positive
associations with logBMI and logVisceral fat, whereas the “Traditional, vegetarian-alike” pattern
was nominally, negatively associated with body and visceral fat, but positively associated with HDL
levels. The Lifestyle Index displayed protective effects in the formation of logBMI and logGlucose
levels. Conclusions: Dietary patterns and a Lifestyle Index in overweight and obese, Greek adults
highlighted associations between diet, lifestyle, and anthropometric and biochemical indices.

Keywords: overweight; obesity; adults; dietary patterns; lifestyle index; health status; online assessment
tool; nutritional intervention; weight management

1. Introduction

The past decades have marked a noticeable increase in adult overweight and obesity.
Current epidemiological evidence suggests that more than half of the adult in the European
population presents a body mass index (BMI) of above 25 kg/m2 and is, therefore, classified
in the category of overweight [1]. Factors relating to increased body weight vary, including
genetic predisposition, lifestyle habits, and environmental conditions, as well as their
respective interplay.

The role of dietary habits in overweight and obesity development has been extensively
studied in populations of various ages and ethnicities [2]. It is widely established that
consumption of energy-dense foodstuffs and/or products with high sugar or fat content is
positively correlated with increased weight and weight management [3]. Apart from habit-
ual dietary preferences, adherence to specific dietary patterns, such as the Mediterranean
or the Western diets, has also been associated with long-term weight management. In their
2017 review, Mu et al. demonstrated that diets rich in fruits and vegetables are correlated
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with lower values of BMI, whereas higher consumption of meats and high-fat products are
associated with increased BMI [2]. In the same context, Cena and Calder examined the com-
ponents of constructing a healthy diet and its relation to general health status. Their 2020
review concluded that diets including fruits, vegetables, and plant-based foods, among
others, such as the Mediterranean and Asian diets, reduce the risk of non-communicable
diseases (NCDs) development [4].

Additionally, the identification of adherence to specific dietary patterns has been
shown to be related to lifestyle parameters, namely depression and sleep characteristics. Li
et al. showed that adherence to balanced dietary patterns including whole-grain products,
fish, fruit, and vegetables was related to decreased risk of depression appearance, in
contrast with adherence to western-diet alike patterns with elevated content in processed
products and red meat [5]. Moreover, Godos et al. (2021) showed that attrition to similar,
balanced dietary patterns was associated with enhanced sleep habits and sleep quality [6].

The effect of dietary habits has recently been incorporated in the attempt to collectively
evaluate various lifestyle characteristics, via the construction of Lifestyle Indices (LI).
Creation of LI is gaining more and more ground in recent literature and allows for the
evaluation of the interconnected effect of multiple variables on phenotypic traits, such
as obesity, cognitive abilities [7], development of other NCDs, such as cardiovascular
disease [8] and overall mortality rates. Research studies including dietary habits in lifestyle
indices are currently gaining more ground. Navarro et al., demonstrated the relationship
between a maternal healthy lifestyle index, including calculation of the Healthy Eating
Index (HEI), increased physical activity, pre-pregnancy BMI, smoking and alcohol drinking
habits and the development of obesity in their offspring. Increased values of the index
were negatively associated with obesity development during childhood [9]. Moreover,
higher scores of a lifestyle index comprising of age, sex, smoking, drinking and exercise
habits, sleep quality and BMI were associated with increased absolute mortality risk of
older adults in Europe, United States, and the United Kingdom [10].

In this context, the present analyses represent the baseline results deriving from
the iMPROVE study. The iMPROVE study, as a whole, attempts to evaluate gene–diet
interactions in observed weight management, weight loss, body composition, and the
lifestyle characteristics of a sample of overweight and obese Greek adults, adhering to
one out of two hypocaloric dietary regimens of different macronutrient content, for a
total duration of 6 months. The present article seeks to: (a) display the design, as well as
the aims and objectives of the iMPROVE study and (b) evaluate the sample population’s
baseline dietary habits and potential relations with biochemical biomarkers. These analyses
constitute the first step in assessing the effect of dietary habits on the participants’ observed
weight loss and further associate them with characteristics of genetic predisposition.

2. Materials and Methods

The Greek iMPROVE study constitutes a six-month randomized clinical trial, a nutri-
tional intervention focusing on the investigation of gene–diet interactions on body weight
regulation and lifestyle parameters. More specifically, the study aims at evaluating the role
of target-genes in overweight and obese, Greek adults, under different dietary interven-
tions. The study was approved by the Research Ethics Committee of Harokopio University
of Athens (Protocol Number: 1800/13-06-2019) and was conducted at the premises of
Harokopio University during the period 2020–2021. Recruitment took place in spring 2020
and handling and analysis of the data was, then, carried out during 2021. Moreover, the
study was registered with the ClinicalTrials.gov database of the United States of America
National Health Institute’s (NIH) National Library of Medicine (ClinicalTrials.gov Identi-
fier: NCT04699448). Due to the inclusion of human participants throughout its entirety, the
trial was conducted adhering to the principles outlined in the Declaration of Helsinki. The
study consisted of a sample of 202 overweight and obese, Greek adults, residing at the re-
gion of Attica at the time of recruitment. In this context, the present article summarizes the

ClinicalTrials.gov
ClinicalTrials.gov
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baseline characteristics of the study population and the associations observed between the
participants’ dietary habits and biomarkers of glycemic and lipidemic control at baseline.

2.1. Nutritional Intervention Design and Study Population

The overall aims of the iMPROVE study are summarized in the following: (a) To inves-
tigate the effect of adhering to two hypocaloric dietary regimens of different macronutrient
content on the observed weight loss of overweight and obese adults; (b) to investigate
gene–diet interactions concerning the weight management and various lifestyle charac-
teristics of the study population; and (c) to investigate the utility of an original, online
assessment tool as a way of long-distance evaluation of the volunteers’ progress. In this
spectrum, the objectives of the study were formed as follows: (a) To design a six-month,
randomized clinical trial including overweight and obese adults, who were blindly re-
cruited to following one out of two different hypocaloric dietary regimens and who were
subject to two in-person follow-up meetings, conducted at three and six months (middle
and end) after the beginning of the intervention; and (b) to create an original assessment
tool to further monitor the monthly, self-reported progress of the volunteers throughout
their participation in the intervention. The design of the study is shown in Figure 1.

Figure 1. Flow chart of the iMPROVE Study. After completion of the baseline meeting, each participant was randomly
allocated to one of the two proposed dietary intervention groups. Those referred either to a dietary regimen high in
carbohydrates/low in fat, with 60% of energy intake deriving from carbohydrates, 18% deriving from protein, and 22%
deriving from fat, or a dietary regimen high in protein, with 40% of the total energy intake coming from carbohydrates,
30% deriving from protein, and 30% deriving from fat. Nutritional needs for each participant were calculated using the
Mifflin equation and adjusted for their reported physical activity level (PAL). According to the guidelines of the National
Institutes of Health (NIH) [11], optimal weight loss should take place aiming at a mean weight loss of 0.5 to 1 kg per week,
which is translated to a 7500 kcal reduction in the individual’s weekly energy intake, or a 500 kcal reduction on a daily basis.
Therefore, daily individual nutritional needs for each participant were further reduced by 500 kcal. The team of Harokopio
University of Athens created three categories of proposed hypocaloric diets with a mean energy content of 1500 kcal, 1800
kcal, or 2000 kcal. Six different versions of the proposed diets, one for each intervention month, were created to allow for
monthly renewal of the proposed diets, based on the participants’ observed weight loss and dietary habits and/or tastes.
The proposed diets concerned a 7-day pattern to be repeated for each month and mainly adhered to the Mediterranean
pattern, including the daily consumption of 3 to 5 portions of fruit and vegetables and 1 to 2 portions of dairy products and
the weekly consumption of 2 to 3 portions of grains, fish, and chicken, while limiting the consumption of red meat to 1 meal
per week.
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Inclusion criteria for participation in the study consisted of: (a) age above 18 years old
at the time of recruitment; (b) existence of a body mass index (BMI) of above 25 kg/m2;
(c) no reporting of extreme weight loss in the 3 to 6 months prior to the beginning of
the intervention; and (d) maintenance of a stable level of physical activity prior to and
throughout the duration of the intervention. Similarly, the exclusion criteria included:
(a) For women, the existence of pregnancy or lactation, or intention of becoming pregnant
in the 6 months during the intervention period; (b) the existence of diagnosed comorbidities
related to increased body weight or disturbed dietary intake (i.e., diagnosed type 1 or
2 diabetes mellitus, cardiovascular disease, gastrointestinal disorders, mental illness or
disorders related to dietary intake); (c) parallel intake of dietary supplements aiming at
body weight loss; and (d) parallel participation in a different research study related to
weight management and/or dietary intake.

Prospective participants received oral information on the proceedings and the aims of
the trial and provided written consent prior to enrolment. All volunteers were asked to visit
the premises of Harokopio University of Athens in order to attend the baseline assessment
session and the two subsequent, in-person follow-up meetings at the middle and end of the
intervention period. All meetings were conducted in the presence of a nutrition health-care
professional (dietitian/nutritionist). All in-person sessions included clinical examination,
anthropometric measurements, and collection of fasting blood samples. Participants
were expected to use the originally created online assessment tool in order to complete
questionnaires regarding anthropometric and lifestyle parameters at baseline and at the
end of each month. Following successful completion of all monthly questionnaires, the
participants were allowed access to the proposed dietary regimen at the beginning of each
intervention month.

Furthermore, each participant was allocated a nutrition-expert contact who monitored
their adherence to the patterns (Scheme 1) and progress by: (a) Conducting biweekly
follow-up phone calls and monthly 24-h dietary recalls in order to discuss the potential
concerns and provide advice, as to ensure maximum adherence to the proposed diet,
(b) monitoring the monthly completion of all online questionnaires; (c) evaluating the
participant’s self-reported monthly weight; and (d) renewing and allowing access to the
proposed diet at the online platform.

Scheme 1. Macronutrient distribution of the proposed diets.

2.2. Online Assessment Tool

For the purposes of the study, the team of Harokopio University of Athens created an
online assessment tool including all the questionnaires that required completion from the
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volunteers, both at baseline and at a monthly level. The proposed diet was administered to
the participant via access to the platform and was renewed monthly, once all questionnaires
of the preceding month were checked by the nutrition expert. Access to the original, online
assessment tool was granted with unique usernames and passwords for each volunteer.
During the baseline session, each volunteer was taken on a virtual tour of the online
assessment tool and was explicitly shown how to access and use it, by the nutrition expert.

At baseline, participants were required to complete questionnaires providing infor-
mation on: (a) their medical history; (b) demographic characteristics; (c) feeling of satiety,
by completing a 5-scale short questionnaire; (d) adherence to the Mediterranean dietary
pattern, by completing the questionnaire of the MedDiet Score [12]; (e) depression char-
acteristics, by completing the DEPR-S-10 Questionnaire [13]; (f) characteristics of quality
of life and health status, by completing the short version of the SF-12 Questionnaire [14];
(g) characteristics of quality of sleep, by completing the Athens Insomnia Scale Ques-
tionnaire [15]; (h) dietary habits, by completing a 69-item Food Frequency Questionnaire
(FFQ) [16]; and (i) physical activity habits, by completing the short version of the IPAQ
Questionnaire [17]. Completion of the SF-12, sleep and IPAQ Questionnaires at a monthly
basis were also a prerequisite prior to the renewal of the proposed diet. Moreover, at the
end of each month participants were further called to insert information on their anthropo-
metric measurements (i.e., current weight, waist and hip circumference measurements),
feeling of satiety and self-reported adherence to the proposed diet during the past month.

2.3. Clinical Examination and Anthropometric Measurements

During all three in-person meetings, clinical examination and anthropometric measure-
ments were carried out by the trained dietitians or health-care or nutrition experts, using
suitable equipment and standardized techniques. Clinical examination of the participants
included: (a) evaluation of their physical status; and (b) blood pressure measurements,
conducted after ensuring that the participant was at a calm state and at their bare, left
upper arm, while sitting in an upright position with elevated feet and the arm supported
at heart level.

The anthropometric data collected included: (a) Height measurements to the nearest
0.1 cm, using a portable stadiometer, where the participant was barefoot, with relaxed
shoulders and looking straight ahead; (b) weight measurements to the nearest 0.1 kg, using
the scales of the Tanita BC-418 Segmental Body Composition Analyzer, where the partici-
pant was barefoot and maintaining light clothing; (c) waist measurements (between the
twelfth rib and the iliac crest), using a non-extensible soft tape; and (d) hip measurements,
at the widest point of the hips, using a non-extensible soft tape. Participants were further
shown and taught how to properly conduct the waist and hip circumference measurements,
in order to monitor their progress and report it in the monthly anthropometric measure-
ments’ online questionnaire. Body composition analysis for individual participants was
conducted via bioelectrical impedance analysis and more specifically, by using the Tanita
BC-418 Segmental Body Composition Analyzer. The participants were refrained from food
or water intake for at least two hours prior to the measurement conduct, be barefoot and
maintain light clothing without any metal objects. Body composition data were acquired
for each volunteer including body fat percentage, amount of body fat in kilos, distribu-
tion of body fat in the trunk and the limbs, body water percentage, and fat free mass.
Body mass index (BMI) was calculated via dividing the weight (kg) by the square height
(in m2) for each participant and subjects were classified to the categories of: overweight
(25 kg/m2 ≤ BMI < 30 kg/m2), obese with class I obesity (30 kg/m2 ≤ BMI < 35 kg/m2),
obese with class II obesity (35 kg/m2 ≤ BMI < 40 kg/m2), or obese with class III obesity
(BMI ≥ 40 kg/m2).

2.4. Biochemical Analyses

Upon arrival to an in-person meeting and after following an 8-h fasting, a blood sample
of 23 mL was collected from the antecubital vein of the participant by a trained health-care
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professional, following blood pressure measurements. Hematological biomarkers and
biomarkers of biochemical profile were analyzed. All remaining samples were stored at
−80 ◦C for future analyses. Low-density cholesterol (LDL-C) was calculated using the
Friedewald Equation.

2.5. Genotyping Analyses

The buffy coat samples isolated for each participant were used for DNA extraction,
via use of the Invitrogen iPrep Purification Instrument and the Invitrogen iPrep PureLink
gDNA Blood Kit [18]. Isolated samples were stored at −20 ◦C for a period of up to two
months after extraction and prior to genotyping. Samples were stored at −80 ◦C, for a
longer period and future analyses. All samples were sent for genome-wide sequencing
using the Axiom Precision Medicine Diversity Research Array [19], which provided data
for over 850,000 SNPs, deletions, and CNVs.

2.6. Dietary Assessment

Assessment of dietary intake at baseline took place by completing the validated 69-
item Food Frequency Questionnaire (FFQ) in the online assessment tool. Dietary assessment
and evaluation of subsequent adherence to the proposed diet was conducted monthly via:
(a) A 24-h dietary recall, carried out by the nutrition expert; and (b) completion of the
5-scale self-reported adherence questionnaire, via use of the online assessment platform.

2.7. Physical Activity Assessment

Physical activity levels at baseline were assessed by completing the short version of
the International Physical Activity Questionnaire (IPAQ) on the online platform. The same
questionnaire was completed at the end of each intervention month.

2.8. Statistical Analysis

Data analyses were conducted using the Statistical Package for Social Sciences (SPSS),
version 23 [20], as well as the R statistical package [21]. Dietary patterns were extracted by
conducting principal component analysis (PCA) on 32 food groups deriving from the data
of the FFQ. The Varimax orthogonal rotation was used and the KMO and Bartlett’s test
was implemented to evaluate data adequacy. Five dietary patterns were set to be extracted
with Eigen values bigger than 1. Variable distribution was evaluated via the Shapiro–
Wilk and Kolmogorov–Smirnov tests. Differences in mean/median values of variables
within the two sexes were evaluated using the Mann–Whitney test. We further tested
for potential associations between the extracted patterns and a variety of anthropometric
and biochemical indices, via multivariate linear regressions. Non-normally distributed
variables were log-transformed. We further examined the potential associations between
the extracted patterns and several indices, by separating them into tertiles and testing for
associations using the parametric ANOVA test and the non-parametric Kruskal–Wallis test,
depending on the distribution of the examined variable. After analyzing the data for the
entirety of the sample, a novel Lifestyle Index was constructed including variables found
to be correlated with logBMI and body fat percentage, based on Pearson’s chi-square test
values. Further association tests (i.e., multivariate regressions) were conducted to assess the
potential relationship between the Lifestyle Index and clinical and biochemical biomarkers.
The level of statistical significance for all analyses was set at α = 0.05 and results were also
interpreted for the adjusted cut-off value of a = 0.05/number of patterns extracted (i.e.,
a = 0.05/5 = 0.01).

3. Results
3.1. Descriptive Statistics

The entirety of the study population’s anthropometric, clinical, dietary, and lifestyle
characteristics are presented in Tables 1 and 2. Median ± IQR is presented for all non-
normally distributed variables and mean ± standard deviation (SD) is presented for the
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variables following the normal distribution. Out of the 235 volunteers expressing interest to
participate in the study, data are shown for 202 eligible subjects who successfully attended
the baseline meeting, completed the majority of the baseline questionnaires using the
online tool, and were recruited in one of the two intervention arms. The sample size of
the 202 individuals assures adequate power to detect statistical significance. Our baseline
sample consisted of 142 women (70.29%) and 60 men (29.7%), with a median age of
47 years old. The majority of participants were married (60.9%), with more than half of
our sample reporting having higher education (61.9%) and less than 3% reporting having
no acquired education at all. The vast majority of the participants were reported as non-
smokers (151 non-smokers vs. 50 smokers, out of 201 participants with available data). The
estimated physical activity level showed that roughly half of the subjects were leading a
moderately active way of life (104 out of the 199 participants with available data), with
about 32% reporting a sedentary lifestyle. All 202 eligible volunteers were blindly recruited
in the intervention groups, with 46.5% following the high-carbohydrate/low-fat diet and
53.5% adhering to the high-protein diet.

Table 1. Characteristics of the iMPROVE cohort by sex.

n

Smoking Physical Activity Categories Diet Group

Smokers Non-Smokers Low Moderate Vigorous High
Carbohydrate/Low-Fat High Protein

Total 50 151 64 104 31 94 108
Women 38 103 43 76 30 74 68
Men 12 48 21 28 11 20 40

Table 2. Anthropometric, clinical, dietary characteristics and characteristics of depression, quality of sleep, and health status
in the iMPROVE cohort, by sex.

Variable Total Women Men p-Value
n Median IQR n Median IQR n Median IQR

Age 202 47 15 142 47.50 14 60 45.78 * 17 * p > 0.05 **
SBP (mmHg) 196 121.00 21 139 117.00 19 57 131.00 21 p < 0.001 **
DBP (mmHg) 196 80.84 * 9.86 * 139 78.68 * 9.05 * 57 86.09 * 9.85 * p < 0.001 **
Pulse Rate (Beats per minute) 196 74.99 11.38 139 74.00 16 57 73.00 14 p > 0.05 **
Anthropometric Characteristics
Weight (kg) 202 87.10 26 142 82.80 18 60 100.65 29 p < 0.001 **
BMI (kg/m2) 202 31.34 6.9 142 31.34 6.9 60 31.33 7.1 p > 0.05 **
Body fat (%) 202 37.95 * 7.8 * 142 41.50 * 5.4 * 60 29.55 * 5.8 * p < 0.001 **
Body fat (kg) 202 32.95 13.3 142 34.85 12.8 60 29.05 14.5 p < 0.002 **
Fat free mass(kg) 202 52.05 18 142 48.50 7 60 71.20 15 p < 0.001 **
Total body water (kg) 202 38.05 13 142 36.35 * 4.03 * 60 52.10 11 p < 0.001 **
Visceral fat 202 10.00 6 142 9.74 3.16 60 14.50 5.69 p < 0.001 **
Upper body fat (%) 201 36.60 10 141 38.50 8 60 32.10 8 p < 0.001 **
Upper body fat (kg) 201 17.60 7 141 17.30 7 60 18.00 7 p > 0.05 **
Upper body fat-free mass (kg) 201 28.80 9 141 27.67 * 2.75 * 60 38.00 7 p < 0.001 **
Waist circumference (cm) 185 99.00 17 130 96.50 15 55 105.00 17 p < 0.001 **
Hip circumference (cm) 185 114.50 14 130 115.75 16 55 114.00 10 p > 0.05 **
WHR 185 0.85 0.12 130 0.83 0.09 55 0.92 0.09 p < 0.001 **
Biochemical Biomarkers
Fasting glucose (mg/dL) 193 92.00 10.50 135 92.00 10.00 58 95.00 16.25 p < 0.001 **
Urea (mg/dL) 193 28.00 9.00 135 27.00 9.00 58 30.12 * 6.01 * p < 0.001 **
Creatinine (mg/dL) 193 0.68 0.21 135 0.62 * 0.10 * 58 0.85 * 0.12 * p < 0.001 **
Uric acid(mg/dL) 193 4.70 1.45 135 4.30 1.10 58 5.75 * 1.00 * p < 0.001 **
Total cholesterol (mg/dL) 193 177.96 * 33.57 * 135 179.32 * 31.98 * 58 174.79 * 37.13 * p > 0.05 **
HDL cholesterol (mg/dL) 193 49.00 16.50 135 52.00 17.00 58 42.00 14.50 p < 0.001 **



Nutrients 2021, 13, 3495 8 of 24

Table 2. Cont.

Variable Total Women Men p-Value
n Median IQR n Median IQR n Median IQR

LDL cholesterol (mg/dL) 193 105.20 38.70 135 105.00 38.40 58 108.00 42.05 p > 0.05 **
Triglycerides (mg/dL) 193 90.00 5.00 135 86.00 51.00 58 105.50 86.50 p < 0.001 **
Total bilirubin (mg/dL) 193 0.37 0.23 135 0.35 0.23 58 0.45 0.29 p < 0.001 **
Direct bilirubin (mg/dL) 193 0.16 0.08 135 0.15 0.09 58 0.17 0.08 p < 0.001 **
Serum protein (g/dL) 193 6.70 0.50 135 6.70 0.45 58 6.60 0.60 p > 0.05 **
Serum albumin (g/dL) 193 4.20 0.30 135 4.40 0.50 58 4.20 0.40 p < 0.001 **
SGOT/AST (IU/L) 193 16.00 6.00 135 15.00 5.00 58 18.00 5.25 p < 0.001 **
SGPT/ALT (IU/L) 192 15.00 11.75 134 13.00 9.00 58 22.00 16.25 p < 0.001 **
Lifestyle Characteristics
AIS Score *** 140 5.00 7.00 97 5.00 7.00 43 4.00 7.00 p > 0.05 **
CESD-R-10 Scale 201 6.00 5.00 141 6.00 4.00 60 5.00 5.75 p < 0.001 **
SF PCS 12 Score 145 51.98 12 99 50.37 11 46 53.82 8 p < 0.001 **
SF MCS 12 Score 145 49.37 15 99 49.44 16 46 46.62 * 8.36 p > 0.001 **

* The selected variables follow the normal distribution and are presenting as mean ± standard deviation. ** Statistically significant
differences between the sexes were assessed via calculation of the Mann–Whitney test. *** The Athens Insomnia Scale Score was calculated
only for participants reporting the referred characteristics ≥3 times/week for the past month. SBP: systolic blood pressure; DBP: diastolic
blood pressure; BMI: body mass index; WHR: waist-to-hip ratio; HDL: high-density lipoprotein; LDL: low-density lipoprotein; SGOT/AST:
glutamic oxaloacetic transaminase/aspartate transaminase; SGPT/ALT: glutamate pyruvate transaminase blood/alanine transaminase;
AIS: Athens Insomnia Scale; CESD-R-10: Center for Epidemiologic Studies Depression Scale Revised—10; SF PCS 12: Short Form (Health
Survey) Physical Component Score 12; SF MCS 12: Short Form (Health Survey) Mental Component Score 12.

Overweight participants constituted 38.6% of our overall sample, with the remaining
61.4% spreading across the three different obesity categories (35.1%, 14.9%, and 11.4%
of the participants classified as Class I, II, or III obese, respectively). Median BMI was
calculated at 31.34 kg/m2 and did not differ between men and women, whereas body
composition data displayed statistically significant differences between the two sexes, with
men reporting higher levels of fat-free mass (71.20 kg vs. 48.50 kg, p < 0.001) and total body
water (p < 0.001) and women presenting increased body fat values (41.40% vs. 29.55%,
p < 0.001). Although men were found to have increased waist-to-hip ratio (WHR) (0.92 vs.
0.83, p < 0.001) waist circumference in comparison to women (105 cm vs. 96.5 cm, p < 0.001),
hip circumference did not present significant differences. Similar differences were further
observed in the clinical characteristics, with men reporting higher levels of blood pres-
sure, fasting glucose (95 mg/dL vs. 92 mg/dL, p < 0.001), serum urea (30.12 mg/dL vs.
27.00 mg/dL, p < 0.001), creatinine (0.12 mg/dL vs. 0.10 mg/dL, p < 0.001), uric acid levels
(5,75 mg/dL vs. 4.30 mg/dL, p < 0.001), total triglycerides (105.5 mg/dL vs. 86 mg/dL,
p < 0.001), serum bilirubin (0.45 mg/dL vs. 0.35 mg/dL, p < 0.001), SGOT (18 IU/L vs.
15 IU/L, p < 0.001), and SGPT levels (22.00 IU/L vs. 13 IU/L, p < 0.001). Women presented
higher levels of HDL cholesterol (52.00 mg/dL vs. 42.00 mg/dL, p < 0.001) and serum
albumin levels (4.40 g/dL vs. 4.20 g/dL, p < 0.001).

3.2. Lifestyle Characteristics

The 8-item Athens Insomnia Scale (AIS) score on evaluation of sleep qualities was
calculated for participants who reported the selected outcomes more than three times per
week in the month leading to the beginning of the intervention. The AIS score presented
a median of 5 out of the scale maximum scoring of 24 and did not display statistically
significant differences between the sexes. Overall, participants did not express significant
irregularities neither in sleep quality, including sleep induction, total sleep duration, and
awakenings at night and expressed delayed sleep induction, nor in effects of sleep on
aspects of the next day (i.e., well-being, overall functioning, and sleepiness).

Contrary to the AIS score, the CESD-R-10 scale score on depression characteristics
showed that women displayed higher median values (scoring of 6 vs. 5, p < 0.001). The
majority of the participants did not display depression characteristics, such as feelings of
fear and helplessness, with the overall sample presented a mean CESD-R-10 score of 6,
with the scale maximum scoring calculated at 18. Moreover, the physical component of
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the SF-12 score on self-reported quality of life underlined increased levels in men than in
women (53, 82 vs. 50, 37, p < 0.001), whereas the mental component did not show important
dissimilarities. No statistically significant differences were found when the participants
were classified into the four different BMI groups (Figures 2 and 3).

Figure 2. Baseline scoring of the four lifestyle questionnaires, based on BMI categories.

Figure 3. Baseline scoring of the four lifestyle questionnaires, based on sex (* The presented variables
were statistically significantly different between the sexes.).
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As shown in Table 3. we further investigated the potential effect of the aforementioned
lifestyle aspects on logBMI and %body fat baseline levels. After adjusting for confounding
factors including age, sex, smoking habits, physical activity level and education years,
Only the physical component of the SF-12 questionnaire (SF PCS 12 Score) was found to be
associated with the characteristics of interest, displaying a negative effect on both logBMI
and %body fat values (β = −0.003, p < 0.001 and β = −0.218, respectively).

Table 3. Multivariate linear regression analyses on the relation between lifestyle characteristics and
BMI and body fat baseline values.

Variable
Model 1 *

β SE p-Value

logBMI
Athens Insomnia Scale Score 0.001 0.001 0.612
CESD-R-10 Scale 0.002 0.001 0.189
SF PCS 12 Score −0.003 0.001 <0.001
SF MCS 12 Score 0.001 0.001 0.217

Body fat (%)
Athens Insomnia Scale Score 0.188 0.128 0.143
CESD-R-10 Scale 0.175 0.100 0.083
SF PCS 12 Score −0.218 0.057 <0.001
SF MCS 12 Score 0.049 0.054 0.371

* Model 1: Adjusting for age, sex, smoking, physical activity level and education years.

3.3. Dietary Patterns

PCA on the available data of the 202 participants’ FFQs resulted in the identification
of five dietary patterns accounting for 40.34% of the sample’s total variance. The KMO
and Bartlett’s Test (p < 0.001) presented a Kaiser–Meyer–Olkin Measure of 0.726, indicating
sufficient data adequacy. All factor loadings for each component were above or approaching
a value of 0.3. As shown in Table 4, the 32 food groups formed based on the 69-item
questions, included in the analysis reflected the variety of foodstuffs consumed by the
sample population, including both widely consumed food categories such as meat and
cereals, as well as traditional Greek recipes (i.e., pastitsio, spinach rice, and homemade
pies). Alcohol and beer reported servings were included in the analysis, due to the sample’s
low median values (2 and 16 mL/d, respectively) and the lack of heavy drinkers.
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Table 4. Mean consumption and PCA factor loadings of the 32 FFQ-derived food groups.

Components

Mean Consumption
(Median. IQR) Food Group 1 2 3 4 5

Croissant (g/d) 5.2 (11.56)

Sweets 0.705
Chocolate (g/d) 12.85 (8.85)

Tarts (g/d) 10.00 (10.00)

Ice cream (g/d) 7.66 (24.64)

Mayonnaise (g/d) 1.11 (2.02) * Mayonnaise 0.664

White bread (g/d) 19.28 (17.28)

Refined Cereals 0.643

Cereals (g/d) 4.28 (4.28)

White rice (g/d) 10.53 (23.32)

Barley (g/d) 9.33 (30.00)

Burger bread (g/d) 3.00 (10.44) *

Chips (g/d) 4.66 (4.66)
Salty Snacks 0.628

Crackers (g/d) 1.33 (4.28)

Honey (g/d) 1.07 (4.66)

Sugary Snacks 0.596Soft drinks (mL/d) 28.69 (72.42) *

Fruit compost (g/d) 7.58 96.66) *

Tray Sweets (g/d) 10.00 (10.00) Tray Sweets 0.584

Pastitsio (g/d) 10.00 (10.00) Pastitsio 0.493

Potatoes (boiled.
cooked. not
fried) (g/d)

11.53 (25.53) Potatoes (boiled,
cooked, not fried) 0.469

Chicken (g/d) 32.14 (0.00) Chicken 0.388

Seed oil (g/d) 3.23 (8.09) *
Seed oil,

margarine, butter 0.374Margarine (g/d) 1.03 (2.46) *

Butter (g/d) 0.50 (1.00)

Light mayonnaise
(g/d) 0.71 (1.84) *

Light Products 0.367
Light cold
cuts (g/d) 2.00 (6.42)

Light soft
drinks (g/d) 22.00 (70.71)

Sausage (g/d) 1.08 (1.45) −0.342

Tomatoes (g/d) 64.28 (42.85)

Vegetables 0.640
Lettuce (g/d) 34.28 (34.28)

Broccoli (g/d) 21.42 (14.76)

Spinach (g/d) 6.00 (13.28)

Full fat
milk (mL/d) 43.46 (71.26)

Dairy 0.568Low fat milk 51.42 (154.28)

White cheese (g/d) 6.42 (17.28)

Eggs (g/d) 10.71 (7.38) Eggs 0.562

Oranges (g/d) 36.42 (97.95)

Fruits 0.525

Apples (g/d) 30.00 (80.66)

Bananas (g/d) 21.42 (57.61)

Winter fruit (g/d) 32.14 (86.42)

Summer fruit 32.14 (64.28)
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Table 4. Cont.

Components

Mean Consumption
(Median. IQR) Food Group 1 2 3 4 5

Whole bread (g/d) 19.28 (17.28)
Non-refined

cereals
0.443Brown rice (g/d) 6.72 (14.73) *

Whole pasta (g/d) 8.54 (9.33)

Large fish (g/d) 10.00 (22.14) Large fish 0.432

Olive oil (g/d) 45.00 (45.00) Olive oil 0.345

Dried fruit (g/d) 3.35 (6.88) * Dried fruit 0.330

Coffee (mL/d) 240.00 (240.00) Caffeinated
Beverages −0.504

Tea (mL/d) 16.00 (51.42)

Seafood (g/d) 10.00 (10.00) Seafood 0.685

French Fries (g/d) 4.83 (15.53) French Fries 0.648

Homemade
pies (g/d) 10.00 (0.00)

Pies 0.510
Other pies (g/d) 10.00 (10.00)

Beef (g/d) 10.00 (22.14)

Red Meat 0.499
Minced beef 25.71 (17.71)

Pork (g/d) 10.00 (22.14)

Lamb (g/d) 5.83 (13.84)

Alcohol (mL/d) 2.00 (6.42)
Alcohol and Beer 0.398

Beer (mL/d) 16.00 (51.42)

Legumes (g/d) 64.28 (44.28) Legumes 0.698

Spinach and
Rice (g/d) 16.66 (53.57) Traditional, Greek

recipes 0.695
Green Peas (g/d) 42.85 (29.52)

Olives 1.00 (3.21) Olives 0.645

Small fish (g/d) 10.00 (32.14) Small fish 0.584

Nuts (g/d) 3.33 (28.81) Nuts 0.343

Fruit Juice (g/d) 16.00 (51.42) Fruit Juice 0.311

Total Variance
Explained (%) 14.74% 9.87% 6.26% 4.96% 4.49%

* The selected variables are presented as mean ± standard deviation (SD).

The dietary patterns provided are summarized in the following (Table 5): (a) The
“Mixed” pattern (total variance explained: 14.74%) which reported the consumption of a
variety of food groups including both light products and processed products high in fat and
sugars (i.e., sweets, mayonnaise, refined cereals, salty snacks, sugary snacks, tray sweets,
the Greek pastitsio, potatoes, chicken, seed oil, margarine, butter, light products, and
sausage); (b) the “Mediterranean-proxy” (or Med-proxy) pattern (total variance explained:
9.87%), including the consumption of food groups usually found in the Mediterranean diet,
such a vegetables, dairy, eggs, fruits, non-refined cereals, large fish, olive oil, dried fruit,
and caffeinated drinks, such as coffee and tea; (c) the “Eating out” pattern (total variance
explained: 6.26%), consisting of food group combinations frequently consumed outside
the household, i.e., seafood, French fries, pies, red meat and alcohol; (d) the “Traditional,
vegetarian-alike” pattern (total variance explained: 4.96%), reporting consumption of
legumes and traditional Greek recipes (i.e., spinach rice and cooked green peas); and
(e) “High in unsaturated fats and fruit juice consumption” pattern (total variance explained:
4.49%), consisting of olives, small fish, nuts and fruit juice, with the first, high in unsaturated
fats and fruit juice consumption, groups presenting the greatest factor loadings.
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Table 5. Multivariate linear regressions between the extracted dietary patterns and indices of anthropometric and biochemi-
cal characteristics.

Model 1 Model 2 Model 3

β SE p-Value β SE p-Value β SE p-Value

LogBMI
Mixed Pattern 0.019 0.005 <0.001 0.017 0.005 0.001 0.015 0.005 0.009

Med-proxy Pattern −0.002 0.005 0.758 <0.001 0.005 0.937 −0.001 0.006 0.867
Eating-out Pattern 0.004 0.005 0.366 0.004 0.005 0.432 0.001 0.005 0.780

Traditional, vegetarian-alike
Pattern −0.005 0.005 0.272 −0.008 0.005 0.132 −0.008 0.005 0.132

High in unsaturated fats and
fruit juice consumption Pattern −0.005 0.005 0.338 −0.006 0.005 0.269 −0.006 0.005 0.281

Body fat %
Mixed Pattern 1.179 0.392 0.003 −0.149 0.230 0.516 −0.195 0.259 0.451

Med-proxy Pattern −0.010 0.423 0.982 0.261 0.234 0.266 0.351 0.255 0.171
Eating-out Pattern 0.316 0.399 0.430 0.005 0.217 0.982 −0.045 0.232 0.848

Traditional, vegetarian-alike
Pattern −0.770 0.387 0.048 −0.476 0.221 0.032 −0.402 0.236 0.090

High in unsaturated fats and
fruit juice consumption Pattern −0.335 0.400 0.404 0.054 0.220 0.808 0.167 0.236 0.480

LogVisceral Fat
Mixed Pattern 0.032 0.009 0.001 −0.002 0.004 0.633 <0.001 0.004 0.980

Med-proxy Pattern −0.002 0.010 0.808 0.002 0.004 0.629 0.004 0.004 0.302
Eating-out Pattern 0.011 0.010 0.266 0.002 0.004 0.548 0.002 0.004 0.642

Traditional, vegetarian-alike
Pattern −0.018 0.009 0.058 −0.008 0.004 0.032 −0.007 0.004 0.088

High in unsaturated fats and
fruit juice consumption Pattern −0.007 0.010 0.450 0.002 0.004 0.522 0.006 0.004 0.139

logCreatinine(mg/dL)
Mixed Pattern 0.008 0.005 0.136 0.008 0.006 0.143 0.012 0.006 0.048

Med-proxy Pattern −0.008 0.006 0.150 −0.010 0.006 0.066 −0.013 0.006 0.029
Eating-out Pattern −0.001 0.005 0.897 0.001 0.005 0.848 0.001 0.006 0.875

Traditional, vegetarian-alike
Pattern −0.003 0.005 0.549 −0.008 0.005 0.155 −0.008 0.006 0.149

High in unsaturated fats and
fruit juice consumption Pattern 0.002 0.005 0.648 0.001 0.005 0.802 0.001 0.006 0.876

logHDL Cholesterol (mg/dL)
Mixed Pattern −0.020 0.007 0.006 −0.013 0.007 0.079 −0.016 0.009 0.057

Med-proxy Pattern −0.005 0.008 0.528 −0.009 0.008 0.257 −0.010 0.008 0.245
Eating-out Pattern 0.009 0.007 0.229 0.011 0.007 0.135 0.013 0.008 0.082

Traditional, vegetarian-alike
Pattern 0.013 0.007 0.054 0.017 0.007 0.017 0.016 0.008 0.039

High in unsaturated fats and
fruit juice consumption Pattern 0.005 0.007 0.483 0.006 0.007 0.445 0.003 0.008 0.688

logTriglycerides(mg/dL)
Mixed Pattern 0.038 0.014 0.007 0.021 0.015 0.155 0.033 0.016 0.048

Med-proxy Pattern −0.008 0.015 0.579 −0.003 0.015 0.850 −0.002 0.016 0.908
Eating-out Pattern <0.001 0.014 0.998 −0.003 0.014 0.816 −0.007 0.015 0.622

Traditional, vegetarian-alike
Pattern 0.009 0.014 0.509 0.006 0.014 0.662 0.015 0.015 0.316

High in unsaturated fats and
fruit juice consumption Pattern 0.002 0.014 0.875 <0.001 0.015 0.976 −0.004 0.016 0.788

logTotal Bilirubin(mg/dL)
Mixed Pattern −0.002 0.015 0.913 0.001 0.017 0.971 0.013 0.018 0.472

Med-proxy Pattern −0.036 0.016 0.025 −0.043 0.017 0.010 −0.042 0.018 0.019
Eating-out Pattern −0.005 0.015 0.735 −0.001 0.015 0.943 −0.005 0.016 0.772

Traditional, vegetarian-alike
Pattern 0.032 0.015 0.031 0.030 0.016 0.059 0.033 0.016 0.047
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Table 5. Cont.

Model 1 Model 2 Model 3

β SE p-Value β SE p-Value β SE p-Value

High in unsaturated fats and
fruit juice consumption Pattern 0.018 0.016 0.255 0.015 0.016 0.357 0.016 0.017 0.356

logSerum protein(g/dL)
Mixed Pattern 0.004 0.002 0.036 0.003 0.002 0.187 0.005 0.002 0.029

Med-proxy Pattern −0.001 0.002 0.575 −0.001 0.002 0.720 <0.000 0.002 0.829
Eating-out Pattern −0.001 0.002 0.603 −0.001 0.002 0.599 −0.002 0.002 0.273

Traditional, vegetarian-alike
Pattern 0.002 0.002 0.164 0.002 0.002 0.217 0.003 0.002 0.136

High in unsaturated fats and
fruit juice consumption Pattern 0.001 0.002 0.525 0.001 0.002 0.530 <0.001 0.002 0.794

LogSGOT/AST(IU/L)
Mixed Pattern 0.024 0.011 0.029 0.024 0.012 0.043 0.028 0.012 0.022

Med-proxy Pattern 0.003 0.012 0.797 0.004 0.012 0.759 0.001 0.012 0.911
Eating-out Pattern −0.011 0.011 0.317 −0.009 0.011 0.393 −0.013 0.011 0.216

Traditional, vegetarian-alike
Pattern 0.003 0.011 0.811 −0.003 0.011 0.799 −0.004 0.011 0.735

High in unsaturated fats and
fruit juice consumption Pattern 0.006 0.011 0.603 0.004 0.012 0.735 0.003 0.011 0.824

logSGPT/ALT (IU/L)
Mixed Pattern 0.052 0.014 <0.001 0.049 0.016 0.002 0.070 0.016 <0.001

Med-proxy Pattern −0.009 0.016 0.570 −0.005 0.016 0.768 −0.006 0.017 0.740
Eating-out Pattern −0.003 0.015 0.816 −0.005 0.015 0.714 −0.009 0.015 0.555

Traditional, vegetarian-alike
Pattern 0.002 0.014 0.910 <0.001 0.015 0.996 <0.001 0.015 0.978

High in unsaturated fats and
fruit juice consumption Pattern 0.005 0.015 0.724 0.006 0.016 0.701 −0.002 0.016 0.919

Model 1: Adjusting for age and sex. Model 2: Adjusting for age, sex, smoking habits, physical activity level and logBMI (except for logBMI
values). Model 3: Adjusting for age, sex, smoking habits, physical activity level, logBMI, education years, family and professional status.

Nominal associations (p < 0.05) are described as follows: consumption of the “Mixed”
pattern was correlated with: (a) increased logBMI values, after adjustment for the con-
founding factors of all models (Model 1:β = 0.019, p < 0.001, Model 2:β = 0.017, p < 0.001,
Model 3: β = 0.015, p-value = 0.009; (b) increased levels of body fat percentage, in model
1 (β = 1.179, p = 0.003); (c) increased levels of the logVisceral fat in Model 1 (β = 0.032,
p = 0.001); (d) increased levels of logCreatinine, in Model 3 (β = 0.012, p = 0.048) (e) de-
creased values of HDL cholesterol in Model 1 (β = −0.020, p < 0.006); (f) increased levels of
logTriglycerides, in Models 1 (β = 0.038, p = 0.007) and 3 (β = 0.033, p = 0.048); (g) increased
levels of logSerum protein in Models 1 (β = 0.004, p = 0.036) and 3 (β = 0.005, p = 0.029);
and (h) increased levels of logSGOT/AST (Model 1: β = 0.024, p = 0.029, Model 2: β = 0.024,
p = 0.043, Model 3: β = 0.028, p-value = 0.022) and SGPT/ALT (Model 1:β = 0.052, p < 0.001,
Model 2: β = 0.049, p = 0.002, Model 3: β = 0.070, p < 0.001). The “Med-proxy” pattern was
found related with lower values of logCreatinine, in Model 3 (β = −0.013, p = 0.029) and
lower values of logTotal Bilirubin, in all models (Model 1: β = −0.036, p = 0.025, Model 2:
β = −0.043, p = 0.010, Model 3: β = −0.042, p = 0.019). The “Traditional, vegetarian-alike”
pattern was associated with: (a) reduced levels of body fat, in Models 1 (β = −0.770,
p = 0.048) and 2 (β = −0.476, p = 0.032); (b) decreased logVisceral fat values, in Model 2
(β = −0.008, p = 0.032); and (c) increased levels of logHDL cholesterol in models 2 and
3 (Model 2: β = 0.017, p = 0.017, Model 3: β = 0.016, p = 0.039). After evaluation for the
adjusted threshold of statistical significance (i.e., a = 0.05/5 = 0.01), statistically signifi-
cant associations remained for: (a) the “Mixed” pattern and increased logBMI, body fat
and logSGPT/ALT values; (b) the “Mixed” pattern and decreased logHDL cholesterol
values; and (c) the “Med-proxy” pattern and decreased levels of logTotal Bilirubin. Further
associations are displayed in Appendix A.
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After extracting the dietary patterns, we further explored the effect of their respec-
tive adherence to each anthropometric and biochemical biomarker, by separating them
into tertiles. As shown in Figures 4–7, increased adherence to the “Mixed” pattern was
associated with: (a) increased levels of logBMI (p = 0.003), (b) decreased levels of logHDL
cholesterol (p = 0.007), (c) increased levels of logSerum protein (p = 0.008). Additionally,
categorization in the higher tertile of the “Med-proxy” pattern was associated with lower
levels of logCreatinine (p = 0.011).

Figure 4. Percentile distribution and associations between the “Mixed” Pattern and logBMI values.

Figure 5. Percentile distribution and associations between the “Mixed” Pattern and logHDL values.
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Figure 6. Percentile distribution and associations between the “Mixed” Pattern and logSerum
Protein values.

Figure 7. Percentile distribution and associations between the “Med-proxy” Pattern and logCreati-
nine values.

3.4. Lifestyle Index (LI) Construction

Following extraction of the dietary patterns, we examined the potential relations
between different sets of variables, in order to evaluate the construction of a Lifestyle Index.
We examined potential correlations between the reported lifestyle questionnaire scores, the
extracted dietary patterns, and basic aspects, such as smoking and physical activity habits,
with anthropometric indices, such as BMI and body fat percentage. All variables under
examination were divided into categories, with higher values indicating favorable effects.
Continuous and nominal variables displaying positive correlations were dichotomized
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based on the sample’s reported median values (attribution of a value of 1 for scores below
the sample’s median and a value of 2 for scores above the observed median).

Variables displaying statistically significant (p < 0.05), positive correlations with either
logBMI of body fat percentage values included: the “Mixed” and “Med-proxy” dietary
patterns, the CESD-R-10 depression scale score, and the physical component of the SF-12
scored questionnaire. Subsequently, a Lifestyle Index was created, based on the sum of
the aforementioned, dichotomized variables and physical activity categories, as shown in
Equation 1. Smoking habits were not included in the Index creation, due to roughly 75%
of our sample being reported as non-smokers. Maximum score of the Lifestyle Index was
calculated at the value of 11. The Index was calculated for 141 participants and the sample
presented a median score of 8 and an IQR of 2.

Li f estyleIndex = Physical Activity Category + ”Mixed”pattern dichotomized score + ”Med
− proxy”dichotomized score + CESD − R − 10 dichotomized score + SF
− PCS dichotomized score

(1)

Variables displaying statistically significant (p < 0.05), positive correlations with either
logBMI of body fat percentage values included: the “Mixed” and “Med-proxy” dietary
patterns, the CESD-R-10 depression scale score and the physical component of the SF-12
scored questionnaire. Subsequently, a Lifestyle Index was created, based on the sum of
the aforementioned, dichotomized variables and physical activity categories, as shown in
Equation 1. Smoking habits were not included in the Index creation, due to roughly 75% of
our sample being reported as non-smokers.

As depicted in Table 6, the Lifestyle index presented strong associations, including an
inverse correlation with: (a) logBMI (β = −0.010. p=0.019), (b) logFasting glucose (Model
1: β = −0.009, p = 0.007. Model 2: β = −0.007. p = 0.036); and (c) logSGPT (β = −0.027,
p = 0.049). When looking at the sex-stratified analyses. Women displayed negative associa-
tions between the Index’s values and body fat percentage (Model 1: β = −0.911, p = 0.030).
logFasting glucose (Model 1: β = −0.011, p = 0.003. Model 2: β = −0.010, p = 0.007).
logSGOT/AST (Model 1: β = −0.017, p = 0.026. Model 2: β = −0.018, p = 0.023) and
logSGPT/ALT (Model 1: β = −0.039. p = 0.003, Model 2: = −0.038, p = 0.005). Men also
showed negative associations with logBMI (β = −0.015, p = 0.045) and body fat percentage
(Model 1: β = −1.123, p = 0.048).
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Table 6. Multivariate linear regressions between anthropometric and clinical characteristics and the constructed lifestyle index.

Model 1 Model 2

Total * Women Men Total ** Women Men

β SE p-Value β SE p-Value β SE p-Value β SE p-Value β SE p-Value β SE p-Value

logBMI
Lifestyle Index −0.010 0.004 0.019 −0.007 0.005 0.183 −0.015 0.007 0.045 − − − − −

Body fat (%)
Lifestyle Index −0.867 0.451 0.056 −0.911 0.414 0.030 −1.123 0.551 0.048 −0.307 0.393 0.436 −0.446 0.231 0.056 −0.446 0.339 0.572

logFasting glucose (mg/dL)
Lifestyle Index −0.009 0.003 0.007 −0.011 0.003 0.003 −0.005 0.006 0.429 −0.007 0.003 0.036 −0.010 0.004 0.007 <0.001 0.006 0.953

logSGOT (IU/L)
Lifestyle Index −0.006 0.009 0.534 −0.017 0.007 0.026 0.017 0.020 0.397 −0.006 0.010 0.518 −0.018 0.008 0.023 0.015 0.021 0.484

LogSGPT (IU/L)
Lifestyle Index −0.027 0.014 0.049 −0.039 0.013 0.003 <0.001 0.023 0.988 0.292 0.277 0.293 −0.038 0.013 0.005 0.003 0.024 0.895

* Model 1: Adjusting for age. ** Model 2: Adjusting for age and logBMI baseline values.
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4. Discussion

The present analyses display the design and the baseline population characteristics
and dietary habits of the iMPROVE study. Overall, our baseline sample of 202 volunteers
displayed satisfactory levels of lifestyle quality, with the majority of participants not
reporting depression symptoms or heavily disrupted sleep quality.

Five dietary patterns were identified, including: (a) a “Mixed” pattern; (b) a pattern
including food groups similar to those of the Mediterranean diet, entitled “Med-proxy”
pattern; (c) the “Eating-out” pattern consisting of food combinations usually found in
restaurants or fast-food environments (i.e., pies); (d) the “Traditional, vegetarian-alike”
pattern, characterized by plant-based, Greek, traditional recipes; and (e) the “High in
unsaturated fats and fruit juice consumption” pattern, including foods groups with high
unsaturated fats and magnesium content (i.e., small fish and nuts) and highlighting repre-
sentative habits of healthy snacking across Greek adults (i.e., olives, nuts and fruit juice).
Interestingly, while the “Mixed” pattern included a vast majority of processed foods with
added sugars and high fat content (i.e., chocolate, croissants, tray sweets, soft drinks,
chips, seed oil, margarine, and butter), it was also characterized by light products and
chicken and potatoes’ consumption. This can be potentially attributed to the representative
consumption of specific food groups by overweight and obese Greeks, who tend to adhere
to short-term, self-imposed attempts to follow a more balanced diet. The latter do not
result in successful weight management and/or weight loss efforts, but are exactly charac-
terized by increased consumption of light products and simple food combinations, such as
chicken and potatoes. The “Med-proxy” and the “Traditional, vegetarian-alike” patterns
are representative of the dietary habits of the Greek population, evidently influenced by the
Mediterranean diet and its increased content in fruit, vegetables, and legumes. Apparently,
due to its high sugar and fat content, the “Mixed” pattern was associated with higher levels
of anthropometric and biochemical characteristics. On the other hand, the plant-based,
traditional recipes presented negative associations with body fat and positive relations
with increased levels of HDL cholesterol. We further evaluated the within-group tertile
categorization of adherence to each pattern, showing that higher tertiles were related
to stronger associations for specific patterns, such as the positive relationship between
adherence to the “Mixed” pattern and logBMI levels and the negative relationship between
the increased adherence to the same pattern and logHDL values.

The concept of obese adults and the effect of dietary intake in the formation of their
cardiometabolic profile display great interest, with current literature to be reporting similar
findings to the ones outlined in the present study. Interestingly, the majority of studies
aiming at identifying dietary patterns in overweight/obese populations, usually provide
results for dietary habits adhering to the Western diet (including food groups with increased
content of processed foods and/or foods in high fat and sugar content) or to a more
balanced dietary pattern including fruit and vegetables, relating to higher and lower
values of BMI, respectively [2]. Such patterns may include food combinations each time
representative of the region of living, while maintaining a strong influence of the dietary
habits and combinations usually found in the Western and/or the Mediterranean diet. A
2021 study by Saghafi-Asi et al. investigating the relationship between dietary patterns
and biochemical biomarkers of 151 healthy obese Iranian adults, also underlined a positive
association between a “Western” dietary pattern with high fat and sugar content and BMI
and body fat levels [22]. Additionally, a different study in Romanian obese adults also
underlined the identification of a “high meat/high fat”, a “Western,” and a “Prudent”
pattern [23]. Similar findings were reported in a cohort of 410 Polish participants of a
case-control study, where adherence to a pattern influenced by the Western one was related
with higher levels of fat tissue and waist circumference, in contrast with the adherence to a
“Healthy” pattern [24]. In their 2019 longitudinal study, Neri-Sanchez et al. also underlined
the positive association between adherence to a “Risky” dietary pattern, including high
fat and high sugar content, with the presence of central obesity in Mexican adults [25].
A different pattern consisting of poultry, vegetables, red meat, and red meat products,
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among others, was also associated with obesity in male, Chinese adults, in a 2021 study of
1739 adults by Wang et al. [26].

Additionally, a different cross-sectional study of our group identified similar associa-
tions between dietary patterns and biochemical biomarkers in the adults of the POMAK
population. More specifically, the dietary pattern including increased consumption of
products high in sugars was related to low levels of HDL cholesterol [27]. Similar trends
were also noted when investigating the dietary patterns of adolescent populations, where
a dietary pattern with high protein and animal fat content was associated with elevated
levels of logBMI and logTriglycerides, in French teenagers [28].

Furthermore, the development of the novel Lifestyle Index using the data deriving
from the study sample, allowed for further investigation of the quality of life characteristics
on the anthropometric and biochemical indices. Consisting of five variables, including two
of the present dietary patterns extracted, the Index displayed negative associations with
logBMI and body fat levels, as well as levels of the log-transformed variables of fasting
glucose, SGOT, and SGPT. Thus, LI confirmed that higher quality of dietary intake and
higher levels of physical activity reduced depression symptoms and improved self-reported
conception of health status and may display a protective effect on body composition, as
well as a favorable influence on improved glycemic profile.

Overall, development of lifestyle indices as a means of quantifying and evaluating the
potential influence of specific lifestyle aspects on body weight is mounting, as analyzed in
the beginning of the paper, lifestyle indices can also incorporate dietary information via
calculation of diet quality indices. A 2017 systematic review of 34 studies by Asghari et al.,
sought to investigate the effect of diet quality indices in obesity-related traits, showing that
Healthy Eating Index (HEI) displayed an inverse association with obesity. The same review
also concluded that different dietary scores, in general, did not efficiently assess diet quality,
with most significant findings being presented in populations of the United States [29].
Furthermore, different research groups have investigated the effect of lifestyle character-
istics, such as sedentary behavior and screen-time, in adolescent populations [30–32]. In
adults, current research refers to potential associations between constructed lifestyle indices
and specific diseases or disease-related outcomes, namely cardiovascular disease [8], can-
cer [33], and type 2 diabetes [34]. Lenz et al., showed that creation of a Lifestyle Index for
evaluation of life quality in adults at risk for cardiovascular disease can be a useful tool [35].
Furthermore, in a similar effort to evaluate the lifestyle aspects and weight characteristics,
Roda et el in 2016, also investigated the potential effect of sleep qualities, screen time, and
dietary intake, among others, highlighting a strong positive association between sedentary
behavior and overweight [36].

A major advantage of the present study is the use of the online assessment tool, as a
means enabling long-distance communication and monitoring, during the time of social
distancing, due to the novel coronavirus disease 19 (COVID-19) pandemic. On the other
hand, limitations of the present study include: (a) the substantial impact of the COVID-19
pandemic on volunteer recruitment rates. More specifically, conduct of the study’s volun-
teer recruitment took place exactly in the midst of the COVID-19 pandemic, which resulted
in a limited recruitment capacity due to: (a) The social-distancing protocols implemented
in recruitment sites, properly adhering to the state guidelines, which resulted in a restricted
number of participants visiting the premises; (b) the limited expression of interest for
participation in the study, due to fear of in-person meetings and subsequent spread of the
COVID-19 disease; (c) the long-distance maintenance of an increased adherence rate to the
proposed diets, due to the extended time period between the in-person follow-up meetings;
and (d) the proper use of the online assessment tool by older adults who had both limited
access and knowledge on the use of state-of-the-art technological devices and online tools.

5. Conclusions

Results from the present study suggest that the iMPROVE overweight and obese,
adult cohort displays a satisfactory level of lifestyle characteristics and dietary behaviors
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representative of the overweight and obese Greek population. Assessment of the con-
structed Lifestyle Index, further solidifies the validity of our findings, highlighting the
protective effect of increased lifestyle quality in the formation of elevated body weight.
In this spectrum, the findings of the present paper enhance the understanding of over-
weight/obesity lifestyle determinants in our sample population and lay the ground for
the next analysis steps of the iMPROVE study, which focus on assessing the impact of the
proposed intervention and the role of candidate genes in various weight-related indices.
Assessment of the holistic interplay of gene-lifestyle interactions is of vital importance
for the in-depth understanding of nutrigenetic influences in weight loss, as well as in the
general context of weight management and/or weight loss maintenance.
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Appendix A

Continuation of Table 5, with analyses of variables that did not display statistically
significant changes (to be uploaded as Table A1).

Table A1. Multivariate linear regressions between the extracted dietary patterns and indices of anthropometric and
biochemical characteristics.

Model 1 Model 2 Model 3

β SE p-Value β SE p-Value β SE p-Value

logGlucose (mg/dL)
Mixed Pattern 0.006 0.004 0.127 0.001 0.004 0.803 0.001 0.004 0.803

Med-proxy Pattern <0.001 0.004 0.980 0.002 0.004 0.560 0.002 0.004 0.560
Eating-out Pattern 0.002 0.004 0.635 0.001 0.004 0.862 0.001 0.004 0.862

Traditional, vegetarian-alike
Pattern 0.003 0.004 0.462 0.001 0.004 0.871 0.001 0.004 0.871

High in unsaturated fats Pattern −0.003 0.004 0.380 −0.005 0.004 0.222 −0.005 0.004 0.222
logUrea (mg/dL)

Mixed Pattern 0.004 0.007 0.566 0.002 0.008 0.814 0.001 0.009 0.932
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Table A1. Cont.

Model 1 Model 2 Model 3

β SE p-Value β SE p-Value β SE p-Value

Med-proxy Pattern 0.010 0.008 0.204 0.012 0.008 0.145 0.012 0.009 0.196
Eating-out Pattern −0.005 0.007 0.498 −0.005 0.007 0.467 −0.008 0.008 0.349

Traditional, vegetarian-alike
Pattern <0.001 0.007 0.989 −0.001 0.008 0.847 −0.004 0.008 0.622

High in unsaturated fats Pattern −0.002 0.007 0.758 −0.002 0.008 0.791 −0.004 0.008 0.637
logUric Acid(mg/dL)

Mixed Pattern 0.006 0.006 0.377 −0.006 0.007 0.361 −0.004 0.007 0.628
Med-proxy Pattern −0.004 0.007 0.585 −0.001 0.007 0.854 <0.001 0.007 0.963
Eating-out Pattern 0.003 0.006 0.603 0.002 0.006 0.749 −0.002 0.006 0.805

Traditional, vegetarian-alike
Pattern −0.002 0.006 0.739 −0.004 0.006 0.506 −0.004 0.007 0.502

High in unsaturated fats Pattern −0.006 0.006 0.336 −0.006 0.006 0.358 −0.007 0.007 0.331
Total Cholesterol (mg/dL)

Mixed Pattern −0.259 2.402 0.914 1.283 2.575 0.619 0.922 2.915 0.752
Med-proxy Pattern −3.271 2.534 0.198 −2.864 2.622 0.276 −3.629 2.860 0.206
Eating-out Pattern −0.080 2.394 0.973 −0.274 2.414 0.910 −0.631 2.601 0.809

Traditional, vegetarian-alike
Pattern 2.297 2.297 0.323 3.766 2.463 0.128 4.722 2.618 0.073

High in unsaturated fats Pattern −0.202 2.445 0.934 0.819 2.519 0.746 0.103 2.711 0.970
logLDL Cholesterol (mg/dL)

Mixed Pattern −0.007 0.010 0.492 0.005 0.010 0.613 0.002 0.011 0.878
Med-proxy Pattern −0.008 0.010 0.430 −0.005 0.010 0.642 −0.008 0.011 0.491
Eating-out Pattern −0.003 0.010 0.751 −0.004 0.009 0.659 −0.006 0.010 0.557

Traditional, vegetarian-alike
Pattern −0.006 0.009 0.539 0.002 0.010 0.816 0.005 0.010 0.625

High in unsaturated fats Pattern −0.010 0.010 0.321 −0.003 0.010 0.755 −0.003 0.011 0.746
logAlbumin(g/dL)

Mixed Pattern 0.002 0.004 0.665 0.003 0.004 0.412 0.003 0.002 0.199
Med-proxy Pattern −0.002 0.004 0.691 −0.002 0.004 0.584 0.002 0.002 0.289
Eating-out Pattern <0.001 0.004 0.904 0.001 0.004 0.759 <0.001 0.002 0.977

Traditional, vegetarian-alike
Pattern 0.003 0.004 0.368 0.003 0.004 0.508 0.003 0.002 0.115

High in unsaturated fats Pattern −0.002 0.004 0.606 −0.003 0.004 0.441 0.001 0.002 0.733

Model 1: Adjusting for age and sex. Model 2: Adjusting for age, sex, smoking habits, physical activity level, and logBMI (except for logBMI
values). Model 3: Adjusting for age, sex, smoking habits, physical activity level, logBMI, education years, family, and professional status.
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Abstract: The present study sought to retrospectively investigate the dietary habits of two adolescent,
European populations from the cross-sectional Greek TEENAGE Study and French STANISLAS
Family Study. We aimed to explore the relation between the populations’ dietary patterns and blood
pressure, glycemic and lipidemic profile. Dietary patterns were extracted via Principal Component
Analysis (PCA), based on data collected from two 24 h dietary recalls for the TEENAGE study
and a 3-day food consumption diary for the STANISLAS study. Multiple linear regressions and
mixed models analyses, adjusting for confounding factors, were employed to investigate potential
associations. A total of 766 Greek teenagers and 287 French teenagers, were included in analyses.
Five dietary patterns were extracted for each population accounting for 49.35% and 46.69% of their
respective total variance, with similarities regarding the consumption of specific food groups (i.e.,
western-type foods). In the TEENAGE Study, the “chicken and sugars” pattern was associated with
lower CRP levels, after adjusting for confounding factors (p-value < 0.01). The “high protein and
animal fat” dietary pattern of the STANISLAS Family Study was related to higher BMI (p-value < 0.01)
and higher triglycerides levels (p-value < 0.01). Our findings summarize the dietary habits of two
teenage, European populations and their associations with cardiometabolic risk factors.

Keywords: dietary patterns; teenagers; European populations; blood pressure; glucose; cholesterol;
triglycerides; cardiometabolic risk factors

1. Introduction

Adolescence constitutes a period of increased nutritional needs, required to support
the physical growth that accompanies puberty [1,2]. Healthy eating is of vital importance
during adolescence [3,4], in order to ensure the sufficient macronutrient and micronutrient
intake needed for proper physical development [1], cognitive performance [5–7] and good
mental health [8]. Dietary habits during the adolescent years directly influence body
weight regulation and play a major role in the healthy development that comes with
adolescence [9]. Adherence to “unhealthy” eating habits during this period increases
the risk of obesity development [10,11], which has, in turn, been long associated with an
increased risk of non-communicable disease manifestation, such as type 2 diabetes, both in
adolescence and later on in adult life [9,10]. Indeed, the presence of adolescent obesity has
been associated with severe obesity in late adulthood [12,13] and a greater risk for type
2 diabetes development in early adulthood [13]. In addition, higher Body Mass Index (BMI)
values during adolescence have been associated with higher BMI values during adulthood,
as well as a 30 to 40% increased risk in adult mortality [14].

Nutrients 2021, 13, 198. https://doi.org/10.3390/nu13010198 https://www.mdpi.com/journal/nutrients

https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0001-8104-8425
https://orcid.org/0000-0002-7798-6221
https://doi.org/10.3390/nu13010198
https://doi.org/10.3390/nu13010198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nu13010198
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/2072-6643/13/1/198?type=check_update&version=2


Nutrients 2021, 13, 198 2 of 19

The causes of overweight, obesity and non-communicable disease development in
adolescent populations are related to the consumption of energy-dense foods, reduction
of physical activity, as well as socioeconomic factors, such as food availability and food
preference, influenced by geographic factors [9,11]. Energy-dense foods have been related
both directly and indirectly, via their positive association, with overweight and obesity
development, in the development of non-communicable diseases [11]. Indeed, poor eating
habits have regularly been associated with a high consumption of foods with high fat
and/or sugar contents [9].

Adolescent dietary habits are also directly linked to the teenagers’ metabolic profile
and the interplay between biomarkers of glycemic and lipidemic control [15]. It has been
shown that adherence to an “unhealthy” dietary pattern is associated with a higher risk
for metabolic syndrome presence [15]. Their importance is further highlighted by the
increased incidence of type 2 diabetes in young children and teenagers [16]. Consumption
of energy-dense foods in children and teenagers with a family history of type 2 diabetes,
plays a central role in the formation of a worse glycemic profile and potentially, subsequent
development of type 2 diabetes (T2D) [16]. T2D in children is associated with a deteriorated
lipidemic profile (i.e., dyslipidemia), as a direct effect of the observed insulin resistance [17].
A different study showed that Greek children with dyslipidemia and unfavourable dietary
habits, such as consuming only one meal per day, displayed higher levels of various
biomarkers of lipidemic control, namely total cholesterol and low-density lipoprotein
cholesterol (LDL-C) [18].

Another cardiometabolic risk factor receiving more and more attention is the develop-
ment of hypertension and the elevated levels of arterial pressure in adolescents. Indeed,
high blood pressure can be met in teenagers, with boys reporting higher levels of blood
pressure than girls [19].

The present analyses constitute the first step in the context of the 2018 Gutenberg Chair
project, aimed at firstly investigating the role of dietary habits in the anthropometric and
biochemical profile of two adolescent, European populations and subsequently exploring
the potential role of nutrition as a modifier of genetic make-up in adolescence. The latter
will take place via an investigation into the relationship between the populations’ dietary
habits and their glycemic and lipidemic profile and inflammation markers with genetic risk
scores created for anthropometric indices, biomarkers of glycemic and lipidemic control
and inflammation markers.

In this context, the aim of the present study is to investigate the dietary habits of the
two populations from the Greek TEENAGE Study and the French STANISLAS Family
study and their potential associations with blood pressure, biomarkers of glycemic and
lipidemic control and levels of C-reactive protein (CRP). Therefore, the objectives of the
study are formed as follows: (a) to identify the dietary patterns of adolescents in the Greek
and French cohorts; and (b) to investigate potential, respective associations between said
patterns and blood pressure, anthropometric indices, biomarkers of glycemic and lipidemic
control and CRP levels.

2. Materials and Methods
2.1. The TEENAGE Study Cohort

The TEENAGE (TEENs of Attica: Genes and Environment) study constitutes a
cross-sectional study conducted during the period 2008–2010 in the region of Attica,
Greece [20,21]. The study was approved by the Institutional Review Board of Haroko-
pio University and the Greek Ministry of Education and Religious Affairs and took place
adhering to the guidelines of the Declaration of Helsinki [22]. The study consisted of
a sample of healthy, Greek adolescent students residing in the Attica region during the
period of recruitment.

All students and their parents received written information on the aims and the
procedures of the study prior to enrolment and all participants provided written consent.
All students enrolled participated in an assessment session with either a nutrition or
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a pediatric health-care professional, which included clinical examination, collection of
blood samples, conduct of a 24 h dietary and physical activity recall and collection of
anthropometric and lifestyle data. A second 24 h dietary and physical activity recall was
conducted via telephone, 3 to 10 days after the in-person meeting. Overall, data for an
original sample of 857 adolescent students from 1440 schools in the region of Attica, aged
13 to 15 years old, were cross-sectionally collected.

Collection of anthropometric data during the in-person meeting consisted of height
(measured to the nearest 0.1 cm), weight (measured to the nearest 0.1 kg), waist and hip
circumference and skinfold measurements (measured to the nearest 0.1 mm). Height was
measured using a portable stadiometer, where participants were barefoot, looking ahead
and with relaxed shoulders. Weight was measured via use of scales, where participants
were barefoot and with light clothing. BMI was calculated as weight divided by height
(kg/m2). Waist and hip circumference were measured using a soft tape, the former between
the twelfth rib and the iliac crest and the latter at the widest point of the hips. Two skinfold
measurements were collected for each of the triceps, subscapular and suprailiac skinfolds,
using the Lange skinfold calipers.

Assessment of dietary habits took place via the collection of the two non-consecutive
24 h dietary recalls, which were conducted on different days of the week. Analysis of the
data collected took place via use of the Nutritionist Pro software, version 2.2 [23]. The ratio
of reported energy intake to BMR was calculated for each student, in order to assess poten-
tial under-reporting. BMR was calculated using the Schofield equations [24,25] and cut-off
points [26] were adapted to the ones reported for children and adolescents [27]. Participants
who had previously reported dieting in the past or never dieting, were excluded.

For the purposes of the present study, we used the available anthropometric, biochem-
ical and dietary data of 766 adolescent students (as shown in Table 1). Dietary pattern
extraction was based on the mean consumption of food groups, derived from the two
non-consecutive 24 h dietary recalls.

Table 1. Anthropometric, biochemical and dietary characteristics of the TEENAGE Study population.

TEENAGE Study

All Boys Girls p-Value *

n Median (IQR) n Median (IQR) n Median (IQR)

Age (years) 766 13.30 (1.31) 349 13.36 (1.38) 417 13.26 (1.25) <0.001
Weight (kg) 766 55.00 (14.00) 349 56.00 (16.00) 417 54.00 (13.00) 0.001

Body Mass Index (BMI) (kg/m2) 766 20.88 (4.38) 349 20.85 (4.45) 417 20.93 (4.37) 0.517
Waist-to-hip ratio (WHR) 763 0.76 (0) 349 0.79 (0) 414 0.73 (0) <0001

Systolic Blood Pressure (SBP)
(mmHg) 743 119.00 (16) 335 120.67 (11.93) ** 408 118.00 (15) 0.001

Diastolic Blood Pressure (DBP)
(mmHg) 743 70.00 (12) 335 71.00 (12) 408 70.00 (12) 0.825

Energy Intake (kcal/day) 766 1741.00 (760) 349 1939.00 (779) 417 1574.00 (609) <0.001
Glucose (mg/dL), 611 80.00 (12) 283 81.00 (11) 328 79.00 (12) <0.001

HOMA-IR 539 2.28 (2) 255 2.12 (2) 284 2.37 (2) <0.001
Insulin (mg/dL) 539 11.00 (7) 255 10.00 (7) 284 12.00 (8) <0.001

Total Cholesterol (mg/dL) 611 157.00 (33) 283 156.49 (25.18) ** 328 157.50 (31) 0.210
Low density lipoprotein Cholesterol

(LDL-C) (mg/dL) 611 54.00 (16) 283 90.57 (21.78) ** 328 88.40 (26) 0.651

High Density Lipoprotein Cholestrol
(HDL- C) (mg/dL) 611 89.20 (27) 283 53.00 (16) 328 56.00 (17) 0.001

Triglycerides (mg/dL) 611 56.00 (24) 283 55.00 (25) 328 57.00 (24) 0.090
C-reactive protein (CRP) (mg/dL) 540 0.30 (1) 254 0.45 (1) 286 0.20 (0) <0.001

* All hypothesis testing took place via use of the Mann–Whitney test. ** Variable follows the normal distribution and is presented as
mean ± sd.
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2.2. The STANISLAS Family Study Cohort

The STANISLAS (Suivi Temporaire Annuel Non Invasif de la Sante des Lorrains
Assures Sociaux) Family Study constitutes a cross-sectional study conducted during the
period 1993–1995 in the region of Vosges and the South of Meurthe and Moselle (East part
of France) [28,29]. The study was approved by the advisory committee for the protection of
people in biomedical research in Nancy, France. The study consisted of a sample of nuclear
families with parents aged up to 65 years old and children older than 6 years at the time of
recruitment, residing in the aforementioned region. The study only included families with
healthy family members, reporting no comorbidities and/or chronic diseases, residing in
the aforementioned regions at the time of recruitment. Willing participants residing in the
region of Nancy further participated in 5-year follow-ups up to the period 2003–2005 [30].

All included families provided informed consent. The families enrolled participated
in an in-person session with trained professionals, which included clinical examination,
collection of blood samples and collection of anthropometric, dietary and lifestyle data. Col-
lection of the food-related surveys was conducted by dietitians. Blood pressure, pulse rate,
skinfold thickness and bone density were measured by nurses and pubertal development
and family history of cardiovascular diseases was assessed by general practitioners. Data
on alcohol and tobacco consumption, physical activity, education and socio-professional
status were collected through questionnaires, under the supervision of trained nurses.
Overall, data for an original sample of 1006 families were cross-sectionally collected.

Weight, height, waist-to-hip ratio and impedancemetry measurements were conducted
by technical operators. BMI was, again, calculated as weight divided by height (kg/m2).
Assessment of dietary habits took place via collection of a 3 day food consumption diary,
for two continuous days within the week and one day of the weekend. Analysis of the data
took place via use of the GENI package, nutritional database program [31].

For the purposes of the present study, we used the available anthropometric, biochem-
ical and dietary data of 287 adolescents at the time of the baseline recruitment (as shown in
Table 2). Dietary pattern extraction was based on the mean consumption of food groups,
deriving from the 3 day food consumption diary. Low-density cholesterol (LDL-C) for
this cohort was calculated based on the available data for total cholesterol (TC), high-
density lipoprotein cholesterol (HDL- C) and triglyceride (TG) levels, using the Friedeweld
Equation, as follows [32]:

LDL − C = (TC) − (HDL − C) − (TG/5)

2.3. Statistical Analysis

The entirety of the data handling and data analyses was carried out using the SPSS
Software [33]. Body Mass Index (BMI) was calculated as weight divided by height (kg/m2).
Assessment of the variables’ distribution was conducted via use of the Shapiro–Wilk test,
demonstrating the mean and standard deviation for all normally distributed variables and
the median and interquartile range for all variables not following the normal distribution
(Shapiro–Wilk p-value > 0.05). We used the Student’s t-test and Mann–Whitney test for all
hypotheses testing for continuous variables.

We performed Principal Component Analyses (PCA) in order to extract all dietary
patterns for both populations [34]. PCA constitutes an epidemiological tool, largely used
in the assessment of dietary data and the subsequent extraction of dietary patterns [35],
having been previously tested in large young populations [36]. PCA was conducted on
15 food groups for the TEENAGE study population and 15 food groups for the STANISLAS
Family study population, based on the available data for the cohorts.

The Kaiser–Meyer–Olkin (KMO) test was calculated at 0.545 and 0.576 for the TEENAGE
and the STANISLAS teenagers, respectively, indicating mediocre to sufficient data adequacy.
The varimax orthogonal rotation was used for the extraction of the patterns and the Kaiser
criterion was set at retaining 5 components with Eigen values bigger than 1.
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Table 2. Anthropometric, biochemical and dietary characteristics of the STANISLAS Family Study population.

STANISLAS Family Study

All Boys Girls p-Value *

n Median (IQR) n Median (IQR) n Median (IQR)

Age (years) 287 13.08 (2.92) 137 13.08 (2.92) 150 13.08 (2.85) 0.416
Weight (kg) 263 46.59 (18.10) 129 47.20 (21.90) 134 46.05 (14.84) 0.136

Body Mass Index (BMI) (kg/m2) 263 18.44 (3.61) 129 18.30 (3.20) 134 18.52 (4.18) 0.853
WHR 221 0.77 (0.04) ** 110 0.81 (0.03) ** 111 0.75 (0.06) <0.001

Systolic Blood Pressure (SBP)
(mmHg) 263 112.00 (14.50) 129 115.60 (11.53) ** 134 110.46 (8.76) ** <0.001

Diastolic Blood Pressure (DBP)
(mmHg) 263 57.00 (15.50) 129 56.69 (16.00) ** 134 57.02 (10.23) ** 0.829

Energy Intake (kcal/d) 287 2056.03 (662.24) 137 2070.99 (495.20) ** 150 2094.92 (681.16) 0.469
Glucose (mg/dL), 263 88.28 (6.12) ** 129 89.18 (6.48) ** 134 87.38 (5.76) ** 0.018 ***

Total Cholesterol, (mg/dL) 263 179.15 (40.93) 129 173.36 (30.89) ** 134 183.01 (36.29) 0.002
Low density lipoprotein cholesterol

(LDL-C) (mg/dL) 263 116.99 (33.98) 129 113.13 (28.19) ** 134 120.85 (32.05) 0.030

High density lipoprotein cholesterol
(HDL-C)(mg/dL) 263 54.05 (20.08) 129 54.44 (15.44) ** 134 156.37 (16.99) 0.222

Triglycerides (mg/dL) 263 51.33 (33.63) 129 52.21 (38.05) 134 46.56 (30.09) 0.930
C-reactive protein (CRP) (mg/L) 243 0.30 (0.53) 118 0.32 (0.54) 125 0.26 (0.55) 0.765

* Hypothesis testing took place via use of the Mann–Whitney test wherever at least one variable did not follow the normal distribution.
** Variable follows the normal distribution and is presented as mean ± sd. *** Hypothesis testing took place via the Student’s Independent
Samples t-test.

We further tested for potential associations between the extracted dietary patterns,
blood pressure and biomarkers of glycemic and lipidemic control, as well as levels of CRP,
via use of multiple linear regressions in the TEENAGE cohort and linear mixed models
in the STANISLAS cohort. Given that the STANISLAS Family Study consisted of a cohort
of families, we used the latter in order to correct for the potential familial bias of siblings
included in the analyses [37,38]. We classified the different siblings of each family as the
repeated measures, compound symmetry as the repeated covariance type and all adjusting
factors and dietary patterns as the fixed effects. Potential associations were investigated,
adjusting for 3 different models of confounding factors. Model 1 included adjustment
solely for the age and sex of the participants; Model 2 included adjustment for sex, age
and level of physical activity; Model 3 consisted of adjustment for their age, sex, level of
physical activity and BMI; and, finally, Model 4 included adjustment for age, sex, physical
activity, BMI and energy intake. All tested variables were log-transformed. Multiple linear
regression results are presented as beta coefficients (β) and standard error (SE). Linear
mixed model results are presented as estimates and standard error (SE). All statistical
analyses included the level of nominal significance set at α = 0.05. The adjusted threshold
after multiple testing was set to (0.05/5 components examined, i.e., dietary patterns = 0.01).

3. Results
3.1. Descriptive Characteristics

The anthropometric and biochemical characteristics of the two populations are de-
picted in Tables 1 and 2. Concerning the TEENAGE cohort, a total of 766 teenagers
(45.56% boys, 54.43% girls), with a median age of 13.30 years, were included in the analyses.
The STANISLAS cohort provided data for 287 teenagers (47.73% boys, 525.26% girls), with
a median age of 13.08 years.

The daily energy intake for the two populations by sex, is depicted in Figure 1.
As shown in Tables 1 and 2, the Greek teenagers reported a median energy intake of
1741.00 kcal/d (IQR = 760), significantly different between the two genders, with boys
reporting a higher intake. The French teenagers reported a median energy intake of
2056.03 kcal/d (IQR = 662.24), without presenting significant differences between sexes.
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3.2. Extraction of Dietary Patterns

PCA for the TEENAGE cohort resulted in the identification of 5 dietary patterns,
accounting for 49.35% of the sample’s total variance. Food groups’ factor loadings in the
respective patterns are presented in Table 3.

The presented factor loadings depict each food group’s highest contribution and
subsequent inclusion in one out of the five patterns (components) highlighted. Therefore,
the dietary patterns formed are the following: (a) a “western breakfast” dietary pattern,
consisting of cheese, dairy and processed meat, accounting for the highest percentage of
the individual variance explained (15.61%); (b) a “legumes and good fat” pattern, including
high consumption of legumes, olives, olive oil and nuts and accounting for 10.32% of the
variance explained; (c) a “homemade meal” pattern, referring to high consumption of



Nutrients 2021, 13, 198 7 of 19

red meat and potatoes, associated with lower fish consumption and explaining 8.33% of
the total variance; (d) a “chicken and sugars” pattern, including high consumption of
chicken and sweets, associated with lower the consumption of fruits and juices, with a
7.60% of the variance explained; and (e) a “eggs and fibers” pattern, comprising of high
consumption of non-refined cereals, vegetables and eggs, associated with lower refined
cereals’ consumption and explaining 7.47% of the total variance.

Table 3. Principal Components Analysis’ factor loadings for the 15 food groups in the TEENAGE
study (n = 766).

Component

Food Groups 1 2 3 4 5

Cheese 0.897 - - - -
Dairy 0.863 - - - -

Processed Meat 0.635 - - - -
Legumes - 0.739 - - -

Olives, Olive Oil, Nuts - 0.668 - - -
Red Meat - - 0.712 −0.429 -
Potatoes - - 0.661 - -

Fish - −0.358 −0.480 - -
Chicken - - - 0.649 -
Sweets - - - 0.518 -

Fruit and Juices - - - −0.368 -
Non-refined cereals - - - - 0.674

Vegetables - - - - 0.342
Eggs - - - - 0.303

Refined Cereals 0.512 - - - −0.595

Total Variance Explained (%) 15.61 10.32 8.33 7.60 7.47
Only loadings with an absolute values > 0.3 are presented in the table.

PCA for the STANISLAS cohort resulted in the identification of 5 dietary patterns
accounting for 46.69% of the sample’s total variance. Food groups’ factor loadings in the
respective patterns are presented in Table 4.

In a similar way to the aforementioned, the presented factor loadings depict each
food group’s highest contribution and subsequent inclusion in one out of the five patterns
(components) highlighted. Therefore, the dietary patterns formed for this cohort are the
following: (a) a “western breakfast” dietary pattern, consisting of cheese, breads and
flours, processed meat and vegetables and accounting for the highest percentage of the
individual variance explained (10.58%); (b) a “prudent snacking” pattern, including high
consumption of eggs and vegetable fats, lower consumption of salty snacks and accounting
for 10.44% of the variance explained; (c) a “high protein and animal fat” pattern, referring
to consumption of red meat, animal fat and milk and yogurt, explaining 9.26% of the
total variance; (d) a “fish and seafood” pattern, including high consumption of fish and
seafood and lower consumption of poultry, with a 8.19% of the variance explained; and (e)
a “sugary snacks” pattern, comprising of consumption of soft drinks, sugars, sweets and
cereal bars and explaining 8.19% of the total variance.

3.3. Multiple Linear Regressions in the TEENAGE Study

The multiple linear regressions adjusted for the three models of confounding factors,
as described above, are shown in Table 5. Based on the available data, we examined associ-
ations between the patterns and the log-transformed values for BMI, WHR, SBP, DBP, glu-
cose, insulin, HOMA-IR, TC, HDL- C, LDL- C, TG and CRP levels. The “legumes and good
fat” pattern was associated with lower values of logBMI (β = −0.006, p-value = 0.017) and
logInsulin (β = −0.020, p-value = 0.030), after the adjustments of Model 1. The “homemade
meal” pattern was associated with lower values of logBMI (β = −0.005, p-value = 0.042),
adjusting for Model 1. The “chicken and sugars” pattern was slightly associated with log-
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Glucose Model 1 (β = 0.015, p-value = 0.017). The same pattern was associated with lower
values of logInsulin after adjusting for Model 1 (β = −0.020, p-value = 0.030), Model 3
(β = 0.018, p-value = 0.049) and Model 4 (β = 0.018, p-value = 0.041). Moreover, the latter
was further associated with lower values of logCRP in all models (Model 1: β = −0.051,
p-value = 0.006, Model 2: β = −0.057, p-value = 0.004, Model 3: β = −0.050, p-value = 0.008,
Model 4: β = −0.051, p-value = 0.008). No associations were found between the “eggs and
fibers” pattern and the variables in all models. Statistically significant associations after
assessment of the adjusted threshold were only maintained for the “legumes and good fat”
pattern and the “chicken and sugars” pattern and logCRP in all models.

Table 4. Principal Components Analysis’ factor loadings for the 15 food groups in the STANISLAS
Family study. (n = 287).

Component

Food Groups 1 2 3 4 5

Cheese 0.664 - - - -
Breads and Flours 0.605 - - - -

Processed Meat 0.523 - - - -
Vegetables 0.483 - - - -

Eggs - 0.630 - - -
Salty Snacks - −0.580 - - -
Vegetable Fat - 0.576 - - -

Red Meat - - 0.703 - -
Animal Fat - - 0.610 - -

Milk and Yogurt - - 0.473 −0.338 -
Fish - - - 0.666 -

Seafood - - - 0.628 -
Poultry - - - −0.380 -

Soft Drinks - - - - 0.777
Sugars, Sweets and Cereal Bars - - - - 0.746

Total Variance Explained (%) 10.58 10.44 9.26 8.19 8.19
Only loadings with an absolute values > 0.3 are presented in the table.

3.4. Linear Mixed Models in the STANISLAS Family Study

The linear mixed models adjusted for the three models of confounding factors, as de-
scribed above, are shown in Table 6. Based on the available data, we examined associations
between the patterns and the log-transformed values for BMI, WHR, SBP, DBP, glucose, TC,
HDL-C, LDL-C, TG and CRP levels. The “western breakfast” pattern was associated with
lower values of logCRP, in Model 4 (est = −0.076, p-value = 0.024). The “high protein and
animal fat” pattern was associated with higher values of logBMI after adjustment for Mod-
els 1 and 2 (est = 0.011, p-value = 0.002, est = 0.009, p-value = 0.020), lower values of logDBP
adjusting for Models 3 and 4 (est = −0.010, p-value = 0.045, est = −0.012, p-value=0.028,
respectively) and higher values of logTriglycerides in all models (Model 1: est = 0.054,
p-value < 0.001; Model 2: est = 0.049, p-value = 0.001; Model 3: est = 0.045, p-value = 0.002,
Model 4:est = 0.041, p-value = 0.009) The “fish and seafood” pattern was associated with
lower logDBP values (est = 0.009, p-value = 0.039), in Model 1. The “sugary snacks” pattern
was associated with lower values of logHDL-C (est = −0.014, p-value = 0.049) in Model 3.
No associations were found between the “prudent snacking” pattern and the variables in
all models. Statistically significant associations after assessment of the adjusted threshold
were only maintained for the maintained for the “high protein and animal fat” pattern and
logBMI, in Model 1, as well as logTriglycerides in all models. Table 5. Linear Regression
Analyses on the association between the dietary patterns, anthropometric indices and
biomarkers of glycemic and lipidemic control in the TEENAGE study.
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Table 5. Linear Regression Analyses on the association between the dietary patterns, anthropometric indices and biomarkers of glycemic and lipidemic control in the TEENAGE study.

Model 1 Model 2 Model 3 Model 4

β SE p β SE p β SE p β SE p

LogBMI
Western Breakfast −0.004 0.003 0.150 −0.003 0.003 0.308 - - - - - -

Legumes and Good Fat −0.006 0.003 0.017 −0.004 0.003 0.194 - - - - - -
Homemade Meal −0.005 0.003 0.042 −0.003 0.003 0.242 - - - - - -

Chicken and Sugars −0.005 0.003 0.069 −0.004 0.003 0.128 - - - - - -
Eggs and Fibers 0.004 0.003 0.111 0.004 0.003 0.115 - - - - - -

LogWHR
Western Breakfast 0.013 0.012 0.270 0.016 0.13 0.247 0.017 0.013 0.198 0.017 0.014 0.250

Legumes and Good Fat −0.006 0.011 0.622 −0.008 0.013 0.527 −0.007 0.013 0.608 −0.007 0.013 0.597
Homemade Meal −0.009 0.011 0.445 −0.008 0.013 0.517 −0.007 0.013 0.599 −0.008 0.013 0.562

Chicken and Sugars −0.003 0.011 0.760 −0.005 0.013 0.696 −0.003 0.013 0.828 −0.003 0.013 0.800
Eggs and Fibers −0.011 0.011 0.320 −0.0013 0.013 0.339 −0.015 0.013 0.268 −0.015 0.013 0.267

LogSBP
Western Breakfast −0.003 0.002 0.085 −0.002 0.002 0.174 −0.002 0.002 0.295 −0.001 0.002 0.646

Legumes and Good Fat 0.000 0.002 0.838 0.001 0.002 0.729 0.001 0.002 0.499 0.001 0.002 0.472
Homemade Meal 0.000 0.002 0.937 0.000 0.002 0.819 0.001 0.002 0.579 0.001 0.002 0.481

Chicken and Sugars 0.002 0.002 0.169 0.002 0.002 0.246 0.003 0.002 0.090 0.003 0.002 0.071
Eggs and Fibers 2.294 × 10−5 0.002 0.988 −0.001 0.002 0.680 −0.001 0.002 0.409 −0.001 0.002 0.411

LogDBP
Western Breakfast −0.003 0.002 0.224 −0.003 0.002 0.256 −0.002 0.002 0.361 0.000 0.003 0.894

Legumes and Good Fat −0.002 0.002 0.482 −0.001 0.002 0.786 0.000 0.002 0.948 −3.047 × 10−5 0.002 0.990
Homemade Meal 0.001 0.002 0.551 0.003 0.002 0.155 0.004 0.002 0.097 0.004 0.002 0.063

Chicken and Sugars 0.001 0.002 0.609 0.001 0.002 0.528 0.002 0.002 0.333 0.003 0.002 0.271
Eggs and Fibers 0.001 0.002 0.802 0.000 0.002 0.878 0.000 0.002 0.914 0.000 0.002 0.919

LogGlucose
Western Breakfast −0.003 0.007 0.655 −0.003 0.007 0.632 −0.003 0.007 0.631 −0.004 0.008 0.615

Legumes and Good Fat 0.010 0.006 0.120 0.011 0.007 0.111 0.011 0.007 0.110 0.011 0.007 0.111
Homemade Meal −0.002 0.006 0.740 −0.004 0.007 0.531 −0.004 0.007 0.531 −0.004 0.007 0.532

Chicken and Sugars 0.015 0.006 0.017 0.013 0.007 0.051 0.013 0.007 0.051 0.013 0.007 0.051
Eggs and Fibers 0.003 0.006 0.588 0.003 0.007 0.659 0.003 0.007 0.659 0.003 0.007 0.660

LogInsulin
Western Breakfast −0.015 0.010 0.119 −0.015 0.010 0.139 −0.009 0.010 0.356 −0.007 0.010 0.521

Legumes and Good Fat −0.020 0.009 0.030 −0.019 0.010 0.066 −0.017 0.009 0.066 −0.017 0.009 0.064
Homemade Meal 0.011 0.010 0.247 0.011 0.010 0.250 0.013 0.009 0.167 0.014 0.009 0.142

Chicken and Sugars 0.012 0.009 0.191 0.013 0.010 0.173 0.018 0.009 0.049 0.018 0.009 0.041
Eggs and Fibers −0.015 0.009 0.113 −0.011 0.010 0.281 −0.014 0.010 0.133 −0.014 0.010 0.132
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Table 5. Cont.

Model 1 Model 2 Model 3 Model 4

β SE p β SE p β SE p β SE p

LogHOMA-IR
Western Breakfast −0.016 0.011 0.158 −0.016 0.012 0.180 −0.035 0.011 0.422 −0.004 0.012 0.728

Legumes and Good Fat −0.020 0.010 0.054 −0.020 0.011 0.074 −0.019 0.011 0.075 −0.019 0.011 0.072
Homemade Meal 0.014 0.011 0.205 0.013 0.011 0.231 0.015 0.010 0.157 0.016 0.010 0.124

Chicken and Sugars 0.010 0.010 0.349 0.010 0.011 0.345 0.015 0.010 0.139 0.016 0.010 0.114
Eggs and Fibers −0.018 0.010 0.089 −0.017 0.012 0.157 −0.020 0.011 0.067 −0.020 0.011 0.066

LogTotalCholesterol
Western Breakfast −0.005 0.003 0.066 −0.006 0.003 0.060 −0.006 0.003 0.054 −0.003 0.003 0.422

Legumes and Good Fat 0.001 0.003 0.721 0.001 0.003 0.863 0.000 0.003 0.883 0.000 0.003 0.908
Homemade Meal 0.002 0.003 0.402 0.002 0.003 0.538 0.002 0.003 0.549 0.003 0.003 0.353

Chicken and Sugars 0.000 0.003 0.917 2.502 × 10−5 0.003 0.993 −5.600 × 10−5 0.003 0.985 0.000 0.003 0.868
Eggs and Fibers 0.003 0.003 0.269 0.002 0.003 0.521 0.002 0.003 0.511 0.002 0.003 0.511

LogHDL-C
Western Breakfast −0.002 0.004 0.553 −0.002 0.004 0.692 −0.004 0.004 0.313 −0.002 0.005 0.643

Legumes and Good Fat 0.006 0.004 0.160 0.005 0.004 0.210 0.004 0.004 0.343 0.004 0.004 0.351
Homemade Meal 0.001 0.004 0.832 0.001 0.004 0.900 0.000 0.004 0.919 0.000 0.004 0.958

Chicken and Sugars 0.009 0.004 0.022 0.007 0.004 0.080 0.006 0.004 0.153 0.006 0.004 0.128
Eggs and Fibers −0.001 0.004 0.885 −0.002 0.004 0.600 −0.001 0.004 0.761 −0.001 0.004 0.759

LogLDL-C
Western Breakfast −0.008 0.005 0.099 −0.009 0.005 0.053 −0.009 0.005 0.073 −0.004 0.005 0.460

Legumes and Good Fat −0.001 0.004 0.761 −0.003 0.005 0.547 −0.002 0.005 0.610 −0.003 0.005 0.586
Homemade Meal 0.003 0.004 0.566 0.001 0.005 0.800 0.001 0.005 0.753 0.003 0.005 0.537

Chicken and Sugars −0.005 0.004 0.246 −0.005 0.005 0.278 −0.004 0.005 0.324 −0.004 0.004 0.411
Eggs and Fibers 0.005 0.004 0.233 0.004 0.005 0.389 0.004 0.005 0.423 0.004 0.005 0.423

LogTriglycerides
Western Breakfast −0.003 0.006 0.632 0.002 0.007 0.747 0.001 0.006 0.831 0.004 0.007 0.573

Legumes and Good Fat 0.006 0.006 0.307 0.008 0.006 0.208 0.010 0.006 0.101 0.010 0.006 0.103
Homemade Meal −0.005 0.006 0.441 −0.004 0.006 0.550 −0.002 0.006 0.686 −0.002 0.006 0.745

Chicken and Sugars −0.006 0.006 0.329 −0.004 0.006 0.491 −0.002 0.006 0.728 −0.002 0.006 0.764
Eggs and Fibers −0.002 0.006 0.776 −0.005 0.007 0.418 −0.007 0.006 0.288 −0.007 0.006 0.287

LogCRP
Western Breakfast 0.002 0.020 0.939 0.006 0.021 0.775 0.018 0.020 0.383 0.021 0.022 0.349

Legumes and Good Fat 0.006 0.019 0.759 0.019 0.021 0.369 0.022 0.020 0.275 0.022 0.020 0.276
Homemade Meal 0.015 0.020 0.444 0.005 0.021 0.795 0.007 0.019 0.714 0.007 0.020 0.714

Chicken and Sugars −0.051 0.019 0.006 −0.057 0.020 0.004 −0.050 0.019 0.008 −0.051 0.019 0.008
Eggs and Fibers 0.016 0.019 0.418 0.029 0.021 0.175 0.023 0.020 0.266 0.023 0.020 0.266

Model 1: Adjusted for age and sex; Model 2: Adjusted for age, sex, physical activity; Model 3: Adjusted for age, sex, physical activity, BMI; Model 4: Adjusted for age, sex, physical activity, BMI, energy intake.
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Table 6. Linear mixed model analyses on the association between the dietary patterns, anthropometric indices and biomarkers of glycemic and lipidemic control in the STANISLAS Family
study.

Model 1 Model 2 Model 3 Model 4

Estimate SE p Estimate SE p Estimate SE p Estimate SE p

LogBMI
Western Breakfast 0.000 0.003 0.878 0.000 0.005 0.459 - - - - - -
Prudent Snacking 0.000 0.003 0.950 0.001 0.003 0.738 - - - - - -

High Protein and Animal Fat 0.011 0.003 0.002 0.009 0.003 0.018 - - - - - -
Fish and Seafood −0.002 0.003 0.430 −0.001 0.003 0.700 - - - - - -

Sugary Snacks −0.001 0.003 0.701 −0.002 0.003 0.437 - - - - - -

LogWHR
Western Breakfast −0.000 0.001 0.800 −0.000 0.001 0.539 −0.000 0.001 0.540 −0.000 0.001 0.840
Prudent Snacking 3.965729 × 10−5 0.001 0.976 0.000 0.001 0.809 0.000 0.001 0.797 0.000 0.001 0.722

High protein and animal Fat 0.000 0.001 0.723 0.000 0.001 0.616 0.000 0.001 0.757 0.001 0.001 0.486
Fish and Seafood 0.001 0.001 0.134 0.002 0.001 0.146 0.002 0.001 0.126 0.002 0.001 0.130

Sugary Snacks −0.001 0.001 0.392 −0.001 0.001 0.363 −0.001 0.001 0.409 −0.000 0.001 0.691

LogSBP
Western Breakfast −2.288744 × 10−5 0.002 0.991 0.000 0.002 0.892 0.000 0.002 0.837 −0.000 0.002 0.792
Prudent Snacking 0.003 0.002 0.114 0.003 0.002 0.181 0.002 0.002 0.189 0.002 0.002 0.215

High protein and Animal Fat 0.000 0.002 0.733 0.000 0.002 0.822 −0.000 0.002 0.802 −0.001 0.002 0.504
Fish and Seafood −0.000 0.002 0.751 −0.000 0.002 0.766 −0.000 0.002 0.801 −0.000 0.002 0.794

Sugary Snacks 0.000 0.002 0.640 0.000 0.002 0.787 0.000 0.002 0.673 −0.000 0.002 0.894

LogDBP
Western Breakfast −0.000 0.004 0.948 0.003 0.004 0.510 0.003 0.004 0.483 0.003 0.005 0.464
Prudent Snacking 0.002 0.004 0.593 0.001 0.004 0.833 0.000 0.004 0.841 0.000 0.004 0.845

High Protein and Animal Fat −0.008 0.004 0.089 −0.008 0.005 0.099 −0.010 0.005 0.045 −0.012 0.005 0.028
Fish and Seafood 0.009 0.004 0.039 0.008 0.004 0.077 0.008 0.004 0.069 0.008 0.004 0.070

Sugary Snacks −0.000 0.004 0.936 −0.002 0.005 0.651 −0.001 0.005 0.718 −0.002 0.006 0.632

LogGlucose
Western Breakfast 0.000 0.001 0.604 0.001 0.002 0.448 0.001 0.002 0.462 0.000 0.002 0.868
Prudent Snacking −0.000 0.001 0.917 −0.000 0.002 0.793 −0.000 0.002 0.805 −0.000 0.002 0.727

High Protein and Animal Fat −0.001 0.002 0.428 −0.001 0.002 0.632 −0.000 0.002 0.708 −0.002 0.002 0.365
Fish and Seafood −0.002 0.001 0.202 −0.001 0.001 0.331 −0.001 0.001 0.323 −0.001 0.001 0.323

Sugary Snacks 0.001 0.001 0.568 0.000 0.002 0.906 0.000 0.002 0.928 −0.001 0.002 0.502
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Table 6. Cont.

Model 1 Model 2 Model 3 Model 4

Estimate SE p Estimate SE p Estimate SE p Estimate SE p

LogTotalCholesterol
Western Breakfast −0.001 0.004 0.728 −0.002 0.004 0.644 −0.002 0.004 0.66 −0.002 0.005 0.703
Prudent Snacking 0.002 0.004 0.599 0.004 0.004 0.347 0.004 0.004 0.369 0.004 0.004 0.358

High Protein and Animal Fat −0.003 0.005 0.490 −0.006 0.005 0.236 −0.007 0.005 0.157 −0.008 0.005 0.151
Fish and Seafood 0.005 0.004 0.224 0.006 0.004 0.173 0.006 0.004 0.171 0.006 0.004 0.172

Sugary Snacks −0.001 0.004 0.712 6.925668 × 10−7 0.005 1.000 0.000 0.005 0.940 0.001 0.006 0.833

LogHDL-C
Western Breakfast 0.006 0.006 0.303 0.005 0.007 0.426 0.005 0.007 0.443 0.011 0.007 0.139
Prudent Snacking −0.005 0.006 0.419 −0.004 0.007 0.547 −0.003 0.007 0.584 −0.003 0.007 0.657

High Protein and Animal Fat −0.003 0.007 0.621 −0.002 0.008 0.762 0.000 0.008 0.983 0.004 0.008 0.622
Fish and Seafood 0.004 0.006 0.462 0.002 0.006 0.710 0.002 0.006 0.728 0.002 0.006 0.746

Sugary Snacks −0.007 0.006 0.237 −0.014 0.007 0.065 −0.014 0.007 0.049 −0.013 0.008 0.114

LogLDL-C
Western Breakfast −0.006 0.006 0.333 −0.007 0.006 0.275 −0.007 0.006 0.292 −0.060 0.053 0.254
Prudent Snacking 0.004 0.006 0.493 0.007 0.006 0.293 0.006 0.006 0.332 0.041 0.047 0.391

High Protein and Animal Fat −0.005 0.007 0.472 −0.010 0.007 0.168 −0.013 0.007 0.073 −0.112 0.057 0.050
Fish and Seafood 0.004 0.006 0.475 0.007 0.006 0.292 0.006 0.006 0.288 0.035 0.045 0.435

Sugary Snacks −0.001 0.006 0.810 0.005 0.007 0.492 0.005 0.007 0.410 0.042 0.059 0.473

LogTriglycerides
Western Breakfast 0.011 0.012 0.338 0.009 0.013 0.467 0.010 0.013 0.444 −0.001 0.014 0.911
Prudent Snacking 0.003 0.012 0.237 0.000 0.013 0.990 −6.768397 × 10−5 0.013 0.996 −0.001 0.013 0.893

High Protein and Animal Fat 0.054 0.013 <0.001 0.049 0.014 0.001 0.045 0.014 0.002 0.041 0.015 0.009
Fish and Seafood 0.014 0.012 0.252 0.019 0.012 0.133 0.020 0.012 0.114 0.021 0.012 0.093

Sugary Snacks 0.009 0.012 0.428 0.010 0.013 0.462 0.011 0.013 0.399 −0.002 0.016 0.855

LogCRP
Western Breakfast −0.045 0.029 0.125 −0.053 0.031 0.085 −0.050 0.030 0.096 −0.076 0.033 0.024
Prudent Snacking 0.031 0.028 0.274 0.037 0.030 0.217 0.037 0.029 0.201 0.036 0.029 0.222

High Protein and Animal Fat 0.009 0.031 0.757 −0.005 0.033 0.873 −0.019 0.032 0.558 −0.033 0.034 0.334
Fish and Seafood 0.018 0.029 0.516 0.009 0.030 0.745 0.010 0.029 0.733 0.008 0.030 0.774

Sugary Snacks 0.010 0.031 0.743 0.011 0.032 0.729 0.016 0.032 0.603 0.004 0.036 0.905

Model 1: Adjusted for age and sex; Model 2: Adjusted for age, sex, physical exercise; Model 3, Adjusted for age, sex, physical activity, BMI. Original data values in mmol/l were used for creation of the
logGlucose, logTotalCholesterol, logHDL-C, logLDL-C, LogTriglycerides variables.
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4. Discussion

The present study sought to investigate the dietary patterns of two adolescent, Euro-
pean populations, based on data from the Greek TEENAGE and the French STANISLAS
Family studies, as well as their potential relations with blood pressure, biomarkers of
glycemic and lipidemic control and levels of CRP. The study includes healthy teenagers
from the two European populations, with a median BMI of 20.88 kg/m2 (IQR = 5.88 kg/m2)
and 18.44 kg/m2 (IQR = 3.61 kg/m2). For the Greek teenagers, weight, waist-to-hip ratio
(WHR), systolic blood pressure (SBP), levels for glucose, HOMA-IR, insulin, HDL-C and
CRP significantly differed between boys and girls. Boys presented slightly higher values
for weight, WHR, SP and glucose levels, while girls reported slightly higher levels of
HOMA-IR, insulin and HDL-C. In the French teenagers group, WHR, SBP, glucose and
total cholesterol levels presented statistically significant differences between the two sexes,
with boys reporting slightly higher values for WHR, SBP and glucose levels and girls for
total cholesterol levels. The teenagers of the study were mostly normal weighted. Both pop-
ulations reported a mediocre energy intake (TEENAGE: 1741.00 kcal/d and STANISLAS:
2056.03 kcal/d), based on the present dietary guidelines for adolescents [39]. This could
explain the fact that teenagers of both populations mostly reported BMI values within the
normal range (18.5–25 kg/m2).

Five dietary patterns were identified in each population. The Greek “eggs and fibers”
and the French “prudent snacking” patterns, explaining 7.47% and 10.44% of the respective
total variance, included consumption of Mediterranean diet-related food groups, such
as non-refined cereals, vegetables and eggs in the Greek teenagers and consumption of
eggs and vegetable fats in French adolescents. The Greek teenagers showed a preference
for healthy and traditional food combinations, such as consumption of legumes, olives,
olive oil and nuts in the “legumes and good fat” pattern and consumption of red meat
and potatoes in the “homemade meal” pattern, respectively. The French teenagers opted
for consumption of more energy-dense food groups, such as red meat, animal fat and
milk and yogurt in the “high protein and animal fat” pattern and soft drinks and sugary
snacks in the “sugary snacks” pattern. A number of significant associations were found
between the respective dietary patterns and the populations’ glycemic and lipidemic profile.
However, after adjusting for the overall adjusted threshold, a smaller number of significant
associations remained observed.

The predominant pattern in both populations (the “western breakfast” pattern) ap-
pears to relate to food groups whose consumption is primarily found in the basis of a
western-type diet [40], such as cheese, processed meat and food items high in carbohy-
drates (breads and flours for the French). The “western breakfast” pattern reflects a higher
percentage (15.61%) of the variance explained in the Greek population, in comparison
to the French one (10.58%). This could be explained by the increasing influences of the
westernized world trends in the Greek socio-economic scene during the late 2000s. More-
over, breakfast habits were also highlighted in the first 5-year follow-up in the STANISLAS
Cohort, which underlined the importance of the household environment in dietary habits
by finding a household variance of 42.5 to 52.9% in the energy intake observed in break-
fast [29]. The importance of breakfast consumption and its contribution to daily energy
intake of French children and families, is also supported by another, recent cross-sectional
survey [41].

Although the western diet has been associated with elevated inflammation biomark-
ers [42], the cohort of the Greek teenagers reported no comorbidities and we found no as-
sociations between adherence to the “western breakfast” pattern and respective CRP levels.
Interestingly enough, the “chicken and sugars” pattern identified in the Greek cohort was
significantly associated with lower levels of logCRP (Model 1: β = −0.051, p-value = 0.006,
Model 2: β = −0.057, p-value = 0.004 and Model 3: β = −0.050, p-value = 0.008). An in-
verse association between the consumption of poultry and CRP levels in teenagers has
previously been reported, in the general context of adherence to the Dietary Approach to
Stop Hypertension (DASH) diet regime [43], although a recent umbrella review showed
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no association between the DASH diet and CRP levels in adults [44]. On the contrary,
an inverse association between consumption of sweets and CRP levels is not supported by
other studies. In fact, consumption of sugars and especially sugar-sweetened beverages has
previously been associated with higher CRP levels in adults [45,46]. In adolescents, a dif-
ferent review has shown a positive association between sugar consumption and CRP [47],
whereas another review found greater consumption of sugars by normal weight adoles-
cents in comparison with overweight ones, but did not find any association between sugar
consumption and CRP [48]. A cross-sectional study investigating the relation between food
intake and CRP levels in children also found that consumption of milk, citrus, melons and
berries displayed associations with lower levels of CRP, potentially due to the general high
content of fruits and vegetables in antioxidants and the association of dairy consumption
with greater satiety and potential adherence to a generally healthier diet [49].

Furthermore, our study found that the “high protein and animal fat” pattern dis-
played significant associations with higher logtriglyceride and logBMI levels (p < 0.01),
for French teenagers. The latter is in accordance with various cross-sectional studies that
have researched the dietary habits of adolescents and their potential associations to BMI.
A study by Gutiérrez-Pliego et al. unveiled three major dietary patterns in a population
of 373 Mexican teenagers including a pattern high in refined “unhealthy” products, such
as snacks, sugars and sweets, a pattern with high protein/high fat content and a pattern
including high consumption of fruits, vegetables, nuts and whole grains. The study found a
strong relationship (p < 0.01) between higher consumptions of the first two dietary patterns
and higher BMI [50]. In the same context, a different study in Northeastern Brazil investi-
gated data from 1247 adolescents. The study identified two dietary patterns, one referring
to high consumption of sugars, sweets and cakes, amongst others, and one correlated with
high consumption of fruits and vegetables. Higher adherence to the dietary pattern in-
cluding “unhealthy” products, was, again, positively correlated with higher values of BMI
(p = 0.018) [51]. Furthermore, a different study on the dietary habits of female adolescents
showed that higher adherence to a “Western” pattern referring to increased consumption
of fat and mediocre consumption of protein, among others, was associated with higher
levels of BMI, waist circumference, as well as total cholesterol levels [52].

Although dietary patterns with a higher consumption of fat have generally been
positively associated with cardiometabolic risk factors in teenagers [53,54], certain diets,
including consumption of specific food groups, such as the DASH diet [55], have been
related with a better metabolic profile [56]. Indeed, higher adherence to the DASH diet
has been shown to relate to a reduced prevalence of metabolic syndrome and increased
blood pressure during adolescence [43], as well as lower levels of HbA1c and systolic blood
pressure, in young adults with type 1 and type 2 diabetes, respectively [57]. Better adher-
ence to the components of the DASH diet was even associated with a lower risk of being a
metabolic unhealthy obese, in children and adolescents with increased body weight [58].
Additionally, other high protein diets, such as the ketogenic diet and the Modified Atkins
diet, have been associated with better effects on adolescents with epilepsy [59,60], with the
ketogenic diet to have been related to reduced weight and fasting insulin and HOMA-IR
levels in obese teenagers [61]. However, the aforementioned diets also usually include
consumption of vegetables fats and fats derived from nuts, seeds, white meat (such as
poultry and fish), as well as food groups like grains, vegetable fats, fruits and vegetables,
which are not met when referring to dietary patterns centred on high protein or animal fat
consumption. Furthermore, the aforementioned beneficial associations have been primarily
observed in adults or obese adolescent populations, who could potentially benefit from
the adherence to a structured diet with the above food groups. This could potentially
explain why our study demonstrated positive associations between the high consumption
of protein and animal fats with BMI and triglyceride levels in adolescents mostly display-
ing BMI of a normal range. Moreover, the present study evaluates the adherence to each
dietary pattern, without comparing them with the respective adherence to the rest of the
patterns extracted.
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The identification of dietary patterns of adolescents has generally been a subject of
interest in recent literature. Gonzalez-Gil et al. investigated the dietary patterns of 5328 Eu-
ropean adolescents in the context of the cross-sectional HELENA study [62]. The latter con-
sisted of adolescent cohorts of 10 different European countries, including Greek teenagers
from the cities of Athens and Heraklion, Crete. The study identified four dietary patterns
in teenage boys and six dietary patterns in teenage girls. Patterns explaining greater total
variance in boys referred to consumption of vegetables, pasta, rice, cheese and sweets
among others, at the same time as dominant patterns in girls referred to consumption of
Mediterranean-type food items, dairy and consumption of a healthy breakfast [62].

Additionally, when investigating the dietary habits of adolescents based on data
collected in the 1995 Australian National Nutrition Survey, McNaughton et al. showed
that a dietary pattern rich in fruit, salads, cereals and fish was found to be negatively
associated with levels of diastolic blood pressure in teenagers older than 16 years of
age [63]. Our study found no associations between the patterns containing fruit, vegetable
and fish consumption and the levels of diastolic pressure in adolescents younger than
16 years of age.

Furthermore, the I. Family Study investigated the association between the dietary pat-
terns of 2451 pairs of European children and their parents, with regards to the existing food
environment conditions. The study showed the role of food availability in the children’s
dietary choices, highlighting that the consumption of soft drinks was greatly dependent on
their availability in the immediate food environment [64]. Moreno LA et al. also showed
that increased consumption of sweet beverages was also associated with increased risk of
adolescent obesity [65]. In our study, the “sugary snacks” pattern of the French population,
which included consumption of sweetened beverages, was not related to logBMI values,
but was associated with lower values of logHDL-C. However the effect disappeared when
taking into account the adjusted threshold of statistical significance (0.04 > 0.01). A different
study of German adolescents demonstrated that higher consumption of dietary patterns
containing high-fat and high-carbohydrate, energy-dense foods was associated with lower
socioeconomic levels and a lower intake of various vitamins and minerals [66].

A previous publication on the Greek adolescents of the TEENAGE study investigated
a spectrum of factors potentially contributing to the development of overweight, leading
to the creation of an Overweight Preventive Score, which included breakfast intake, family
meals and consumption of sugar-sweetened beverages, among other factors, and further
supports the aforementioned findings. The score was found to be significantly associated
with a lower likelihood of overweight presence and better levels of glycemic control [67].

The limitations of the present study are summarized in the following: (a) data for
both populations were collected in a cross-sectional manner, limiting the potential for
generalized cause and effect conclusions to be drawn; (b) use of the PCA for the dietary
patterns’ extraction, including subjective choices regarding the amount of food groups
that are included in the analysis, as well as the number of components to be drawn;
(c) comparisons between the two populations’ dietary habits might be affected by the
different socio-economic conditions existing in the two countries during the mid-1990s
for the STANISLAS and late 2000s for the TEENAGE study. This prolonged gap between
the two baseline data collections might manifest itself in the Greek teenagers’ dietary
habits, which could have potentially been affected by social changes and changes in
food availability and accessibility, mediated by the growing social and technological
advancements taking place throughout the 15-year gap.

5. Conclusions

Our study focused on the dietary habits of European adolescents and their poten-
tial influence on blood pressure, glycemic and lipidemic profile and inflammation levels.
The patterns identified demonstrated associations with indices, such as BMI, and biomark-
ers, such as triglycerides and CRP. The relations highlighted in the present study display
great interest and enhance the need for further research on the pivotal role of diet in the
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essential-for-development period of adolescence, as a modifying factor for cardiometabolic
risk factor-related disorders, such as obesity, hypertension and type 2 diabetes.
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Abstract: Previous research has allowed the identification of variants related to the vascular endothe-
lial growth factor-A (VEGF-A) and their association with anthropometric, lipidemic and glycemic in-
dices. The present study examined potential relations between key VEGF-A-related single-nucleotide
polymorphisms (SNPs), cardiometabolic parameters and dietary habits in an adolescent cohort. Cross-
sectional analyses were conducted using baseline data from 766 participants of the Greek TEENAGE
study. Eleven VEGF-A-related SNPs were examined for associations with cardiometabolic indices
through multivariate linear regressions after adjusting for confounding factors. A 9-SNP unweighted
genetic risk score (uGRS) for increased VEGF-A levels was constructed to examine associations and
the effect of its interactions with previously extracted dietary patterns for the cohort. Two variants
(rs4416670, rs7043199) displayed significant associations (p-values < 0.005) with the logarithms of
systolic and diastolic blood pressure (logSBP and logDBP). The uGRS was significantly associated
with higher values of the logarithm of Body Mass Index (logBMI) and logSBP (p-values < 0.05). Inter-
actions between the uGRS and specific dietary patterns were related to higher logDBP and logGlucose
(p-values < 0.01). The present analyses constitute the first-ever attempt to investigate the influence of
VEGF-A-related variants on teenage cardiometabolic determinants, unveiling several associations
and the modifying effect of diet.

Keywords: vascular endothelial growth factor A (VEGF-A); cardiometabolic profile; genetic risk
score; adolescents; dietary patterns; genetic risk score

1. Introduction

Vascular endothelial growth factor A (VEGF-A) is involved in various biological func-
tions, primarily as a major contributor to angiogenesis induction which extends its activities
to cell proliferation, migration and even differentiation [1–3]. Due to its versatile roles in
endothelial function [4], its involvement in activating the cortisol–adrenocorticotrophic
hormone (ACTH) stress axis, its promotion of aldosterone [5] production as well as its
multifactorial influence on energy homeostasis [2,6,7], insulin resistance [2,8] and cardiac
function [9], VEGF-A is involved in various reciprocal relationships influencing cardiovas-
cular and cardiometabolic risk factors such as glucose sensitivity, lipidemic profile, obesity
and blood pressure.

Altered VEGF-A expression is observed in the presence of disturbed cardiometabolic
states, denoting a requited relationship between the biomarker’s levels and disrupted
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cardiometabolic profile. For example, VEGF-A is known to be involved in glucose home-
ostasis, where both its over- and under-expression can affect glucose tolerance [8], as well
as lipid metabolism, through its regulation of lipases and the creation of chylomicrons [7].
In a similar manner, VEGF-A is highly expressed in the adipose tissue, where an increase
in the number of adipocytes signifies increased VEGF-A and subsequent angiogenesis and
further cell proliferation and differentiation [1].

Circulating VEGF-A levels have been conclusively demonstrated as greatly herita-
ble [10]. The past decades have marked the conduct of large meta-analyses of multiple
genome-wide association studies (GWAS), revealing key variants significantly associated
with the marker’s levels. More specifically, Debette and Visvikis-Siest et al. brought four key
single-nucleotide polymorphisms (SNPs) to light, collectively explaining 48.7% of VEGF-A
variation [10]. Subsequent studies have unveiled additional VEGF-A-related SNPs, which
have, in turn, been further associated with adult cardiometabolic indices [11,12] and even
the presence of neurodegenerative disorders such as Alzheimer’s disease [13]. Selected
VEGF-A-associated SNPs have even been directly linked to the presence of hypercholes-
terolemia and metabolic syndrome in adults [14,15]. In addition, the interplay between
VEGF-A SNPs and dietary components has also been associated with multiple metabolic
syndrome determinants [16,17]. An example of the importance of the interplay between
VEGF-A, anthropometric indices and dietary compounds was recently highlighted in the
finding that the effect of VEGF- A variants on circulating iron levels might depend on
anthropometric indices [(i.e., Body Mass Index (BMI)] [18].

The present study constitutes the continuation of our team’s previous research aiming
at exploring the effect of the interplay between genetic makeup and lifestyle habits on
adolescent anthropometric, lipidemic and glycemic indices. In this context, the present
findings concern the first-ever attempt to investigate the role of key VEGF-A-related
variants exclusively on the cardiometabolic profile of adolescents, using data from the Greek
TEENAGE Study. We hereby present the results of the analyses on selected target variants,
the subsequent examinations of their cumulative effect in the form of an unweighted genetic
risk score (uGRS) and its respective interactions with previously extracted dietary patterns
on the teenagers’ cardiometabolic indices.

2. Materials and Methods
2.1. The TEENAGE Study

The present analyses constitute the next step in the research of our team’s Gutenberg
Chair 2018 project, where building on our previous findings [19], we hereby present the
subsequent examinations between genetic makeup and teenage cardiometabolic profile in
the TEENAGE Study. The latter (TEENs of Attica: Genes and Environment) refers to the
cross-sectional collection of various data from adolescent students conducted during the
years 2008–2010 in Attica, Greece. The project was approved by the Institutional Review
Board of Harokopio University of Athens, as well as the Greek Ministry of Education
and Religious Affairs. All nodes conducted within the study took place adhering to the
guidelines of the Declaration of Helsinki.

Details of the study protocol and characteristics have been previously extensively
described elsewhere [20–22]. The TEENAGE desired target population were children and
adolescents of 13–15 years of age attending the primary three classes of public secondary
schools in the Attica region, coming from all groups and backgrounds [22]. Schools and
participants were invited to be involved in the study from the pool of the teenage population
of the GENDAI study [23]. The latter constituted a previous study also conducted and
approved by Harokopio University of Athens, including children attending fifth and sixth
grade of 1440 schools from a wide range of neighborhoods of different socioeconomic status
across the Attica region [23]. Overall, 857 out of 1440 teenagers attending the participating
schools were recruited for the purposes of the TEENAGE study [20,21]. The volunteers
were recruited to the study after undergoing a briefing session on the study aims, their
voluntary inclusion and the confidentiality measures surrounding their data [20,21]. Verbal
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consent by all adolescent participants and their respective guardians’ written consent was
collected prior to study enrollment.

After enrollment in the study, all children and adolescents participated in a baseline,
in-person session with healthcare professionals, where anthropometric, dietary, biochemical
and lifestyle data were collected. Measurements of body and height were conducted for
each individual in a barefoot state and with light clothes on, and the BMI was calculated as
weight (kg)/height2 (m2). Waist circumference was measured in centimeters using a non-
extensible soft tape, and body fat was evaluated by measuring the triceps and subscapular
skinfolds. Dietary intake was assessed via conduct of a 24 h recall for the day prior to
recruitment and the completion of a questionnaire for meal patterns and eating behavior.
A second recall was conducted via telephone in the 10 days after the baseline session.
Physical activity habits were assessed via the completion of a relative checklist for two
non-consecutive days [20–22].

Moreover, DNA samples were collected for each participant and were further geno-
typed via the use of the Illumina HumanOmniExpress BeadChips (Illumina, San Diego, CA,
USA) at the Wellcome Trust Sanger Institute, Hinxton, UK [20]. The imputation of the geno-
typed data was conducted using the Haplotype Reference Consortium (HRC) panel [20,24].

For the purposes of the present study, we used anthropometric, biochemical and
genetic data from an initial pool of 766 participants with available data. We investigated as-
sociations between 11 VEGF-A-associated SNPs and various cardiometabolic indices. Pulse
pressure (PP) was calculated to allow for comparisons with the previous findings, based on
the available data for systolic and diastolic blood pressure (SBP and DBP, respectively) and
via using the following formula:

Pulse Pressure (PP)
= Systolic Blood Pressure (SBP, mmHg)
−Diastolic Blood Pressure (DBP, mmHg)

Furthermore, we proceeded to construct an unweighted genetic risk score (uGRS) for
VEGF-A using the target SNPs identified by Choi et al. For the purposes of the present
analyses, we used the SNPs with the available data in the TEENAGE cohort (i.e., 9 out of
10 variants). The uGRS was constructed by scoring the risk alleles positively associated
with the VEGF-A levels. We subsequently examined its respective relations with the
cardiometabolic indices and further split the uGRS into two groups of high and low genetic
risk for higher levels of VEGF based on the sample median value. Additionally, we
proceeded to investigate the potential effect of interactions between the uGRS and the
previously identified dietary patterns for the TEENAGE cohort [19] on the various indices.

2.2. Statistical Analyses

In the present analyses, we set out to investigate the potential impact of 11 VEGF-
A-related target SNPs on cardiometabolic indices using available data from the Greek
TEENAGE study (Table 1). Based on our team’s previously published findings [10,11],
we chose to examine the rs4416670, rs6921438, rs10738760 and rs6993770 variants, which
have been shown to collectively explain 48.7% of VEGF-A variability and have been
further associated with multiple cardiometabolic indices in healthy populations [10]. We
additionally included 7 more SNPs identified by Choe et al. as strongly associated with
circulating VEGF-A levels, with available data in the TEENAGE cohort [11].
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Table 1. List of the VEGF-A-related single-nucleotide polymorphisms (SNPs) (n = 11) investigated for cardiometabolic associations in the TEENAGE cohort.

Consortial Summary Statistics TEENAGE Cohort

SNP Gene Chr Position Alleles MAF Effect Allele Direction of Effect for VEGF EAF Ref.

rs114694170 MEF2C, MEF2C-AS1 5 5:88884379 T/C 0.02 (C) T Negative (beta = −0.15) 0.96 [6]
rs6921438 SCIRT, LOC100132354 6 6:43957870 G/A/C 0.44 (A) A Negative (beta = −0.72) 0.39 [6,7]
rs1740073 LINC02537, SCIRT, C6orf223 6 6:43979661 T/A/C 0.20 (T) T Positive (beta = 0.09) 0.35 [6]
rs4416670 SCIRT 6 6:43982716 T/A/C 0.47 (C) C Negative (beta = −0.13) 0.44 [7]
rs6993770 ZFPM2-AS1,ZFPM2 8 8:105569300 A/T 0.36 (T) T Negative (beta = 0.17) 0.31 [6,7]
rs7043199 VLDLR-AS1 9 9:2621145 T/A 0.11 (A) A Negative (beta = −0.10) 0.19 [6]
rs10738760 VLDLR, KCNV2 9 9:2691186 A/G 0.41 (G) G Negative (beta = −0.28) 0.46 [7]
rs2375981 VLDLR, KCNV2 9 9:2692583 C/A/G/T 0.41 (G) C Positive (beta = 0.21) 0.44 [6]

rs74506613/proxy rs10761741 used JMJD1C 10 10:63306426 G/T 0.37 (T) T Positive (beta = 0.08) 0.47 [6]
rs4782371 ZFPM1 16 16:88502423 T/A/C/G 0.41 (G) T Negative (beta = −0.07) 0.36 [6]
rs2639990 ZADH2 18 18:75203596 T/C 0.10 (C) T Positive (beta = 0.11) 0.10 [6]

SNP: Single-Nucleotide Polymorphism, Chr: Chromosome, bp: base pairs, MAF: Minor Allele Frequency (as shown in GWAS Catalog), Ref.: Reference.
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We used a threshold of 0.7 for the imputation INFO score for all SNPs included in the
analyses. Quality control for sample and SNP exclusion criteria consisted of: (i) sample call
rate at 95%; (ii) Hardy–Weinberg Equilibrium (HWE) exact p < 0.0001; and (iii) genotyping
call rate at 99%. Before testing for associations, an assessment of the cardiometabolic
variables’ distribution was carried out via the use of the Shapiro–Wilk and Kolmogorov–
Smirnov tests. All variables not presenting a normal distribution were log-transformed.
Hypothesis testing between cohort subgroups took place using the Mann–Whitney test.
We investigated potential relations between the 11 target SNPs and the cardiometabolic
parameters using linear regression analyses. Associations were examined after adjusting for
3 different models of confounding factors, namely: (i) Model 1, which consisted of adjust-
ment for age and sex; (ii) Model 2, which further included exercise level; and (iii) Model 3,
additionally incorporating the adjustment for the five previously extracted dietary pat-
terns [19]. Multiple linear regression results for each SNP are presented as betas [regression
coefficients (β)] and p-values. The threshold for statistical significance was set at 0.05. The
adjusted threshold for multiple testing was set at 0.005 (0.05/11 components examined).

Following the associations explored for each SNP separately, we further used multiple
linear regressions to examine the associations between the uGRS and the metabolic indices,
as well as the potential effect of the interactions between the uGRS and the formerly
extracted dietary patterns. Multiple linear regression results are presented as estimates
[beta coefficients (β)] and standard error (SE). In the case of examining the interactions,
the adjusted threshold for statistical significance was set at 0.01 (i.e., 0.05/5 components
examined). All phenotypic analyses were conducted using the R Statistical Package [25],
and genetic analyses were carried out with the Plink whole-genome association analysis
toolset, version 1.9 [26].

3. Results
3.1. Population Characteristics

The characteristics of the population used have been previously described else-
where [19]. This overall healthy population of 349 boys and 417 girls presented a median
age of 13.30 years old (Table 2). The girls displayed an overall better cardiometabolic profile
compared to boys, with the latter showing statistically significantly higher levels of SBP, PP,
glucose and C-reactive protein (CRP) (p-value < 0.001). Additionally, girls demonstrated
statistically significantly higher levels of high-density cholesterol (HDL) (p-value < 0.001).
BMI, triglycerides, total cholesterol, SBP, while low-density cholesterol did not display any
statistically significant differences between the two groups.

Table 2. Descriptive characteristics of the TEENAGE Study.

All Boys Girls

n Median (IQR) n Median (IQR) n Median (IQR) p-Value *

Age (years) 766 13.30 (1.31) 349 13.36 (1.38) 417 13.26 (1.25) <0.001
BMI (kg/m2) 766 20.88 (4.38) 349 20.85 (4.45) 417 20.93 (4.37) 0.517

Triglycerides (mg/dL) 611 56.00 (24) 283 55.00 (25) 328 57.00 (24) 0.090
Total Cholesterol (mg/dL) 611 157.00 (33) 283 156.49 (25.18) ** 328 157.50 (31) 0.210

SBP (mmHg) 743 119.00 (16) 335 120.67 (11.93) ** 408 118.00 (15) 0.001
DBP (mmHg) 743 70.00 (12) 335 71.00 (12) 408 70.00 (12) 0.825

PP 743 47.00 (13) 335 49.23 (10.61) ** 408 46 (12) <0.001
LDL (mg/dL) 611 54.00 (16) 283 90.57 (21.78) ** 328 88.40 (26) 0.651
HDL (mg/dL) 611 89.20 (27) 283 53.00 (16) 328 56.00 (17) 0.001

Glucose (mg/dL), 611 80.00 (12) 283 81.00 (11) 328 79.00 (12) <0.05
CRP (mg/dL) 540 0.30 (1) 254 0.45 (1) 286 0.20 (0) <0.001

BMI: Body Mass Index, SBP: Systolic Blood Pressure, DBP: Diastolic Blood Pressure, PP: Pulse Pressure, HDL:
High-density lipoprotein cholesterol, LDL: Low-density lipoprotein cholesterol, CRP: C-reactive protein. * Hy-
pothesis testing took place via use of the Mann–Whitney test. ** The variable summary statistics are shown as
mean ± standard deviation (SD).
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3.2. Associations between the 11 VEGF-A-Related SNPs and the Cardiometabolic Indices

Cross-sectional associations between the 11 SNPs and the various indices were as-
sessed in participants with available data. Table 3 shows the multivariate linear regressions
conducted for each of the 11 SNPs after adjustment for age and sex (Model 1), age, sex
and exercise (Model 2) and age, sex, exercise and dietary pattern (Model 3). Our analyses
showed statistically significant associations for two out of the eleven examined SNPs,
namely the rs7043199 and the rs4416670 variants, with the latter having been found to
explain 1,5% of the variance of VEGF-A levels in adults [7]. More specifically, the pres-
ence of the C allele of the latter was related, with a lower log of systolic blood pressure
(logSBP) across all models (Model 1: β = −0.007, p-value = 0.002, Model 2: β = −0.007,
p-value = 0.002, Model 3: β = −0.07, p-value = 0.0035). Another statistically significant but
positive relation for logSBP was demonstrated for the A allele of the rs7043199 variant after
adjusting for Model 2 (Model 2: β = 0.009, p-value = 0.004). The same SNP also displayed a
statistically significant and positive association with log diastolic blood pressure (logDBP)
after adjustment for Model 3 (Model 3: β = 0.0138, p-value = 0.0046).

Table 3. Associations between the 11 VEGF-A-related SNPs and cardiometabolic indices in the
TEENAGE cohort.

Model 1 Model 2 Model 3

Beta p-Value Beta p-Value Beta p-Value

LogBMI
rs114694170 0.01009 0.3424 0.01317 0.2385 0.01239 0.2707
rs6921438 −0.00631 0.1131 −0.0053 0.2038 −0.00475 0.2564
rs1740073 0.005531 0.1785 0.003664 0.3826 0.002784 0.5088
rs4416670 −0.00698 0.06125 −0.00389 0.3099 −0.00363 0.3452
rs6993770 −0.00649 0.1252 −0.00866 0.04606 −0.00858 0.0483
rs7043199 −0.01265 0.01352 −0.01202 0.02304 −0.01185 0.02551
rs10738760 0.003147 0.4208 0.002341 0.5588 0.00203 0.6125
rs2375981 0.003426 0.3883 0.002837 0.4846 0.002472 0.5432
rs10761741 0.003055 0.4467 0.003455 0.3978 0.003062 0.4544
rs4782371 0.00442 0.2833 0.003158 0.4576 0.002953 0.4892
rs2639990 −0.00297 0.6463 −0.00232 0.7241 −0.0021 0.7516

logTriglycerides
rs114694170 0.008907 0.7274 0.02828 0.2978 0.029 0.292
rs6921438 0.001028 0.9184 0.01319 0.2007 0.01328 0.2003
rs1740073 0.006261 0.5473 0.002573 0.8058 0.00253 0.8107
rs4416670 1.83 × 10−5 0.9984 0.00513 0.5827 0.004898 0.6018
rs6993770 0.006058 0.5595 −0.00307 0.7726 −0.00332 0.7567
rs7043199 −0.01681 0.1822 −0.01787 0.1588 −0.01938 0.1304
rs10738760 −0.02382 0.01482 −0.0201 0.04157 −0.0201 0.04306
rs2375981 −0.01995 0.04558 −0.01675 0.09515 −0.01696 0.09375
rs10761741 0.004158 0.6738 −0.00254 0.7989 −0.00198 0.844
rs4782371 −0.00071 0.9448 0.00189 0.8571 0.001944 0.8546
rs2639990 −0.01428 0.3776 −0.01309 0.4196 −0.0138 0.4033

logCholesterol
rs114694170 −0.00314 0.7859 −0.00783 0.5438 −0.00896 0.4916
rs6921438 −0.00051 0.9111 0.000254 0.9586 −9.61 × 10−5 0.9844
rs1740073 0.000767 0.8706 0.000225 0.9639 −0.00033 0.947
rs4416670 0.001849 0.6564 0.004052 0.3602 0.004303 0.3322
rs6993770 0.0042 0.3709 0.002885 0.567 0.002729 0.5901
rs7043199 −0.00066 0.908 −9.11 × 10−5 0.9879 −0.00107 0.8596
rs10738760 −0.00256 0.5642 −0.00355 0.4489 −0.00351 0.4558
rs2375981 −0.00357 0.4299 −0.00446 0.3497 −0.00424 0.3768
rs10761741 −0.00642 0.1503 −0.00856 0.0695 −0.0087 0.06685
rs4782371 0.003328 0.4736 0.001601 0.7478 0.002173 0.6649
rs2639990 −0.00337 0.645 −0.00521 0.4986 −0.00315 0.6864
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Table 3. Cont.

Model 1 Model 2 Model 3

Beta p-Value Beta p-Value Beta p-Value

logSBP
rs114694170 0.004856 0.4602 0.01095 0.1322 0.01002 0.1704
rs6921438 −0.00528 0.03273 −0.00571 0.03214 −0.00614 0.02126
rs1740073 0.006211 0.01456 0.007036 0.008435 0.007113 0.007929
rs4416670 −0.00707 0.002172 −0.00744 0.002407 −0.00716 0.003524
rs6993770 −0.005 0.05437 −0.00489 0.07711 −0.005 0.07093
rs7043199 0.007357 0.02104 0.009594 0.004338 0.009446 0.005093
rs10738760 −0.00105 0.6643 −0.00018 0.9445 −0.0002 0.9368
rs2375981 −0.00048 0.8464 0.000475 0.8549 0.000676 0.7948
rs10761741 0.004394 0.07559 0.003574 0.1711 0.003634 0.1643
rs4782371 −0.0017 0.5082 −0.00148 0.5885 −0.00099 0.7192
rs2639990 −0.00027 0.9467 −0.00181 0.6667 −0.00112 0.7913

logDBP
rs114694170 −0.00538 0.5747 −0.00023 0.9829 −0.00073 0.945
rs6921438 −0.00617 0.08685 −0.00804 0.03627 −0.00845 0.0283
rs1740073 0.005599 0.1311 0.006755 0.07975 0.006983 0.07167
rs4416670 −0.00556 0.09872 −0.00686 0.05272 −0.00661 0.06318
rs6993770 −0.00621 0.101 −0.0043 0.281 −0.00443 0.2685
rs7043199 0.01191 0.01033 0.01359 0.005051 0.0138 0.004611
rs10738760 6.32 × 10−6 0.9986 0.001639 0.6575 0.001642 0.6579
rs2375981 −0.00022 0.9508 0.001781 0.6339 0.002048 0.5851
rs10761741 0.005385 0.135 0.006435 0.08701 0.006501 0.0848
rs4782371 0.000505 0.8928 0.002055 0.6027 0.002789 0.4824
rs2639990 0.004213 0.4671 0.003025 0.6163 0.003598 0.5553

logPP
rs114694170 0.02169 0.1799 0.03011 0.0877 0.02892 0.1044
rs6921438 −0.00429 0.4814 −0.00136 0.8342 −0.00166 0.7989
rs1740073 0.008354 0.1826 0.008206 0.2063 0.007979 0.223
rs4416670 −0.01232 0.03026 −0.01075 0.07144 −0.0104 0.08316
rs6993770 −0.0003 0.9623 −0.00313 0.6417 −0.0031 0.6466
rs7043199 −0.00119 0.8798 0.002393 0.77 0.001466 0.859
rs10738760 −0.0021 0.7244 −0.00156 0.8026 −0.00142 0.8201
rs2375981 −0.00033 0.9559 −0.00017 0.9786 9.90 × 10−5 0.9875
rs10761741 0.005041 0.4081 0.000931 0.8832 0.000839 0.8954
rs4782371 −0.00663 0.2943 −0.00846 0.2027 −0.00844 0.2076
rs2639990 −0.00571 0.5596 −0.00865 0.3943 −0.00733 0.4765

logGlucose
rs114694170 0.01915 0.4259 0.01844 0.488 0.01499 0.5762
rs6921438 −0.00684 0.4689 −0.01078 0.2855 −0.01227 0.2245
rs1740073 0.00942 0.3361 0.007099 0.4879 0.006708 0.5143
rs4416670 0.000832 0.9235 0.000346 0.9698 0.000223 0.9806
rs6993770 −0.01043 0.2856 −0.00569 0.5839 −0.00679 0.5148
rs7043199 0.008424 0.4782 0.008428 0.4973 0.006293 0.6144
rs10738760 0.006866 0.457 0.003822 0.6927 0.002642 0.7852
rs2375981 0.007188 0.445 0.004344 0.6588 0.003512 0.722
rs10761741 0.003465 0.7095 0.004664 0.6322 0.006317 0.5187
rs4782371 −0.01497 0.1213 −0.00968 0.3456 −0.00954 0.3557
rs2639990 −0.00127 0.9336 −0.0042 0.7913 −0.00359 0.8233

logLDL
rs114694170 −0.0082 0.6443 −0.02002 0.3046 −0.02187 0.2661
rs6921438 −0.00502 0.4711 −0.00418 0.573 −0.00419 0.5718
rs1740073 0.000988 0.8914 −0.00091 0.9035 −0.0022 0.7704
rs4416670 0.001987 0.7558 0.006226 0.3529 0.006893 0.3039
rs6993770 −0.00281 0.6968 −0.00581 0.4461 −0.00551 0.4718
rs7043199 0.006725 0.4431 0.006013 0.5094 0.005337 0.5605
rs10738760 −0.01029 0.1306 −0.01186 0.09438 −0.01145 0.1071
rs2375981 −0.01274 0.06626 −0.01425 0.04787 −0.01372 0.05769
rs10761741 −0.00519 0.4493 −0.00794 0.2667 −0.0091 0.2047
rs4782371 0.01135 0.1115 0.007783 0.3015 0.008257 0.2758
rs2639990 −0.00388 0.7136 −0.00713 0.517 −0.00744 0.5042
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Table 3. Cont.

Model 1 Model 2 Model 3

Beta p-Value Beta p-Value Beta p-Value

logHDL
rs114694170 0.001151 0.9449 −0.00031 0.9867 −0.00111 0.9524
rs6921438 0.002231 0.7332 0.00056 0.9363 −0.00014 0.9837
rs1740073 0.002099 0.7572 0.005597 0.4303 0.00606 0.3951
rs4416670 0.002402 0.6887 0.000127 0.984 −0.00021 0.9737
rs6993770 0.01151 0.08893 0.0148 0.03953 0.01427 0.04781
rs7043199 −0.00711 0.3875 −0.00429 0.6186 −0.00585 0.4992
rs10738760 0.01409 0.02729 0.01249 0.06206 0.01223 0.06815
rs2375981 0.01261 0.05275 0.01139 0.09454 0.01129 0.09822
rs10761741 −0.01029 0.1098 −0.01098 0.1037 −0.00975 0.15
rs4782371 −0.00762 0.2552 −0.0072 0.3117 −0.0068 0.3417
rs2639990 −0.00388 0.7136 −0.00713 0.517 −0.00744 0.5042

logCRP
rs114694170 −0.0379 0.6541 −0.04237 0.6554 −0.03521 0.711
rs6921438 −0.0418 0.1947 −0.04414 0.2017 −0.04039 0.241
rs1740073 −0.00433 0.8972 −0.0181 0.606 −0.02466 0.482
rs4416670 −0.0194 0.511 −0.01528 0.6242 −0.0162 0.6012
rs6993770 −0.01718 0.6107 −0.00339 0.9251 −0.0048 0.8941
rs7043199 0.02666 0.5029 0.003378 0.9353 0.000455 0.9913
rs10738760 0.02319 0.4658 0.02242 0.5016 0.02371 0.4762
rs2375981 0.02867 0.3747 0.02603 0.441 0.02572 0.4462
rs10761741 0.0237 0.4588 0.01415 0.6735 0.01207 0.7179
rs4782371 −0.04092 0.2165 −0.03658 0.3002 −0.03689 0.2958
rs2639990 −0.05523 0.2803 −0.05647 0.2884 −0.05193 0.3325

Model 1: Adjusted for age and sex, Model 2: Adjusted for age, sex and exercise, Model 3: Adjusted for age, sex,
exercise and dietary patterns. BMI: Body Mass Index, SBP: Systolic Blood Pressure, DBP: Diastolic Blood Pressure,
PP: Pulse Pressure, LDL: Low-density cholesterol, HDL: High-density cholesterol, CRP: C-reactive protein.

3.3. Associations between the 9-SNP uGRS and the Cardiometabolic Indices

In the effort to examine the potential effect of uGRS in the formation of the investigated
indices, we separated the 9-SNP uGRS into the two categories of “low” and “high” risk
based on the sample median, where logBMI displayed statistically significant differences
between the two groups (Figure 1), with individuals in the higher category presenting
greater logBMI (p-value < 0.05), indicating that higher risk for increased VEGF-A levels is
also associated with elevated logBMI. People in the higher percentile of uGRS also presented
statistically significantly higher values of logSBP compared to the ones in the lower group
(p-value < 0.05), also denoting that elevated risk for increased VEGF-A levels is further
associated with increased logSBP. To boot, individuals with higher versus lower uGRS did
display statistically significantly lower levels of logHDL (p-value < 0.05), highlighting an
inverse association between increased risk for VEGF-A and levels of logHDL.
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Figure 1. Violin plots depicting the distribution of (A) logBMI, (B) logSBP and (C) logHDL between
the two groups of the 9-SNP VEGF-A unweighted GRS (low versus high), separated by the sample
median (p-values < 0.05).

Furthermore, the creation of the 9-SNP uGRS was followed by association testing
for all cardiometabolic indices explored via linear regressions after adjusting for age and
sex (Model 1), age, sex and exercise (Model 2) and age, sex, exercise and dietary patterns
(Model 3). Similar to the results deriving from the within-group comparisons and as
shown in Table 4, significant associations were observed between higher uGRS values
and increased levels of logBMI across all models (Model 1: β = 0.0044, p-value = 0.003,
Model 2: β = 0.0043, p-value = 0.005, Model 3: β = 0.004, p-value = 0.009). Additionally,
a statistically significant, positive association was also observed between the uGRS and
logSBP, again after adjusting for all models (Model 1: β = 0.002, p-value = 0.03, Model 2:
β = 0.019, p-value = 0.047, Model 3: β = 0.002, p-value = 0.037). The score was further
negatively associated with logHDL levels after adjustment for age and sex (Model 1:
β = −0.005, p-value = 0.032), an association which was not maintained after correcting for
the additional confounders (exercise and dietary patterns).
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Table 4. Associations between the 9-SNP uGRS and selected cardiometabolic indices in the TEENAGE cohort.

Model 1 Model 2 Model 3

Estimate SE p-Value Estimate SE p-Value Estimate SE p-Value

logBMI
9-SNP uGRS for VEGF-A 0.004445 0.001494 0.00305 0.004349 0.001553 0.005277 0.0040937 0.0015678 0.009281

logTriglycerides
9-SNP uGRS for VEGF-A 0.005892 0.003854 0.127 0.004260 0.003915 0.2771 0.004650 0.003994 0.2450

logCholesterol
9-SNP uGRS for VEGF-A −0.0001979 0.0017479 0.90992 −0.000716 0.001859 0.70024 −0.0007685 0.0018917 0.68474

logSBP
9-SNP uGRS for VEGF-A 0.002006 0.000924 0.0303 0.0019840 0.0009974 0.047203 0.0020983 0.0010045 0.037205

logDBP
9-SNP uGRS for VEGF-A 0.001891 0.001351 0.161963 0.002211 0.001441 0.12569 0.002365 0.001455 0.10458

LogPP
9-SNP uGRS for VEGF-A 0.002425 0.002268 0.2854 0.001599 0.002413 0.50779 0.0015523 0.0024439 0.52558

LogGlucose
9-SNP uGRS for VEGF-A 0.0009057 0.0036448 0.804 0.001952 0.003840 0.611 0.0028415 0.0038989 0.4665

logLDL
9-SNP uGRS for VEGF-A 0.003038 0.002688 0.2589 0.002300 0.002818 0.4148 0.001733 0.002863 0.5454

LogHDL
9-SNP uGRS for VEGF-A −0.005336 0.002493 0.03279 −0.004999 0.002631 0.05812 −0.004455 0.002673 0.09630

LogCRP
9-SNP uGRS for VEGF-A 0.001437 0.012397 0.90778 −0.0001663 0.0131008 0.98988 −0.001631 0.013250 0.90207

Model 1: Adjusted for age and sex, Model 2: Adjusted for age, sex and exercise, Model 3: Adjusted for age, sex, exercise and dietary patterns. BMI: Body Mass Index; SBP: Systolic Blood
Pressure; DBP: Diastolic Blood Pressure; PP: Pulse Pressure; LDL: Low-density cholesterol; HDL: High-density cholesterol; CRP: C-reactive protein; SE: Standard Error.
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3.4. Interactions between the uGRS and Dietary Patterns

After calculating the 9-SNP uGRS, we carried on to examine the potential associa-
tions between the cardiometabolic indices and their interactions with the five previously
extracted patterns of food choices in the teenagers, namely the “Western Breakfast”, the
“Legumes and Good Fat”, the “Homemade Meal”, the “Chickens and Sugars”, and the
“Eggs and Fibers” patterns [19]. Table 5 shows the multivariate linear regressions carried
out for each examined index and the interaction between the uGRS and each of the dietary
patterns after adjusting for age, sex, uGRS and each dietary pattern (Model 1) and age, sex,
and exercise. uGRS and each dietary pattern (Model 2).

Table 5. Associations between the 9-SNP uGRS for VEGF-A and dietary patterns in the TEENAGE cohort.

Model 1 * Model 2 *

Estimate SE p-Value Estimate SE p-Value

logBMI
uGRS*Western Breakfast 0.0006259 0.0016544 0.70532 0.0009623 0.0016699 0.564684
uGRS*Legumes and Good Fat 0.0004362 0.0014115 0.75742 −0.0002951 0.0015027 0.844375
uGRS*Homemade Meal −0.001836 0.001302 0.15906 −0.001894 0.001326 0.153652
uGRS*Chicken and Sugars −0.001955 0.001442 0.17566 −0.001508 0.001577 0.339236
uGRS*Eggs and Fibers −0.000687 0.001204 0.56840 0.0004325 0.0014616 0.767393

logTriglycerides
uGRS*Western Breakfast −0.003976 0.004121 0.335 −0.003394 0.004147 0.4135
uGRS*Legumes and Good Fat −0.003084 0.003643 0.398 −0.002993 0.003701 0.4192
uGRS*Homemade Meal −0.0003673 0.0031521 0.907 −0.0004249 0.0031042 0.8912
uGRS*Chicken and Sugars −0.000562 0.003527 0.873 0.000446 0.003723 0.9047
uGRS*Eggs and Fibers 0.0004714 0.0029163 0.872 −8.952 × 10−7 3.645 × 10−3 0.9998

logCholesterol
uGRS*Western Breakfast −0.0003120 0.0018673 0.86737 −0.0003595 0.0019652 0.85495
uGRS*Legumes and Good Fat 4.399 × 10−4 1.654 × 10−3 0.79038 0.0006190 0.0017604 0.72529
uGRS*Homemade Meal 0.0022544 0.0014247 0.11421 0.0024594 0.0014679 0.09455
uGRS*Chicken and Sugars 0.0005882 0.0015997 0.71324 0.0011419 0.0017668 0.51840
uGRS*Eggs and Fibers −0.0024429 0.0013171 0.064231 −0.0035654 0.0017221 0.0390

logSBP
uGRS*Western Breakfast 0.0019835 0.0010171 0.05164 0.0021791 0.0010716 0.042500
uGRS*Legumes and Good Fat 0.0009800 0.0008694 0.2601 0.001112 0.000966 0.250296
uGRS*Homemade Meal −0.0004048 0.0008249 0.6238 −0.0006534 0.0008508 0.442827
uGRS*Chicken and Sugars 0.0003776 0.0008987 0.6745 0.0003459 0.0010081 0.731659
uGRS*Eggs and Fibers −0.0011855 0.0007341 0.1068 −0.0018073 0.0009354 0.053889

logDBP
uGRS*Western Breakfast 0.0060753 0.0014736 4.28 × 10−5 0.005687 0.001537 0.000239
uGRS*Legumes and Good Fat 0.0009039 0.0012713 0.477344 0.001483 0.001396 0.28856
uGRS*Homemade Meal −0.0008981 0.0012064 0.45691 −0.001097 0.001229 0.37234
uGRS*Chicken and Sugars 1.822 × 10−5 1.316 × 10−3 0.988960 0.001229 0.001457 0.39932
uGRS*Eggs and Fibers 0.0001876 0.0010752 0.86156 −0.0009524 0.0013559 0.48273

logPP
uGRS*Western Breakfast −0.004375 0.002501 0.08081 −0.003179 0.002602 0.22237
uGRS*Legumes and Good Fat 0.0006745 0.0021355 0.75221 0.0001765 0.0023393 0.93989
uGRS*Homemade Meal 0.0001585 0.0020281 0.93772 −5.986 × 10−5 2.067 × 10−3 0.97691
uGRS*Chicken and Sugars 0.0006736 0.0022094 0.76055 −0.001662 0.002442 0.49637
uGRS*Eggs and Fibers −0.003235 0.001801 0.07296 −0.002587 0.002269 0.2548

logGlucose
uGRS*Western Breakfast −0.0002371 0.0038992 0.952 −0.0006882 0.0040671 0.866
uGRS*Legumes and Good Fat −0.004075 0.003441 0.237 −0.002575 0.003628 0.478
uGRS*Homemade Meal −0.0035228 0.0029773 0.237 −0.003946 0.003039 0.195
uGRS*Chicken and Sugars 0.003550 0.003317 0.285 0.003922 0.003634 0.281
uGRS*Eggs and Fibers 5.869 × 10−3 2.745 × 10−3 0.0330 0.008830 0.003550 0.0132

logLDL
uGRS*Western Breakfast −0.0003845 0.0028733 0.8936 −0.0008217 0.0029791 0.7828
uGRS*Legumes and Good Fat 0.001102 0.002545 0.6652 0.001857 0.002669 0.4870
uGRS*Homemade Meal 0.002229 0.002194 0.3103 0.002617 0.002230 0.2412
uGRS*Chicken and Sugars 0.0024563 0.0024563 0.9468 0.0008795 0.0026757 0.7425
uGRS*Eggs and Fibers −0.004027 0.002024 0.0472 −0.005950 0.002606 0.0229
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Table 5. Cont.

Model 1 * Model 2 *

Estimate SE p-Value Estimate SE p-Value

logHDL
uGRS*Western Breakfast 0.0007058 0.0026675 0.79145 0.001002 0.002789 0.71958
uGRS*Legumes and Good Fat 0.0004628 0.0023529 0.84413 −7.341 × 10−5 2.485 × 10−3 0.97644
uGRS*Homemade Meal 0.003719 0.002032 0.06787 0.003693 0.002080 0.07649
uGRS*Chicken and Sugars 0.001880 0.002275 0.40903 0.002321 0.002496 0.3529
uGRS*Eggs and Fibers −0.0003372 0.0018861 0.85819 −0.0007087 0.0024472 0.77227

logCRP
uGRS*Western Breakfast −0.009797 0.013082 0.45430 −0.0072781 0.0136345 0.59379
uGRS*Legumes and Good Fat 0.002883 0.011393 0.80035 −0.0031947 0.0119986 0.79019
uGRS*Homemade Meal 0.010795 0.009823 0.27239 0.011024 0.010010 0.27144
uGRS*Chicken and Sugars 0.004140 0.010979 0.70632 −0.0006592 0.0120081 0.95625
uGRS*Eggs and Fibers −0.006220 0.008995 0.48963 0.0010038 0.011644 0.93135

* Model 1: Adjusted for age, sex, uGRS and each dietary pattern, Model 2: Adjusted for age, sex, and exercise.
uGRS and each dietary pattern. BMI: Body Mass Index; SBP: Systolic Blood Pressure; DBP: Diastolic Blood
Pressure; PP: Pulse Pressure; LDL: Low-density cholesterol; HDL: High-density cholesterol; CRP: C-reactive
protein; SE: Standard Error.

As shown in the table, after evaluation based on the adjusted threshold (p = 0.01), the
interaction between the uGRS and the “Western Breakfast” was associated with higher
levels of logDBP (Model 1: β = 0.0060, p-value = 4.28 × 10−5, Model 2: β = 0.00568, p-value
= 0.000239), suggesting that increased risk for high VEGF-A and adherence to a western-
diet-like pattern is associated with elevated logDBP. A different nominally statistically
significant, positive association was found for the interaction between the uGRS and
consumption of the “Eggs and Fibers” pattern and increased levels of logGlucose after
adjusting for age, sex, and exercise (Model 2: β = 0.00883, p-value = 0.0132), potentially
indicating that elevated risk for increased VEGF-A and increased consumption of fiber-rich
foods or eggs is associated with increased levels of logGlucose.

4. Discussion

The present study sought to conduct the first-ever attempt to investigate the role of
VEGF-A-related variants on adolescent cardiometabolic profile, as well as their potential
interplay with dietary habits. In this population of Greek teenagers, two VEGF-A-related
SNPs, namely the rs7043199 and the rs4416670 variants, presented significant relations
with blood pressure indices. Moreover, the 9-SNP uGRS constructed out of risk variants for
higher VEGF-A levels was associated with higher levels of logBMI and logSBP but lower
levels of logHDL. Furthermore, the exploration of associations between the uGRS and the
teenagers’ dietary patterns revealed a significant relationship between the adherence to the
“Western Breakfast” pattern and higher logDBP, as well as a nominal association for the
“Eggs and Fibers” pattern and higher logGlucose.

In our sample, the negatively associated with VEGF-A levels C allele of the rs4416670
SNP was also negatively associated with logSBP levels. Debette et Visvikis-Siest et al.
previously showed a positive relationship between the allele and increased pulse pressure
in a healthy population [10]; this could potentially be attributed to the relationship between
lower levels of SBP, which would subsequently signify greater values of pulse pressure.
On the contrary, the A allele of the rs7043199 variant, which was previously negatively
associated with VEGF-A [10,11], was hereby linked with higher levels of logSBP and
logDBP. Although not as statistically strong (p-value = 0.004), this observed effect could
possibly be attributed to the yet-to-be-fully elucidated pleiotropic influence of the variant,
the role of which has been previously investigated for overall risk for other disorders
related to cardiometabolic profile, namely ischemic heart disease [27] and osteoporosis [28].

To the best of our knowledge, VEGF-A has not been extensively and exclusively exam-
ined in adolescents, and the present constitutes the first attempt to construct a uGRS for
teenagers using VEGF-A-associated variants. The present 9-SNP uGRS was linked to higher
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levels of logSBP (Model 1: β = 0.002, p-value = 0.03, Model 2: β = 0.019, p-value = 0.047,
Model 3: β = 0.002, p-value = 0.037) and individuals with high GRS presented greater
values compared to the ones with low GRS (p-value = 0.027), showing that increased ge-
netic predisposition to higher levels of VEGF-A is associated with higher blood pressure in
adolescents. This finding is aligned with the well-known relationship between VEGF-A and
hypertension, as the current literature has shown that the inhibition of VEGF-A receptors
signifies higher levels of circulating VEGF-A, which have, in turn, been associated with a
greater risk for hypertension [29–31]. In a similar manner and supporting the reciprocal
relationship between the VEGF family and hypertension, Zorena et al. showed that adoles-
cents with type 1 diabetes and hypertension displayed greater levels of VEGF compared to
healthy individuals or patients with type 1 diabetes but without hypertension [32].

Although this is an overall healthy population with most adolescents presenting nor-
mal weight, the accumulating effect of the nine examined SNPs from Choi et al. displayed
a statistically significant, positive association with higher logBMI values. In addition to the
already underlined positive relationship between VEGF-B and VEGF-C levels and obesity
presence [33,34], the current literature further highlights the role of VEGF-A in obesity
control [2,35,36]. In the presence of obesity and fat cell proliferation, VEGF-A expression
increases as it participates in angiogenesis, cell differentiation and thermogenesis in the
white and brown adipose tissues. In this context, VEGF-A contributes to the subsequent
increase in energy expenditure and attempts to suppress further diet-induced increase and
ameliorate insulin resistance in a compensatory effect [2,35,36]. However, as the increase in
adipocytes progresses, VEGF-A is produced more, and angiogenesis is further promoted in
the white adipose tissue, thus allowing for further obesity establishment. This cascade of
events creates a reciprocal circle where obesity presence induces VEGF-A expression and
vice versa. For that reason, the effect of VEGF-A on increased weight can be described as
reciprocal and context-dependent, being mainly influenced by the potential pre-existence
of increased body weight [1,35]. Hereby, the positive association between the uGRS and
logBMI was steadily maintained after adjustments for all three models of confounding
factors (Model 1: β = 0.0044, p-value = 0.003, Model 2: β = 0.0043, p-value = 0.005, Model 3:
β = 0.004, p-value = 0.009) and adolescents with high versus low genetic risk also presented
higher values of logBMI, suggesting an aggravating effect in BMI as a genetic risk for
higher VEGF-A increases. In a similar context to the present, Novikova et al. showed that
compared to individuals of normal weight, adolescents with obesity presented a 12-fold
increase in corresponding VEGF-A levels [37]. To boot, Loebig et al. showed a similar
positive association in healthy young men (aged 18–30 years old) under normal blood
sugar conditions, where higher levels of VEGF-A were consistently associated with in-
creased weight [38]. VEGF-A was also related to abdominal obesity in a sample of young
individuals, as demonstrated by Guzman-Guzman et al. when investigating relations with
parameters of the metabolic syndrome [39]. Our present findings show that increased
predisposition to higher levels of VEGF-A is related to higher BMI; however, according
to the aforementioned, it should be noted that the reciprocity of the relationship remains
significant, as increased VEGF-A levels can generally be observed due to increased BMI,
thus potentially aggravating the positive predisposing genetic effect.

Another significant relation was observed between the uGRS and lower levels of
logHDL (Model 1: β = 0.005, p-value = 0.032). Although this association was not main-
tained after correction for multiple confounding factors, when looking at individuals with
higher versus lower genetic risk for increased VEGF-A, the former did present lower values
of logHDL. When looking into potential associations between VEGF-A variants and HDL,
both Debette et Visvikis-Siest and Stathopoulou et al. showed that the negatively associ-
ated with VEGF-A A allele of rs6921438 SNP was related to lower HDL levels in healthy
populations [10,12]. The present finding denoting a positive association between increased
VEGF-A and lower HDL levels can, thus, potentially be explained by the general overview
of the role of elevated VEGF-A in worse lipidemic profile, rather than the direct effect of
VEGF-A on HDL per se [40].
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Furthermore, taking the biomarker’s role in metabolism into account [2,6,7], we further
attempted to unravel the meaning of the interplay between genetic predisposition for
higher VEGF-A levels and multiple cardiometabolic indices by examining the potentially
modifying role of dietary habits. In our sample, the interaction between the uGRS and
the consumption of the “Western Breakfast” was associated with higher levels of logDBP
(Model 1: β = 0.0060, p-value = 4.28 × 10−5, Model 2: β = 0.00568, p-value = 0.000239).
This finding can be explained by the fact that the “Western Breakfast” pattern consists of
food groups with high-fat content, namely cheese, dairy and processed meat [19], which
have already been shown to associate with increased blood pressure in the literature [41].
Hojhabrimanesh et al. showed similar significant associations between a “Western” dietary
pattern and overall and systolic blood pressure in Iranian adolescents, as well as a positive
but not statistically significant association for diastolic pressure [42]. Although the pattern
was not unilaterally associated with blood pressure measurements in our team’s previous
analyses [19], and an increased predisposition to higher VEGF-A appears to bring its
aggravating effect to the forefront and vice versa. This could be partly attributed to the
positive effect of the Western diet and red meat-derived protein, which has been previously
shown to elevate VEGF-A expression among patients with breast cancer [43].

Furthermore, although the 9-SNP uGRS was not alone associated with glucose in our
sample, it did present a nominally significant interaction with the protein-rich “Eggs and
Fibers” dietary pattern (consisting of non-refined cereals, vegetables and eggs) in increasing
logGlucose levels (Model 2: β = 0.00883, p-value = 0.0132). The involvement of VEGF-A
in glucose homeostasis is well-known [8], as low levels of the biomarker are linked to
insulin resistance, while its overexpression is associated with impaired insulin production
and increased glucose levels [2,8]. Consequently, research in adolescent cohorts to date
mainly surrounds diabetic individuals or related complications [30,44] and has yet to yield
significant results in healthy populations. Although fiber intake is generally regarded as
having protective effects in the production of inflammatory biomarkers [45], the present
finding could possibly refer to the reciprocal effect of dietary carbohydrate and protein
intake on aggravating the genetic risk for VEGF-A levels and subsequent influence the
elevated glucose levels.

Moreover, similar gene–diet interactions have also been explored in individuals with
metabolic syndrome in studies examining target SNPs for VEGF-A rather than using a
holistic genetic risk score approach. Ghazizadeh et al. showed that individuals with the
AA genotype for the rs10738760 variant, which was also included in the present uGRS, and
higher adherence to foods with increased sugar and saturated fatty acids, among others,
presented a greater risk for metabolic syndrome [16]. It was further demonstrated that
the presence of the same A allele can significantly interact with even favorable dietary
components (e.g., PUFAs) in ultimately elevating the risk for worse glycemic and lipidemic
profile and, thus, metabolic syndrome [16]. Taking it one step further, Chedid et al. showed
a significant association between BMI and the rs10738760 polymorphism in decreasing iron
levels, an effect shown to be more prominent in individuals with obesity [18]. Finally, a
different relation concerned the observed associations between the presence of the 9-SNP-
uGRS rs6921438 and rs6993770 included SNPs and micronutrient contents, namely high
manganese, low zinc, and low iron intakes in patients with metabolic syndrome [46–48].

The strengths of the present study concern its hypothesis of investigating demon-
strated effects of known VEGF-A variants on the cardiometabolic profile of healthy adoles-
cents for the first time. Various associations presented hereby underline the effect of the
SNPs in this age group and further highlight the complementary and modifying effect of
diet in this vulnerable and crucial for future development life stage. The limitations of the
study are summarized as follows: (i) the limited but substantial number of participants
compared to larger cohorts examining VEGF-A-related variants; (ii) the overall health
status of the population used, which might not have promoted the identification of distinct
associations with cardiometabolic risk factors, as for example in the case of patients with
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obesity or disrupted glucose metabolism and; (iii) the restricted variance of the populations’
habits explained by the previously extracted dietary patterns (46.69%) [19].

5. Conclusions

The results from the present study suggest that well-identified VEGF-A-related vari-
ants in adults affect the parameters of adolescent cardiometabolic profiles. Our findings
highlight the complexity of the mechanisms in which VEGF-A-related variants affect car-
diometabolic risk factors both directly but also potentially through pleiotropic effects.
Assessment of the role of diet showed that interaction between genetic makeup and di-
etary habits could significantly influence the variation of glycemic and blood pressure
indices in this age group. In this spectrum, our findings promote the enhancement of our
understanding of VEGF-A influence and its individual interaction with dietary aspects. We
hereby lay the ground for future GWAS studies to be held that include larger adolescent
sample sizes, allowing for the establishment of corresponding effect sizes and the subse-
quent construction of weighted GRSs for VEGF-A in teenagers. The latter would broaden
our abilities in evaluating this reciprocal relationship and even allow for the use of the
risk scores as tools of individual and clinical utility in assessing the risk for adolescent
cardiometabolic disorders.
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Abstract: Quantifying the role of genetics via construction of polygenic risk scores (PRSs) is deemed
a resourceful tool to enable and promote effective obesity prevention strategies. The present paper
proposes a novel methodology for PRS extraction and presents the first PRS for body mass index
(BMI) in a Greek population. A novel pipeline for PRS derivation was used to analyze genetic data
from a unified database of three cohorts of Greek adults. The pipeline spans various steps of the
process, from iterative dataset splitting to training and test partitions, calculation of summary statistics
and PRS extraction, up to PRS aggregation and stabilization, achieving higher evaluation metrics.
Using data from 2185 participants, implementation of the pipeline enabled consecutive repetitions
in splitting training and testing samples and resulted in a 343-single nucleotide polymorphism PRS
yielding an R2 = 0.3241 (beta = 1.011, p-value = 4 × 10−193) for BMI. PRS-included variants displayed a
variety of associations with known traits (i.e., blood cell count, gut microbiome, lifestyle parameters).
The proposed methodology led to creation of the first-ever PRS for BMI in Greek adults and aims at
promoting a facilitating approach to reliable PRS development and integration in healthcare practice.

Keywords: polygenic risk score (PRS); bioinformatics; body mass index (BMI); Greek adults

1. Introduction

According to WHO estimates for 2016, a considerable 49% and 13% of the global adult
population presented overweight or obesity, whereas worldwide obesity prevalence has
tripled since 1975 [1]. In this context, respective linear predictions dictate that about 50%
of the global population will suffer from obesity by 2030 should similar increasing trends
continue uninterrupted [2]. Increased body weight and fat accumulation are evidently
directly related to elevated cardiometabolic risk and, subsequently, augmented prevalence
of chronic diseases related to glycemic and lipidemic profile, such as type 2 diabetes and

J. Pers. Med. 2023, 13, 327. https://doi.org/10.3390/jpm13020327 https://www.mdpi.com/journal/jpm

https://doi.org/10.3390/jpm13020327
https://doi.org/10.3390/jpm13020327
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0001-7136-0239
https://orcid.org/0000-0002-7349-0309
https://orcid.org/0000-0001-6179-1609
https://orcid.org/0000-0002-4199-0333
https://doi.org/10.3390/jpm13020327
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm13020327?type=check_update&version=1


J. Pers. Med. 2023, 13, 327 2 of 14

cancer [3]. Due to its preventable nature and demand for effective prevention strategies [4],
current research focuses on deepening understanding of multifactorial obesity etiology by
focusing on the quantified role of genetic predisposition and its reciprocal relation with
lifestyle and environmental determinants in populations with various characteristics.

Indeed, aggregation of multiple single nucleotide polymorphisms (SNPs) in construc-
tion of polygenic risk scores (PRS) is increasingly gaining ground as a practical tool to
enable quantification and interpretation of genetic information on phenotypic variance.
From identification of the first 97 key BMI-related variants [5] up to creation of multiple
BMI-specific PRSs presented in the PGS Catalog database [6], using polygenic predictions
is increasingly viewed as a useful tool to assess and explain the relevant attributed obe-
sity variance [7–11]. The advantages of the role of PRS use for disease prevention and
augmented accuracy in precision medicine are discussed in the context of potentially in-
creasing both personal and clinical utility [12]. Recent studies show that inclusion of PRS
in prediction models for certain disease outcomes, such as cardiovascular disease or cancer,
carries similar importance to other contributing factors, namely lipidemic biomarkers
or smoking [13–15]. For that reason, future PRS integration in personalized medicine is
deemed useful for disease diagnosis, risk prediction and forming contextualized lifestyle
recommendations [13].

The current literature highlights the need for an efficient translational approach to
integrating PRS use into daily practice, potentially via inclusion in tools predicting dis-
ease risk [13]. In an effort to increase validity and straightforward application, various
methodologies for PRS creation have been suggested. In the case of examining BMI, such
examples refer to conduct of large genome-wide association studies (GWAS) and subse-
quent inclusion of significant SNPs in the form of a score [11,16], a priori aggregation of
literature-based SNPs [9] or even use of other techniques, such as functional data analy-
sis [17]. However, most approaches suggested to date focus on the use of one methodology
and do not display increased portability and applicability across populations [18]. The
need of improving their constructive parameters is, therefore, deemed central in order to
increase PRS validity and wider implementation [12].

Hereby, we introduce the use of a novel, automated and iterative approach for PRS
construction using repetitive sample splitting processes, informed decision-making through
real-time comparison of different summary statistics’ methodologies and aggregation of
PRS candidates based on a stabilizing iterative procedure. We present the results of its
application in creating the first PRS for BMI in Greek adults using data from a unified
database of three separate cohorts. The suggested outlined pipeline constitutes an innova-
tive approach in facilitating PRS construction in a straightforward manner, applicable to
cohorts of various sizes and characteristics.

2. Materials and Methods
2.1. Study Population

For the purpose of the present analyses, data from three cohorts of Greek adults were
used, namely the case-control Greek Non-Alcoholic Fatty Liver Disease (NAFLD) study [19],
the cross-sectional OSTEOS study [20] and the case-control THISEAS (The Hellenic Study
of Interactions between Single Nucleotide Polymorphisms and Eating in Atherosclerosis
Susceptibility) [21] study. All studies were approved by the Research Ethics Committee
of Harokopio University of Athens and further required participants’ written informed
consent prior to enrolment (NALFD protocol number: 38074/13-07-2012, OSTEOS protocol
number: 15/8-12-2005, 8/12/2005, THISEAS protocol number: 10/9-6-2004, 14/6/2004).

The detailed protocols of all three studies have been previously described elsewhere [19–23].
Briefly, the NAFLD study recruited adult participants without liver disease/injury and re-
porting absence of excess alcohol drinking at the time of induction to the study. Volunteers
were recruited from the Outpatient Clinics of the First Department of Propaedeutic and
Internal Medicine in Laiko General Hospital, during the period 2012 to 2015 [19]. Recruits
were further screened for NAFLD through abdominal ultrasound and deemed as controls
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in the absence of hepatic steatosis or in the presence of mild-stage, or cases in presence
of moderate or severe hepatic steatosis [20]. Concerning the nodes of the OSTEOS study,
970 community-dwelling adults were recruited from rural and urban areas of Greece and
assessed for quantitative ultrasound (QUS) parameters of bone health during the 2010–2012
period and in cooperation with the Hellenic Society for the Support of Patients with Osteo-
porosis and the Laboratory for the Research of Musculoskeletal System “Th. Garofalidis”,
School of Medicine, National and Kapodistrian University of Athens [21]. Last, within the
THISEAS study, a total of 2565 participants were recruited from three Athenian hospitals,
open protection centers and municipalities during the years 2006–2010. Recruits were
mainly assessed using coronary angiography information and were categorized as controls
if they presented negative coronary findings or a negative stress test or did not report
any related clinical symptoms. Volunteers were categorized as cases in the presence of
acute coronary syndrome or stable coronary artery disease (> 50% stenosis in ≥ 1/3 main
coronary vessels) [22,23].

2.2. Anthropometric Measurements

Anthropometric characteristics, including body weight and body height, were mea-
sured for all three studies. Body weight was measured using the TANITA Segmental Body
Composition Analyzer BC-418 and a calibrated scale to the nearest 0.1 kg. Height was
calculated to the nearest 0.5 cm using a mounted stadiometer. Participants were barefoot
and maintained light clothing and measurements occurred twice and average values were
kept as final in all projects. All measurements were conducted by trained professionals.
BMI was calculated for all participants via use of the following formula:

BMI
(

kg
m2

)
= Body Weight(kg)/ (Body Height)2(m2)

Participants in all studies were classified based on BMI values in the categories of un-
derweight (BMI < 18.5 kg/m2), normal weight (18 kg/m2 ≤ BMI < 25 kg/m2), overweight
(25 kg/m2 ≤ BMI < 30 kg/m2) or obese (BMI ≥ 30 kg/m2). Within-study group differences
in BMI were calculated using Kruskal–Wallis tests.

2.3. Genotyping Analyses

For the NAFLD study, DNA samples were isolated using peripheral blood lympho-
cytes and genotyped via use of the Infinium CoreExome-24 BeadChip, Illumina genome-
wide SNP array (with 567,218 fixed markers). OSTEOS’ DNA samples were isolated from
buffy coats and genotyped using the Axiom Precision Medicine Diversity Research Array
[with over 850,000 SNPs, insertions, deletions and copy number variations (CNVs)]. DNA
samples from the THISEAS study were extracted from whole blood and genotyped using
the Illumina Metabochip (with about 200.000 SNPs).

2.4. Preprocessing and Statistical Analysis
2.4.1. Dataset Merging and Genotype Imputation

Prior to joint statistical analysis and PRS derivation, the phenotypic and genotypic
data of the three populations were merged. While the phenotypic integration was straight-
forward and comprised the simple join of the common phenotypes across the three
datasets, the following steps were followed for the genotypic data which were converted
to PLINK [24] 1.9 BED+BIM+FAM filesets. First, the PLINK filesets from NAFLD and
THISEAS were imported into R version 4.2.0. using facilities from the package snpStats,
version 1.46.0. Then, the process of merged dataset creation started with identifying the
identical SNPs between the two datasets in terms of accession numbers, position and
alleles. For the common but non-identical SNPs in terms of alleles, it was checked whether
they could be resolved with strand-flipping. Those SNPs that could not be resolved with
strand-flipping were not pointing to the same risk allele. This was resolved by querying
online resources (Ensembl with the R package biomaRt, version 2.52.0 and dbSNP with
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the R package rsnps, version 0.5.0). After the resolution, samples where the risk allele was
changed based on online search were subjected to allele switching to maintain proper risk
allele copies in the merged dataset. SNPs for which alleles could not be resolved by any
means were dropped from the merged dataset. Finally, the SNPs and genotypes unique
to each dataset were appended to the common ones to form the final SNP set. The same
appending was applied to the samples of each dataset.

As expected, the aforementioned process created many missing genotypes, especially
regarding non-common SNPs between the two datasets. To impute them, an iterative
imputation approach was followed using facilities from package snpStats. The package
includes genotype imputation functions based on linear regression of neighboring SNPs.
This process was repeated until no further genotype imputation was possible. For the re-
maining missing genotypes of the merged dataset, a k-nearest-neighbors-based imputation
technique was applied, implemented in the R package scrime, version 1.3.5.

The merging and the imputation process resulted in a merged NAFLD–THISEAS
dataset. The OSTEOS dataset was merged with the latter by repeating all the aforemen-
tioned steps, resulting in a merged NAFLD–THISEAS-OSTEOS dataset. The final merged
dataset was exported to PLINK format using functions from the snpStats package. Next,
to enhance the pool of SNPs for PRS derivation, the merged dataset was extended using
IMPUTE2 software [25] using the bundled 1000 Genomes Project reference panel. The
imputed and extended dataset was re-imported to R for further analysis.

2.4.2. Data Filtering and Summary Statistics

The first filter applied to genotypic data was to exclude poorly imputed genotypes;
therefore, SNPs with an IMPUTE2 INFO score less than 0.9 were excluded. Additional
genotype and sample filtering was performed using functionalities from the snpStats
package. Specifically, SNPs with an SNP call rate < 95% and minor allele frequency
(MAF) < 5% and samples with a sample call rate < 90% were excluded from further analysis.
The resulting filtered dataset was further subjected to a second round of genotype filtering
based on the Hardy–Weinberg (HWE) equilibrium, where SNPs with HWE p-value < 10−9

were also excluded from further analysis.
After dataset filtering, principal component analysis (PCA) was performed to cap-

ture any underlying population stratification not reflected by the confounders used in the
subsequent association tests using R package SNPRelate, version 1.30.1. Subsequently,
regression models were fitted for each SNP against BMI phenotype using sex, age, NAFLD
case/control and cardiovascular disease status along with selected PCs as correction co-
variates with the purpose of deriving summary statistics for each SNP, namely effects and
statistical significance for contribution of each single SNP to the phenotype. The number
of PCs was automatically selected using the Tracy–Widom statistic for assessment of the
most significant PCs based on their eigen values [26]. Four different algorithms were
used for derivation of summary statistics, namely simple General Linear Models (GLM, R
version 4.2.0), statgenGWAS version 1.0.8. [27], SNPTEST version 2.5.4 [28] and PLINK.

2.4.3. Derivation of PRS

Several PRS candidates were derived using PRSice2 [29] combined with an iterative
process for PRS derivation and validation and based on the merged dataset from the three
populations. The PRS was calculated with the default PRSice2 option, which is:

PRS =
k

∑
i=1

βiGi

N

where βi represents the effect of PRS SNP i, Gi is the genotype coding (0, 1, 2 following
PLINK notation, for the number of copies of risk alleles) and N the number of samples in
the population. The PRS is reported in the figures of the present articles after applying
min–max normalization to scale it to values between 0 and 1.
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In each iteration, the following actions were performed: first, the total dataset was split
to a training set (source set, 80% of samples) and a testing set (target set, 20% of samples).
Then, the source set was used to perform de novo association tests for each SNP with four
different methods (GLM, statgenGWAS, SNPTEST, PLINK) against the BMI phenotype.
Sex, age, NAFLD status and several automatically selected PCs (varying between 5–12
across multiple iterations), using the Tracy–Widom test, were used as confounders in the
regression models underlying each of the four methods, resulting in sets of summary
statistics derived with each method. Then, these summary statistics were used along with
the target dataset as inputs to PRSice2 for extraction of the optimal number of SNPs that
would comprise a candidate PRS for the specific iteration. The aforementioned steps, from
data splitting up to PRS synthesis with PRSice2, were repeated 100 times. At each iteration,
several performance metrics were collected, among which the statistical significance of the
PRS and the percentage of additional variance explained by the PRS (R2) as returned by
PRSice2. At this point, it should be noted that the PRSice2 PRS R2 is the difference between
the R2 of the “full” model, i.e., a regression model including all the covariates/confounders
and the PRS, and the “null” or “reduced” model, i.e., a regression model only with the other
covariates without the PRS. The PRS R2 values were collected for each iteration, resulting
in a baseline distribution that would be used later for assessing the statistical significance
of the final PRS.

After completion of PRS derivation iterations, SNPs comprising PRS candidates for
each summary statistics method were aggregated and number of appearances (frequency)
of each SNP in the 100 iterations was counted considering an SNP to be appearing at
least 5 times in order to further proceed to the downstream procedures. Then, for each
frequency, a PRS comprising the SNPs appearing equally or above this frequency was
assembled with effects averaged over iterations where each SNP appears and evaluated
using previously described source/target dataset splits and linear regression, resulting in a
series of evaluation metrics, among which also the PRS R2 as described above. This was
repeated for all observed frequencies and a distribution of PRS R2 values was created. The
PRS R2 values were further penalized based on number of SNPs in PRS according to the
following formula:

R2
P =

√
R2

PRS
log(N)

where R2
P is the PRS R2 and N is the number of SNPs in the PRS. Then, a set of pre-final

PRS candidates was defined by detecting local maxima in the R2
P distribution, reflecting

PRSs with high values of R2
P. The final PRS was selected based on the highest R2

P value.
The statistical significance of the aggregated PRS R2 as well as the R2

P was assessed using
an empirical bootstrap defined as number of times where the baseline PRS R2 was greater
than the aggregated PRS R2 divided by number of iterations.

3. Results
3.1. Population Characteristics

The anthropometric characteristics of the unified sample are described in Table 1.
Overall, we used available data from 2083 participants, namely 342 participants from the
NAFLD study, as well as 791 and 950 participants from the OSTEOS and THISEAS studies,
respectively. A total of 841 men and 1242 women were included, with a median age of
53 years (calculated at 2075 participants) and a median BMI of 27.38 kg/m2. Within the re-
spective databases, participants presented median BMIs in the spectrum of overweight for
all three studies (NAFLD median BMI = 26.5 kg/m2, OSTEOS median BMI = 26.91 kg/m2

and THISEAS median BMI = 27.81 kg/m2). BMI was not statistically significantly different
between the NAFLD and OSTEOS studies but did present a statistically significant dif-
ference between the NAFLD and THISEAS as well as the OSTEOS and THISEAS studies
(p < 0.001 for both pairs). Differences in age were also statistically significant between all
studies (p < 0.001 for the Kruskal–Wallis test).
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Table 1. Descriptive characteristics of the NAFLD, OSTEOS and THISEAS study populations.

All NAFLD OSTEOS THISEAS

All (n = 2075
for age,

n = 2083 for
BMI)

Men
(n = 841)

Women
(n = 1234 for
age, n = 1242

for BMI)

All
(n = 342)

Men
(n = 140)

Women
(n = 202)

All (n = 783
for age,

n = 791 for
BMI)

Men
(n = 101)

Women
(n = 682 for
age, n = 690

for BMI)

All
(n = 950)

Men
(n = 600)

Women
(n = 350)

Med (IQR)

Age 53 (18) 54 (19) 52 (19) 47 (18) 44 (17) 50 (16) 50 (18) 47 (28.5) 51 (16.25) 59 (19) 58 (18.75) 60 (21)
BMI (kg/m2) 27.38 (6.18) 27.68 (5.34) 27.02 (7.10) 26.5 (6.23) 26.8 (4.54) 25.9 (6.98) 26.91 (6.81) 26.70 (5.13) 26.94 7.01) 27.81 (5.80) 27.88 (5.43) 27.77 (6.51)

BMI: body mass index, Med: median, IQR: interquartile range.

Differences in BMI levels across the two sexes were statistically significant in the
overall sample (p-value < 2.2 × 10−16), with men presenting higher values. Among the
overall sample, 614 participants presented BMI in the range of 18.5–24.99 kg/m2 (31.43%
men, 68.56% women), whereas 875 and 579 participants presented overweight and obesity,
respectively (Table 2). Most participants presenting overweight or obesity were in the
THISEAS study (n = 730).

Table 2. Frequencies of BMI categories across the three studies.

BMI < 18.5 kg/m2 18.5 kg/m2 ≤ BMI < 25 kg/m2 25 kg/m2 ≤ BMI < 30 kg/m2 BMI ≥ 30 kg/m2

All Men Women All Men Women All Men Women All Men Women

All 15 0 15 614 193 421 875 405 470 579 243 336
NAFLD 3 0 3 117 36 81 141 74 67 81 30 51
OSTEOS 10 0 10 279 34 245 300 43 257 202 24 178
THISEAS 2 0 2 218 123 95 434 288 146 296 189 107

BMI: body mass index.

Regarding genotypic data, after imputation of IMPUTE2 with data from 1000 genomes
project as a reference panel, a total of 24,307,245 variations were made available. Subse-
quently, variants with imputation confidence (INFO score returned by IMPUTE2) less than
0.9, structural and copy-number variations were excluded from further analysis. All down-
stream analyses were based only on known variants (i.e., variants recorded in dbSNP). This
process led to 1,454,104 variants interrogated for PRS candidates. With respect to samples,
1970 (94.6%) had complete phenotypic records for covariates interrogated in regression
models and included in further analyses.

3.2. Summary Statistics for PRS Derivation

Summary statistics for the merged dataset were calculated with BMI phenotype as a
response variable and using the extended (imputed based on the 1000 genomes external
reference panel) and further filtered genotypic dataset. In order to properly estimate the
effects of individual SNPs that potentially contributed to the BMI phenotype in the unified
dataset, we applied four different frameworks for summary statistics estimation, namely
a simple generalized linear model (GLM) as implemented in the R statistical language,
the regression algorithm implemented in the R package statgen GWAS as well as the
SNPTEST software and the more generalized PLINK framework. In all cases, the sex, age,
NAFLD status and cardiovascular disease status of individuals were incorporated in the
regression models as confounders, along with several automatically selected principal
components to capture potential underlying population stratifications not reflected by the
other confounders. The four sets of summary statistics were used as input to PRSice2
along with the target samples in an iterative PRS derivation procedure, as described in
Materials and Methods. To evaluate the performance of each summary statistics estimation
method, we used the PRS R2 metric returned by PRSice2, which measures percentage of
BMI variability explained by the PRS in the regression models. The PRS R2 values for
each method were averaged over 100 PRS derivation iterations (Supplementary Figure S1)
and the method that yielded the highest PRS R2 was selected to provide the summary
statistics for final PRS derivation. In our case, SNPTEST yielded the highest average
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PRS R2 (0.012 ± 0.006, pmin = 0.0002, pmedian = 0.0375, pmax = 0.3194), followed by
GLM (0.011 ± 0.006, pmin = 0.0003, pmedian = 0.0697, pmax = 0.4251) and statgenGWAS
(0.010 ± 0.006, pmin = 0.0005, pmedian = 0.0718, pmax = 0.3579). PLINK yielded the lowest
average PRS R2 values but with the smallest variability across 100 iterations (0.009 ± 0.004,
pmin = 0.0002, pmedian = 0.0802, pmax = 0.5282).

3.3. Selection of a PRS

After completion of 100 PRS derivation iterations, we assessed the stability of the
extracted PRSs (Supplementary Figure S2). We observed that, in our case, PRS extraction
process was highly dependent on source (training) dataset summary statistics. As a result,
the SNP content of each PRS greatly varied between iterations, therefore affecting the perfor-
mance of the latter and its contribution in explaining BMI. In order to mitigate the observed
PRS instability, the 100 different SNP sets comprising the 100 different PRSs returned by
PRSice2 with SNPTEST summary statistics were aggregated (Supplementary Table S1) as
described in Materials and Methods, requiring that an SNP considered for inclusion in a
PRS candidate should appear at least five times in the end of the iterative procedure.

Subsequently, several PRS candidates were assembled with SNP content based on
frequency of appearance of the latter across the aggregated SNP set, new regression models
were created based on the initial target dataset splits used by PRSice2 and PRS R2 values
were assembled (Figure 1A) along with their respective significance when compared with
the baseline PRSice2 PRS R2 distribution. As our goals included derivation of a PRS with a
less extended number of SNPs but of high predictive value as a PRS with a larger number
of SNPs, the new PRS R2 values were further penalized based on the number of SNPs
that each PRS candidate included (Figure 1B). Then, using the resulting distribution of
penalized PRS R2 values, we detected local maxima, denoting both high predictive value
and lower SNP content. The number of SNPs yielding an adequately high penalized PRS
R2 while maintaining significance when compared to the baseline PRS R2 distribution
was found to be 343 (PRS R2 = 0.1156 ± 0.0277). Notably, our iterative and aggregative
PRS derivation process resulted in a PRS with ~10 times improved explanatory power
(bootstrap p-value = 0, Figure 1A) than using PRSice2 alone.

3.4. PRS Evaluation

Next, we further evaluated the final 343-SNPs-selected PRS for BMI using the total
merged dataset coupled with an iterative 10-fold cross-validation process, where, in each
iteration of the process, we left out 5–50% of the total dataset samples, each time increasing
the left-out samples by 5% and creating regression models including (full) and excluding
(reduced) the PRS while maintaining the other covariates (Supplementary Table S2). Overall,
the PRS increased the predictive power of the models by 31–33%, with the minimum PRS
R2 value observed at 0.3159 ± 0.0190 (p-value = 4 × 10−87) when leaving out 50 of samples,
with the maximum value at 0.3279 ± 0.0114 (p-value = 9 × 10−130). A final regression model
using the 343-SNP PRS for BMI with the total merged dataset yielded a PRS R2 = 0.3241
(beta = 1.011, p-value = 4 × 10−193). Finally, to evaluate the ability of the 343-SNP PRS to
characterize close phenotypes, we created a regression model with the same covariates but
using population weight instead of BMI. The model yielded PRS R2 = 0.2313 (beta = 2.702,
p-value = 4.15 × 10−158, Supplementary Figure S3).
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Figure 1. Mean PRS and penalized PRS R2 for the assembled PRS candidates based on their fre-
quency of appearance over 10 iterations as described in Materials and Methods. (A). Mean PRS
R2 +/− standard deviation for PRS candidates assembled from SNPs at different frequencies of
appearance in the PRS candidates across 100 PRS extraction iterations. The vertical axis depicts the
mean adjusted PRS R2, while the horizontal axis depicts the number of SNPs in each PRS candidate.
The number inside the parentheses next to the number of SNPs in the horizontal axis depicts the SNP
frequency of appearance in the PRS. For example, 393 (34) means that the PRS at that particular R2

consists of 393 SNPs that appear at least 34 times over 100 iterations. The color scale denotes the
statistical significance (Student’s t-test p-value in −log10 scale) of the adjusted R2 distribution over
100 de novo PRS extraction iterations (baseline R2) as compared to the adjusted R2 distribution of each
assembled PRS candidate in the horizontal axis. The mean baseline (derived directly from PRSice2
outcomes for each iteration) R2 is depicted with the dashed grey horizontal line, and the dotted grey
horizontal lines depict the standard deviation of the former. (B). Mean penalized according to the
number of SNPs PRS R2.

3.5. PRS for BMI

The aforementioned 343-SNP PRS deriving from using SNPTEST displayed a statis-
tically significant association for BMI (beta = 1.011, p-value = 4 × 10−193) and a positive
correlation, where increased PRS values were associated with increased BMI levels. As
shown in Figure 2, the examined population presented an overall median risk, with most
observations met in the 0.25–0.50 range. Out of the 343 SNPs identified in the PRS (see Sup-
plementary Table S3), automatically identified known associations included in the GWAS
Catalog were displayed for 16 SNPs, namely rs2710804 (27 associations) and rs2955742
(five associations) (see Table 3).
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Figure 2. Correlation of the 343-SNP PRS for BMI with the phenotype and PRS distribution. (A). The
BMI phenotype across the merged dataset is plotted against the min–max-normalized PRS value
for each individual. (B). Histogram depicting the min–max-normalized PRS distribution for all
individuals in the merged dataset.

Table 3. List of PRS SNPs with known associated traits in GWAS Catalog.

Consortial Summary Statistics (GWAS Catalog) Known Associated Traits Unified Cohort Summary Statistics

SNP Nearest gene Position (Chr:bp) Alleles MAF Effect Allele Associated Traits Effect allele Beta 1

rs11668205 IZUMO4 19:2096429-2099593 G/A 0.09 (A) N/A Abnormality of chromosome segregation G −0.32575
rs488248 LOC728192 13:105944370 C/A/T 0.23 (C) T Response to docetaxel, antineoplastic agent C −0.17048
rs480039 SLC35F3 1:234290732 G/A/C/T 0.37 (A) N/A Gut microbiome measurement G −0.17361

rs2288061 RPL18P13 16:76135833 G/A/C 0.34 (A) G Delta-5 desaturase measurement G −0.17776
rs2807854 HLX-AS1 1:220856499 T/C/G 0.25 (T) T LDL, apoB measurements T −0.13816

rs2955742 TMEM266 15:76153791 G/A 0.10 (A) A Serum urea, cystatin c, creatinine, urate, glomerular
filtration measurement G −0.19108

Rs2710804 SEPT7,EEPD1 7:36044919 T/C 0.23 (C) #N/A Fibrinogen measurement T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Serum alanine aminotransferase measurement T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Lymphocyte count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Platelet count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Lymphocyte count T −0.1356
rs2710804 KIAA1706 7:36044919 T/C 0.23 (C) C C-reactive protein measurement T −0.1356
rs2710804 AC083864.3 7:36044919 T/C 0.23 (C) C Leukocyte count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Neutrophil count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Myeloid white cell count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) N/A Leukocyte count T −0.1356
rs2710804 SEPT7, EEPD1 7:36044919 T/C 0.23 (C) N/A Fibrinogen measurement T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Lymphocyte count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Platelet count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) T Platelet count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Leukocyte count T −0.1356
rs2710804 AC083864.3 7:36044919 T/C 0.23 (C) C Neutrophil count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Serum albumin measurement T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C C-reactive protein measurement T −0.1356
rs2710804 EEPD1 7:36044919 T/C 0.23 (C) C Fibrinogen measurement T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Neutrophil count T −0.1356
rs2710804 LOC101928618 7:36044919 T/C 0.23 (C) T Serum alanine aminotransferase measurement T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Myeloid white cell count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Platelet count T −0.1356
rs2710804 AC083864.3 7:36044919 T/C 0.23 (C) C Lymphocyte count T −0.1356
rs2710804 AC083864.3 7:36044919 T/C 0.23 (C) C Platelet count T −0.1356
rs2710804 AC083864.3 7:36044919 T/C 0.23 (C) C Platelet crit T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Neutrophil count T −0.1356
rs2251188 ZNF12, ZNF316 7:6664701 A/C/G/T 0.16 (A) G Basophil count, neutrophil count A 0.13807
rs7589592 ENSG00000237720 2:2709171 T/A/C 0.41 (C) N/A Diffuse plaque measurement T 0.11391

rs1010304 CHD6, EMILIN3 20:41473007 A/G 0.30 (G) A Memory performance, word list delayed recall
measurement A −0.28657

rs12673506 CHN2 7:29382170 G/A 0.24 (A) A Gut microbiome measurement G −0.185
rs17662327 HNRNPA1P41,JAK2 9:4967587 T/C/G 0.16 (C) T Wellbeing measurement T 0.14714
rs2485662 MEX3A/LMNA 1:156113677 T/C 0.31 (T) N/A Triacylglycerol 48:1, triacylglycerol 50:2 measurements T 0.11601
rs4718965 AUTS2 7:70575462 C/A/T 0.08 (C) C Cortical surface area measurement C 0.19049

rs9847987 intergenic/CFAP20DC-
DT 3:59432807 C/T 0.20 (T) T Neuritic plaque measurement C 0.26274

rs10252228 DPY19L1, NPSR1 7:34900427 A/G 0.29 (G) G Exercise A 0.12063

SNP: single nucleotide polymorphism, Chr: chromosome, bp: base pairs, MAF: minor allele frequency, beta: effect
size for BMI. 1 Results were derived via linear regressions after adjusting for sex, age, NAFLD status and number
automatically selected PCs for population stratifications. Effect sizes (betas) and ORs shown for the corresponding
SNP and effect sizes (betas) are reported for the respective effect allele.

4. Discussion

The present study sought to investigate application of an automated pipeline for PRS
extraction using data from the three Greek studies of NAFLD, OSTEOS and THISEAS. In
this population of Greek adults, the constructed PRS displayed a statistically significant
association for BMI, with an R2 of 0.3241 (beta = 1.011, p-value = 4 × 10−193). The iterative
pipeline presented here attempts to address various matters on PRS extraction, namely
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selection of an appropriate threshold for SNP inclusion and prediction accuracy [18] as
well as stability of the SNP content of PRS candidates across different training and test
dataset splits.

In attempting to strengthen PRS construction methodology [30], this pipeline pro-
poses implementation of iterative processes through repetitive steps of sample splitting,
aggregating SNP frequency and effect size as well as comparative use of summary statistic
metrics and consideration of lifestyle and genetic covariates. As a result, the suggested PRS
includes a less extended number of variants but of high explanatory power. In this spec-
trum, this effort aims at facilitating construction of high-validity PRSs and subsequently
promoting their use as a diagnostic tool accounting for various individual characteristics
in daily practice. Use of the information of increased or reduced genetic risk for elevated
BMI values, as demonstrated by the PRS, can potentially be translated in clinical practice
to intensify (in the case of increased risk) or modify and personalize recommendations on
lifestyle parameters to combat overweight and obesity.

To the best of our knowledge, the present study constitutes the first attempt to develop
a PRS for BMI using data from a Greek population and a previous attempt for construc-
tion of a PRS has only been referred to once before in the current literature, exploring
Parkinson’s disease in older Greek adults [31]. Implementation of the suggested aggre-
gated methodology refers, among others, to (a) repetitive splitting of the overall sample;
(b) comparative use of different summary statistics in an attempt to reduce population size
and SNP selection bias, respectively. Thus, future work will concern attempts in replicating
the proposed PRS in wider populations of different ancestry.

Other attempts to create PRSs for BMI in populations of European ancestry are ex-
tensively described in the current literature, with an overall number of 56 BMI-related
entries in the PGS Catalog [6]. All referred entries include parts of populations of European
ancestry but present a wide range in the numbers of PRS-included variants, from a few
tens up to several thousand or millions, with these numbers possibly limiting their effec-
tive usage in research or clinical settings. Although the PRS proposed here includes only
343 SNPs, the yielded R2 of 0.3241 is substantially comparable, and, in some cases, higher,
than the ones presented in other PRSs from BMI, which include thousands of SNPs [6]. An
overall advantage is also observed when comparing the present results to other attempts in
European populations, which have a priori calculated the effect of literature-based PRSs
using a limited amount of SNPs. Use of our proposed pipeline is an advanced tool due to
the notion that the aggregated approach of splitting processes strengthens identification of
appropriate and sometimes novel SNPs increases the validity of the results and makes up
for the need to have a very large sample size.

In the current study, we observe links for various indices related to cardiovascular
profile for twelve out of the sixteen variants with GWAS-Catalog-identified associations.
The latter could be explained by inclusion of data for THISEAS participants with diagnosed
cardiovascular disease (19.58% of the participants). Although the mediating effect of
BMI is usually accounted for when investigating the effect of genetic or polygenic risk
scores on indices of cardiovascular disease, the reciprocal relation between variation in
cardiometabolic indices levels and BMI levels has not been extensively demonstrated
through BMI-PRS-included, CVD-related variants. Out of the associated SNPs, the C allele
of the rs2710804-included variant presents the majority of reported associations, namely
with cell count types (platelets, leukocytes, lymphocytes) and even measurements of C-
reactive protein. In this context, the negative effect of the T allele observed in our study
(β = −0.1356) could denote a positive relation of the C allele with metabolic pathways of
inflammation and disturbed immunological responses in the subsequent increasing effect
of BMI values.

Interestingly and among this PRS’s novel associations, we find two variants pre-
viously linked to gut microbiome measurements in populations of European ancestry.
More specifically, Rühlemann MC et al. previously associated the rs480039 SNP with a
0.082571946 unit increase in P_Bacteroidetes abundance among German individuals [32].
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Similarly, a 0.1019 unit increase in the abundance of parabacteroides in stools of individuals
of Finnish ancestry for the A allele of the rs12673506 SNP was shown by Qin et al. [33].
Comparably, our study showed that the G allele of the rs480039 and rs12673506 variants
was negatively related to BMI levels (β = −0.1736 and β = −0.1850, respectively). This
is not the first time that the Parabacteroides genus has been linked to body weight. The
majority of studies denote a higher Firmicutes:Bacteroidetes ratio and a generalized reduction
in species variation in individuals with increased body weight or obesity [34], and different
studies have found positive associations between genus and normal weight or weight
loss in mice, as well as fat loss in humans [35–39]. It is plausible that the corresponding
SNPs are further linked to BMI through the genus’s role in gut production of bile acids and
succinate, which have, in turn, been associated with reduction in body weight [38].

When referring to SNPs related to lifestyle, our suggested PRS included one vari-
ant related to well-being (variant rs17662327) and one variant associated with exercise
(rs10252228). More specifically, in our sample, presence of the T allele of the former SNP
was linked to a 0.1471 change in BMI levels. Previously, Okbay et al. demonstrated a 0.0182
unit increase in sentiment of life satisfaction or emotional well-being of adults for the T
allele [39]. Our study further showed that presence of the A allele of the rs10252228 SNP
was related to higher BMI values (β = 0.1206). This finding could be in accordance with
the 0.027 unit increase in exercise associated with leisure time shown for the SNP’s G allele
in Japanese adults [40], meaning that the positive effect of the A allele on BMI could be
mediated by individuals’ low exercise levels.

One of the great strengths of the present study entails implementation of our novel
methodology for extraction of PRS, which enables effective management and analysis
of the vast amounts of genetic data required for such analyses. The automated pipeline
enables practical application of our suggested holistic approach for extensive examination
of thousands of SNPs, leading to identification of various novel associations. Through the
methodological approach of applying a repetitive process of continuous adjustment of the
R2 measure for the number of each-time-associated SNPs, the pipeline aims to facilitate
integration of PRS use in daily healthcare practice, for example as part of widely distributed
consumer reports. It should be stressed that, as this methodology is based on the highest R2

values of the aggregate PRS candidates, it ensures high explanatory power of the reduced
signature. At the same time, it mitigates any computational and data management burden
imposed by PRSs with large (up to millions) numbers of SNPs.

Limitations of the present study mainly concern power given the restrained partici-
pant sample size available for conducting analyses. Another limitation refers to use of a
unified database of participants from three different studies. It is possible that variation in
participant characteristics and bias accompanying use of a large analogic sample size of
participants with cardiovascular disease played a considerable part in identifying associ-
ations between BMI and SNPs related to regulation of cardiovascular indices. However,
we determined that much of the potential variability introduced by the fact of joining
three databases was successfully captured by one of the PCs incorporated in the model.
In addition, although the hypothesized pathways through which the identified SNPs po-
tentially affect BMI levels provide insight for novel relations, there is little evidence to
establish direct causal relationships. However, the present analysis sets a foundation for
the suggested causal SNPs, and further research is also needed to explore the possibility of
relations through their role as proxies for different associated variants.

5. Conclusions

The present paper describes creation of the first PRS for BMI in Greek adults by
introducing use of a novel, automated pipeline for PRS extraction. The findings of this
study lead to identification of several novel SNPs associated with BMI, potentially through
their implication in various metabolic pathways related to traits of cardiometabolic pro-
file and gut microbiome. Our data provide novel insights into interactions of various
biological pathways implicated in formation of BMI levels and subsequently affecting its
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individual variation across different populations. The suggested pipeline aims at promot-
ing maximization of PRS integration in daily healthcare practice by enabling rapid and
straightforward development of risk scores. In this regard, this first-ever PRS of a Greek
population highlights the need for further development of PRSs for anthropometric traits
in larger databases of Greek adults and sets a foundation for wider use of the described
iterative PRS methodology.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jpm13020327/s1, Figure S1: Mean PRSice2 PRS R2 +/− standard
deviation for each performed summary statistics derivation method across 100 PRS extraction
iterations; Figure S2: Stability of the PRS candidates over 100 PRS extraction iterations as described in
the main text; Figure S3: Correlation of the 343-SNP PRS for BMI with the weight phenotype and
PRS distribution; Table S1: Number of iterations and effect of all SNPs examined; Table S2: PRS
cross-validation statistics; Table S3: List of all single nucleotide polymorphisms (SNPs) (n = 343)
included in the PRS for BMI, sorted by number of times they appeared in the split datasets (largest
to smallest).
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Appendix F. Supplementary Material 
F1. iMPROVE Study 

Supplementary Table S1. List of all BMI-related Single Nucleotide Polymorphisms (SNPs) (n=84) identified by Locke et al. and included in the uGRS 

and wGRS for BMI.  

Consortial Summary Statistics 

SNP Gene Chr Position Alleles Effect Allele Direction of Effect beta 

rs977747_T TAL1 1 1:47219005 T/C/G T Positive 0.017 

rs657452_? AGBL4 1  1:49124175 A/G A Positive 0.023 

rs11583200_C ELAVL4 1 1:50094148 C/T C Positive 0.018 

rs3101336_C RPL31P12, NEGR1 1 1:72285502 T/C C Positive 0.033 

rs1514174_C (proxy_for_rs12566985) TNNI3K,FPGT-TNNI3K 1 1:74527379 C/T C Positive 0.024 

rs12401738_A GIPC2,DNAJB4 1  1:77981077 G/A A Positive 0.021 

rs11165643_T EEF1A1P11, RN7SL831P 1 1:96458541 C/G/T T Positive 0.022 

rs17024393_C GNAT2 1 1:109612066 T/C C Positive 0.066 

rs543874_G LINC01741, SEC16B 1 1:177920345 A/G G Positive 0.048 

rs2820292_C IPO9-AS1,NAV1 1 1:201815159 A/C/T C Positive 0.02 

rs7570232(proxy_for_rs13021737)_C  TMEM18,LINC01875 2  2:632348 A/C/G/T/ C Positive 0.06 

rs10182181_G DNAJC27,ADCY3 2 2:24927427 A/G G Positive 0.031 

rs11126666_A KCNK3 2  2:26705943 G/A/C A Positive 0.021 

rs1016287_T  LINC01122 2  2:59078490 T/A/C/G T Positive 0.023 

rs11688816_G EHBP1 2  2:62825913 G/A G Positive 0.017 

rs2121279_T TMEM163 2 2:142285716  C/T T Positive 0.025 

rs1460676_C FIGN 2 2:163711179 T/C C Positive 0.02 

rs1528435_T SCHLAP1 2  2:180686235 C/G/T T Positive 0.018 

rs17203016_G LINC01802,CREB1 2 2:207390794 A/G G Positive 0.021 

rs7599312_G LINC01878,ERBB4 2 2:212548507 G/A G Positive 0.022 

rs492400_C USP37 2  2:218485029 C/T C Positive 0.016 

rs2176040_A NYAP2,MIR5702 2  2:226228086  A/G/T A Positive 0.014 

rs6804842_G RARB 3  3:25064946 A/C/G/T G Positive 0.019 

rs2365389_C FHIT 3 3:61250788 C/A/G/T C Positive 0.02 

rs3849570_A GBE1 3  3:81742961 C/A A Positive 0.019 

https://www.ebi.ac.uk/gwas/genes/GNAT2


rs13078960_G CADM2 3 3:85758440 T/G G Positive 0.03 

rs16851483_T RASA2 3 3:141556594 G/T T Positive 0.048 

rs1516725_C ETV5,DGKG 3 3:186106215  T/A/C C Positive 0.045 

rs17001654_G SCARB2 4  4:76208415 C/G G Positive 0.031 

rs13107325_T SLC29A8 4 4:102267552 C/A/T T Positive 0.048 

rs11727676_T HHIP 4 4:144737912 T/C T Positive 0.036 

rs2112347_T SLC25A5P9,POC5 5  5:75719417  T/G T Positive 0.026 

rs7715256_G MFAP3 5 5:154158333 G/T G Positive 0.016 

rs205262_G ILRUN 6 6:34595387 A/G G Positive 0.022 

rs2207139_G RPS17P5,FTH1P5 6 6:50877777 A/G G Positive 0.045 

rs9400239_C FOXO3 6 6:108656460 T/C/G C Positive 0.019 

rs6931818_A(proxy_for_rs9374842) Intergenic 6 6:119864519 C/G/T A Positive 0.019 

rs13201877_G OLIG3,IFNGR1 6 6:137354404 A/G G Positive 0.023 

rs13191362_A PRKN 6 6:162612318 A/G A Positive 0.028 

rs1167827_G HIP1 7 7:75533848 G/A G Positive 0.02 

rs2245368_C DTX2P1-UPK3BP1-
PMS2P11,DTX2P1 

7  7:76978826 C/G/T C Positive 0.032 

rs17405819_T RNU2-54P,HNF4G 8 8:75894349  T/A/C T Positive 0.022 

rs2033732_C TPM3P3,RALYL 8 8:84167474 T/C C Positive 0.019 

rs4740619_T CCDC171 9  9:15634328 T/A/C T Positive 0.018 

rs10968576_G LINGO2 9 9:28414341 A/G G Positive 0.025 

rs6477694_C EPB41L4B,FRRS1L 9 9:109170062  C/T C Positive 0.017 

rs1928295_T RPL35AP22,ASTN2 9  9:117616205 T/C/G T Positive 0.019 

rs10733682_A  LMX1B 9  9:126698635 A/G/T A Positive 0.017 

rs76223526_T(proxy_for_rs7899106) GRID1 10 10:85651147 A/G T Positive 0.04 

rs17094222_C HIF1AN 10 10:100635683 T/C C Positive 0.025 

rs11191560_C NT5C2 10 10:103109281  T/C C Positive 0.031 

rs7903146_C TCF7L2 10 10:112998590 C/G/T C Positive 0.023 

rs4256980_G TRIM66 11 11:8652392 C/A/G G Positive 0.021 

rs11030104_A BDNF-AS,BDNF 11 11:27662970 A/G A Positive 0.041 

rs3817334_T MTCH2 11 11:47629441 C/T T Positive 0.026 

rs12286929_G CADM1 11 11:115151684 A/C/G G Positive 0.022 



rs11057405_G CLIP1 12 12:122297350 G/A/C G Positive 0.031 

rs12429545_A LINC00558, ZNF646P1 13 13:53528071 G/A/C/T A Positive 0.033 

rs1441264_A CCT5P2,NIPA2P5 13 13:79006784 G/A/T A Positive 0.018 

rs10132280_C OR7K1P,LINC02306 14 14:25458973 C/A C Positive 0.023 

rs12885454_C RNU11-5P,LINC02326 14  14:29267632 C/A/T C Positive 0.021 

rs11847697_T PRKD1 14 14:30045906  C/T T Positive 0.049 

rs7141420_T NRXN3 14 14:79433111  C/G/T T Positive 0.024 

rs16951275_T MAP2K5 15 15:67784830 T/C/G T Positive 0.031 

rs7164727_T ADPGK-AS1,NPM1P42 15 15:72801650 C/G/T T Positive 0.018 

rs758747_T NLRC3 16  16:3577357 C/T T Positive 0.023 

rs12446632_G GPRC5B,GPR139 16 16:19924067 G/A G Positive 0.04 

rs2726034_C(proxy_for_rs2650492) NPIPB6,SBK1 16 16:28325561 T/C C Positive 0.021 

rs3888190_A ATP2A1,SH2B1 16 16:28878165 C/A/T A Positive 0.031 

rs9925964_A KAT8 16 16:31118574 A/C/G/T A Positive 0.019 

rs2080454_C RNU6-257P,MTND4LP25 16 16:49028679 C/A/G C Positive 0.017 

rs99401289_A(proxy_for_rs1558902) FTO 16 16:53769662 T/A A Positive 0.082 

rs9914578_G SMG6 17 17:2101842 C/G G Positive 0.02 

rs1000940_G NUP88,RABEP1 17 17:5379957  A/C/G/T G Positive 0.019 

rs12940622_G RPTOR 17 17:80641771 G/A G Positive 0.018 

rs1808579_C RMC1,NPC1 18 18:23524924 C/T C Positive 0.017 

rs7243357_T SEC11C,GRP 18 18:59216087 T/G T Positive 0.022 

rs10871777_G(proxy(for_rs6567160) MC4R,RNU4-17P 18 18:60184530 A/G/T G Positive 0.056 

rs17724992_A PGPEP1 19 19:18344015 A/G A Positive 0.019 

rs29941_G KCTD15,SUNO1 19 19:33818627 A/G/T G Positive 0.018 

rs2075650_A TOMM40 19 19:44892362 A/G A Positive 0.026 

rs2287019_C QPCTL 19 19:45698914 C/T C Positive 0.036 

rs3810291_A ZC3H4 19 19:47065746 G/A A Positive 0.028 

rs6091540_C LINC01524 20 20:52471323 C/T C Positive 0.019 

 

 

 



F2. Polygenic Risk Score for Body Mass Index on the NAFLD, THISEAS and OSTEOS studies 
 

Supplementary Table S2. List of all Single Nucleotide Polymorphisms (SNPs) (n=343) included in the PRS for BMI, sorted by the No of times they 

appeared in the split datasets (largest to smallest). 

SNP chromosome position Nearest 
Gene 

Risk Allele Reference 
Allele 

       beta        OR  Frequency 

rs11668205 19 2099250 IZUMO4 G A -0.325754 1.385075 96 

rs11994887 8 4391719 CSMD1 T C -0.262923 1.300727 64 

rs9295609 6 23979222 #N/A G A -0.221097 1.247444 62 

rs4279903 1 205439769 #N/A G A 0.198356 0.820078 61 

rs16883347 5 9667798 LINC02112 A C 0.232483 0.792563 60 

rs1332010 6 38996875 DNAH8 T C 0.197648 0.820659 60 

rs2108929 7 13146222 #N/A C T -0.281552 1.325184 60 

rs12588521 14 30475398 #N/A A C -0.290499 1.337095 60 

rs1499951 3 115195109 #N/A C T -0.28408 1.32854 58 

rs9848915 3 167160291 SERPINI2 G A -0.272895 1.313763 58 

rs1213402 5 111112309 NREP T C -0.277976 1.320455 58 

rs7407266 18 6568765 #N/A T C 0.162551 0.849973 58 

rs1461920 1 226794525 STUM A G -0.144307 1.155238 57 

rs2691505 6 71310131 #N/A A G 0.150908 0.859927 57 

rs12941504 17 72478313 CD300A T C -0.213346 1.237812 57 

rs4861680 4 186721885 SORBS2 G A 0.156324 0.855282 56 

rs113990664 5 71376237 #N/A G A -0.163085 1.177137 56 

rs7122189 11 24407108 #N/A C T -0.219925 1.245984 56 

rs7176478 15 66534231 MEGF11 G A 0.21009 0.810511 56 

rs962682 16 84846251 #N/A A G -0.171701 1.187323 56 

rs9303353 17 52728276 #N/A T G 0.140039 0.869324 56 

rs9897526 17 42426940 GRN G A 0.191341 0.825851 56 

rs1056896 4 185677363 ACSL1 T C 0.185506 0.830684 55 

rs12478622 2 204979611 #N/A G A -0.234437 1.264197 54 

rs4906842 15 26274261 LINC02346 A G -0.173873 1.189905 54 



rs1604953 16 78942601 WWOX G A -0.17161 1.187214 54 

rs12959396 18 60039309 TNFRSF11A T G 0.147374 0.862971 54 

rs12145632 1 247393142 #N/A T C -0.182569 1.200297 53 

rs6541160 1 220981358 MTARC1 T C -0.209923 1.233583 53 

rs756325 1 110478064 #N/A T C 0.211103 0.809691 53 

rs6827349 4 122980440 #N/A A G 0.14465 0.865325 53 

rs983585 7 107656377 #N/A T C -0.169588 1.184817 53 

rs55906926 3 143159873 SLC9A9 A G 0.283481 0.753158 52 

rs1563556 5 174770776 #N/A G A -0.150676 1.16262 52 

rs10500800 11 13929427 #N/A G T -0.230429 1.259141 52 

rs56115087 17 71660771 #N/A A G -0.222391 1.249059 52 

rs13058401 22 29862247 #N/A G A -0.236776 1.267157 52 

rs6677968 1 65776702 DNAJC6 G A 0.144549 0.865412 51 

rs989632 5 7823382 ADCY2 A G -0.250872 1.285146 51 

rs1128250 7 21956405 CDCA7L G A 0.164662 0.848181 51 

rs7101190 10 71588349 COL13A1 C T 0.170232 0.843469 51 

rs8064152 16 5721431 #N/A A C -0.224151 1.251259 51 

rs1673000 19 35575767 HPN-AS1 T C -0.215948 1.241038 51 

rs12139329 1 193463330 #N/A T C -0.165837 1.180381 50 

rs11904043 2 53644605 #N/A G A -0.160222 1.173771 50 

rs16838023 2 207053416 GPR1 G T 0.16384 0.848878 50 

rs1109771 6 32187605 #N/A A G 0.151916 0.859061 50 

rs10901376 10 127085818 #N/A G A 0.15818 0.853696 50 

rs7925657 11 44287292 ALX4 A G 0.142327 0.867337 50 

rs488248 13 106596719 #N/A C T -0.170482 1.185876 50 

rs12909478 15 33829250 RYR3 C T 0.16306 0.84954 50 

rs12052178 19 46114829 EML2 C T -0.136768 1.146562 50 

rs17455693 1 165917820 #N/A A G -0.168336 1.183334 49 

rs6694023 1 62130167 #N/A A G -0.161533 1.175312 49 

rs12466395 2 190780698 #N/A A G -0.143846 1.154706 49 

rs8016755 14 25111113 #N/A C T -0.132007 1.141116 49 

rs78457560 17 13657119 #N/A G A -0.25513 1.29063 49 



rs2839644 21 44604272 #N/A T C -0.17819 1.195052 49 

rs480039 1 234426478 SLC35F3 G A -0.173613 1.189596 48 

rs987174 3 5925865 #N/A A G -0.265751 1.30441 48 

rs9877544 3 97684754 RIOX2 G A -0.135372 1.144963 48 

rs4346760 5 150493470 ANXA6 C A -0.127959 1.136506 48 

rs1345934 7 136772275 LOC349160 A G -0.144756 1.155758 48 

rs955975 9 85117420 #N/A G A 0.165892 0.847138 48 

rs3912662 11 92595671 FAT3 G A 0.158048 0.853808 48 

rs4937166 11 126506712 KIRREL3 C T -0.170755 1.1862 48 

rs9924586 16 59533731 #N/A C T -0.151622 1.16372 48 

rs6016500 20 39634488 #N/A C T 0.220392 0.802204 48 

rs7264181 20 13231342 ISM1 G A 0.197286 0.820956 48 

rs6449263 4 16669406 LDB2 G A -0.123672 1.131645 47 

rs6881547 5 158946495 #N/A G A -0.174727 1.19092 47 

rs6900225 6 9314807 #N/A G A 0.189038 0.827755 47 

rs2856330 12 11942777 ETV6 C T -0.213801 1.238376 47 

rs7989395 13 38010367 #N/A A C -0.172584 1.188372 47 

rs7279498 21 42253571 #N/A G A -0.169416 1.184613 47 

rs11121141 1 8294662 #N/A G A -0.166324 1.180956 46 

rs2807854 1 221029841 #N/A T C -0.13816 1.148159 46 

rs237108 6 79415015 #N/A C T -0.161081 1.17478 46 

rs2392445 7 36547667 #N/A A G -0.211141 1.235086 46 

rs7943949 11 40840931 LRRC4C T C -0.200311 1.221783 46 

rs11106815 12 93428691 LOC643339 G A -0.190596 1.209971 46 

rs575478 12 114166291 #N/A C T -0.257003 1.293049 46 

rs2288061 16 76169731 #N/A G A -0.177761 1.19454 46 

rs9897341 17 9123894 NTN1 T C -0.174271 1.190378 46 

rs4599028 19 53970581 #N/A A G -0.18578 1.204157 46 

rs6510364 19 33671172 #N/A C T -0.120742 1.128334 46 

rs1382425 4 189541446 #N/A A C -0.209858 1.233502 45 

rs284729 5 35457590 #N/A A G 0.197514 0.820768 45 

rs4867856 5 176144471 #N/A T C -0.148169 1.159709 45 



rs540375 5 152878727 GRIA1 G A -0.138013 1.147991 45 

rs233958 16 4340305 #N/A C T -0.146388 1.157646 45 

rs17008392 3 71291620 #N/A A G 0.240232 0.786446 44 

rs13357315 5 56809263 #N/A T C -0.193457 1.213437 44 

rs901285 11 12160054 MICAL2 T C -0.238964 1.269933 44 

rs7144237 14 80897656 DIO2-AS1 A G -0.137906 1.147868 44 

rs17776995 16 49447822 #N/A G A -0.209867 1.233514 44 

rs5765681 22 46259060 #N/A T C -0.167349 1.182166 44 

rs11121937 1 12625844 #N/A T C 0.13541 0.873358 43 

rs16846210 2 212322255 ERBB4 C T -0.165111 1.179524 43 

rs1357134 3 186979768 MASP1 A G -0.136223 1.145937 43 

rs2309942 4 184839829 STOX2 G A 0.138368 0.870778 43 

rs13182748 5 5915186 #N/A C A 0.156118 0.855458 43 

rs697505 6 158816875 TULP4 T G -0.175773 1.192167 43 

rs6981400 8 23104612 CHMP7 T C -0.16746 1.182298 43 

rs13297661 9 132926080 #N/A G A 0.130994 0.877223 43 

rs2852786 11 61514085 DAGLA C T 0.145421 0.864659 43 

rs3808986 11 129910584 #N/A C A -0.231172 1.260076 43 

rs3741565 12 130557260 #N/A A G -0.182105 1.19974 43 

rs1959169 14 33473192 NPAS3 C T -0.212534 1.236808 43 

rs1860304 16 5631166 #N/A A G -0.170029 1.185339 43 

rs4807505 19 3750869 APBA3 G A 0.171137 0.842706 43 

rs4925403 22 49070719 TAFA5 G A -0.203892 1.226165 43 

rs2758615 1 156158367 #N/A T C 0.129133 0.878857 42 

rs11689662 2 154003392 #N/A G A -0.18104 1.198463 42 

rs12614570 2 228651252 #N/A G T 0.133843 0.874727 42 

rs4852508 2 79906739 CTNNA2 C T -0.197861 1.218793 42 

rs6730873 2 216346048 #N/A C T 0.129299 0.878711 42 

rs10935254 3 137254071 #N/A A G -0.150471 1.162382 42 

rs7430102 3 54537866 CACNA2D3 G A 0.185439 0.830739 42 

rs9882796 3 189330551 #N/A G A 0.147893 0.862523 42 

rs6822346 4 190065197 #N/A G A 0.138813 0.870391 42 



rs7694518 4 7459344 SORCS2 G A 0.180304 0.835017 42 

rs2281144 6 167091844 RPS6KA2 A G -0.190103 1.209374 42 

rs1420123 7 29647662 #N/A T C 0.155306 0.856153 42 

rs4979009 9 114347774 PTGR1 A G -0.142361 1.152993 42 

rs7077407 10 8140574 #N/A A G 0.120968 0.886062 42 

rs7104900 11 64303696 #N/A G A 0.153867 0.857386 42 

rs11608342 12 67406881 #N/A A G -0.176385 1.192898 42 

rs59038615 12 82253603 #N/A C T -0.17599 1.192427 42 

rs78036224 12 39279534 CPNE8 G T 0.248957 0.779613 42 

rs586379 13 27029720 #N/A T C 0.179712 0.835511 42 

rs11157000 14 38920795 #N/A G T -0.135777 1.145426 42 

rs2955742 15 76446132 TMEM266 G A -0.191082 1.210559 42 

rs12931774 16 6965041 #N/A G A -0.183571 1.2015 42 

rs4806908 19 1004823 GRIN3B G A 0.134689 0.873987 42 

rs7256086 19 327182 MIER2 C T -0.20064 1.222184 42 

rs8111919 19 54128771 #N/A G A -0.171 1.186491 42 

rs11687151 2 87949635 #N/A C T -0.18503 1.203254 41 

rs12466549 2 192615315 #N/A G A -0.135485 1.145091 41 

rs4341972 2 69042142 ARHGAP25 G A 0.138324 0.870816 41 

rs483394 2 14137805 #N/A C T 0.156618 0.85503 41 

rs62107643 2 3882074 #N/A G A -0.244019 1.276368 41 

rs9878545 3 171621021 #N/A T C -0.120873 1.128481 41 

rs1400871 5 124678629 #N/A C A -0.144597 1.155573 41 

rs3101186 5 71409569 MAP1B A C 0.198388 0.820052 41 

rs440583 5 80322231 RASGRF2 T C -0.169856 1.185134 41 

rs12192629 6 8426587 SLC35B3 G T -0.159928 1.173426 41 

rs1556675 6 141737996 #N/A T C 0.162115 0.850343 41 

rs2472802 6 14767419 #N/A G A -0.169044 1.184172 41 

rs6455019 6 65668333 EYS T C -0.180085 1.197319 41 

rs6906804 6 1490582 #N/A G A 0.150242 0.860499 41 

rs6918155 6 167145388 RPS6KA2 G A 0.16043 0.851778 41 

rs12681882 8 103578377 #N/A G A -0.178524 1.195452 41 



rs36107033 8 37556987 ZNF703 C T -0.247376 1.28066 41 

rs10959370 9 10923969 #N/A G T 0.249514 0.779179 41 

rs10508741 10 29252309 #N/A T G -0.146386 1.157642 41 

rs11259736 10 15595361 ITGA8 G A -0.167693 1.182573 41 

rs2813458 10 1574443 ADARB2-AS1 C T -0.175466 1.191802 41 

rs11224017 11 134655690 #N/A T C 0.150652 0.860147 41 

rs12581737 12 63125469 PPM1H T G -0.196294 1.216885 41 

rs879681 13 106800033 #N/A G A 0.197196 0.821029 41 

rs8003359 14 57126170 #N/A T C -0.181305 1.198781 41 

rs8013199 14 23247486 SLC7A7 T C -0.181414 1.198912 41 

rs1015310 15 102110442 #N/A G T -0.132038 1.141152 41 

rs11648289 16 7773250 #N/A G T -0.129338 1.138075 41 

rs1561699 18 47996600 #N/A C T -0.162987 1.177021 41 

rs9304414 18 49515554 #N/A T G -0.152022 1.164185 41 

rs2076408 20 2313059 TGM3 T G -0.161035 1.174727 41 

rs817362 20 62559964 DNAJC5 G A -0.22142 1.247847 41 

rs857138 1 57191924 FYB2 C T -0.156906 1.169885 40 

rs16838452 2 202798759 #N/A C A -0.181695 1.199249 40 

rs1354350 3 113960449 #N/A T G -0.130177 1.13903 40 

rs1405406 3 73946124 #N/A G A -0.180443 1.197747 40 

rs2863384 3 166085645 #N/A C T 0.180731 0.83466 40 

rs17237942 4 105425576 #N/A A G -0.146612 1.157905 40 

rs2503815 6 5391268 FARS2 G A -0.185625 1.203971 40 

rs17171046 7 37477863 ELMO1 C T -0.177167 1.193831 40 

rs6989157 8 96320757 C8orf37-AS1 G A -0.189935 1.209171 40 

rs9325887 10 48461083 #N/A A G 0.168659 0.844797 40 

rs342174 12 63065145 PPM1H G A -0.182831 1.200611 40 

rs10148212 14 67095613 GPHN A C -0.192537 1.212322 40 

rs1822809 15 95798343 #N/A G A -0.16178 1.175601 40 

rs11866097 16 55104462 #N/A G A -0.197333 1.21815 40 

rs2589141 17 78843139 RPTOR C T -0.148067 1.15959 40 

rs4790904 17 64779154 PRKCA T C -0.138626 1.148695 40 



rs55667536 17 39293446 #N/A A G -0.331439 1.392971 40 

rs1106978 20 41678428 PTPRT G A -0.14801 1.159525 40 

rs6007778 22 48392923 #N/A G A -0.200854 1.222446 40 

rs11811436 1 97940231 DPYD T C 0.174909 0.839533 39 

rs147762374 1 106873477 #N/A G A -0.160322 1.173889 39 

rs2376100 2 197833530 #N/A T C 0.270528 0.762976 39 

rs6712770 2 164106998 #N/A A C -0.161215 1.174937 39 

rs1163377 3 108937719 #N/A G A -0.1455 1.156618 39 

rs11922267 3 65401156 MAGI1 C T -0.176977 1.193604 39 

rs2649188 3 65780102 MAGI1 A C 0.122599 0.884619 39 

rs7620686 3 26413729 #N/A T C -0.116506 1.123565 39 

rs10076573 5 2094148 #N/A T C 0.165889 0.847141 39 

rs10477436 5 108421424 FER A C -0.129262 1.137988 39 

rs4388209 5 125758373 GRAMD2B T C 0.113824 0.892415 39 

rs6925019 6 1588714 #N/A G A -0.179622 1.196765 39 

rs2710804 7 36084529 #N/A T C -0.135608 1.145233 39 

rs4724298 7 44320434 CAMK2B C T -0.179291 1.196369 39 

rs2173537 8 129047325 PVT1 G A -0.180237 1.197501 39 

rs1556146 9 132022478 #N/A T C -0.198734 1.219857 39 

rs16907144 9 93852382 #N/A G A 0.158523 0.853403 39 

rs824003 9 113972955 #N/A T C -0.162957 1.176986 39 

rs12772906 10 62804925 #N/A A G -0.184202 1.202258 39 

rs12417297 11 128185154 #N/A C T -0.232895 1.262248 39 

rs10492094 12 5478148 #N/A G T -0.125703 1.133945 39 

rs1544686 12 107579464 #N/A G T -0.184251 1.202317 39 

rs17091684 12 43076137 #N/A C A -0.169665 1.184908 39 

rs1170994 13 36581177 DCLK1 C T 0.161757 0.850648 39 

rs9533784 13 44761837 #N/A G A -0.182495 1.200208 39 

rs10146690 14 79890456 NRXN3 G A -0.145193 1.156263 39 

rs11621403 14 53877638 #N/A A G 0.203013 0.816268 39 

rs1791159 18 29136463 DSG2-AS1 T C -0.134932 1.144459 39 

rs275339 20 57988701 #N/A C T 0.17152 0.842384 39 



rs4816499 21 36293381 RUNX1 A C -0.256245 1.292069 39 

rs10458443 1 242712951 #N/A T C 0.157657 0.854143 38 

rs285461 1 165497692 LRRC52-AS1 T C -0.221145 1.247505 38 

rs4559489 1 240698138 GREM2 C T -0.232214 1.26139 38 

rs12473883 2 236559912 AGAP1 G T -0.163999 1.178213 38 

rs13405786 2 70844394 #N/A T C -0.190585 1.209958 38 

rs4253427 4 187209225 F11-AS1 G A 0.127626 0.880183 38 

rs11759402 6 42723809 #N/A C T -0.154175 1.166695 38 

rs1248465 7 129179844 #N/A C T -0.118936 1.126298 38 

rs2251188 7 6704332 #N/A A G 0.138076 0.871032 38 

rs6973044 7 107416602 SLC26A3 T C -0.228111 1.256225 38 

rs11780206 8 59385164 #N/A T C -0.204419 1.226812 38 

rs11783343 8 62673021 #N/A T C -0.178607 1.195551 38 

rs12246329 10 17059462 CUBN C T -0.148457 1.160043 38 

rs4751284 10 132653619 #N/A G A 0.116341 0.890172 38 

rs1032151 11 12219217 MICAL2 G T -0.1486 1.160209 38 

rs11602776 11 15448704 #N/A A G 0.170025 0.843643 38 

rs11106473 12 92627100 #N/A T C -0.185816 1.2042 38 

rs9562038 13 96802616 HS6ST3 A G -0.166981 1.181732 38 

rs34361729 15 56387142 RFX7 G A -0.211004 1.234918 38 

rs4794785 17 36810197 #N/A A G 0.226712 0.797151 38 

rs8464 17 64806716 PRKCA C A -0.175982 1.192417 38 

rs2422840 20 3076384 #N/A A G -0.170721 1.18616 38 

rs6065084 20 59862269 CDH4 G A 0.157302 0.854446 38 

rs1786412 21 21849932 #N/A T C -0.144162 1.155071 38 

rs7275495 21 33533452 #N/A T C -0.159611 1.173054 38 

rs1287949 1 226703467 #N/A C T -0.135919 1.145589 37 

rs2297563 1 109241669 PRPF38B G A -0.138652 1.148725 37 

rs3849346 2 163502721 KCNH7 C T -0.191176 1.210672 37 

rs7589592 2 2712943 #N/A T C 0.113915 0.892334 37 

rs10939667 4 16531086 LDB2 G A 0.143542 0.866285 37 

rs72696876 4 171635905 #N/A A G 0.17133 0.842543 37 



rs11752561 6 128187461 THEMIS A G 0.178228 0.836752 37 

rs2382394 9 13227063 MPDZ T C -0.295083 1.343238 37 

rs10508561 10 18734235 CACNB2 G A 0.155748 0.855775 37 

rs4143630 10 5063944 #N/A C T -0.125875 1.134141 37 

rs4261213 10 58261332 #N/A G A 0.121382 0.885696 37 

rs10765861 11 11525424 GALNT18 A G -0.123483 1.131431 37 

rs2581925 11 57207414 #N/A G A 0.135819 0.873 37 

rs1446427 12 118153788 KSR2 G A 0.145306 0.864758 37 

rs2274442 14 69787749 GALNT16 T C -0.222228 1.248856 37 

rs7144194 14 103495963 CDC42BPB A G -0.131499 1.140536 37 

rs1476078 15 91736401 SV2B G A -0.207155 1.230173 37 

rs2880974 15 86415200 #N/A G T -0.143929 1.154802 37 

rs12928792 16 60321890 #N/A G A -0.11811 1.125368 37 

rs9807305 18 59634276 #N/A C T 0.176512 0.838188 37 

rs12118086 1 101732914 #N/A G A 0.181836 0.833738 36 

rs1570818 1 29804613 #N/A A C 0.161503 0.850864 36 

rs17366341 1 163834280 #N/A A G -0.162322 1.176239 36 

rs2485662 1 156083468 #N/A T C 0.116015 0.890461 36 

rs784612 1 40122939 #N/A T C -0.173568 1.189541 36 

rs4850836 2 199122020 #N/A C A -0.146091 1.157302 36 

rs17009383 3 21771769 ZNF385D A G 0.168139 0.845236 36 

rs7623055 3 7510891 GRM7 G T 0.123122 0.884156 36 

rs9847987 3 59418533 #N/A C T 0.26275 0.768934 36 

rs1491386 4 23663069 #N/A A C 0.208738 0.811608 36 

rs7732443 5 166290093 #N/A C T 0.1964 0.821683 36 

rs2459110 6 152450763 SYNE1 C A -0.123803 1.131793 36 

rs9363725 6 67931025 #N/A G A 0.277937 0.757344 36 

rs9377661 6 105091850 #N/A C T 0.189219 0.827605 36 

rs12673506 7 29421786 CHN2 G A -0.185004 1.203223 36 

rs4718965 7 70040448 AUTS2 C T -0.190496 1.20985 36 

rs4729041 7 92063500 #N/A G T -0.18693 1.205543 36 

rs10101912 8 88218888 CNBD1 C T -0.217885 1.243444 36 



rs3913641 8 140342525 #N/A C T -0.127474 1.135955 36 

rs12337816 9 117125236 AKNA T C -0.222317 1.248967 36 

rs17662327 9 4967587 #N/A T C 0.14715 0.863165 36 

rs7861175 9 113857337 #N/A T C 0.140404 0.869007 36 

rs17106110 10 125601307 CPXM2 C T -0.139741 1.149975 36 

rs10899014 11 74325109 POLD3 A G -0.299626 1.349355 36 

rs2302688 12 15673103 PTPRO C T 0.13391 0.874669 36 

rs7295237 12 71016832 PTPRB T C -0.252748 1.287558 36 

rs10851193 13 107335929 #N/A T C 0.105358 0.900002 36 

rs1617356 14 43194459 #N/A C T -0.131898 1.140992 36 

rs17126387 14 90301314 EFCAB11 A C 0.223227 0.799933 36 

rs7149564 14 23912361 #N/A T C -0.261682 1.299113 36 

rs8009629 14 33379559 #N/A G A -0.130628 1.139543 36 

rs13335201 16 50912221 #N/A G A -0.171548 1.187141 36 

rs1350888 16 82784943 CDH13 C T 0.11881 0.887977 36 

rs12948545 17 30867317 MYO1D C T -0.139738 1.149973 36 

rs218685 17 6623172 #N/A A G 0.142751 0.86697 36 

rs1790692 18 28644751 DSC2 G A -0.16607 1.180656 36 

rs7241127 18 6651210 #N/A T C -0.140085 1.150371 36 

rs8088662 18 60928341 BCL2 T C 0.212307 0.808717 36 

rs1010304 20 40101647 CHD6 A G -0.28657 1.331852 36 

rs1016071 20 40931328 PTPRT T C -0.123569 1.131528 36 

rs6019784 20 48002575 KCNB1 C T 0.137512 0.871524 36 

rs6084802 20 511356 CSNK2A1 C A -0.13511 1.144663 36 

rs1808973 1 112487834 KCND3 C T -0.119334 1.126746 35 

rs3820383 1 202197551 LGR6 C A 0.171723 0.842213 35 

rs4658879 1 231742575 LINC00582 T C -0.174403 1.190535 35 

rs6436132 2 220160644 PTPRN G T 0.137995 0.871103 35 

rs12485826 3 71342132 #N/A A G -0.16939 1.184582 35 

rs75838234 3 7534370 GRM7 A G -0.184033 1.202056 35 

rs11726275 4 185348916 IRF2 A G -0.132627 1.141824 35 

rs13128106 4 25325264 ZCCHC4 C T -0.237812 1.26847 35 



rs6810740 4 17294785 #N/A T C -0.159123 1.172483 35 

rs6821900 4 158574310 #N/A A C -0.188469 1.2074 35 

rs2567819 5 121064897 #N/A C A 0.195192 0.822676 35 

rs3853241 5 166379772 #N/A C T -0.170603 1.186019 35 

rs10252228 7 34940039 #N/A A G 0.120631 0.886361 35 

rs17158276 7 29648077 #N/A T C -0.178448 1.195361 35 

rs73371641 8 142864765 #N/A A G -0.251769 1.286298 35 

rs2384792 9 138324679 #N/A C T -0.129733 1.138525 35 

rs4295727 9 112578906 PALM2AKAP2 G A -0.141765 1.152306 35 

rs9696313 9 136406725 ADAMTSL2 A G -0.123854 1.13185 35 

rs10824306 10 77160682 ZNF503 C T -0.144774 1.155778 35 

rs11013723 10 18632601 CACNB2 A G 0.205084 0.814579 35 

rs12221258 10 107582259 #N/A T C -0.149856 1.161666 35 

rs2265958 10 10141681 #N/A C T -0.182243 1.199906 35 

rs7894073 10 28648001 #N/A C T -0.256118 1.291906 35 

rs12290206 11 107761113 #N/A A G -0.153478 1.165882 35 

rs4938044 11 113584177 #N/A G A -0.204375 1.226758 35 

rs12584740 13 98315257 #N/A A G -0.140091 1.150379 35 

rs714668 13 105019361 #N/A C A 0.237791 0.788368 35 

rs73168114 13 22716081 #N/A A C -0.221493 1.247939 35 

rs7323430 13 65285662 #N/A G A 0.150152 0.860577 35 

rs10131354 14 25499521 STXBP6 T G -0.183645 1.201589 35 

rs2842344 14 68976971 RAD51B C T -0.199264 1.220504 35 

rs71415931 14 30683170 #N/A T C -0.203381 1.22554 35 

rs7499658 16 14430442 #N/A C T 0.15436 0.856963 35 

rs2332264 17 52830577 #N/A T C 0.132596 0.875819 35 

rs2850929 18 75068081 #N/A G A 0.157779 0.854039 35 

rs755719 18 56877489 #N/A T C 0.111622 0.894382 35 

rs762418 21 45610893 #N/A C T 0.142348 0.867319 35 

rs5761487 22 26738225 SEZ6L A G 0.141173 0.868339 35 

*Freq: Number of times the SNPs appeared on the split datasets. 

 


