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Abstract 

Analysis of satellite data, often combined with Geographical Information Systems (GIS), allows 

monitoring of changing land cover dynamics which may occur after a natural hazard such as a 

wildfire. In the present thesis, the vegetation recovery dynamics of a burnt area are investigated 

by exploiting freely distribute satellite data and GIS techniques. The relationships of regrowth 

dynamics to the burn severity levels as well as topographical characteristics such as aspect are 

also explored. As a case study, an area of northeastern Attica, Greece, where a wildfire occurred 

during August 2009, is used. Vegetation recovery dynamics within the study area were 

investigated based on chronosequence analysis of the normalized difference vegetation index 

(NDVI) as well as the Regeneration Index (RI) derived from anniversary Landsat TM and OLI 

images for the period 2009 (just after fire suppression) until 2020. The spatio-temporal patterns 

of NDVI on each post-fire image date were statistically compared to the pre-fire pattern to 

determine the extent to which the pre-fire spatial pattern was re-established. Additionally, using 

the regeneration index, it was investigated whether the level of vegetation in selected areas of 

various land uses within the burnt area recovered to the corresponding level of vegetation 

outside the burnt area. In addition, with the use of NDVI, the relationships between the 

regeneration dynamics with burn severity level as well as topography were also investigated. 

Τhe results revealed that two years after fire, vegetation of the study area shows the first steps 

of recovery, while eleven years after fire, the analysis showed that the majority of the burnt area 

(97%) recovered or improved in contrast to pre-fire levels. Regarding the analysis conducting 

with the use of RI, results presented similar regeneration trends as captured by NDVI regarding 

areas covered with more adaptable to fire vegetation such as scrubs, herbaceous vegetation, 

woodlands as well as agricultural, while forested areas although they presented a gradual 

increase in regrowth process, they didn’t reach the NDVI levels of the unburned forested areas. 

In addition, areas with low to moderate-low burn severity presented high regeneration dynamics 

and recovered within two to five years after fire event whereas areas with moderate-high and 

high burn severity the regeneration process took approximately a decade to revert to pre-fire 

levels. Finally, analysis revealed that north facing aspects have a slightly higher regeneration rate 

compared to south facing exposures. 

In conclusion, this thesis contributes to the understanding of Mediterranean vegetation 

dynamics, and supports the usefulness particularly of NDVI and RI in post-fire regeneration 
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assessment studies while the provided methodology could also be transferable to other regions. 

In addition, it provides further evidence that satellite data when combined with GIS techniques 

can offer a powerful tool for mapping the vegetation regeneration dynamics after wildfires. 

 

 

 

 

Keywords 

Vegetation regeneration; wildfires; burn severity assessment; burnt area delineation; Landsat 

TM; Landsat OLI; NVDI; Regeneration Index; Greece  
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1 Introduction 

1.1 Background information 

The natural role of forest fires in Mediterranean-type ecosystems is directly related to the 

evolutionary succession of vegetation, making fires an important ecological process, which 

affects the structure and function of the ecosystem over time (Tedim et al., 2015). Despite this 

"peculiar" relationship that Mediterranean plant communities have developed with fires, the 

latter are a direct threat to human life and one of the most important disturbances of natural 

ecosystems on a global scale (Dupuy et al., 2020). Indeed, due to the increase in their frequency 

and severity in recent years (Röder et al., 2008), and especially in the Mediterranean basin (Joint 

Research Centre, 2020), their negative effects, economic, ecological and social, have multiplied 

(Dupuy et al., 2020). Natural processes such as the intense soil erosion, the degradation of the 

productivity of forest ecosystems, the alteration of the aesthetics of the landscape, the changes 

in the microclimate, the changes in the form and composition of the vegetation are set of short-

term and long-term effects that essentially characterize the magnitude of the destructiveness of 

fires (Pérez-Cabello et al., 2006; Pausas et al., 2008; Xanthopoulos et al., 2022). 

The main factors of the high frequency of fires in recent decades in the Mediterranean region 

are considered to be the changes in land uses due to human interventions, as well as the abrupt 

and sometimes unpredictable climate fluctuations (Caldararo, 2002; Dimitrakopoulos et al., 

2011; Pausas & Fernández-Muñoz, 2012; Moreira et al., 2020). As a consequence, despite the 

adaptability of many species to fire, especially sclerophyll shrub vegetation, there is a risk of 

inhibiting the natural succession and natural regeneration of Mediterranean forest species, 

especially in cases of multiple consecutive events (Ferran et al., 2005). 

Forest fires handling and management are complex issues as they are influenced by a significant 

number of environmental, ecological, economic, social and political factors, which interact with 

each other (Tedim et al., 2018). Therefore, the strengthening of the existing political and strategic 

fire prevention plans as well as the design of new ones more effective for the protection of 

ecosystems is considered essential. But primarily, the timely collection and availability of 

information and reliable statistics related to the extent of the fire-affected areas as well as the 

immediate effects of the fire and the long-term dynamics of the vegetation in the post-fire 

environment are required (Lentile et al., 2006; Gitas et al., 2012). 
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Vegetation regeneration after fire in Mediterranean ecosystems is a complex process and as a 

result that it is difficult to generalize its post-fire dynamics due to a number of factors that 

influence it. Indicatively, it is mentioned the increased spatial heterogeneity, the ecotype, the 

duration and intensity of the fire, the pre-existing vegetation, and the local topographical, 

climatic and soil conditions (Moreira et al., 2009; Petropoulos et al., 2014; Veraverbeke et al., 

2010). For example, in fire-adapted sclerophyll shrub communities their recovery occurs within 

a few years (Wittenberg et al., 2007), in contrast to pure forest species where several decades 

are required (Capitanio & Carcaillet, 2008). Also, due to better sunlight and evapotranspiration, 

south-facing slopes show a higher rate of vegetation regeneration than north-facing slopes 

(Petropoulos et al., 2014). 

At the local level, for small-scale events, it is usually possible to assess the effects of fires in detail 

through extensive field work. On the contrary, in large-scale fire phenomena, the examination of 

both immediate and long-term interactions between the post-fire dynamics of vegetation, burn 

severity, climate and other parameters remains a laborious (in time and cost) process (Gouveia 

et al., 2010). 

Satellite data and remote sensing techniques are now a widespread and reliable tool, commonly 

used alongside fieldwork, to assess the fire impacts and monitor affected ecosystems over time, 

at both large and small scales (Ireland & Petropoulos, 2015; Smith-Ramírez et al., 2022). Satellite 

remote sensing research and applications are now being carried out at all key stages of forest fire 

management, from mapping forest fuels and fire risk (Chuvieco et al., 2002), to mapping the 

affected areas’ perimeters (Gitas et al., 2008), as well as to monitoring the long-term vegetation 

succession and regrowth (Röder et al., 2008). Main advantages of the satellite approach are the 

possibility of obtaining individual images or even time series of data without cost, and the large 

spatial coverage they offer. 

The combination with Earth Observation data and GIS techniques, has provided promising 

potential for analyzing and extracting spatial information related to wildfires (Chen et al., 2005; 

Durduran, 2010; Chen et al., 2011; Kalivas et al., 2013). It presents an excellent way for data 

capture, storage, synthesis and analysis of acquired EO spatial data. Indeed, EO satellite data can 

be combined with GIS and can provide an efficient approach for analysing and extracting spatial 

information to support decision making reliably and consistently (Chen et al., 2005; Gens, 2010). 
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1.2 Aims and Objectives 

The aim of this thesis is to assess the post-fire vegetation regeneration in a Mediterranean 

ecosystem using freely available high resolution satellite data from Landsat missions and 

Geographical Information Systems, and to examine the relationships between vegetation 

regrowth dynamics and burn severity as well as the topographical characteristics of the study 

area. The specific objectives are: 

1. Use of high-end supervised classification techniques and tools for the burnt area 

delineation within the study area. 

2. Assess burn severity within the burn scar using the Normalized Burn Ratio (NBR) and the 

Differenced Normalized Burn Ratio (dNBR). 

3. Utilize multi-temporal analysis with the use of the Normalized Difference Vegetation 

Index (NDVI) as well as the Regeneration Index (RI) based on Landsat TM and OLI imagery 

for mapping and assessing the post-fire vegetation regrowth dynamics within the burn 

scar. 

4.  Assess the relationship of aspect on vegetation regrowth dynamics within the burnt area. 
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2 Literature review 

2.1 The catastrophic effects of forest fires and the need to study the 

vegetation regeneration process 

Fires have always been an integral part of forest ecosystems (Tedim et al., 2015), however, in 

recent decades they have been one of the most threatening natural disaster with adverse effects 

on both the environment and the economy, as well as human life (Dupuy et al., 2020). Europe is 

repeatedly affected by severe forest fires, with Mediterranean countries accounting for the 

majority of the total burnt area (Joint Research Centre (JRC), 2020). The characteristic climate, 

the heterogeneity of vegetation and human interventions and activities are the main factors that 

make the European Mediterranean region particularly vulnerable to forest fires (Keeley et al., 

2011; Moreira et al., 2020). 

Although recent statistical reports indicate a decrease in the number of fires and burnt areas in 

Mediterranean area (Turco et al., 2016), the increasing occurrence of unpredictable and extreme 

weather events, as a result of climate change, is expected to increase both the frequency and 

intensity of fires (IPCC, 2022). More specifically, climate change is estimated to cause more 

frequent and intense periods of droughts in the Mediterranean resulting in the increase of fire 

risk compared to current conditions (Joint Research Centre, 2018). In fact, the areas that will 

show strong drought phenomena are predicted to expand towards the northernmost regions of 

Europe which, until now, have not been prone to catastrophic fires (Joint Research Centre, 2018; 

Venäläinen et al., 2020). It is worth mentioning that recent intense fire events can be considered 

as indications of the impacts of climate change on forest fires in both Mediterranean and 

northern Europe. The most characteristic examples include the fires of 2018 in Greece and 

Portugal but also in unexpected areas above the Arctic Circle, such as Sweden, where incalculable 

environmental and economic disasters as well as human losses were caused (Varela et al., 2019; 

Ribeiro et al., 2020). Prolonged drought of the 2007 fire season was also characteristic, in which 

devastating fires occurred in previously no high-risk, high-altitude areas of the Peloponnese, 

Greece (Koutsias et al., 2012; EEA, 2017). 

With regard to the spatio-temporal behavior of vegetation in the post-fire environment, the 

knowledge and understanding of its regeneration dynamics becomes necessary for: 
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• the assessing the short-term and long-term effects of fires and taking the corresponding 

recovery measures (Gouveia et al., 2010; I. Gitas et al., 2012); 

• the understanding of the driving factors of the changes taking place, especially if climate change 

scenarios are taken into account (Casady et al., 2010); 

• the effective management of post-fire ecosystems (Wittenberg et al., 2007); 

• drawing up prevention policies and strategies (Petropoulos et al., 2014) 

2.2 Use of earth observation in burnt area delineation and burn severity 

The spectral behavior of burnt areas varies according to the ecosystem, the severity of the 

phenomenon and the time duration between the moment of the event and the reception of the 

spectral information. Immediately after the fire, the ash deposition determines the spectral 

signal of the burnt surface for a short period of time. Then, the spectral behavior is determined 

by the removal and the temporal regrowth of the vegetation in the post-fire environment 

(Chuvieco 1999). In general, the near (NIR) and mid-infrared (SWIR) parts of the electromagnetic 

spectrum are considered more suitable for distinguishing burnt areas and/or estimating burn 

severity, especially when considered simultaneously (Koutsias & Karteris, 2000). More 

specifically, in the near-infrared, a decrease in reflectance is observed after the fire due to the 

destruction of the leaf structure, while at the same time an increase in reflectance is observed in 

the mid-infrared (Lentile et al., 2006; Miller & Thode, 2007). 

As far as burn severity is concerned, it describes the degree to which an area has been altered or 

disrupted by the fire and how the functioning of the ecosystem in the burn scar has been 

affected. The observed effects often vary within the area and between different ecosystems 

(Keeley, 2009). Burn severity determined by evaluating and classifying the regions with similar 

visible combustion attributes in the field (Soverel et al., 2010). Mapping of burn severity is a 

crucial part of the post-fire planning and monitoring, which is generally accomplished using earth 

observation data (Meng et al., 2017; Cai & Wang, 2022; Tonbul et al., 2022). 

The following subsections present the sensors and the main techniques used in literature to 

determine the burnt area and to estimate the burn severity. 
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2.2.1 Overview of methods and techniques for burnt area mapping 

Optical satellite data have been extensively used to detect and map burnt areas both 

locally/regionally/nationally (Chuvieco & Congalton, 1988; Duncan et al., 2009) and globally 

(Barbosa et al., 1999; Roy et al., 2008). Medium and low spatial resolution data (250 m to 1 km 

resolution) that have been used for these purposes come from sensors and systems such as the 

National Oceanic and Atmospheric Administration (NOAA)/Advanced Very High Resolution 

Radiometer (AVHRR) (Pereira, 1999; Fraser et al., 2000; Chuvieco et al., 2005), the Satellite Pour 

l'Observation de la Terre (SPOT) VEGETATION (VGT) (Stroppiana et al., 2002; Bartalev et al., 

2007), the Along Track Scanning Radiometer (ATSR) (Eva & Lambin, 1998) and the Moderate 

Resolution Imaging Spectroradiometer (MODIS) (T. Loboda et al., 2007; Giglio et al., 2009). 

High spatial resolution data, which have been used to delineate and map burnt areas, mainly 

come from Landsat satellites (resolution 30-80 m) (Koutsias & Karteris, 2000; Kontoes et al., 

2009; Petropoulos et al., 2010; Bastarrika et al., 2011; Oliveira et al., 2011; Petropoulos et al., 

2011, 2012), Sentinel 2 (Lazzeri et al., 2021; Llorens et al., 2021), Earth Observing-1 (EO-1) and 

the Advanced Land Imager (ALI) radiometer (30 m resolution) (Petropoulos et al., 2012), PRISMA 

(Hyperspectral sensor) (Lazzeri et al., 2021), SPOT 4 HRVIR (High-Resolution Visible and InfraRed) 

(Kontoes et al., 2009). Also, very high-resolution images of the IKONOS satellite (1 m) (Mitri & 

Gitas, 2013; Dragozi et al., 2014) and the AVIRIS sensor (Airborne Visible and Infrared Imaging 

Spectrometer), with resolution 2.4 m, have also been analyzed (Kokaly et al., 2007). Finally, in 

addition to satellite data, UAVs (unmanned aerial vehicles) have also been used to map burnt 

areas (Lazzeri et al., 2021). 

In addition to the abundance of different types of satellite data, a large number of techniques 

and methods have been developed to detect and map burnt areas, such as the vegetation index 

differencing (Chuvieco et al., 2002; T. Loboda et al., 2007; Lazzeri et al., 2021; Llorens et al., 2021); 

the Principal Component Analysis (PCA) (Alexandris et al., 2017); the Spectral Mixture Analysis 

(SMA) (Quintano et al., 2006) and the Object-based image classification (I. Z. Gitas et al., 2004; 

Polychronaki & Gitas, 2012). Also, supervised image classification techniques such as the 

Maximum Likelihood (Petropoulos et al., 2012), the Spectral Angle Mapper (Petropoulos et al., 

2010), the Artificial Neural Networks (Al-Rawi et al., 2001; Petropoulos et al., 2010, 2012) and 

the Support Vector Machines (Cao et al., 2009; Petropoulos et al., 2011, 2012; Dragozi et al., 

2014) have also been utilized. 
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2.2.2 Overview of methods and techniques for burn severity assessment 

Regarding burn severity assessment, data from various satellites, mainly Landsat (French et al., 

2008; Hall et al., 2008; Whitman et al., 2018; Quintano et al., 2020; Whitman et al., 2020; Chen 

et al., 2021; Rupasinghe & Chow-Fraser, 2021; Smith-Ramírez et al., 2022) and Sentinel 2 

(Quintano et al., 2020; Llorens et al., 2021; Morresi et al., 2022; Tonbul et al., 2022) have been 

used. Additionally, Deimos-1 satellite (García-Llamas et al., 2019), WorldView-3 (Warner et al., 

2017) as well as hyperspectral data from the Earth Observing-1 (EO-1) satellite (Fernandez-

Manso et al., 2019) have also been utilized. 

There are also a lot of methods and approaches that have used for burn severity estimation such 

as the multitemporal change detection analysis based on the use of pre-fire and post-fire images 

(Warner et al., 2017; Zheng et al., 2018; He et al., 2019), image analysis techniques including the 

Tasseled Cap Transformation (Loboda et al., 2013), the Principal Components Transformation 

(Brewer et al., 2005) and the Spectral Mixture Analysis (Quintano et al., 2013, 2017). 

Furthermore, Support Vector Regression (SVR) analysis has also been used for burn severity 

assessment (Hultquist et al., 2014; Zheng et al., 2018). However, the majority of studies have 

employed spectral indices for the burn severity assessment such as the Normalized Difference 

Vegetation Index (Escuin et al., 2008; Fornacca et al., 2018), the Relativized Burn Ratio (Parks et 

al., 2014), the Normalized Burn Ratio (NBR) (Veraverbeke et al., 2012; Gibson et al., 2020) and 

the differenced Normalized Burn Ratio (dNBR) (Quintano et al., 2018; Chen et al., 2020; Gibson 

et al., 2020; Chen et al., 2021; Llorens et al., 2021; Picotte et al., 2021; Giddey et al., 2022; Tonbul 

et al., 2022) which has been the most commonly used index for the classification of burn severity 

within multitemporal (pre-fire/post-fire images) approaches. Additionally, based on NBR and 

dNBR, many authors have developed new spectral indices for the burn severity assessment such 

as the relative differenced Normalized Burn Ration (RdNBR) (Miller & Thode, 2007; Miller et al., 

2009; Morresi et al., 2022) as well as the Relativized Burn Ratio (RBR) (Parks et al., 2014; Simone 

et al., 2020; Morresi et al., 2022). 

2.3 Earth observation in post-fire vegetation regeneration assessment 

A wealth of satellite data has been used to monitor vegetation regeneration after fire, and several 

satellite image analysis methods have been applied. Regarding the methods, the majority of 

them are based on the use of spectral vegetation indices, with NDVI (Normalized Difference 

Vegetation Index) being the most used. Other methods, less used, are the Spectral Mixture 
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Analysis (SMA), the Fractional Vegetation Cover (FVC) and the classification methods. The 

following table (Table 2-1) presents the bibliographic review of the studies that have been carried 

out in recent years regarding the post-fire vegetation regrowth. More specifically, Table 2-1 

presents the sensor, the resolution of the satellite images utilized, the type of ecosystem and the 

location as well as the method used to study the vegetation regeneration process and the 

respective reference. 

Table 2-1: Indicative literature on investigating vegetation regeneration after wildfire 

Sensor/Resolution Ecosystem Method/Index Reference 

Landsat-5 TM 

(30 m) 

Shrubs and Pine 
Forest  
Mediterranean - 
Greece 

NDVI and other 
various vegetation 
indices (VIs) 

Veraverbeke et al., 
2012 

Landsat-5 TM 

Landsat-7 ETM+ 

(30 m) 

Shrubs and Pine 
Forest  
Mediterranean - 
Spain 

NDVI in 
combination with 
fire severity and 
geographical data 

Viana-Soto et al., 
2017 

Landsat-5 TM 

(30 m) 

Pine and Fir forests 

Grasses and shrubs 

Farmlands 

Suburban housing 

Mediterranean - 
Greece 

NDVI 
Petropoulos et al., 
2014 

Landsat-5 TM 

(30 m) 

Coniferous forests 

Montane Cordillera 
Ecozone-Canada 

NDVI 

RI 

 

Ireland & 
Petropoulos, 2015 

Landsat-5 TM 

Landsat-8 OLI 

(30 m) 

Mediterranean 
sclerophyllous 
vegetation – Chile 

NDVI 

NDWI (Normalized 
Difference Water 
Index) 

Field Data 

Smith-Ramírez et 
al., 2022 

Landsat-5 TM 

Landsat-7 ETM+ 

Landsat-8 OLI 

(30 m) 

Boreal Forest – 
China 

NDVI Wang et al., 2022 
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Landsat-5 TM 

Landsat-7 ETM+ 

Landsat-8 OLI 

(30 m) 

Pine plantation 
forest - Taiwan 

Normalized Burn 
Ratio (NBR) 

Difference 
Normalized Burn 
Ratio (dNBR) 

Based on NBR new 
spectral index BRR 
(Burn Recovery 
Ratio) 

Chompuchan & 
Lin, 2017 

Landsat-5 TM 

Landsat-7 ETM + 

(30 m) 

Canadian boreal 
forests 

Spectral recovery 
metrics based on 
NBR: 

Relative Recovery 
Indicator (RRI) 

Ratio of Eighty 
Percent (R80P) 

Year on Year 
Average (YrYr) 

Frazier et al., 2018 

Landsat-5 TM 

Landsat-7 ETM+ 

Landsat-8 OLI 

(30 m) 

Siberian Larch 
Forest 

NDVI based index 
called Fractional 
Vegetation Cover 
(FVC) 

Chu et al., 2017 

Landsat-5 TM 

Landsat-7 ETM+ 

(30 m) 

Scrubs, Pines, 
Quercus Forest 

Mediterranean - 
Spain 

Multiple 
Endmember 
Spectral Mixture 
Analysis (MESMA) 

Fernandez-Manso 
et al., 2016 

Airborne 
Visible/Infrared 
Imaging 
Spectrometer 
(AVIRIS) 

(20 m) 

 

Sclerophyllous 
California chaparral 

Spectral mixture 
analysis (SMA) 

NDVI 

Regeneration Index 
(RI) 

Normalized 
Regeneration Index 
(NRI) 

Riaño et al., 2002 

CORONA KH-4B    
(1,9 m) 

Alpine treeline 
ecotone, Coniferous 
forest 

Supervised 
classification 

Stueve et al., 2009 
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Washington State, 
USA 

 

QuickBird (2,4 m) 

EO-1 Hyperion (30 
m) 

Shrubs and Pine 
Forest  
Mediterranean - 
Greece 

Object-based 
image classification 

Field data 

Mitri & Gitas, 2013 

 

2.4 Topography and vegetation regrowth dynamics 

Topography is an important physiographic factor which affects vegetation regeneration. Studies 

have shown that aspect is a key control on an area’s microclimate influencing the fire proneness 

of an area due to the effect it has on insolation and evapotranspiration rates (Ireland & 

Petropoulos, 2015). More precisely, south-facing slopes experience higher insolation and 

evapotranspiration rates than in north-facing slopes. In addition, soil moisture content is 

remarkably lower on south- than on north-facing slopes in the northern hemisphere, due to the 

fact that south-facing slopes receiving as much as six times more solar radiation than north-facing 

slopes (Gong et al., 2008) which is not conducive to vegetation growth. This results in higher 

vegetation growth or regrowth dynamics in north-facing slopes where moisture conditions are 

more favourable (Petropoulos et al., 2014, Ireland & Petropoulos, 2015, Louhaichi et al., 2021). 

Accordingly, south-facing slopes present higher values of burn severity, as a consequence of their 

exposure in higher values of solar radiation. The increased solar radiation rises the likelihood of 

ignition due to lower soil moisture content and drier environment leading in higher severity in 

those south-facing slopes (Ozelkan et al., 2011) 

2.5 Summary 

In summary, classification techniques are widely used for burn area delineation while Vis are an 

effective tool in mapping vegetation regeneration as well as burn severity. NDVI is the most 

widely adopted index for analysing vegetation regeneration it has the advantage of highlighting 

areas and patterns of regeneration across landscapes that would require substantial investments 

of time and money to survey directly. The use of RI in vegetation regeneration analysis has been 

found to be very prominent method in current literature mainly due to its high correlation with 

crown closure, leaf area index (LAI), and other vegetation parameters, as well as detecting change 

in canopy cover or vegetation biomass. Additionally, very few works in the literature related to 
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vegetation regeneration have used the combined study of NDVI and RI indices, a fact that was 

taken in account in defining the objectives of this work. Knowledge is also limited regarding the 

effect of topographic features combined with burn severity on vegetation regeneration in burned 

areas, something that this thesis covers. 
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3 Experimental set up 

3.1 Study area 

The region of interest comprises the area of northeastern Attica, located approximately 30 km 

north-east from Athens, Greece, extending approximately from 23°8ˈ to 24°03ˈ East and from 

38° to 38°3ˈ North (Figure 3-1). The area borders the mountain range of Parnitha (highest peak 

1,413 m) to the west and mountain range of Penteli (highest peak 1,110 m) to the north, forming 

a rugged terrain which varies from sea level to approximately 980m. Regarding climatic 

conditions of the studied area, the average annual temperature ranges from 17.5°C at low 

altitudes to 12.5°C at high altitudes (about 1000 m). During summer, the average temperature 

reaches the 27°C at low altitudes and 22-23°C at 1000m height. As far as precipitation is 

concerned, its average annual value reaches 550-650mm. During summer, precipitation drops at 

10-15mm. Concerning vegetation, at lower altitudes, land is covered mainly by schlerophyllous 

vegetation, sparse vegetation areas and some agricultural land. At higher altitudes, areas are 

covered mainly by forest of different types (coniferous and/or broadleaf forests) as well as 

transitional woodland/scrubland areas. 

On August, 2009 the study area experienced a severe damage from a wildfire outbreak. The fire 

started on the night of August, 21st from the area near the coastal settlement of Sesi 

Grammatikou (northeastern Attica). It quickly grew in size and on the morning of August 22nd, 

began to threaten the areas of Grammatikos, Varnavas, Marathon, and Lake of Marathon 

(approximately 40 km from Athens). Highly supported by the strong winds, the fire moved further 

south and reached the borders of the areas of Agios Stefanos, Anixi, Stamata, Rodopolis and 

Dionysos during night of August 22nd, while from August 23rd the fire spread to the south side of 

Penteli mountain and started burning houses in Drafi, Palea Penteli, Anthousa, Pikermi and 

Pallini. 

The EU civil protection mechanism came into force on Saturday night of August 23rd, following 

the relevant decision of the EU. Italy, France, Cyprus, Austria and Bulgaria offered assistance with 

aircraft, helicopters, personnel and other technical means and the fire was brought under control 

on Monday, August 24th. It is considered one of the most devastating wildfires in Attica. 
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Figure 3-1: Location of study area. The satellite image shows the false color composite of the first post-fire LANDSAT TM used, 
which was captured few days after the fire suppression (3/9/2009), and illustrates clearly the burn scar (dark grey color). 

3.2 Datasets 

For the exploration of the vegetation regeneration dynamics of the burn scar in the selected 

study region over a period of 11 years, six Landsat images were analyzed. More precisely, from 

2009 to 2020, three Landsat 5 Thematic Mapper (TM) and three Landsat 8 Operational Land 

Imager (OLI) images, around the same dates (“anniversary dates”; Lillesand et al., 2015), every 

three years, were selected to avoid the influence of seasonal dissimilarities in both spectral 

radiation (e.g., meteorological conditions, distance between Sun & Earth and Sun elevation 

angle) and surface reflection. Dates of acquisition as well as basic metadata of the images are 

presented in Table 3-1. 

All images were obtained from the U.S. Geological Survey (USGS) with the use of Google Earth 

Engine (GEE). Due to the lack of images, mainly from earlier years, on the desired "anniversary" 

date in EarthExplorer (https://earthexplorer.usgs.gov/), GEE was used to access all LANDSAT 

image collections. For the implementation of the present thesis, the Level 2, Collection 2, Tier 1 

datasets from Earth Engine Data Catalog were used for both LANDSAT 5 and 8 images. These 

https://earthexplorer.usgs.gov/
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datasets contain atmospherically corrected surface reflectance derived from the data produced 

by the Landsat 5 TM sensor for the period 1984-2012 and by Landsat 8 OLI sensor for the period 

2013 until today. Images from LANDSAT 5 collection, contain 3 visible (B1-B3), 1 near infrared 

(NIR) (B4) and 2 short-wave infrared (SWIR) (B5, B7) bands processed to orthorectified surface 

reflectance as well as a thermal infrared (TIR) band (B6) which didn’t used in the framework of 

this study (USGS, 2021). On the other hand, images from LANDSAT 8 collection, contain 4 visible 

(B1-B4), 1 near infrared (NIR) (B5) and 2 shortwave infrared (SWIR) (B6-B7) bands processed to 

orthorectified surface reflectance (USGS, 2022). Similarly, thermal infrared (TIR) band (B10) 

didn’t used. 

Table 3-1: Basic metadata of the images used for the investigation of vegetation regeneraton within the study area under burn 
scar 

 

In addition, the Shuttle Radar Topography Mission (SRTM) 1 arc-second (30 meters) elevation 

data (version 3) was used for obtaining topographical information about the area of interest. The 

SRTM is a joint project between the National Geospatial-Intelligence Agency (NGA) and the 

National Aeronautics and Space Administration (NASA). For the calculation of surface elevation, 

SRTM made use of the radar interferometry technique. In Version 3 SRTM products gaps or voids 

were filled with elevation data primarily form the Terra Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) Global Digital Elevation Model Version 2.0 (GDEM2) and 

 Dates Satellite Path/row Resolution Projection 

Pre-fire 
image 

18/8/2009 

Landsat 5 
TM 

182/34 

30m 

WGS 84 / UTM zone 
35N 

EPSG:32635 

Post-fire 
images 

3/9/2009 

24/8/2011 

23/8/2014 

Landsat 8 
OLI 

 

183/33 

WGS 84 / UTM zone 
34N 

EPSG:32634 

8/8/2017 182/34 

WGS 84 / UTM zone 
35N 

EPSG:32635 

23/8/2020 183/33 

WGS 84 / UTM zone 
34N 

EPSG:32634 
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secondarily from the USGS GMTED2010 elevation model or the USGS National Elevation Dataset 

(NED) (SRTM, 2015). The dataset was downloaded from EarthExplorer 

(https://earthexplorer.usgs.gov/) in geotiff format, in geographic lat/lon projection and WGS84 

horizontal and EGM96 vertical datum. To cover the study area, two tiles were downloaded 

namely N38, E023 and N38, E024. 

Finally, the CORINE Land Cover (CLC) inventory of 2006 was used to identify the types of land 

cover in the study area before the fire occurrence. CORINE Land Cover dataset was downloaded 

from the Copernicus Land Monitoring Service (CLMS - https://land.copernicus.eu/pan-

european/corine-land-cover) in geotiff format. 

 

  
Figure 3-2: Digital Elevation Model – DEM (A) and Corine Land Cover 2006 map (B) of the study area  

 

  

A B 

https://earthexplorer.usgs.gov/
https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover


30 
 

4 Methodology 

All vegetation regrowth spatial analysis of the studied area under burn scar was carried out using 

ENVI (v. 5.3, L3HARRIS GEOSPATIAL), QGIS (v. 3.16.14) and Google Earth Engine (GEE), while 

statistical analysis was carried out with the use of Excel (v. 2019, Microsoft) as well as Matlab 

(R2019a, MathWorks). An overview of the methodology implemented herein to satisfy the study 

objectives is illustrated in Figure 4-1. 

4.1 Image pre-processing 

All pre-processing of satellite images used was carried out in GEE as well as in ENVI. As stated 

earlier all images were downloaded using the GEE. During this, all pre-processing was also applied 

to images using the appropriate commands. Firstly, a polygon of the broader study area was 

constructed and used for masking the area of interest from the entire Landsat image. For the 

latter the command clip (ee.Image.clip) was used. After that, the selection of preferable Bands 

was carried out. Using the “select” command (ee.Image.select) the blue, green, red and near 

infrared bands was selected in both Landsat 5 TM and 8 OLI images. In addition, the scaling factor 

was applied to all the selected bands. Landsat Collection 2 surface reflectance has a scale factor 

of 0.0000275 and an additional offset of -0.2 per pixel. To apply that, all bands was multiplied 

with the 0.0000275 (ee.Image.multiply) and the -0.2 was added to them (ee.Image.add) to take  

the real value of surface reflectance. Finally, images were downloaded in geotiff format with all 

preferred spectral bands stacked in a single image using the command Export.image.toDrive. 

The above clearly shows the advantage of using GEE over EarthExplorer. In addition to the lack 

of the full archive of images, as mentioned above, EarthExplorer neither give the option to mask 

the study area nor to layer stack in a single image all spectral bands. As a result, the entire 

available image is downloaded from each acquisition date and each band separately leading to 

downloading large image files as well as extra time for clipping the study area and layer stacking. 

No atmospheric or topographic correction was carried out as LANDSAT images were already 

atmospherically and terrain corrected. 

The next pre-processing of images was the co-registration since all images did not have the same 

projection  (Table 3-1).  In order  to  analyze images  from different dates, there must be spatially 
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Figure 4-1:Overall methodological framework which was implemented for the assessment of vegetation regeneration dynamics 
within the study area. Processes filled with green color implemented in ENVI, with red implemented in GIS software, with blue in 
GEE and with purple in Excel and Matlab   
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co-registered so that satellite data are in the same spatial reference frame (Schmidt & Glaesser, 

1998). The TM pre-fire image was used as a base image to which images of 2014 and 2020 were 

co-registered. Almost 12 commonly identified ground control points (GCPs) were selected 

randomly from easily detectable corner points (e.g. road junctions). Image warping was 

performed using ENVI by applying the nearest neighbor resampling method, allowing a co-

registration of the two images into a common UTM 35N projection under a WGS84 ellipsoid 

(EPSG: 32635). The nearest neighbor resampling method was used to better preserve the 

reflectance values of the original images to the new registered images (Petropoulos et al., 2014). 

Co-registration was also implemented for Digital Elevation Model (DEM) as well as Corine Land 

Cover (CLC) rasters used. More specifically, with the use of QGIS, both rasters were reprojected 

into the common coordinate reference system i.e. WGS 84 / UTM zone 35N. In addition, DEM 

and CLC were clipped by the study area’s polygon. 

4.2 Burnt area delineation 

For the burnt area delineation, the Support Vector Machine (SVM) supervised classification was 

applied using ENVI image processing environment. SVM was implemented at the original sensor 

spatial resolution (i.e. 30m) using the image just after the fire occurrence (September 9, 2009). 

The first step was the definition of the classification scheme, namely the selection of a number 

of classes to be used for SVM implementation. To this end, five classes were selected, namely: 

burnt area, agricultural areas, forested areas, urban areas and water bodies. Apart from burnt 

area, the remaining classes were defined using the CLC 2006 classes of the study area. Table 4-1 

shows the classes of CLC 2006 included in each of the five classes of SVM classification. 

The next step involved the selection of the training and validation sets of pixels (ROIs) from the 

image just after the fire occurrence for the SVM performance and validation of the produced 

thematic map, respectively. Usually, it is proposed that a minimum of 10-30p pixels per class can 

be used for training the algorithm, where p is the number of image bands used (Piper, 1992; 

Mather & Koch, 2011; Van Niel et al., 2005; Petropoulos et al., 2011). Additionally, previous 

studies have also shown that SVM is able to provide very satisfactory classification results when 

small training sets are used (Pal & Mather, 2006). In this study, approximately 900 representative 

training pixels for each class were selected from the Landsat TM imagery based on a random 

distribution. An extra set of approximately 300 pixels (about 1/3 of the training pixels), was also 

selected to be used in the accuracy assessment of the produced classification map. Selection of 
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the most spectrally pure pixels for each class was mainly based on both visual observation of the 

satellite  image and  the land cover raster (CLC2006)  of the studied area. As  a further test of the 

Table 4-1: Sub-classes of CLC2006 included in main five classes of SVM classification 

Classes of SVM Classification Sub-Categories of Land Cover (CLC 2006) 

Agricultural areas 

Non-irrigated arable land 

Vineyards 

Olive groves 

Pastures 

Complex cultivation patterns 

Land principally occupied by agriculture, with significant 
areas of natural vegetation 

Forested areas 

Broad-leaved forest 

Coniferous forest 

Mixed forest 

Natural grasslands 

Sclerophyllous vegetation 

Transitional woodland-shrub 

Sparsely vegetated areas 

Burnt areas 

Urban areas 

Continuous urban fabric 

Discontinuous urban fabric 

Industrial or commercial units 

Road and rail networks and associated land 

Airports 

Mineral extraction sites 

Construction sites 

Green urban areas 

Sport and leisure facilities 

Water bodies 

Inland marshes 

Salt marshes 

Water bodies 

Sea and ocean 

Burnt area Τhe spatial distribution of this class was based on visual 
observation of the image 
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appropriateness of the training and validation ROIs for each class, the Jeffries – Matusita and the 

Transformed Divergence statistical measures were also used in ENVI to measure their spectral 

separability. In both measurements, their values range from 0 to 2 and indicate how well the 

selected ROIs are statistically separate. Values higher than 1.9 indicate that ROI pairs have 

sufficient separability. Separability values lower than 1.9 indicate the need of improvement by 

editing ROIs or by selecting of new ones. If separability values for ROI pairs is less than 1, then 

these ROIs are might belong in the same class and have to unified (ENVI, 2009). Separability 

values of the selected ROIs of all classes used for the training and validation of the SVM 

classification implemented in the study area, are shown in Table 4-2 and Table 4-3 respectively. 

From these results, it becomes clear the sufficient separability of the burnt area as well as water 

bodies among all the other classes. Also, forested areas have high separability among burnt 

areas, water bodies as well as urban areas, however, it is lower between agricultural areas. 

Finally, the lowest separability was observed in the separation between the urban and the 

agricultural classes. Despite this low separability, no attempt was made to improve the ROIs of 

these two classes, as the purpose of the SVM classification was to determine the burnt area and 

not to implement an accurate classification of all land uses of the study area. The separability of 

the selected ROIs, is also provided in Figure 4-2 which depicts the average spectral signatures of 

the selected training sites for all the classes used in the SVM classifier implementation. 

Table 4-2: Spectral separability between training ROIs with the use of Jeffries – Matusita (left) and Transformed Divergence (right) 
separability measures 

 Burnt area 
Water 

bodies 

Forested 

areas 

Agricultural 

areas 
Urban areas 

Burnt area   1.99 2 1.99 2 1.99 2 1.99 2 

Water 

bodies 
    1.99 2 1.99 2 1.99 2 

Forested 

areas 
      1.7 1.99 1.96 1.99 

Agricultural 

areas 
        1.51 1.79 
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Table 4-3: Spectral separability between validation ROIs with the use of Jeffries – Matusita (left) and Transformed Divergence 
(right) separability measures 

 Burnt area 
Water 

bodies 

Forested 

areas 

Agricultural 

areas 
Urban areas 

Burnt area   1.99 2 1.99 2 1.99 2 1.99 1.99 

Water 

bodies 
    1.99 2 2 2 1.99 2 

Forested 

areas 
      1.95 1.99 1.93 1.99 

Agricultural 

areas 
        1.72 1.89 

 

As far as SVM configuration is concerned, the kernel type of Radial Basis Function (RBF) was used. 

The parameters which were set were the penalty, the pyramid levels, the classification 

probability threshold as well as the Gamma in kernel function (γ). To force all pixels in the training 

data to converge to a class, the penalty parameter was set to its maximum values, i.e., 100. In 

addition, the pyramid levels as well as the classification probability threshold were set to zero 

causing the satellite image to be processed at full spatial resolution as well as restricting all image 

pixels to get exactly one class label so as no pixels remain unclassified, respectively. Finally, the γ 

parameter is a value equal to the inverse of the number of the spectral bands used in the 

classification. Consequently, in this case, the γ parameter was set to 0.167 because all spectral 

bands (six in total) were used for the implementation of SVM classification. 

The produced image from SVM supervised classification process was converted to geotiff and the 

burnt area was extracted as vector file, with the use of QGIS software, to be used further in the 

detection of the vegetation recovery rate of the fire-affected area. 

4.2.1 Accuracy assessment 

Accuracy assessment of the thematic classification map was carried out constructing the error 

matrix.   With   this   process,  the  overall  accuracy  (OA),  the  user’s  (UA)  and  producer’s  (PA) 
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Figure 4-2: Average spectral signatures of the selected training sites for all the classes used in the SVM classifier implementation 
with post-fire Landsat TM imagery just after fire suppression (September 2009) 

accuracies as well as the Kappa (K) statistic were estimated (Congalton & Green, 2019). Overall 

accuracy computed by dividing the total number of correctly classified pixels by the total number 

of reference pixels. Expressed as percentage (%), OA is a measure of the overall classification 

accuracy as it shows the probability that a pixel is classified correctly. PA is resulting from dividing 

the number of correctly classified pixels in each category by the total reference pixels of the 

category. PA expresses what percentage of a category on the ground is correctly classified in the 

right category as well as measures the pixels omitted from its reference class (omission error). In 

addition, UA is computed by dividing the number of correctly classified pixels in each category by 

the total number of pixels that were classified in that category. It represents the probability that 

a pixel classified into a given class actually represents that category on the ground as well as the 

percentage of pixels that have committed to other ground truth classes (commission error). As 

far as K coefficient is concerned, it measures the actual agreement between the reference data 

and the classified versus the chance of agreement between the reference data and a random 

classifier. The mathematical formulas for all the previous parameters are presented below (Liu 

et al., 2007; Congalton & Green, 2019): 
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where nii is the number of pixels correctly classified in a category; N is the total number of pixels 

in the confusion matrix; r is the number of rows; and nicol and nirow are the column (reference 

data) and row (predicted classes) total, respectively. 

4.3 Burn Severity Mapping 

Burnt severity was mapped using the Normalized Burn Ratio (NBR) index which was defined to 

highlight not only the burnt areas but also to index the severity of the fire. For the computation 

of NBR, its formula combines both near infrared (NIR) and shortwave infrared (SWIR) 

wavelengths. Healthy vegetation shows high reflectance in the NIR and low reflectance in the 

SWIR portion of the EM spectrum while the opposite is seen in burnt areas. To benefit from this 

difference in reflectances, NBR uses the ratio between NIR and SWIR bands according the 

formula below: 

𝑁𝐵𝑅 =  
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

High NBR values indicate healthy vegetation while low values indicate bare ground and recently 

burnt areas. Non-burnt areas are normally attributed to values close to zero. For the study area, 

the calculation of NBR was implemented using the Band 4 (NIR) and Band 7 (SWIR) of the Landsat 

TM images.  

For the burn severity assessment, the differenced NBR scaled index (dNBR) was estimated which 

is, in general, the difference between the pre-fire and post-fire NBR obtained from the respective 

images. The mathematical expression is provided below: 

𝑑𝑁𝐵𝑅 = 𝑁𝐵𝑅𝑝𝑜𝑠𝑡 − 𝑁𝐵𝑅𝑝𝑟𝑒 

(5) 

(6) 
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High values of dNBR indicate more severe damage, while areas with negative dNBR value indicate 

vegetation regeneration following a fire devastation. Severity classification, from low to high, 

based on dNBR is shown in Table 4-4. This classification scheme has been proposed by the United 

States Geological Survey (USGS) (UN-SPYDER Knowledge Portal, 2022). 

Table 4-4: USGS classification of burn severity based on dNBR ranges 

Severity level dNBR range 

High post-fire regrowth < -0.251 

Low post-fire regrowth -0.250 to -0.101 

Unburnt -0.1 to 0.99 

Low Severity 0.1 to 0.269 

Moderate-low Severity 0.270 to 0.439 

Moderate-high Severity 0.44 to 0.659 

High Severity < 0.66 

 

Both pre-fire and post-fire NBR as well as dNBR were calculated in ENVI using the Band Math 

tool. dNBR image was converted to geotiff for further processing in GIS environment. In GIS, 

dNBR classes from low to high severity were separated and converted as vector layers while the 

remaining classes were excluded for further analysis. 

4.4 Vegetation re-growth assessment 

Vegetation regeneration of the study area after the fire was evaluated through multi-temporal 

analysis of the Normalized Difference Vegetation Index (NDVI) as well as the Regeneration Index 

(RI). The methodology followed for the calculation of the two indexes is presented as follows.  

4.4.1 Normalized Difference Vegetation Index  

As mention earlier, NDVI is an index commonly used in the assessment of post-fire vegetation 

regeneration dynamics (ref to – section 2.3). It is calculated as a ratio between the red (R) and 

near infrared (NIR) bands. NDVI is calculated using the formula originally proposed by Rouse et 

al. (1973): 



39 
 

𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅 −  𝜌𝑅

𝜌𝑁𝐼𝑅 +  𝜌𝑅
 

where ρNIR and ρR referred to near-infrared and red surface reflectance respectively. 

The rationale behind the NDVI formulation lies in the fact that healthy vegetation absorbs more 

red and blue bands while reflects strongly the NIR and green bands of the EM spectrum. The 

result of this formula generates a value that in theory is ranged between -1 and +1. Values 

approaching +1, which means that the reflectance of NIR is much higher than red, register the 

healthy vegetation with strong photosynthetic activity. As a result, NDVI is an expression closed 

related to the amount of photosynthetically active vegetation exposed to the sensor within each 

pixel. However, NDVI values for vegetated areas are in general well above 0.1 (Jensen, 2000; 

Petropoulos & Kalaitzidis, 2011). More precisely, NDVI values between 0.2-0.6 reflect the semi-

arid vegetation and healthy green grass while values between 0.6-0.9 reflect the forested areas 

(coniferous, deciduous forest) (Jensen, 2016). 

For the case of Landsat TM images of the study area, NDVI was calculated in ENVI using Band 3 

(red) and Band 4 (near-infrared) while for Landsat OLI images NDVI was estimated using Band 4 

(red) and Band 5 (near-infrared) surface reflectances. The Band Math tool was utilized for the 

computation of NDVI. All NDVI images were converted to geotiff format and then clipped using 

the burnt area vector layer derived from the SVM classification in the GIS environment.  

The dynamics of the regrowth process were subsequently analyzed by comparing post-fire NDVI 

spatial patterns to the pre-fire pattern within the burnt area. With this procedure, it was 

determined the extent to which the pre-fire pattern was re-established as well as the rate of this 

recovery. In addition, descriptive statistics of NDVI within the studied region were calculated 

from each TM image, which together with scatter plots and non-parametric correlation analysis 

were used to assess the NDVI variability under the burn scar (Petropoulos et al., 2014). 

In the next step, relationships between vegetation regrowth dynamics and aspect as well as burn 

severity level were explored. In the first case, it was investigated the variation in vegetation 

recovery dynamics between the north and south facing slopes. To that end, the aspect layer was 

derived from the SRTM DEM in QGIS and the north and south facing slopes were separated in 

two difference vector layers. As north facing slopes were classified the pixels with an orientation 

between NW (315°) and NE (45°) whereas south facing slopes were classified those that had an 

orientation SE (135°) and SW (225°) (Petropoulos et al., 2014). Pixels non falling within this 

(7) 
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orientation were excluded from this analysis. Regarding burn severity and regrowth relationship, 

it was explored the different regeneration patterns in each burn severity class. For this purpose, 

separated severity classes were used as masked layer for clipping the initial NDVI layers. Finally, 

it was also investigated how aspect may differentiate regrowth rate within each burn severity 

class. To this end, the layers of north and south facing slopes as well as those of burn severity 

classes and NDVI layers were combined into the GIS environment.  

4.4.2 Regeneration Index 

Further analysis of the vegetation regrowth dynamics was carried out by investigating the ratio 

referred as the Regeneration Index (RI) (Riaño, Chuvieco, Salas, et al., 2002; Riaño, Chuvieco, 

Ustin, et al., 2002), where, in general, NDVI values of specific areas within burn scar are compared 

with respective ones outside burnt area (control areas). To this end, with pre-fire image as well 

as the CLC 2006 layer used as based map, there were selected vegetated areas, and more 

precisely, forested, scrub and agricultural areas inside and outside burn scar. It is noted that 

areas, inside and outside the burnt area, were selected with the same vegetation type. For 

example, since only coniferous forests existed inside the burn scar, it was also selected coniferous 

areas outside despite the fact that there were also broadleaf forests. Next, mean NDVI was 

computed for common land use areas, inside and outside burnt area, in all satellite images and 

RI was estimated using the following formula: 

𝑅𝐼𝑖 =
𝑁𝐷𝑉𝐼𝑓𝑖𝑟𝑒(𝑖)

𝑁𝐷𝑉𝐼𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑖)
 

where i is the different type of land cover, in this case, forest, scrubs and agriculture and NDVIfire 

as well as NDVIcontrol are the mean NDVI of the selected areas inside and outside burn scar of the 

common land cover respectively. 

  

(8) 
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5 Results 

5.1 Burnt area delineation and accuracy assessment 

Classification map derived from the implementation of the Support Vector Machine supervised 

classification methodology is illustrated in Figure 5-1. Table 5-1 summarizes the various statistical 

parameters computed for the assessment of the classification map accuracy based on the error 

matrix. According to the accuracy results, the OA reaches approximately 93% while Kc approaches 

0,91. Regarding burnt area delineation, which was the initial scope of the SVM implementation, 

the accuracy results show PA and UA of the burnt area class reach approximately 100% and 94% 

respectively. However, from the visual inspection of the derived thematic map, there are some 

areas that have false classified as burnt. This is evident mainly along the coastline as well as on 

roads west of the burnt area. These false classified areas are perhaps related to artefacts 

produced from the SVM implementation and excluded from the analysis of the regrowth 

regeneration. Regarding the total area of the burn scar, it was estimated about 147 km2. 

Regarding the type of land cover burnt, Figure 5-2 illustrates the pre-fire land cover map of the 

burnt area, while Table 5-2 presents for each type of land cover the area in km2 which is burnt. 

It is recalled that the land cover information under the burn scar, was derived from the CORINE 

Land Cover (CLC) inventory of 2006. The results show that the largest burnt area was covered 

with transitional woodland-shrub (36%) as well as sclerophyllous vegetation (33%) which is the 

typical vegetation of Mediterranean landscapes. In addition, the cover type of land principally 

occupied by agriculture, with significant areas of natural vegetation was the third in the ranking 

of the highest burnt land types (about 14%) in the area of interest. Also, forested areas with 

coniferous and mixed forests were about 4.5%. Of special interest are the results about the burnt 

artificial surfaces and more precisely the discontinuous urban fabric which, although small in 

extent (4%), are shown the destructive impacts of fire on residential areas. In total, forest and 

semi natural areas cover about 115km2 (78%), agricultural areas cover 25km2 (17%) and artificial 

surfaces cover approximately 6 km2 (4%). 
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Figure 5-1: SVM classification of the studied area – burnt area delineation, with the use of the post-fire LANDSAT TM image 
(3/9/2009) just after fire suppression. 
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Table 5-1: Classification results obtained from the SVM implementation with the post-fire Landsat TM imagery.  

 Producer’s accuracy (%) User’s accuracy (%) 

Water bodies 100.00 100.00 

Burnt area 100.00 94.32 

Forested areas 81.05 89.53 

Agricultural areas 96.73 90.10 

Urban areas 84.95 98.31 
 

Overall accuracy 93.22% 

Kappa coefficient (Kc) 0.906 

 

 
Figure 5-2: Pre-fire land cover map of the study area under burn scar  
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Table 5-2: Type and extent (in km2) of land cover burnt in the area of interest based on CLC 2006 

 Land cover type Area (km2) 

FO
R

ES
T 

A
N

D
 S

EM
I N

A
TU

R
A

L 
A

R
EA

S Transitional woodland-shrub 53.33 

Sclerophyllous vegetation 48.14 

Coniferous forest 5.64 

Sparsely vegetated areas 3.96 

Natural grasslands 2.89 

Mixed forest 0.94 

Burnt areas 0.23 

A
G

R
IC

U
LT

U
R

A
L 

A
R

EA
S 

Land principally occupied by agriculture, with significant 
areas of natural vegetation 

20.90 

Olive groves 1.84 

Complex cultivation patterns 1.42 

Non-irrigated arable land 0.79 

Vineyards 0.32 

Pastures 0.05 

A
R

TI
FI

C
IA

L 
SU

R
FA

C
ES

 

Discontinuous urban fabric 5.8 

Mineral extraction sites 0.41 

Construction sites 0.1 

Industrial or commercial units 0.06 

Continuous urban fabric 0.02 

Green urban areas 0.02 

 

5.2 Burn severity mapping 

Spatial distribution of the various burn severity classes within the burn scar is presented in Figure 

5-3, while Table 5-3 shows the area of each class (in km2) as well as the percentage of each of 

them in relation to the total area. From these results, it is clear that the majority of the study 
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area experienced moderate to high severity burn (about 43%) followed by moderate to low 

(about 31%). Additionally, 16% of the area faced high severity burn while a small percentage of 

the burnt area of interest experienced low levels of burn severity (about 10%). Concerning the 

type of land cover burned in each severity class, Figure 5-4 and Table 5-4 show the area of each 

land cover type which burned in relation to the severity level. 

Table 5-3: The area (km2) and percentage of each burn severity class within the burn scar 

Burn Severity classes Area (km2) Percentage (%) 

Low 14 9.9 

Moderate-low 45 31.3 

Moderate-high 63 43.1 

High 23 16.0 

Total 146 100 

 

Results show that the highest burnt land types i.e., transitional woodland-shrub and 

sclerophyllous vegetation faced mainly moderate to high severity burn, about 47% and 53% 

respectively following by moderate to low severity, about 30% and 25% respectively and finally 

high severity, about 17% both. Similar severity pattern presents also the land principally occupied 

by agriculture, with significant areas of natural vegetation. On the contrary, coniferous forested 

areas, faced mainly high severity burn (about 54%), following by moderate to high severity burn 

(about 30%) and moderate to low (about 13%). 

5.3 Spatio-temporal patterns of vegetation re-growth dynamics using NDVI 

The results regarding the assessment of spatio-temporal patterns of vegetation regeneration 

within the burn scar using the NDVI are presented in Figures 5-5 – 5-10. In addition, Table 5-5 

provides the corresponding descriptive statistics. Moreover, several NDVI difference maps were 

constructed for the further evaluation of the spatio-temporal changes in NDVI between the pre-

fire as well as the post-fire (just after fire suppression) conditions and all subsequent dates 

(Figure 5-11 & Figure 5-12). It is noted that while Figures 5-5 – 5-10 were created with a common 
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colorbar for the best visual comparison between them as the same color tones correspond to the 

same values, in Figures 5-11 & 5-12 the same was not presented due to the fact that in some 

images the spatial distribution of the index was not provided (the same color tone for the entire 

map) 

 
Figure 5-3:  Burn severity classification within the area of interest  
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Table 5-4: Type and extent (in km2) of land cover burnt per burn severity class in the area of interest based on CLC 2006 

 

 

Severity classes 

Low 
Moderate-

low 
Moderate-

high 
High 

Land cover Area (km2) 

A
rt

if
ic

ia
l S

u
rf

ac
es

 Discontinuous urban fabric 0.61 2.30 1.16 0.13 

Mineral extraction sites 0.04 0.17 0.10 0.03 

Construction sites 0.00 0.04 0.05 0.00 

Green urban areas 0.00 0.01 0.01 0.00 

A
gr

ic
u

lt
u

ra
l A

re
as

 

Non-irrigated arable land 0.09 0.33 0.15 0.04 

Vineyards 0.02 0.11 0.03 0.00 

Olive groves 0.38 0.65 0.30 0.04 

Pastures 0.01 0.00 0.02 0.00 

Complex cultivation 
patterns 

0.22 0.43 0.27 0.11 

Land principally occupied by 
agriculture, with significant 
areas of natural vegetation 

2.66 6.01 6.92 2.84 

Fo
re

st
 a

n
d

 s
em

i n
at

u
ra

l a
re

as
 

Coniferous forest 0.18 0.70 1.54 2.84 

Mixed forest 0.10 0.18 0.35 0.18 

Natural grasslands 0.66 1.58 0.45 0.00 

Sclerophyllous vegetation 1.86 11.45 24.25 7.79 

Transitional woodland-
shrub 

3.00 14.96 23.77 8.83 

Sparsely vegetated areas 0.68 2.05 0.68 0.02 

Burnt areas 0.05 0.09 0.02 0.00 

W
et

la
n

d
s 

Inland marhses 0.00 0.01 0.01 0.00 
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Figure 5-4: Chart showing the comparison of the different land cover burnt in relation to the burn severity classes 

 

Firstly, from the visual comparison of the pre-fire NDVI map with the respective first post-fire 

NDVI map, it becomes clear the extent of vegetation destruction caused by the fire. Also, these 

negative effects of fire on the area of interest’s vegetation are further evident by the changes in 

the descriptive statistics of NDVI between the pre-fire and the first post-fire image (Table 5-5). 

More precisely, the mean NDVI within the study area before the fire occurrence is about 0.39 

while after the fire suppression the respective NDVI reaches the value of 0.15. As regards the 

maximum NDVI, it decreases from 0.79 before the fire to 0.42 after the fire. The latter shows that 

some of the vegetation inside the burn scar was only partially destroyed by the fire. 

Regarding the dynamics of the vegetation regeneration within the burn scar, a visual inspection 

of post-fire NDVI maps in combination with the respective NDVI descriptive statistics (Table 5-5) 
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show a gradual regrowth progress withing the fire-affected region. More precisely, mean and 

max NDVI of post-fire images present a gradual increase which is indicative of vegetation 

regeneration in the area. This increase of mean and max NDVI is more intense during the first 

five years after the fire event (period 2009-2014) showing a higher rate of regeneration in 

contrast with the next six years, from 2014 until 2020, where mean and max NDVI are increasing 

at a slower rate. In addition, spatial distribution of post-fire NDVI, from 2011 onwards, as 

illustrated in Figures 5-5 – 5-10 as well as in difference NDVI maps (Figure 5-11), reveal disparate 

regeneration dynamics within the study area. Clearly, stronger dynamics in regeneration process 

are more apparent at the center as well as at west and north of the fire-affected area in 

comparison to the rest of it. 

As for the regeneration progress through years towards the recovery of pre-fire conditions of 

vegetation in the affected study area, Figure 5-12 as well as descriptive statistics (Table 5-5) show 

that from 2014 and beyond the condition of vegetation of the burnt area shows the first steps of 

recovery to the pre-fire levels. In addition, difference maps between pre-fire images with the 

respective of 2017 and 2020 show NDVI has even increased, from 0.14-0.18 (light green areas) 

to 0.23-0.27 (dark green areas), compared to pre-fire conditions. 

 

Table 5-5: Descriptive statistics of NDVI in different “anniversary” dates withing the burn scar  

Landsat image date 
NDVI 

Min Max Mean Std dev 

18/8/2009 -0.016 0.794 0.394 0.103 

3/9/2009 -0.069 0.417 0.151 0.038 

24/8/2011 -0.015 0.740 0.292 0.073 

23/8/2014 0.045 0.820 0.397 0.090 

8/8/2017 0.0000 0.839 0.462 0.105 

23/8/2020 -0.121 0.886 0.496 0.116 
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Figure 5-5: Spatial distribution of NDVI within the study area before the fire occurrence 
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Figure 5-6: Spatial distribution of NDVI within the study area after the fire suppression  
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Figure 5-7: Spatial distribution of NDVI after two years from the fire event in the study area 
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Figure 5-8: Spatial distribution of NDVI after five years from the fire event in the study area 
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Figure 5-9: Spatial distribution of NDVI after eight years from the fire event in the study area 
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Figure 5-10: Spatial distribution of NDVI after eleven years from the fire event in the study area 
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Figure 5-11: Difference maps between the post-fire (just after the fire suppression) distribution of NDVI and the respective after 
two years from the fire event (A), five years from the fire event (B), eight years from the fire event (C) and eleven years from the 
fire event (D)  

A B 

C D 
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Figure 5-12: Difference maps between the pre-fire distribution of NDVI and the respective post-fire, just after the fire suppression 
(A), after two years from the fire event (B), five years from the fire event (C), eight years from the fire event (D) and eleven years 
from the fire event (E)  

 

5.3.1 Regression analysis of post-fire NDVI 

To further explore the vegetation regeneration dynamics in the studied burnt area, it is 

attempted to fit regression models on this process. Based on other studies (Hope et al., 2007; 

Petropoulos et al., 2014) scatterplots of the NDVI between pre-fire conditions and all subsequent 

post-fire dates were constructed. With scatterplots, the dynamic of regeneration emerges 

through the location of the cloud of points relative to the 1:1 line which represents the return of 

the burn area to pre-fire conditions. Also, slope, intercept and R2 for the regression line were also 

computed. Figures 5-13 – 5-17 illustrate the produced scatterplots while Table 5-6 summarizes 

the regression analysis’ statistics relating to those scatterplots. In addition, each scatterplot is 

accompanied by a corresponding bar chart showing the change rate of pre-fire NDVI pixel values 

to the respective values of NDVI of each subsequent date. 

The results of the analysis of the scatterplots regarding the regeneration dynamics within the 

study area, clearly mirror the respective of the previous analysis of NDVI. Indeed, the movement 

E 
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of points towards the 1:1 line is clear after two years of fire suppression (August 2011) indicating 

the first steps of regeneration while from 2011 until 2014 the regeneration process increases 

gradually showing high percentage of recovery level of NDVI. From 2014 until 2020, the 

regression analysis shows that in the majority of the study area NDVI levels has recovered or 

improved in contrast with the pre-fire levels. More precisely, scatterplot of NDVI pre-fire against 

post-fire after the fire suppression as well as the respective NDVI change rate of each pixel (Figure 

5-13), show that 96% of pixels are below and 4% are on the 1:1 line showing the devastating 

impacts of fire in the study area. On 2011, 24% of NDVI pixel values are on the 1:1 line, while 74% 

are below and only 4% of pixels have NDVI values higher than the pre-fire conditions (Figure 

5-14). On 2014, 56% of NDVI pixel values are on the 1:1 line, while 20% are below and 24% are 

above the 1:1 line (Figure 5-15). On August 2017, scatterplot as well as bar plot show that 32% 

of NDVI pixel values are on the 1:1 line, while 5% are below and 63% are above showing the 

vegetation improvement in contrast to the pre-fire conditions (Figure 5-16). The improvement is 

most evident in 2020 where 79% of NDVI pixel values are above the 1:1 line, 18% are on the 1:1 

line while only 3% of pixels are below (Figure 5-17). 

Table 5-6: Regression analysis statistics between the pre-fire NDVI and the respective NDVI of all subsequent post-fire dates for 
the area under the burn scar.  

Period Slope Intercept R2 

pre-fire August 2009 – post-fire September 2009 -0.066 0.177 0.032 

pre-fire August 2009 – post-fire August 2011 0.506 0.093 0.511 

pre-fire August 2009 – post-fire August 2014 0.699 0.122 0.642 

pre-fire August 2009 – post-fire August 2017 0.815 0.141 0.640 

pre-fire August 2009 – post-fire August 2020 0.925 0.132 0.675 
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Figure 5-13: Scatterplot of pre-fire (August 2009) NDVI against post-fire after fire suppression (September 2009) and NDVI change 
rate  

 

 

 
 

Figure 5-14: Scatterplot of pre-fire (August 2009) NDVI against post-fire after two years of fire suppression (August 2011) and 
NDVI change rate  
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Figure 5-15: Scatterplot of pre-fire (August 2009) NDVI against post-fire after five years of fire suppression (August 2014) and 
NDVI change rate 

 

 

  

Figure 5-16: Scatterplot of pre-fire (August 2009) NDVI against post-fire after eight years of fire suppression (August 2017) and 
NDVI change rate 
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Figure 5-17: Scatterplot of pre-fire (August 2009) NDVI against post-fire after eleven years of fire suppression (August 2020) and 
NDVI change rate 

5.3.2 Vegetation regeneration dynamics and burn severity level 

The vegetation regrowth dynamics within the study area under burn scar was also investigated 

in relation with the burn severity class. Table 5-7 presents the descriptive statistics of the NDVI 

for each severity class during the study period from August 2009 until August 2020. As expected, 

the largest change in NDVI values following the devastating impacts of fire on vegetation is 

presented in highest classes i.e., high severity class as well as moderate-high severity class. 

Indeed, concerning the high severity class, mean NDVI decreases οf about 0.41 after the fire 

suppression (September 2009) in contract with the pre-fire levels (August 2009), while within the 

moderate-high class the respective decrease is about 0.29. On the remaining classes, post-fire 

(September 2009) mean NDVI decreases of about 0.16 and 0.08 in moderate-low and low severity 

classes respectively. The same pattern between the pre-fire and the immediately after the fire 

suppression post-fire levels is presented by the maximum NDVI. The highest drop of about 0.42 

is shown on high severity class, following by the moderate-high where the decrease is about 0.33, 

and the moderate-low with a decrease 0.32 as well as low with a decrease of about 0.21. 

As far as regeneration process is concerned, it is clear from Table 5-7 that low and moderate-low 

severity areas present highest regeneration rates in contrast with the other classes. More 

precisely, mean NDVI values within these classes reaches the pre-fire levels after two to five years 

after fire event while in other classes, moderate-high and high, pre-fire levels of mean NDVI are 

reached after five to eight years after fire occurrence.  This trend of the mean NDVI values suggest 

that low severity burn cause less damage to vegetation leading to quicker recovery, while 
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moderate-high and high severity levels cause extensive vegetation devastation and as a result 

regrowth process takes longer to reach pre-fire levels. 

Table 5-7: Descriptive statistics of NDVI in “anniversary” dates withing the burn scar separately for each burn severity class 

 
Min Max Mean Stdev 

Low     

18/8/2009 0.073 0.582 0.269 0.061 

3/9/2009 0.042 0.372 0.183 0.040 

24/8/2011 -0.015 0.644 0.253 0.052 

23/8/2014 0.051 0.635 0.329 0.065 

8/8/2017 0.000 0.734 0.370 0.077 

23/8/2020 -0.062 0.733 0.389 0.085 

Moderate-Low 

18/8/2009 0.068 0.711 0.327 0.066 

3/9/2009 0.008 0.387 0.165 0.038 

24/8/2011 0.014 0.607 0.262 0.057 

23/8/2014 0.045 0.710 0.353 0.069 

8/8/2017 0.024 0.802 0.408 0.081 

23/8/2020 -0.089 0.809 0.434 0.090 

Moderate-Ηigh 

18/8/2009 0.179 0.748 0.423 0.063 

3/9/2009 -0.004 0.417 0.144 0.030 

24/8/2011 0.032 0.680 0.294 0.064 

23/8/2014 0.053 0.767 0.409 0.075 

8/8/2017 0.017 0.830 0.480 0.086 

23/8/2020 0.074 0.845 0.517 0.092 

High 

18/8/2009 0.263 0.794 0.532 0.055 

3/9/2009 0.003 0.375 0.121 0.027 

24/8/2011 0.049 0.740 0.369 0.074 

23/8/2014 0.075 0.820 0.500 0.074 

8/8/2017 0.094 0.839 0.580 0.081 

23/8/2020 0.113 0.886 0.631 0.081 
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5.3.3 Relationship of vegetation regrowth dynamics and topography 

The relationship between the topographical characteristics such as the aspect and vegetation 

regeneration dynamics – as captured from NDVI – was also investigated within the study area 

under burn scar. Table 5-8 presents the descriptive statistics for the NDVI across the study burnt 

area separately for the north- and south-facing slopes. 

Firstly, the results show that fire occurrence in the study area had negative impacts in both 

aspects. Indeed, mean NDVI as well as max NDVI show a sharp decrease in both aspects 

immediately after the fire suppression (September 2009), however, the devastating effects of 

fire are more evident in north-facing slopes where the decrease in mean NDVI is about 0.3 in 

contrast with the respective decrease of 0.2 in south-facing slopes.  Regarding the regeneration  

Table 5-8: Descriptive statistics of NDVI in different “anniversary” dates withing the burn scar separately for north facing and 
south facing slopes 

Landsat image date 

NDVI    

Min Max Mean Stdev 

North-facing slopes 

18/8/2009 0.032 0.754 0.432 0.103 

3/9/2009 0.003 0.417 0.154 0.046 

24/8/2011 0.014 0.680 0.317 0.076 

23/8/2014 0.051 0.793 0.436 0.088 

8/8/2017 0.000 0.827 0.505 0.102 

23/8/2020 -0.062 0.869 0.545 0.113 

 South-facing slopes 

18/8/2009 0.037 0.748 0.370 0.098 

3/9/2009 -0.004 0.350 0.150 0.032 

24/8/2011 0.049 0.700 0.278 0.069 

23/8/2014 0.079 0.774 0.372 0.084 

8/8/2017 0.059 0.832 0.433 0.100 

23/8/2020 -0.044 0.877 0.462 0.108 
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process withing the burn scar, in both aspects the mean NDVI is gradually increasing though 

years, however, the mean NDVI of north-facing slopes is higher of about 0.1 than in south-facing 

slopes. The highest regeneration rate is presented two years after fire (August 2011) where 

north-facing slopes show an increase of approximately 0.2 in mean NDVI while south-facing 

slopes show an increase of about 0.1. In the following acquisition images, regrowth process is 

lower. In north-facing slopes increase in mean NDVI is about 0.12 and 0.07 in years 2014 and 

2017 respectively and about 0.04 in 2020. At the same time, in south-facing slopes the respective 

increase in mean NDVI is about 0.09, 0.06 and 0.03 for the years 2014, 2017 and 2020 

respectively. 

Regarding the recovery of the burnt area to the pre-fire levels and the relationship of this process 

with aspect, NDVI difference maps between the pre-fire image and all post-fire images (Figures 

5-18 – 5-22) depict that in both slopes, vegetation recovery of the burn scar to the pre-fire level 

starts from 2014 and continues increasingly until 2020. The distribution of recovery is mainly in 

center as well as in north areas within the study region. 

Table 5-9: Regression analysis of the NDVI before and after the fire occurrence in the study area under the burn scar separately 
for the north and south facing slopes. 

Period  Slope Intercept R2 

August 2009 – September 2009 

North facing  -0.099 0.197 0.050 

South facing  -0.060 0.172 0.033 

August 2009 – August 2011 

North facing  0.518 0.093 0.494 

South facing  0.493 0.096 0.452 

August 2009 – August 2014 

North facing  0.669 0.148 0.626 

South facing  0.678 0.121 0.591 

August 2009 – August 2017 

8/8/2017  
   

North facing  0.768 0.173 0.631 

South facing  0.816 0.132 0.601 

August 2009 – August 2020 

North facing  0.884 0.163 0.652 

South facing  0.907 0.127 0.623 
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As concerns the comparison of regrowth process between the north- and south-facing slopes, 

Figures 5-18 – 5-22 show clearly that from 2017 onwards, north-facing slopes present higher 

levels of regrowth in contrast with south-facing ones.  

In common with the analysis conducted earlier, it was also attempted to fit regression models to 

quantitatively examine the correlation between post-fire regeneration dynamics and aspect. The 

results of the regression analysis (Table 5-9), show similar trends of the vegetation recovery to 

both north and south facing slopes, however, north-facing slopes present a higher recovery rate 

with higher slopes and R2 values within the study period in contrast with south facing areas. 

 

  

Figure 5-18: NDVI difference maps for the study burnt area between the pre-fire image (August 2009) and the post-fire image 
immediately after the fire suppression (September 2009) separately for north facing slopes (left) and south-facing slopes (right) 
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Figure 5-19: NDVI difference maps for the study burnt area between the pre-fire image (August 2009) and the post-fire image two 
years after the fire event (August 2011) separately for north facing slopes (left) and south-facing slopes (right) 

  

Figure 5-20: NDVI difference maps for the study burnt area between the pre-fire image (August 2009) and the post-fire image five 
years after the fire event (August 2014) separately for north facing slopes (left) and south-facing slopes (right) 
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Figure 5-21: NDVI difference maps for the study burnt area between the pre-fire image (August 2009) and the post-fire image 
eight years after the fire event (August 2017) separately for north facing slopes (left) and south-facing slopes (right) 

 

  

Figure 5-22: NDVI difference maps for the study burnt area between the pre-fire image (August 2009) and the post-fire image 
eleven years after the fire event (August 2020) separately for north facing slopes (left) and south-facing slopes (right) 
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5.3.4 Relationship of vegetation regrowth dynamics and topography as well as burn 

severity level 

Finally, the investigation of the relationship of vegetation regeneration with the topography as 

well as the burn severity was also carried out. The results (Table 5-10 & Figure 5-23) show the 

previous respective outcomes from each analysis separately. Firstly, the devastating results of 

the fire are clear in the post-fire image after fire suppression (September 2019), however this is 

more intense in areas within the high and moderate-high severity classes in both aspects. 

Regarding the regeneration process, Figure 5-23 depicts that those areas in low and moderate-

low severity classes recover faster (August 2011-August 2014) while areas in moderate-high and 

high severity classes takes more years to recover (August 2014-August 2017). During period 

2017-2020, eight to eleven years after the fire suppression, mean NDVI is higher in all areas in 

contrast with the pre-fire levels, however, those areas in low and moderate-low severity classes 

present the highest recovery. Additionally, in all severity classes the regeneration process is 

higher in north-facing slopes (Figure 5-23). 

 

Figure 5-23: Mean NDVI of the burn scar for each severity class separately for north- and south-facing slopes 
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Table 5-10: Descriptive statistics of NDVI in all “anniversary” dates within study area in each severity class as well as separately 
for north- and south-facing slopes 

 South    North    

 Min Max Mean Stdev Min Max Mean Stdev 

Low 

18/8/2009 0.104 0.539 0.255 0.055 0.118 0.582 0.294 0.067 

3/9/2009 0.057 0.349 0.176 0.034 0.053 0.372 0.199 0.047 

24/8/2011 0.061 0.644 0.243 0.049 0.026 0.491 0.272 0.056 

23/8/2014 0.079 0.635 0.311 0.060 0.051 0.576 0.359 0.068 

8/8/2017 0.106 0.734 0.351 0.069 0.000 0.699 0.401 0.081 

23/8/2020 0.155 0.707 0.365 0.077 -0.062 0.719 0.425 0.091 

Moderate-Low 

18/8/2009 0.135 0.609 0.314 0.060 0.068 0.634 0.355 0.074 

3/9/2009 0.038 0.350 0.158 0.032 0.038 0.371 0.181 0.045 

24/8/2011 0.074 0.579 0.255 0.052 0.014 0.595 0.283 0.062 

23/8/2014 0.113 0.642 0.338 0.062 0.077 0.682 0.387 0.071 

8/8/2017 0.113 0.737 0.391 0.072 0.024 0.779 0.446 0.084 

23/8/2020 0.139 0.791 0.414 0.079 0.065 0.782 0.478 0.094 

Moderate-high 

18/8/2009 0.216 0.691 0.413 0.061 0.179 0.738 0.443 0.062 

3/9/2009 -0.004 0.350 0.141 0.026 0.032 0.417 0.150 0.036 

24/8/2011 0.121 0.650 0.288 0.064 0.035 0.680 0.309 0.065 

23/8/2014 0.148 0.697 0.392 0.074 0.061 0.753 0.436 0.070 

8/8/2017 0.129 0.797 0.462 0.086 0.017 0.826 0.508 0.080 

23/8/2020 0.183 0.800 0.495 0.090 0.074 0.845 0.548 0.087 

High 

18/8/2009 0.292 0.748 0.526 0.056 0.308 0.754 0.541 0.055 

3/9/2009 0.030 0.252 0.125 0.023 0.003 0.375 0.119 0.029 

24/8/2011 0.150 0.700 0.366 0.077 0.049 0.677 0.376 0.076 

23/8/2014 0.223 0.774 0.484 0.080 0.075 0.793 0.512 0.075 

8/8/2017 0.244 0.832 0.566 0.088 0.094 0.827 0.593 0.081 

23/8/2020 0.244 0.877 0.609 0.086 0.113 0.869 0.647 0.081 
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5.4 Re-growth dynamics using Regeneration Index 

The vegetation regeneration dynamics in the study area was also investigated with the use of 

Regeneration Index (RI). As already mentioned, for the computation of RI, the mean NDVI of 

specific areas under burn scar with known types of land cover (before burning) is calculated and 

divided by the respective mean NDVI of a number of unburnt areas (control areas) with the same 

land cover. In the framework of this thesis, the calculation of the index was carried out in forest, 

agricultural areas and areas with shrub vegetation since they constitute the majority of the 

coverage of the study area. Table 5-11 and Figure 5-24 present the results of the RI computation 

in the study area concerning the land types of forest, agriculture and shrubs. 

Table 5-11: Regeneration Index for each land cover of the study area for the entire study period 

 Regeneration Index 

Dates Forest Scrubs Agriculture 

18/8/2009 0.902 0.970 1.027 

3/9/2009 0.232 0.309 0.391 

24/8/2011 0.523 0.561 0.774 

23/8/2014 0.618 0.713 0.884 

8/8/2017 0.679 0.810 0.971 

23/8/2020 0.753 0.922 0.953 

 

Firstly, concerning the selection of areas which was implemented with the use of pre-fire image 

(18/8/2009) as well as the Copernicus Land Cover of 2006, the results show that for areas covered 

by scrubs and agriculture the Regeneration Index is near 1 which means that areas within the 

burn scar and the respective control areas present similar conditions (similar spectral and 

environmental characteristic) while for forested areas where RI is about 0.902 show slightly 

different characteristics. Regarding the vegetation regeneration process through years, RI results 

clearly mirror the patterns shown by the NDVI analysis. More precisely, RI shows the gradual 

recovery of the burnt area within the study period which is more clear in agricultural areas as 

well as in areas covered with scrubs and/or herbaceous vegetation and less in forest areas.  
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Figure 5-24: Graph showing the values of Regeneration Index for three typical land uses of the study area in each image date.  
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5 Discussion 

Burnt area delineation was implemented with the use of Support Vector Machine supervised 

classification and the accuracy assessment, based on error matrix, showed that PA and UA of the 

burnt area class reached approximately 100% and 94% respectively. In addition, the OA and 

kappa statistic (Kc) of the land cover classification of the Landsat TM, pre-fire satellite image, 

were 93% and 0,91 respectively. Classification accuracy results reported herein are of similar 

accuracy compared to other studies deriving burnt area estimates from Landsat TM or other 

sensors as well as SVM or other classification technics. More precisely, Petropoulos et al., (2012) 

used satellite images from EO-1 Advanced Land Imager (ALI) radiometer as well as Landsat TM 

and three different classification methods, i.e. the Maximum Likelihood (ML), the Artificial Neural 

Networks (ANNs) and the Support Vector Machine for the delineation of the same burnt area 

studied in the present thesis. Results showed that SVM when applied with either ALI or TM 

produced the highest classification results in comparison to all other classifiers. Overall accuracy 

and Kc in the case of Landsat TM and SVM was 93.55 and 0.920 respectively while the PA and UA 

of the burnt area classification were both 100% which are all in great agreement with the results 

in the framework of this thesis. Also, Petropoulos et al., (2010) obtained lower overall accuracy 

and Kc with the use of Landsat TM and Spectral Angle Mapper (SAM) for burnt area mapping. 

Authors reported an OA and Kc of 83.82% and 0.795 (PA and UA of burnt area 100% and 98.72% 

respectively) suggesting as previously that SVM can generally produce more accurate 

classification than other technics. Finally, Petropoulos et al., (2011) used Landsat TM imagery and 

the SVM classification for the delineation of the burn scar in an area close to the study area of 

this thesis and the OA and Kc,  with the respective parameterization of the SVM used herein (RBF 

kernel function based on Petropoulos et al., (2012)), were 95.87 and 0.948 (PA and UA of burnt 

area were both 100%) which although are higher, they are considered in agreement with the 

results of this study. 

Regarding the vegetation regeneration process dynamics within the burn scar during the study 

period i.e., 2009 – 2020, the results indicate the large degree of spatial variability of the 

regeneration process within the study area as well as they clearly point out the damaging effects 

that such wildfires have on the landscape. Although many studies reported that the vegetation 

regeneration in the affected area is a process that can potentially take a long time (e.g. 

Arianoutsou et al., 2010; Petropoulos et al., 2014), the results of the vegetation regeneration 
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analysis conducted for the study area using the NDVI, reveal that two years after the fire event, 

vegetation of the burnt area shows the first steps of recovery to the pre-fire levels. Indeed, 

regression analysis of post-fire NDVI showed that after two years from the fire suppression, 24% 

of the burnt area recovered to pre-fire level. In addition, eleven years after the fire event, the 

vegetation regrowth analysis pointed out that the majority of the burn area (97%) recovered or 

improved in contrast to pre-fire NDVI values. These results are in good agreement with other 

studies, for example, Wittenberg et al., 2007 showed that vegetation had recovered to pre-fire 

conditions withing five years in Mount Carmel, Israel, even following multiple fires. Additionally, 

a very recent paper dealing with the issue of sclerophyllous vegetation recovering after fire, 

reached the same conclusions. More specifically, Smith-Ramírez et al. (2022) using satellite image 

analysis as well as vegetation sampling, showed that Chilean Mediterranean forested and mixed 

forest/shrubland cover was reached 10-20 years after the fire if no further intervention occurs. 

These results are in great agreement with the outcomes of this study, considering that the forest 

and semi natural area within study region is about 78% (Table 5-2). 

As for agricultural land, a large percentage of which is present in the study area, their recovery 

can be quickly achieved mainly due to human intervention and the replanting of fire-damaged 

agricultural species. However, some species have the ability to recover such as olives where their 

recovery depends on the degree of heat damage, tree size and age as well as on moisture stress 

before and after the event (von Richter et al., 2005). For example in low intensity fire, olive trees 

with trunks and branches larger than 200mm can recover in contrast with younger trees with 

stems less than 200mm in diameter (von Richter et al., 2005). 

Vegetation regeneration analysis with the use of Regeneration Index (RI) shows the similar 

regeneration trends as captured by NDVI i.e., the higher regrowth dynamic within the period of 

2011-2014 and the slightly lower of the next years until 2020. This strong correlation between 

the NDVI and RI has also been reported in several studies (e.g. Ireland & Petropoulos, 2015). 

Additionally, RI results reveal that areas within burn scar covered, before the fire occurrence, 

with scrubs as well as herbaceous vegetation and agriculture, recovered and reached the NDVI 

levels of the respective areas outside the burnt area. On the contrary, forested areas (coniferous 

and mixed forest areas) although they present a gradual increase in regrowth process, they don’t 

reach the NDVI levels of the forested unburned areas. An explanation for this discrepancy could 

be the difference in the functional characteristics of the vegetation between the two areas 

(burnt, unburnt). More specifically, for vegetation within the burn scar, although it seems that 
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the process of its regeneration is being achieved, it has not reached the levels of healthy 

respective vegetation outside the burnt area. The latter is reflected by the different NDVI values 

which are affected by the dissimilarities in photosynthetic activity and/or in canopy structural 

variations of the vegetation between the two areas. These results show that the exclusive use of 

NDVI for this type of work can lead to incorrect estimates regarding the regeneration dynamics 

of vegetation and leading to incorrect decision-making for the proper management of the fire-

affected area. By adjunctive use of indicators such as RI, more detail and precision can be 

provided during studies on vegetation regrowth dynamics of burnt areas (Ireland & Petropoulos, 

2015). 

As far as burn severity analysis is concerned, the results showed that areas of highest severity 

burn overlapped with the areas of greatest NDVI decrease and the opposite which is in line with 

several studies (e.g. Miller & Yool, 2002; Ireland & Petropoulos, 2015) showing also the strong 

correlation between the NDVI and dNBR which was used to estimate burn severity level within 

burn scar (Ireland & Petropoulos, 2015). Regarding the examination of the relationship between 

burn severity and vegetation regeneration, the analysis showed that areas with low to moderate-

low burn severity presented high regeneration dynamics and recovered within two to five years 

after fire event. Additionally, in areas with moderate-high and high burn severity covered mainly 

of sclerophyllous and herbaceous vegetation, shrubs and forested areas (coniferous, mixed 

forests), regeneration rates were more gradual, and took approximately a decade to revert to 

pre-fire levels. These results suggest that low severity burn cause less damage to vegetation 

leading to quicker recovery, while higher severity levels cause extensive vegetation destruction 

and as a result regrowth process takes longer to reach pre-fire levels. These spatial trends 

between the burn severity and the vegetation regeneration has also been reported in literature 

for example in Ireland & Petropoulos (2015). 

The examination of the relationship of regeneration process with aspect showed that north 

facing aspects have a slightly greater regeneration rate compared to south facing exposures 

which is common with many other studies (e.g. Mouillot et al., 2005; Fox et al., 2008; Ireland & 

Petropoulos, 2015). This difference in vegetation regeneration reflects the effects of aspect and 

other topographic elements such as elevation, slope and position on the modification of local 

environment (Daws et al., 2002; Moeslund et al., 2013; Jucker et al., 2018). Due to the different 

solar radiation received (Yetemen et al., 2015), the differential environments between north- 

and south-facing slopes is a global phenomenon at northern hemisphere (Yang et al., 2020). 
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Especially aspect significantly influences microclimate (e.g. evapotranspiration, air temperature, 

wind speed) (Burnett et al., 2008), soil property (e.g., soit texture, organic matter content) 

(Lozano-García et al., 2016) and hydrological processes (e.g., runoff dynamics, soil water 

retention, hydraulic conductivity) (Casanova et al., 2000; Broxton et al., 2009; L. Wang et al., 

2011), elements which are playing an important role in triggering vegetation re-growth 

(Petropoulos et al., 2014). 
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6 Conclusions & Future work 

In this thesis an analysis of vegetation regeneration dynamics of a burnt Mediterranean 

ecosystem, in Attica, Greece, with a use of EO and GIS was presented. More specifically, the 

spatio-temporal variation of vegetation regeneration dynamics within the burn scar, over a 

period of 11 years after fire, was studied using Landsat TM and OLI satellite images as well as GIS 

and assessed the degree of the vegetation recovery to pre-fire levels. For this purpose, the widely 

used NDVI index as well as the Regeneration Index was used. Also, the relationship of vegetation 

regeneration dynamics with burn severity as well as topographical factors such as aspect was 

explored. 

Τhe results of the vegetation regeneration analysis, revealed that two years after the fire event, 

vegetation of the burnt area shows the first steps of recovery to the pre-fire levels. Additionally, 

eleven years after the fire event, the vegetation regrowth analysis showed that the majority of 

the burn area (97%) recovered or improved in contrast to pre-fire NDVI values. Regarding the 

analysis conducting with the use of RI, results showed the similar regeneration trends as captured 

by NDVI as far as scrubs, herbaceous vegetation, woodlands and agricultural areas are 

concerned. On the contrary, forested areas (coniferous and mixed forest areas) although they 

presented a gradual increase in regrowth process, they didn’t reach the NDVI levels of the 

forested unburned areas. In addition, the examination of the relationship between burn severity 

and vegetation regeneration showed that areas with low to moderate-low burn severity 

presented high regeneration dynamics and recovered within two to five years after fire event. 

Moreover, areas with moderate-high and high burn severity covered mainly of sclerophyllous 

and herbaceous vegetation, shrubs and forested areas (coniferous, mixed forests), regeneration 

rates were more gradual, and took approximately a decade to revert to pre-fire levels. Finally, 

regarding the relationship between the vegetation regrowth dynamics and aspects, the 

outcomes of the analysis revealed that north facing aspects have a slightly greater regeneration 

rate compared to south facing exposures which it might be due to more favourable micro-

climatic and hydrological conditions for vegetation growth in these areas. 

An understanding of the spatio-temporal patterns of vegetation regeneration dynamics in fire-

affected areas can contribute to the better appreciation of post-fire landscape processes. This 

can subsequently lead to the effective management of post-fire ecosystems, taking the 

corresponding recovery measures and drawing up prevention policies and strategies. 
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Additionally, the present study contributes to the understanding of Mediterranean landscape 

dynamics, and corroborates the usefulness of NDVI and RI in post-fire vegetation regrowth 

assessment. Last but not least, it confirms that Earth Observation technology and GIS techniques 

can provide a potentially operational solution to support local studies regarding the assessment 

of vegetation regeneration, provided that satellite data can be acquired at regular time intervals 

with the appropriate resolution over a given region. 

Regarding future work, this would be the more detailed study of the vegetation such as 

investigation of species composition since NDVI only provides knowledge of large-scale 

vegetation coverage without detailed vegetation information. To this end, very high-resolution 

satellite data and field campaigns would be essential for the validation of the information 

regarding the regrowth dynamics of the studied area. Last but not least, it will be interesting in 

future work to explore the spatio-temporal relationships of burn severity and vegetation 

regeneration with other physical factors, such as the type of the actual fuel burnt, slope angle or 

soil type. 
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