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Abstract 

The technological developments in geoinformatics in recent decades have allowed the inclusion 

of geospatial data and analysis techniques in a wide range of scientific disciplines. One such field 

is the study of urban green spaces, which are open, undeveloped areas that provide residents 

with recreational space, while at the same time they help to improve the aesthetic and 

environmental quality of the neighboring areas. They form an ecosystem, which provides the 

society with services that may be cultural, provisioning or regulating, and managing. The 

evaluation and assessment of the urban green spaces are very important in order for them to be 

identified, monitored, and optimized.   

The objective of the present thesis is to map the urban green spaces in the city of Athens using 

high spatial-resolution satellite imagery of 3 meters from PlanetScope and medium spatial-

resolution imagery of 10 meters from Sentinel-2. The retrieval of the urban green spaces is 

conducted in ArcGIS Pro using the Geographic Object-Based Image Analysis (GEOBIA) 

classification method, by which the study area is segmented into polygons according to the 

spectral resolution of the image’s pixels. Then, the Random Trees and Support Vector Machines 

(SVM) classifiers are utilized for the classification of the images, trained by a collection of samples 

generated by the segmentation. The validation approach is based on the confusion matrix using 

accuracy assessment points as reference and on the comparison of the extracted green areas 

with the Urban Atlas.  

The results revealed a high Overall Accuracy of above 90% and Kc values between 0.83 and 0.9 

for both imagery and both classifiers. The PlanetScope imagery resulted in higher accuracy on 

both classifiers in comparison with the Sentinel-2 imagery proving that high resolution works 

better in urban areas. On the same note, the Random Trees classifier provided higher accuracy 

on both imageries in comparison with the SVM. The extracted green areas’ comparison to the 

Urban Atlas resulted in large differences making it unsuitable as validation data.  

The methodology implemented in this thesis and the key study findings may provide an 

important contribution toward the implementation of successful urban landscape planning and 

infrastructure development in Athens. Further study could be focused on determining the 

species and health of the vegetation and the quality of the ecosystem services provided by the 

city’s green areas. 

 

Keywords: Urban Green Spaces · GEOBIA · Remote Sensing · PlanetScope · Sentinel-2 · 

Classification · Athens 
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Περίληψη 

Οι τεχνολογικές εξελίξεις τις τελευταίες δεκαετίες στον τομέα της γεωπληροφορικής έχουν 

επιτρέψει τη συμπερίληψη γεωχωρικών δεδομένων και τεχνικών ανάλυσης σε ένα ευρύ φάσμα 

επιστημονικών κλάδων. Ένας τέτοιος τομέας είναι η μελέτη των αστικών χώρων πρασίνου, οι 

οποίοι είναι ανοιχτοί, μη ανεπτυγμένοι χώροι που παρέχουν στους κατοίκους χώρους 

αναψυχής, ενώ παράλληλα συμβάλλουν στη βελτίωση της αισθητικής και περιβαλλοντικής 

ποιότητας των όμορων περιοχών. Αποτελούν ένα οικοσύστημα, το οποίο παρέχει στην κοινωνία 

υπηρεσίες που μπορεί να είναι πολιτιστικές, προμηθευτικές ή ρυθμιστικές και διαχειριστικές. Η 

αξιολόγηση των χώρων αστικού πρασίνου είναι πολύ σημαντική για τον εντοπισμό, την 

παρακολούθηση και τη βελτιστοποίησή τους. 

Στόχος της παρούσας διπλωματικής εργασίας είναι η χαρτογράφηση των χώρων αστικού 

πρασίνου στην πόλη της Αθήνας χρησιμοποιώντας δορυφορικές εικόνες υψηλής χωρικής 

ανάλυσης 3 μέτρων από το PlanetScope και εικόνες μέσης χωρικής ανάλυσης 10 μέτρων από το 

Sentinel-2. Η ανάκτηση των χώρων αστικού πρασίνου πραγματοποιείται στο ArcGIS Pro 

χρησιμοποιώντας τη μέθοδο ταξινόμησης Geographic Object-Based Image Analysis (GEOBIA), με 

την οποία η περιοχή μελέτης τμηματοποιείται σε πολύγωνα σύμφωνα με τη φασματική 

ανάλυση των ψηφίδων της εικόνας. Στη συνέχεια, οι ταξινομητές Random Trees και SVM 

χρησιμοποιούνται για την ταξινόμηση των εικόνων, εκπαιδευμένοι από μια συλλογή δειγμάτων 

που δημιουργούνται μέσω του επιπέδου της τμηματοποιημένης εικόνας. Η επικύρωση των 

αποτελεσμάτων βασίζεται στον πίνακα σύγχυσης χρησιμοποιώντας σημεία αξιολόγησης 

ακρίβειας ως αναφορά και στη σύγκριση των εξαγμένων περιοχών πρασίνου με το Urban Atlas. 

Τα αποτελέσματα αποκαλύπτουν υψηλή συνολική ακρίβεια (ΟΑ) άνω του 90% και τιμές του 

δείκτη Kc μεταξύ 0,83 και 0,9 τόσο για τις εικόνες όσο και για τους δύο ταξινομητές. Οι εικόνες 

του PlanetScope σημείωσαν υψηλότερη ακρίβεια και στους δύο ταξινομητές σε σύγκριση με τις 

εικόνες Sentinel-2, αποδεικνύοντας ότι η υψηλή χωρική ανάλυση λειτουργεί καλύτερα σε 

αστικές περιοχές. Παράλληλα, ο ταξινομητής Random Trees παρείχε υψηλότερη ακρίβεια και 

στις δύο εικόνες, σε σχέση με το SVM. Η σύγκριση των εξαγόμενων χώρων πρασίνου με το Urban 

Atlas οδήγησε σε μεγάλες διαφορές που τον καθιστούν ακατάλληλο ως δεδομένα επικύρωσης. 

Η μεθοδολογία που χρησιμοποιήθηκε σε αυτή τη διπλωματική και η θετική εικόνα των 

αποτελεσμάτων μπορούν να συμβάλουν σημαντικά στην υλοποίηση ενός επιτυχημένου 

σχεδιασμού αστικού τοπίου και ανάπτυξης πράσινων υποδομών στην Αθήνα. Περαιτέρω μελέτη 

θα ήταν επιθυμητό να πραγματοποιηθεί σε σχέση με τον προσδιορισμό του είδους και της 

υγείας της βλάστησης και της ποιότητας των οικοσυστημικών υπηρεσιών που παρέχονται από 

τις περιοχές πρασίνου της πόλης. 

 

Λέξεις κλειδιά: Αστικοί Χώροι Πρασίνου · GEOBIA · Τηλεπισκόπηση · PlanetScope · Sentinel-2 

· Ταξινόμηση · Αθήνα 
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Chapter 1: Introduction 

1.1. Preamble 
Urban Green Spaces are open, non-developed urban areas covered by vegetation that include 

parks, road green spaces, residential green spaces, river banks, and urban forests (Huerta et al., 

2021; Petropoulos et al., 2013a; Petropoulos et al., 2015). UGSs are of great importance for the 

urban natural environment, public health and urban planning. The ecosystem services provided 

by the UGSs have various positive impacts of crucial importance. They enhance the urban area's 

environmental quality by managing microclimate and decreasing the heat island effect, while at 

the same time contributing to lowering atmospheric carbon dioxide, eliminating air pollutants, 

and promoting biodiversity (Lau et al., 2021; Javadi & Nasrollahi, 2021). Furthermore, UGSs 

facilitate physical activity and social interactions, and reduce mental stress, improving the 

physical and mental health of urban residents (Dadvand et al., 2016; Jennings & Bamkole, 2019). 

Therefore, UGSs contribute to direct and indirect benefits for the well-being and overall quality 

of life of the urban population. However, the constant expansion of urbanization trends in recent 

decades has provoked loss and degradation in green spaces, especially those within or in 

immediate proximity to urban centers (Scott et al., 2014; Puplampu & Boafo, 2021; Noszczyk et 

al., 2022). As noted by the United Nations, in 2017 more than half the world population (55%) 

lived in urban areas, while the ratio is estimated to reach 68% by 2050. Hence, UGSs are 

progressively viewed as essential aspects of urban planning, and their preservation and 

expansion in Metropolitan areas are of high importance to protect the environment and people’s 

health (Cheng et al., 2021; Liu et al., 2022).  

With the evolution of geoinformation, the study of UGSs mapping has been optimized and 

facilitated, leaving aside conventional methods, like field survey and ground-data-collection 

techniques that are time-consuming and cost-ineffective (Pandey et al., 2019; Timilsina et al., 

2020). Geoinformation technologies such as Geographical Information Systems (GIS) and Earth 

Observation (EO) provide an avenue that is very promising towards obtaining a cartography of 

the UGSs and of their changes over time. This is due to the number of advantages offered by EO, 

including the inexpensive data acquisition and analysis, and the availability of synoptic views at 

different geographical scales (Elatawneh et al., 2012; Petropoulos et al., 2013b; Li et al., 2014; 

Whyte et al., 2018). Furthermore, the integration of GIS offers a set of geospatial data analysis 

tools that can support a rapid and cost-effective development of solutions for data storage, 

capture, synthesis and analysis of information spatially, providing additional help to support 

urban planning and decision making (Dawson et al., 2019; Fragou et al., 2020). 

Imagery from EO sensors acquiring data at medium or coarse resolutions is not the optimum 

solution in UGSs studies as the acquisition of such data does not have the spatial information 

required to discern fragmented vegetation cover. Aerial images have also not been widely 

employed in urban studies due to their restricted coverage of a scene, considerable intervals 

between revisits, and high cost. In recent years, EO technology has rapidly evolved from a 

technological point of view as evidenced by the launch of new EO imagine sensors able to provide 

information from space at very high spatio-temporal resolutions (Petropoulos et al., 2012a; Cass 

et al., 2019). As such, the preferred option in mapping UGSs is the use of very high resolution 

(VHR) imagery from satellite sensors such as IKONOS, QuickBird, and PlanetScope.   



 

13 

UGS mapping can be conducted using a variety of approaches based mainly on classification, 

including pixel-based and object-based techniques (Lu & Weng, 2007; Wulder et al., 2018). Pixel-

based techniques utilize information acquired in the reflective part of the electromagnetic 

spectrum, and this information is used in a classification scheme to assign pixels to land cover 

classes including UGS. Most commonly, those classifiers employ "training sites," which are 

samples of a given identity for each land cover class, to classify image pixels of unknown identity 

(Churches et al., 2014). Among the most commonly used pixel-based classifiers are Random 

Forest (RF), Decision Tree, Artificial Fuzzy-set CTA Algorithm, Artificial Neural Network (ANN), k-

Nearest Neighbor (KNN), SVM, and Expert Systems (Al-Doski et al., 2020). On the other hand, in 

object-based (GEOBIA) classification the basic processing units are image objects or segments, 

and not single pixels (Petropoulos et al., 2012b; Zhou et al., 2014; Cass et al., 2019). The 

representation of image information by objects directly connects these objects within a 

topological network, allowing the efficient use of many different kinds of relational information. 

Object-based techniques focus on the aggregation of the pixels of the image in homogenous 

regions-objects based on their spectral, spatial, and contextual properties, contrary to the pixel-

based approach that classifies individual pixels directly (Puissant et al., 2014; Gülçin & Akpınar, 

2018; Pandey et al., 2020). In recent years, object-based image analysis has been gaining ground 

as high and very high-resolution (VHR) satellite images are becoming more easily accessible 

(Hossain & Chen, 2019). However, VHR satellite images don’t perform very well when applying 

conventional pixel-based classification techniques particularly so in areas or targets having 

complex spatial structures and similar spectral characteristics among urban vegetation 

categories. Therefore, the combination of GEOBIA with VHR satellite images in the classification 

process allows for maximizing the amount of information on spatial neighborhood properties 

available in EO imagery. As such, this approach allows depicting in a much more realistic way the 

true spatial patterns that exist in an imagery, in comparison to a pixel-based classifier that treats 

an EO image as a uniform pixel (Pandey et al., 2020).  

1.2. Aims and objectives 
In purview of the above, the present study aims at exploring the use of the high and medium 

spatial resolution satellite imagery from PlanetScope and the medium spatial resolution satellite 

imagery from Sentinel-2, combined with the Geographic Object-Based Image Analysis (GEOBIA) 

classification approach and the Random Trees and SVM classifiers in mapping urban green spaces 

(UGSs) for the metropolitan city and capital of Greece, Athens. 

With respect to the above, this thesis aims to map the urban green spaces in the Greater Athens 

Area, Greece. This aim is based on two main objectives, as presented below: 

i) Utilization of an object-based approach with the SVM and Random Trees classifiers 

for mapping UGSs with high-resolution PlanetScope imagery  

ii) Using the same object-based approach with the SVM and Random Trees classifiers 

for mapping UGSs with medium-resolution Sentinel-2 imagery  

The comparison of the two imagery datasets and the two classifiers aims to facilitate the 

determination of which is more appropriate for the study of green spaces in densely built-up 

urban areas. 
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1.3. Thesis structure 
The present thesis consists of eight chapters. Chapter 1 introduces the research topic, the urban 

green spaces, and the remote sensing techniques and data used for mapping the UGSs. Chapter 

2 discusses the literature review that is related to the present thesis. In particular, it provides the 

importance of the UGSs for the overall quality of life in the cities that is provided to the residents 

and visitors by their ecosystem services. Additionally, it describes the groups of methods based 

on remote sensing data that are used in UGSs mapping. Chapter 3 includes an overview of 

information about the study area. Chapter 4 outlines the datasets used for mapping the UGSs in 

Athens. Chapter 5 describes the methodology explaining the steps followed for the classification 

of the imagery and the extraction of the UGSs, as well as the validation of the method. Chapter 

6 is the results section where the analysis findings are presented in maps and statistics tables. 

Chapter 7 is the discussion section where the strengths and weaknesses of the analysis are 

identified from the results and are linked to the literature. Chapter 8 is the final chapter of the 

conclusions which summarizes the overall findings of the thesis and mentions the limitations of 

the methods as well as its future perspectives. 
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Chapter 2: Literature review 
This chapter aims at presenting the importance of the UGSs mapping and an overview of the 

literature surrounding the main groups of analysis techniques and methods used for the 

accomplishment of this purpose, as well as of the relevant operational products available. 

2.1. Urban Green Spaces 
UGSs refer to non-developed public and private areas within the urban fabric that include 

vegetated natural and semi-natural areas such as parks, gardens, river beds, roundabouts, green 

roofs, airfields, golf courses, and other green areas (Reyes-Riveros et al., 2021). The importance 

of UGSs mapping lies in the ecosystem services linked to the green spaces and the benefits that 

the natural environment provides people with, either directly or indirectly (Pinto et al., 2021). 

The term “ecosystem services” was first coined in 1981 and became widely used during the 

1990s, initially focusing on their economical values and later showing equal importance to the 

ecological values as well (Burkhard & Maes, 2017). 

The ecosystem services are generally classified into three main systems:  provisioning, regulating, 

and cultural services. There are three international classification systems (MA, TEEB, CICES) that 

base their classification on the aforementioned classes, each with its own advantages and 

disadvantages. The Millennium Ecosystem Assessment (MEA, 2005) was the initial proposed 

classification on which the other two are based, and it includes four groups of services: i) 

Provisioning, ii) Regulating, iii) Cultural, and iv) Supporting (MEA, 2005). The Economics of 

Ecosystems and Biodiversity (TEEB) largely follows the MA, with the substitution of supporting 

services for habitat services. This alteration is adopted as the former is viewed as a subset of 

ecological processes, while the latter is considered a provider of habitat for migratory species 

and protection for the species gene pool.  The service classes that immerge from the TEEB are as 

follows: i) Provisioning, ii) Regulating, iii) Habitat, iv) Cultural and amenity (Kumar, 2011). The 

Common International Classification of Ecosystem Services (CICES) focuses on the way living 

systems give rise to the ecosystem services and further classifies the three major classes of i) 

provisioning, ii) regulating and maintenance and iii) cultural in biotic and abiotic (Haines-Young 

& Potschin-Young, 2018). 

According to Ferreira et al. (2022), ecosystem services provide benefits that can be divided into 

3 levels; the ecological level, the social level, and the economic level. At the ecological level, the 

benefits are concentrated on the biodiversity of the area concerned and the contribution to 

better air quality through the absorption of pollutants and the reduction of the particulate matter 

concentration, as well as mitigating noise pollution. Additionally, they regulate the air 

temperature helping reduce the heat island effect, and mitigate the risk of flooding and erosion. 

At the social level, they provide space for social interaction and recreational activities, 

encouraging people to socialize and engage in physical exercise, resulting in reducing stress and 

obesity, overall improving the residents’ well-being. At the economic level, the benefits can be 

direct and indirect. The direct benefits are related to the activities that derive from the UGSs, the 

enhancement of the commercial areas’ quality, and the promotion of tourism thanks to their 

attractiveness. The indirect benefits are linked to the former two levels. The overall ecological 

regulation and its effects on the cities’ microclimate save energy consumption and production. 

On the same note, social interaction reduces the medical care and increases the residents’ 

productivity by improving their mental and physical health. 
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Urban areas are home to 55% of the human population, predicted to increase to 2/3 by 2050 

according to the United Nations (2018). Their densification provides housing for more people but 

at the same time reduces the natural environment (Sharifi et al., 2021). It is generally accepted 

that these urbanization trends deteriorate the development and preservation of ecosystem 

services, though, there are cases where the opposite happens, like in arid and semi-arid areas as 

a result of irrigation (Wang et al., 2019). Most countries around the world face a lack of data and 

records on ever-changing land use in urban areas that fragments and degrades the UGSs. The 

authorities tend to refer to outdated sources for planning and managing the UGSs, therefore 

posing a hindrance in the decision-making process and rendering the creation of detailed 

mapping a necessity (Lahoti et al., 2019). The quantification of the urban green patterns and their 

spatiotemporal changes caused by urban expansion is facilitated by modern remote sensing 

techniques that provide more accurate and reliable results (Colding et al., 2020). UGSs mapping 

helps in decision-making that ensures that the environmental quality of the cities remains or 

reaches high standards (Degerickx et al., 2020).  

The information of UGSs, typically presented in the form of a shapefile, is not updated frequently 

and, as a result, the spatiotemporal changes are not presented. At the same time, the United 

Nations has stressed the lack of availability of the UGSs data to the public and the necessity for 

their improvement and free distribution for the creation of more sustainable cities (Huerta et al., 

2021). Green spaces are a vital ecological instrument that has the means to improve public 

health. Since its expansion is somewhat troublesome to be realized in many cases, at the very 

least the local authorities need to ensure its quality (Ghahramani et al., 2021).  

2.2. Overview of EO and GIS-based data and methods 
This section covers a review of the methods and thematic applications for Urban Green Spaces 

mapping with the use of Earth Observation (EO) data and/or GIS-related software. The whole 

section is based mostly on two review papers that focus explicitly on this topic, Neyns and Caters 

(2022) and Shahtahmassebi et al. (2021).  

The study of green spaces in urban areas was centered around the visual interpretation of aerial 

photos and fieldwork before 2000, due to the lack of the necessary technology for remote 

sensing and image processing techniques. A trend of a rapid increase in the use of remote sensing 

was observed thereafter, with increased availability of remote sensing technology in terms of 

different satellites and spatial resolution. Additionally, the introduction of LiDAR and 

hyperspectral sensors have facilitated the generation of information on the vertical structure of 

the plants and the identification of different plant species. A further boost in the use of satellite 

imagery was given by the free accessibility of LANDSAT data after 2009 and the implementation 

of the Copernicus program by the European Space Agency with free and open access data in 

2015. International organizations, such as the World Health Organization (WHO), have suggested 

the demand for extending the investigation of UGSs via remote sensing analysis, showing the 

increasing need for their monitoring. 

According to Kartalis and Feidas (2012), remote sensing is used to describe the process of 

obtaining information about an object, area, or phenomenon using detection devices that are 

not in contact with the object of observation. Although the term of remote sensing can be used 

for any remote sensing action, has been established for the recording and analysis of satellite 

imagery. A satellite refers to an object or body moving around another body. It focuses, however, 
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primarily on artificial satellites orbiting the earth and used in telecommunications and 

observation (Perakis, 2015).  

The use of remote sensing for studying UGSs includes several factors that are taken into 

consideration by the authors, namely the thematic area of each study, the spatial and spectral 

resolution of the imagery, the image’s timing acquisition, and the user demands and cost-

efficiency. The scale of the study area and the specific purpose of the study determine the spatial 

and spectral resolution of the required imagery, with more studies opting for medium spatial 

resolution and multispectral sensors, as they are freely accessible. Though the high spatial 

resolution is ideal for combusted urban areas, it may also lead to drawbacks, such as low within 

and between-class variability and the effect of shadow which reduces classification accuracy, as 

well as the cost factor which may increase significantly. Hyperspectral imagery, due to its limited 

accessibility, is observed in a very small portion of the studies and it is usually preferred in cases 

of identifying vegetation species. Regarding the timing acquisition, it is suggested that the 

imagery is chosen during the peak of the phenological cycle, which depending on location is in 

late spring. However, when the study involves the distinction between plant species, a way to 

avoid the discrimination caused by their respective phenological cycle is to combine multi-date 

imagery. 

Geographic Information Systems (GIS) are one of the most important branches of Geoinformatics 

and thus have been established worldwide over the last three decades in the study of objects, 

phenomena, and natural processes that have a spatial dimension (Pappas, 2017).  Their use is 

crucial in the applications of multidimensional actions and services that contribute to a large part 

of people's daily lives, from the appropriate spatial positioning of mobile phone antennas to the 

construction of maps for the study of natural phenomena and disasters (Chalkias, 2015). GIS 

software have been used only by a small fraction of the revised papers on UGSs mapping, where 

ESRI’s ArcGIS Desktop was preferred among the existing software (Kopecká et al., 2017; Lahoti 

et al., 2019).  

2.2.1. Analytical techniques for UGSs mapping  
The analysis of the UGSs mapping in the literature is based on 5 major techniques, determined 

by each study’s thematic area; hybrid methods; object-based techniques; land cover indices; 

fraction methods; pixel-based techniques (Figure 2.1.). The most often used technique is the 

hybrid method which has been used by 29% of the examined papers. Its advantage lies in the 

combination of different algorithms in one framework in order to increase the performance, 

most notably by combining pixel-based with object-based methods and soft classifiers. Its 

disadvantages depend on the individual study and the combination of methods.  

Second in frequency are the object-based techniques (OBIA), which have been used by 22.8% of 

the papers. They are the most common in imagery with high spatial resolution and are based on 

segmentation algorithms that are mainly performed in the eCognition software. According to the 

Strengths, Weaknesses Opportunities and Threats (SWOT) analysis performed by Hay & Castilla 

(2008), the technique’s main strengths are related to the partition of the image into objects 

which are more comprehensible for the human conceptual understanding. Additionally, the 

objects reduce the computational classifier loads and allow for the use of more complete 

techniques. They also include useful features, such as shape and texture, and they are easier to 
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integrate into a vector GIS. On the other hand, the weaknesses lie in the complicated nature of 

segmentation and its parametrizations.    

Land cover indices come next with 20 appearances (15.8%) and usually combine the wave bands 

of the multispectral sensors in order to create indices. One such index is the Normalized 

Difference Vegetation Index (NDVI), derived from the red and Near Infrared (NIR) bands and used 

for locating live green vegetation (Chen et al., 2017). They are preferred by many authors thanks 

to their simplicity in terms of interpretation, as well as to their continuous spatial variable that 

can be integrated into modeling and simulations. Their limitations are concentrated mostly in the 

saturation that is caused when the study area is covered by high canopy and leaf area index (Lu 

et al., 2017).  

Fraction methods (16 appearances) work at the subpixel level and they are especially effective 

when applied to imagery of medium spatial resolution. The effect of endmember spectral 

variability is one of the methods’ disadvantages that needs to be overcome for the analysis to 

conclude to more accurate results (Shao & Lan, 2019). 

Finally, pixel-based analysis had been the traditional classification technique for years but has 

been progressively replaced by the methods mentioned above, with only 11 papers performing 

this method. It can be divided into unsupervised and supervised classification. The unsupervised 

classification divides a remote sensing image into several classes defined by the user, based on 

the image values without previous knowledge about the study area or training data. The 

supervised classification is performed with the use of training samples that are selected based 

on the spectral properties of the pixels (Li et al, 2014). In essence, in this type of analysis, each 

image pixel is analyzed based on the spectral information it contains. This poses its fundamental 

limitation, as classes that show high spectral heterogeneity are likely to be labeled as different 

classes, creating the salt-and-pepper effect. This effect is especially profound in highly 

heterogeneous landscapes like urban areas (Shahtahmassebi et al., 2021).  

Table 2.1. 
Main advantages and disadvantages of the main groups of methods used for remote sensing 

image classification (Hay & Castilla, 2008; Li et al., 2014; Lu et al., 2017; Chen et al., 2017; Shao 

& Lan, 2019; Shahtahmassebi et al., 2021)  

Classification 
methods 

Advantages Disadvantages 

Hybrid  
combination of different techniques - 
increased performance 

variation depending on the 
combination of methods 

Object-based  

objects are more comprehensible to 
the human eye 

segmentation may be a 
complicated process 

objects reduce computational errors 

information on object's spatial, 
textural, and contextual properties 

Land cover indices simplicity in interpretation possible image saturation 

Fraction  
consideration of each pixel's spectral 
variability  

endmember spectral 
variability  

Pixel-based  simplicity in execution 
within-class spectral variation 
salt and pepper effect 
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Figure 2.1. Graph depicting the analytical techniques for Urban Green Spaces mapping and their 
frequency of appearance in the literature based on the review paper by Shahtahmassebi et al. 
(2021) 

2.2.2. Classification approaches for UGSs 
There are various classification approaches that are used to map urban vegetation (Table 2.2.; 

Figure 2.2.). The most popular of them are the supervised learning approaches which can be 

divided into parametric and non-parametric methods. The parametric classifiers are easy to 

process and interpret, though they result in lower performance due to the invalidity of the 

assumptions that are made on the distribution of the data. The most common parametric 

classifier in the studies regarding UGSs is the Maximum Likelihood (Neyns & Caters, 2022).  On 

the other hand, non-parametric classifiers are more widely used, including the Support Vector 

Machine, Decision Tree, and Random Forest, with the latter being the most popular classifier for 

UGSs mapping. The library-based classification is used by several authors, where endmember 

signatures are utilized to map the vegetation at the pixel or sub-pixel level with the spectral 

mixture analysis or the algorithm of the spectral angle mapper (Neyns & Caters, 2022). Finally, 

deep learning is a classification technique that covers various neural network architectures and 

is used in either supervised, unsupervised or semi-supervised learning. Three deep learning 

algorithms that have been used in mapping urban green spaces are the Boltzman machine, the 

MLP, and the Convolutional Neural Network (CNN) (Neyns & Caters, 2022). 
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Table 2.2.  
Overview of the classification approaches used for Urban Green Spaces on high spatial 
resolution imagery (Neyns & Caters, 2022) 

Classification approaches 

Machine learning 
Library based 
classification 

Supervised learning 

Spectral Mixture Analysis 
& Spectral Angle Mapper 

Parametric  Non-parametric 

Minimum distance K Nearest neighbor 

Discriminant analysis Support Vector Machine 

Logistic regression 
Decision tree classifier 

(Random Forest) 

Maximum likelihood 
classifier 

Artificial Neural Network 
(Deep learning) 

 

 

Figure 2.2. Graph depicting the classification approaches for Urban Green Spaces mapping on 
high spatial resolution imagery and their frequency of appearance in the literature based on the 
review paper by Neyns and Caters (2022) 

The Random Forest (RF) and Support Vector Machines (SVMs) algorithms are the two most 

popular classifiers in UGSs mapping with HR imagery as shown in Figure 2.2., where either 

method was used in greater frequency compared with the rest of the methods, in 30 (15 for each 

method) out of 82 studies. According to a survey comparing the two methods by taking into 

account a larger set of related papers (251) by Sheykhmousa et al. (2020), SVM and RF are 

steadily the most used classifiers thanks to their low computational complexity and 

interpretability capabilities.  

RF is a machine learning technique that was first developed by Breiman in 2001, based on an 

original version introduced by Bell Labs in 1995. It consists of a large number of individual 

decision trees that operate as an ensemble. More specifically, the RF classifier is comprised of a 

collection of treelike classifiers which train several classifiers, where each tree contributes a 

single vote for the assignment thus combining the results through a voting process to find the 
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most popular class (Fig. 2.3) (Amini et al., 2018). The integration of multiple classifiers that 

participate in the ensemble classification decreases the variance and may produce more reliable 

results. Ensemble methods are divided into boosting and bagging. The latter includes RF and is 

designed to improve the stability and accuracy of integrated models while reducing variance. At 

each split, a new sample of predictors is taken, with a user-specified number of predictors (Mtry). 

RF creates high variance and low bias trees by expanding the random forest to a user-specified 

number of trees (Ntree). As a result, new sets of input (unlabeled) data are compared to all 

decision trees formed in the ensemble, and each tree votes for class membership. For the 

generation of individual decision trees, the best split in the random sample of predictors is picked 

as the split candidate from the entire set of predictors each time. The membership with the most 

votes will be the one chosen. The two parameters that need to be defined in a RF model are the 

number of trees (Ntree) and the number of randomly selected features (Mtry). The Ntree can be 

as large as possible because the RF classifier is computationally efficient and does not overfit. It 

is generally accepted that 500 is the best amount for the Ntree, since utilizing Ntrees higher than 

this number does not increase accuracy. In contrast, the number of Mtry is an optimal value that 

is determined by the data. In classification tasks, the Mtry parameter should be set to the square 

root of the number of input features and one-third of the number of input features in regression 

tasks (Sheykhmousa et al., 2020).  

 

Figure 2.3. Illustration of Random Forest trees (Khan et al., 2021) 

RF has been found to be more efficient and stable in land cover related classification studies and 

provide higher accuracy, in comparison with conventional decision trees (Lebourgeois et al. 

2017). The main advantages of RF that have made it the most popular classifier in land cover 

classification recently are (Sheykhmousa et al., 2020): 

a) clear and understandable decision-making process and great results,  

b) easy implementation in a parallel structure for data computing acceleration,  

c) handling of a large number of input variables,  

d) reducing the variance without increasing the bias of the predictions,  
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e) computing proximities between pairs of cases that can be used in locating outliers,  

f) robust to outliers and noise 

g) computationally lighter than other tree ensemble methods  

 

The SVM algorithm was first introduced by Vapnik in 1979, based on the principles of statistical 

learning theory (Dhingra & Kumar, 2019). It is a non-parametric statistical supervised 

classification method that has been particularly attractive in the field of remote sensing in recent 

years, due to its ability to successfully handle small training datasets, often producing higher 

classification accuracy than traditional methods. More specifically, it is a linear binary classifier 

that assigns a sample to one of two possible classes. The classifier works by determining an 

optimal hyperplane in order to separate the dataset into a discrete number of predefined classes 

using the training data, which is what acts as support vectors (Fig. 2.4). Additionally, a portion of 

the training sample that lies closest in the feature space to the optimal decision boundary is used. 

These are the most challenging to classify. The learning process that follows selects a number of 

hyperplanes with no sample between them, and when the margin of separation is maximized, 

the optimal hyperplane is determined. The selection of the kernel function that generates the 

dot products in the higher dimensional feature space, highly defines the SVM performance. The 

most commonly used kernels for remotely sensed image analyses are the polynomial and the 

radial basis function. Optimizing the SVM parameters may be very resource-intensive. 

Complications also occur due to the binary nature of the SVMs when used for multi-class 

scenarios. Since big data classification always tends to be computationally expensive, hybrid SVM 

methods are used, such as the Granular Support Vector Machine (GSVM) (Sheykhmousa et al., 

2020).  

 

Figure 2.4. Illustration of Support Vector Machines classifier (García-Gonzalo et al., 2016) 



 

23 

SVM is usually preferred on multispectral data, and its major drawback of applicability is the 

choice of kernel type, as they do not provide an optimal configuration in remote sensing 

applications (Mountrakis et al., 2011). Its constant use in image classification studies is based 

primarily on its ability to address the high dimensionality problems and the limited training 

samples. More specifically, the positive aspects of the classifier are (Sheykhmousa et al., 2020): 

a) the use of small training data,  

b) one of the most memory-efficient methods,  

c) its ability to apply new kernels rather than linear boundaries improving the classification 

performance.  

The main drawbacks of the method are (Sheykhmousa et al., 2020): 

a) choosing a suitable kernel,  

b) selection of the optimum kernel parameters,  

c) relatively complex mathematics behind the classifier, especially for non-experts  

2.3. UGSs mapping studies 
Huerta et al. (2021) examine the use of 4-band WorldView-2, very high-resolution satellite 

imagery, and two deep learning techniques to map Urban Green Spaces in the metropolitan area 

of Monterrey, Mexico. They focus on the semantic segmentation of the specific UGS polygons 

using convolutional neural network (CNN) encoders on the U-Net architecture. They produce the 

indices of NDVI, NDWI, and EVI2 to determine their potential for UGS segmentation, which is the 

result of clipping the image with mosaic fishnet into orthomosaics. Among the produced data, 

85% is for training, 14% for validation, and 1% for the evaluation of the method. They implement 

24 semantic segmentation models via CNN and afterward they perform its evaluation with 

metrics of Intersection over Union, Recall, and the computation of a confusion matrix. They 

suggest that the high accuracy of the results, namely 0.94 for the Kappa coefficient, demonstrates 

the usefulness of the method in UGS extraction and database updating for urban management.  

Chen et al. (2021), in their study on rapid mapping and annual dynamic evaluation of urban 

spaces on Google Earth Engine (GEE), use Sentinel-2 imagery provided by the Image Collector of 

GEE to extract and classify the UGS of Beijing, China. Their analysis is based on vegetation indices, 

textural features, image reduction, and a threshold segmentation in order to differentiate 

vegetation from non-vegetation. The final classification of the image is performed with the use 

of three machine learning techniques, namely CART, SVM, and Random Forest, whose results are 

validated with a confusion matrix. The highest Overall Accuracy is performed by RF at 94%. They 

go on successfully performing a time series rapid mapping and a dynamic evaluation of the UGS 

by quality indicators with high accuracy. The authors claim that their workflow shows great 

potential and it is ideal and cost-effective, especially for cities that experience high urban 

dynamism.  

The purpose of Shekhar & Aryal’s (2019) study was to map in ward and grid-level analysis the 

spatial distribution of the Urban Green Spaces in Kalaburagi, India, using object-based image 

analysis on very high-resolution imagery. Their analysis begins by pan-sharpening 9 4-Band 

GeoEye tiles in order to enhance the spatial resolution, then followed by mosaicking them in a 

single image. The segmentation of the image is performed after many trials that determined the 

final scale of 30. A fuzzy rule-based classification of the segmented image is realized using 
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eCognition software based on the NDVI and brightness variables, classifying the image into two 

classes; Green and Non-Green. A second segmentation follows based on the classification results, 

the chess board segmentation, in order to help in the extraction of the objects of interest. The 

accuracy assessment is carried out of two error matrices; one using sample statistics and one 

using Test and Training Area mask statistics. Both revealed the very high Overall Accuracy of the 

results, with the former getting 95% and the latter reaching 99.8%. They suggest that GEOBIA is 

ideal for UGS mapping and quantification.  

Haas and Ban (2017) investigated the potential use and fusion of one Sentinel-1A C-band SAR 

and one Sentinel-2A MSI image for a GEOBIA classification and mapping of ecologically important 

urban and peri-urban space in Zurich, Switzerland, and to introduce spatial characteristics into 

ecosystem service analyses based on remotely sensed data. For the part of the analysis that the 

classification of the image is concerned, their work includes the co-registration of the two images 

and their resampling to 10 m of spatial resolution. They perform the segmentation of the image 

using the KTH-SEG, an edge-aware region growing and merging algorithm. They use the SVM 

classifier to classify the segmented image in 12 classes, following CORINE land cover’s 

classification scheme. The accuracy assessment is performed with a minimum selection of 1000 

validation pixels, giving out an Overall Accuracy of 79.8% and Kc of 0.78. The authors suggest that 

the methodology followed on the specific datasets is recommended.  

Kopecká et al. (2017) discussed the human well-being provided by the ecosystem services of the 

urban green spaces and analyze their distribution and extension among three Slovak cities. For 

the extraction of the urban green spaces, they use Sentinel-2A imagery and a supervised, pixel-

based approach to classify the images. They collect a total set of 435 sample plots and use the 

maximum likelihood classifier to classify the image on a 3-classes-scheme of impervious, water, 

and vegetation on SNAP and ArcGIS Desktop 10 software. The accuracy assessment of the results 

is examined via an error matrix table where the Overall Accuracy reaches 90.8% and the Kappa 

coefficient the value of 0.86. The authors conclude with the usefulness of the method and the 

S2A imagery and point out that the morphology of the urban fabric may affect the results due to 

cross-pixel spectral contamination. 

Zylshal et al. (2016) investigated the extraction of urban green spaces in Jakarta, Indonesia, with 

the use of an SVM object-based image analysis approach and Pleiades-1A pan-sharpened and 4-

band imagery. They begin by generating the NDVI, NDWI, and MSAVI layers which they use later 

in the classification. The image is imposed in two segmentations, the second on top of the first, 

as a means to combine objects with similar characteristics. Support Vector Machine classifier 

then classifies the image after collecting training samples in 3 classes; vegetation, non-

vegetation, and water. The parameters of texture, brightness, and contextual information are 

then used for a Rule-Based Refinement of the SVM classification to improve results. An Area-

Based accuracy assessment is conducted by using 20 randomly selected point samples in a 100 

m radius, giving out a high Overall Accuracy of 86%, while at the same time, 92% of the areas 

classified as vegetated are correct. The authors suggest that this method is suitable and more 

efficient for urban green space monitoring in comparison with pixel-based classification 

techniques but also point out the weakness of the EO data in relation to the different sensors 

and data acquisition time.  

Feng et al. (2015) looked into the use of ultra-high resolution Unmanned Aerial Vehicle retrieved 

images to map urban vegetation with a hybrid method of texture analysis and the Random Forest 
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classifier. Three different vegetation types are distinguished as separate classes for the 

classification according to their texture which is derived from the gray-level co-occurrence matrix 

(GLCM), along with the classes of bare soil, water, and impervious surfaces. The Random Forest 

classification technique involves two random selection steps; a bootstrap strategy where about 

2/3 of the training samples are randomly selected with replacement to build each decision tree, 

and an inner cross-validation to evaluate the classification accuracy of Random Forest which 

includes the remaining 1/3 samples, known as out-of-bag (OOB) data. The classification is 

performed in the form of a confusion matrix with training samples that sum a total of 500 pixels 

for each class. The authors suggest that the high overall accuracy that ranges between 90.6% and 

86.2% of the two areas tested demonstrates the outstanding capabilities of the UAVs, however, 

they point out the importance of the inclusion of a NIR band alongside the RGB bands in the 

analysis for better data acquisition.  

2.4. UGSs operational products 
This section aims to provide a review of the current open-access operational products available 

for LU/LC and therefore UGSs. Thus far, the existence of such datasets is limited to municipality-

level coverage or pan-continental and national platforms. In any of these cases, the quality is 

usually insufficient for analyses on UGSs (Ludwig et al., 2021). In the case of Greece, such 

products are available only for national parks and other wildlife-protected areas, but not for 

UGSs. 

2.4.1. Urban Atlas 
The Urban Atlas (UA) has been used by several papers in regard to the study of UGSs (Madureira 

& Andersen, 2013; Wüstemann et al., 2017; Feltynowski et al., 2018; Kolcsár et al., 2021). The UA 

2018 is a very high-resolution land use and land cover dataset provided by the European Union’s 

Copernicus program, with the support of the European Space Agency and the European 

Environment Agency (European Commission, 2020). It offers LULC for 788 Functional Urban 

Areas with a population of over 50,000 inhabitants of the EU, EFTA, the West Balkan countries, 

the UK, and Turkey. It also contains population estimates and Street Tree Layers (STL). The 

cartography is based on the classification and interpretation of 2 to 4-meter-resolution satellite 

imagery provided by satellite systems like Pléiades, KOMPSAT, Planet, SPOT6, and SuperView 

(European Commission, 2020).  The LULC of the UA is divided into 5 main classes, which in turn 

are divided into further subclasses. Class 1 includes artificial surfaces, Class 2 agricultural areas, 

Class 3 natural and semi-natural areas, Class 4 wetlands and Class 5 water (Kolcsár et al., 2021). 

Though the minimum mapping unit of Class 1 is 0.25 ha and for Classes 2 – 5 is 1 ha, there are 

cases where polygons of smaller size can be found near the edges of the FUAs or when bordering 

the sea (European Commission, 2020). The overall accuracy of the final product is 87.5%, while 

the artificial surfaces of Class 1 have 93.61% and the rural areas of Classes 2-5 resulted in OA of 

86.45% (Copernicus, 2021). 

2.4.2. Open Street Map 
OpenStreetMap (OSM), founded by Steve Coast in 2004, is a free, digital, and editable worldwide 

map that is being built by volunteers largely from scratch and released with the open-content 

license of Open Data Commons Open Database License (ODbL) (OSM, 2022). The data that relate 

to green spaces are limited to public ones only, as the private ones are usually excluded from 

mapping in OSM (Ludwig et al., 2021). At the same time, there is inconsistency in the way green 
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spaces are mapped and some areas remain incomplete. The process followed by the users to 

create objects, as is the case with UGSs, is basically the digitization of public domain high-

resolution satellite or aerial imagery, such as Bing, Digital Globe Imagery, and Esri World Imagery. 

In contrast with other tags, vegetation and urban vegetation-related ones are categorized in a 

variety of forms. Therefore, the representation of UGSs in different regions is complicated and 

makes it impossible for them to be universally defined as one set of tags, which is something that 

should be taken into serious consideration when using the data (Ludwig et al., 2021). As a result, 

there are few authors that use OSM data for UGSs-related studies, though their use in 

geosciences applications has been widespread, mostly for improving its quality and training 

models for navigation and land use classification (Vargas-Munoz et al., 2021).   

2.5. Final remarks 
This chapter covered the available literature on UGSs mapping and the methods and techniques 

used for this purpose. The main findings of the chapter are as follows: i) There is an increased 

necessity for the preservation and expansion of UGSs, also stressed by international 

organizations, as their significance for the quality of life in cities is crucial. ii) High-resolution 

imagery is preferred in the literature more recently and it is ideal, especially when it can be 

retrieved free of charge, which is important for the cost-effectiveness of the studies. It also gives 

away better results in binary classifications for the simple extraction of green spaces, as the 

spectral resolution is not essential like in cases where different vegetation species need to be 

classified. iii) The most appropriate and preferred analysis technique in literature is the OBIA, 

either by itself or used in a combination with other techniques, as the increase in its use and 

study has been steadily overcoming the obstacles posed by the complications of the 

segmentation process. iv) RF and SVM are the most widely used non-parametric classifiers in 

UGSs classification. v) There is a lack of operational products that cover the clear distribution of 

UGSs as opposed to their land use at a national and international level, creating the need for 

their creation. 

These findings were the driving factor for the selection of the methods, data, and study area that 

this thesis is set to investigate, as discussed in the proceeding chapters. 
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Chapter 3: Study area and datasets 

3.1. Study area 
Athens is Greece’s capital and largest city, located in the southeast of the Greek mainland with a 

population of around 3.8 million inhabitants. The Greater Athens Area covers a surface of around 

360 km2. Athens enjoys a typical Mediterranean climate (Csa in Köppen’s climate classification), 

with hot, dry summers and mild, rainy winters. The mean annual temperature of central Athens 

for the period of 1955-2010 is 17.8oC, with an amplitude of 19.5oC (minimum monthly average 

8.8oC in January, maximum monthly average 28.3oC in July). The average amount of precipitation 

for the same period is 411.8 mm, though the value may vary by up to 100 mm depending on 

location (HNMS, 2022). The city lies within the basin of Attica surrounded by mountains on all 

sides except for the south, where it is bounded by the Saronic Gulf in the Aegean Sea. Due to its 

topography and several other factors, such as the urban sprawl and the destruction of the peri-

urban forests by wildfires, the city experiences intense air pollution and the Urban Heat Island 

effect which has an intensity of as high as 10oC (Gaitani et al., 2011). Athens started to experience 

spontaneous, undesigned urban development in areas with undefined land uses starting in the 

1920s onwards, with the uncontrolled and unplanned outward expansion of the urban web 

continuing to this day (Chorianopoulos et al., 2010; Kassomenos et al., 2022). This resulted in a 

lack of open public spaces and a low quality of environmental infrastructure (Chorianopoulos et 

al., 2010). Green spaces in Greece are regulated by law 4280/2014, article 27, in the same 

framework as other common areas that include sidewalks, pure sidewalks, bike paths, squares, 

groves, greenery, and playgrounds, as well as free spaces of urban and suburban green (GMEE, 

2014). Therefore, the green areas in the city are few in number and rather small in size. The 

majority of them are scattered within the city, found mostly on the hills in the basin or on the 

mountains surrounding it. As a result, only just 0.96 m2 of green space corresponds to each 

inhabitant in Athens, when the World Health Organization places 9 m2/person as the minimum 

figure (WWF, 2020).  

 
Figure 3.1. Map of the study area depicted by the imagery of June 21st, 2020 obtained by Planet 
for the analysis of this thesis which will be discussed in the next chapter, with a 1km buffer zone 
of the Greater Athens’ limits 
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3.2. PlanetScope imagery  
PlanetScope imagery is one of the two imageries used in this thesis for the implementation of 

the methodology for the extraction of the Urban Green Spaces in Athens. PlanetScope is a 

constellation of about 130 Dove satellites operated by Planet, capable of imaging the whole land 

surface of the Earth daily, with a collecting capacity of 200 million km2/day and image resolution 

of 3 meters per pixel (Planet, 2021). The satellites carry three types of instruments for the 

capturing of the images. The PS2 and PS2.SD telescope instruments generate 4-band images (see 

Table 4.1.) while their main difference is found in their passband filters, as the PS2.SD is 

interoperable with those of Sentinel-2. The PSB.SD instrument has a larger sensor, adding the 

Red Edge as its fifth band (Planet, 2022).  

Table 3.1.  
PlanetScope PS2 instrument’s spectral information 

PlanetScope PS2 

Bands Spectral Region Wavelength (nm) 

Band 1 Blue 464 - 517 nm 
Band 2 Green 547 - 585 nm 
Band 3 Red 650 - 682 nm 

Band 4 NIR 846 - 888 nm 

 

More specifically, 20 cloud-free, analytic surface reflectance, multi-spectral PS2 scenes, for a 

single date, were downloaded from Planet Explorer (Fig. 3.1.). The scenes were captured by four 

different satellites on June 21st, 2020, between 08:22:47 am and 08:55:46 am (see Table 3.2.)  

Table 3.2.  
PlanetScope dataset used for the extraction of the green urban areas in Athens 

Satellite Product Satellite ID 
Number of 

images 
Acquisition 

time 
Acquisition 

date 
Bands 

Resolution 
(m) 

PlanetScope 
OrthoScene 

(SR) 

2257 3 
08:22:47           

-       
08:22:52 

21/06/2020 
B, G, R, 

NIR 
~3 

0f4e 7 
08:52:57                 

-                
08:53:03 

100a 7 
08:53:07                 

-              
08:53:14 

106d 3 
08:55:42                 

-                 
08:55:46 

 

3.3. Sentinel-2 imagery 
The European Copernicus program was set up at the initiative of the European Commission in 

cooperation with the European Space Agency as a follow-up to the GMES (Global Monitoring for 

Environment and Security) program for global monitoring of the environment and security. Its 

primary objective is the study and monitoring of the Earth's surface environment. It covers a wide 

range of applications relating to climate change, emergency management, security, etc. (Perakis, 

2015). It is a set consisting of different types of data collection systems and instruments drawn 

from various sources. More specifically, it consists of Earth surface observation satellites, 

https://www.planet.com/explorer/
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airborne platforms equipped with specific sensors and recorders of the Earth's surface, and 

finally fixed sensors to collect and record the various parameters and variables related to the 

Earth's environment (ESA, 2022). 

For the operational needs of the Copernicus program, the European Space Agency (ESA) has 

developed a family of satellites called Sentinel. The Sentinel-1 satellite is an active all-weather 

satellite system and it is used for surveys on the Earth's land surface and in the oceans. Sentinel-

2 is a passive satellite system that includes multi-spectral imaging (MSI) instruments, used for 

environmental monitoring, water studies, and ground coverage. Sentinel 3 satellite has several 

instruments and can measure surface temperature, sea level differences, and ocean color with 

high accuracy. Sentinel 4, 5 and 6 Precursor satellites are designed for atmospheric analysis. 

Sentinel 6 has a radar that allows recording altitude differences in the oceans and studying 

climate change with high accuracy (Perakis, 2015).  

Sentinel-2 is a twin satellite system (Sentinel-2A and Sentinel-2B) with a wide swath width 
recording instrument at 290 km and a multi-spectral imager covering 13 spectral bands (443 - 

2190nm) showing three spatial resolutions of 10, 20, and 60 meters. Sentinel-2A was launched 

on 23 June 2015 and Sentinel-2B on 7 March 2017. They operate simultaneously, phased at 180° 

to each other, in a sun-synchronous orbit at a mean altitude of 786 km (ESA, 2022) and a revisit 

cycle of 5 days (ESA, 2022; Parcharidis, 2015). The Sentinel-2 products are available in two types; 

Level-1C (LC1) contains the image with Top-Of-Atmosphere reflectances and Level-2A (LA2) with 

Bottom-Of-Atmosphere reflectances. Their expected mission duration is 7 years (Perakis, 2015). 

In this thesis, one L2A image of the Sentinel-2A MSI satellite will be used. The image ought to be 

at around the same time as the one retrieved from PlanetScope. The closest cloud-free image 

that was available was on June 29th, 2020, and was retrieved from Copernicus Open Access Hub. 

For the analysis, only the Blue, Green, Red, and Near-Infrared (NIR) were used, as shown in bold 

in Table 3.3.  

Table 3.3.  
Sentinel-2A spectral information. The bands in bold are the ones used for the analysis 

Sentinel-2A MSI  

Band  Spectral Region Central wavelengths (nm) Spatial Resolution (m) 

Band 1 Coastal Aerosol 442.2 60 

Band 2 Blue 492.4 

10 Band 3 Green 559.8 

Band 4 Red 664.6 

Band 5 Vegetation red edge 704.1 

20 Band 6 Vegetation red edge 740.5 

Band 7 Vegetation red edge 782.8 

Band 8 NIR  832.8 10 

Band 8A Narrow NIR 864.7 20 

Band 9 Water vapor 945.1 
60 

Band 10 SWIR - Cirrus 1373.5 

Band 11 SWIR  1613.7 
20 

Band 12 SWIR  2202.4 

 

https://scihub.copernicus.eu/


 

30 

3.4. Urban Atlas data 
For this study, the FUA of Athens which covers the whole region of Attica, as seen in Figure 3.2., 

was downloaded from the website of Copernicus, in order to extract the polygons of the class of 

Green Urban Areas (GUA), as a means of validation of the classification results. The accuracy of 

the specific FUA is not provided by the Urban Atlas 2018 Validation Report. However, the 

validation of the product in the regions of Greece and Cyprus shows an OA of 92.63% for urban 

classes, which include the GUA (Copernicus, 2021).  

 

Figure 3.2. Map depicting the Urban Atlas’ 2018 Functional Urban Area of Athens and the 
boundaries of the Greater Athens Area 

https://land.copernicus.eu/local/urban-atlas/urban-atlas-2018
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Chapter 4: Methods 
The Geographic Object-Based Image Analysis (GEOBIA) methodology used in this thesis to extract 

the Urban Green Spaces includes the segmentation and classification of the PlanetScope satellite 

imagery by generating training samples and accuracy assessment points, training the algorithm 

with the Random Forest (named Random Trees on ArcGIS, therefore, mentioned as such here 

forth) and SVM classification techniques, finally generating the accuracy assessment statistics. 

The sequence of steps followed to perform the methodology and produce the final urban green 

spaces maps is summarized in a flowchart in Figure 4.1.  

 
Figure 4.1. Flowchart of the methodology followed for the extraction of the green areas 

4.1. Data Pre-processing  
The PlanetScope scenes were clipped directly from the website using a region of interest covering 

the area of Greater Athens and were downloaded already atmospherically and geometrically 

corrected, therefore no additional preprocessing was required. Since the scenes were 20, some 

of which overlapping each other, they were merged into a single raster dataset. As the Sentinel-

2 product type used is L2A, no additional atmospherical correction was needed either. The 4 

bands needed for the analysis were merged in one single multiband raster layer with the 

Composite Bands function.  

Finally, for analysis purposes, both raster datasets were clipped with a buffer zone of 1 km around 

the limits of the Greater Athens Area, obtained by the Greek open geodata catalog, in order for 

water surfaces to be included in the classification and to avoid spectral confusion.  
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4.2. GEOBIA description 
GEographic Object-Based Analysis (GEOBIA) is a discipline of Geoinformatics that relies on 

remote sensing imagery and involves the segmentation of its pixels into image objects, that are 

spatially, spectrally, and texturally homogenous (Hay & Castilla, 2008). This approach reduces the 

accuracy problems usually found in pixel-based analyses of VHR imagery and improves the 

performance of image classification which is what has brought its gradual prominence in the past 

couple of decades (Souza-Filho et al., 2018; Simionato et al., 2021). 

The segmentation of the Athens images was conducted by the segment mean shift tool using the 

false-color composite with bands 4, 1, and 2 for the PlanetScope image and bands 8, 4, 3 for the 

Sentinel-2 image (NIR, RED, GREEN), in order to create a clearer representation of vegetation. 

The scale parameter selection is still subjective and user-dependent and it can directly affect the 

accuracy and efficiency of the segmentation (Ming et al., 2015). In this case, after various 

experimentations with the parameters, spatial and spectral details were given the highest value 

available of 20, while the minimum segment size was set at 5 pixels. This selection proved to 

perform a better representation of the land cover since the dense urban landscape requires high 

detail to distinguish the studied features (ESRI, 2022a).  

For the training of the algorithm, training samples were collected from within the segmented 

images using the Training Samples Manager. It was decided the images to be classified into 3 

classes to avoid confusion since the objective was only the extraction of the green spaces. 

Therefore, two sets of 200 samples were collected for each of the three following classes; Green 

Areas, for vegetation, Developed Areas for impermeable surfaces, such as buildings, streets, 

rocky and bare soil, and Water for the sea, lakes, rivers, and swimming pools. The selection of 

the training samples was performed by drawing polygons within the segmented objects based 

on the visual interpretation of the segmented false-color images and their spectral separability 

(Fig. 4.2). 

 

Figure 4.2. Spectral profiles of the training samples collected for the three classes in the 
PlanetScope (up) and Sentinel-2 (down) 
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The algorithm was trained with the classification methods of Random Trees and Support Vector 

Machine, two machine learning algorithms. The Random Trees classifier consists of a collection 

of individual decision trees in which each tree is generated from different samples and subsets 

of the training data (ESRI, 2022b). The SVM classifier is a particular linear classifier that is based 

on the margin maximization principle. It performs structural risk minimization, which improves 

the complexity of the classifier with the aim of achieving excellent generalization performance 

(Adankon & Cheriet, 2009). Neither of the classifier tools provides any sort of user 

parametrization options, as the software provides the algorithms on default. The trained files 

were used to classify the images which were then converted to vector format and the green areas 

were extracted to separate layers. 

The four final layers of green spaces were finally imposed on dual comparisons regarding the land 

they cover with the Symmetrical Difference tool for statistical reasons. This tool computes a 

geometric intersection of the input and update features, returning the input features and update 

features that do not overlap. The comparisons were performed as follows: Random Trees vs SVM 

for the PlanetScope and Sentinel-2 images respectively, as well as PlanetScope vs Sentinel-2 

images on the SVM and Random Trees classifiers. 

4.3. Validation approach 
The validation was performed by generating accuracy assessment points with random stratified 

sampling, where the population gets divided into homogenous groups called strata, from which 

random samples are then drawn in a number proportional to each stratum’s size compared to 

the total population (Glasgow, 2005). For a better and more objective understanding of the 

results, four different sets of accuracy points were generated; 25, 50, 100, 250, 400, and 500 

points. In each case, a different number of samples was taken for each of the three classes 

according to the percentage of the land they cover in the study area. For the 500 points, the class 

of Water was assigned 24 sample points, the Green Areas 213 and the Developed Areas 263. The 

initial PlanetScope or Sentinel-2 images, depending on the case, and ESRI’s World Imagery 

basemap were then used as reference data to assess the accuracy of the classified maps and fill 

in the ground truth fields on the layers’ attribute tables. The confusion matrix – a table presenting 

the summary of prediction results on a classification – for every set of points was then created 

by using the accuracy assessment points layer as input.  

The Urban Atlas 2018 for Athens was also used as reference data to compare the results of the 

classified urban green spaces with the UA’s class of Green Urban Areas, which includes public 

green areas for predominantly recreational use such as gardens, playgrounds, zoos, parks, castle 

parks and cemeteries (European Commission, 2016). For the comparison to be made, the GUA 

class was extracted from the UA layer and was used to clip the classified green areas to exclude 

the suburban forested areas and other large or very small green areas. The symmetrical 

difference tool was used to calculate the difference between the land covered by the paired 

layers. 
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Chapter 5: Results 
The methodology performed on one PlanetScope and one Sentinel-2 image using two different 

algorithms resulted in 4 classification maps (Fig. 5.1.; Fig. 5.2.). All four maps show a similar 

pattern of the distribution of the three classes across the study area. The geographic and 

anthropogenic features of the city are easily distinguishable. The results of the classification 

reveal the extension and high density of the artificial surfaces in the city. Developed or 

impermeable surfaces cover most of the central part of the study area where the city of Athens 

is spread across. Among them, some of the features that can be recognized are streets and 

highways, airports, seaports, and even quarries. The green surfaces are distributed mostly on the 

fringes of the city limits on three sides; West, Northeast, and East. These vegetated areas are 

actually mountains that surround the plain area where the city lies, forming a basin. If those 

mountains were to be excluded, it is quite obvious that the green areas in Athens are rather 

scarce. In the interior of the urban fabric, the green spaces are concentrated mostly in hilly areas, 

along the streets, or in some of the few streams and rivers that remain uncovered by concrete. 

It is also quite apparent that the northern suburbs have a much higher green ratio than the rest 

of the city, as they are built within forested areas on the slopes of mounts Penteli and Hymettus. 

Finally, the water class is mostly found on a few artificial lakes and swimming pools across the 

city.  

The results of the classifications and the differences between each algorithm and satellite 

imagery are presented in more detail in this chapter.  

5.1. PlanetScope imagery  
The results of the Random Trees classifier are shown in Fig. 5.1. and the coverage statistics are 

in Table 5.1. As already mentioned, the extension and high density of the artificial surfaces are 

apparent. Developed or impervious surfaces cover an area of 212.36 km2 or 59.02% of the total 

area. They are found all across the basin formed by the mountains, as well as on rocky or bare 

soil patches of land in the mountainous areas. Water surfaces cover only 1.31% of the study area 

and they are found mostly in a few artificial lakes, fountains, and swimming pools. The green 

areas make up 40.62% of the study area and they are concentrated on the western, eastern, and 

northeastern mountainous fringes of the city limits. The lower part of Fig. 5.1. shows a clearer 

representation of the green areas, by displaying the Green class only. 

The SVM classification results are shown in Fig. 5.2. and the coverage statistics are in Table 5.1. 

Here, in contrast with Random Trees, the green areas take up a larger percentage of the area’s 

surface, at 46.12% or 165.95 km2. The lower part of Fig. 5.2. shows a clearer representation of 

the green areas, by displaying the Green class only. The developed/ impervious surfaces come in 

first in surface coverage, at 53.73% or 193.31 km2. Finally, the water class covers only just 0.55% 

or 0.15 km2 of the study area. 
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Figure 5.1. Classification results (above) and extracted green areas (below) of the Greater Athens 
Area using the GEOBIA method and the Random Trees classifier on the PlanetScope imagery  
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Figure 5.2. Classification results (above) and extracted green areas (below) of the Greater Athens 
Area using the GEOBIA method and the SVM classifier on the PlanetScope imagery  
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Table 5.1.  
Surface coverage statistics of the RT and SVM classifiers for the PlanetScope imagery 

  Random Trees SVM 

Class Area (km2) Percentage (%) Area (km2) Percentage (%) 

Developed 212.36 59.02 193.31 53.73 
Green 146.14 40.62 165.95 46.12 
Water 1.31 0.36 0.55 0.15 

 

5.2. Sentinel-2A imagery 
The results of the RT classifier for the Sentinel-2 imagery are shown in Figure 5.3. and the 

coverage statistics are shown in Table 5.2. The Developed areas take up the largest percentage 

of the area’s surface, at 66.99% or 241.06 km2. The Green surfaces come in second, at 32.77% or 

165.15 km2. The lower part of Figure 5.3. shows a clearer representation of the green areas, by 

displaying the Green class only. Finally, the water class covers only just 0.84% or 0.23 km2 of the 

study area. 

The SVM Classifier results are presented in Figure 5.4. and in Table 5.2. The results reveal, once 

again, the superiority of the Developed class in terms of coverage, as it takes up the largest 

percentage of the study area’s surface, at 62.71% or 225.63 km2. The Green surfaces come in 

second, at 37.06% or 133.33 km2. The lower part of Figure 5.4.  shows a clearer representation 

of the green areas, by displaying the Green class only. Noticeably, the water class covers only just 

0.24% or 0.85 km2 of the study area. 

Table 5.2.  
Surface coverage statistics of the Random Trees and SVM classifiers for the Sentinel-2 imagery 

  Random Trees SVM 

Class Area (km2) Percentage (%) Area (km2) Percentage (%) 

Developed 241.06 66.99 225.63 62.71 
Green 117.92 32.77 133.33 37.06 
Water 0.84 0.23 0.85 0.24 
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Figure 5.3. Classification results (above) and extracted green areas (below) of the Greater Athens 
Area using the GEOBIA method and the Random Trees classifier on the Sentinel-2 imagery  
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Figure 5.4. Classification results (above) and extracted green areas (below) of the Greater Athens 
Area using the GEOBIA method and the SVM classifier on the Sentinel-2 imagery  
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5.3. Comparative analysis 
The goal of this section is to illustrate and discuss the difference in the land cover of the green 

areas that each classifier resulted in, by performing dual comparisons with the Symmetrical 

Difference tool. Dual comparisons are made between Random Trees and SVM for the 

PlanetScope and the Sentinel-2 imagery respectively, as well as for the results of the Random 

Trees classifier between PlanetScope and Sentinel-2 and for the results of the SVM classifier 

between the two images. For obtaining a more detailed view of the comparison results, each 

map includes two close-up areas of two regions of the study area in the heart of the basin of 

Athens.  

5.3.1. Random Trees vs SVM with PlanetScope imagery 
The Symmetrical Difference performed between the Random Trees and SVM classifiers on the 

PlanetScope image is presented in Fig. 5.5. As seen in Table 5.3., the common area that was 

classified as green by both classifiers is 143.1 km2. The RT classified as green 3.04 km2 of the land 

surface that wasn’t classified as such by SVM. On the other hand, the SVM classified 22.85 km2 

more green areas than the RT. That noticeable difference can be seen in the mountainous areas 

surrounding the city, with an emphasis on the eastern side of Mt. Penteli, in the far east of the 

study area. In the urban fabric, the differences are much milder, yet in terms of small green urban 

areas, this could have a negative impact on their study. 

 

Figure 5.5. Symmetrical difference between the Random Trees and SVM classifiers on the 
PlanetScope imagery 
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Table 5.3.  
Area comparison between Random Trees and SVM classifiers used on the PlanetScope imagery 

Random Trees vs SVM (PlanetScope) 

Extra in SVM Extra in RT Common area 

22.85 km2 3.04 km2 143.1 km2 

 

5.3.2. Random Trees vs SVM with Sentinel-2 imagery 
The Symmetrical Difference performed between the Random Trees and SVM classifiers on the 

Sentinel-2 image is presented in Fig. 5.6. In this case, the differences seem to be more equally 

distributed along the study area, yet the mountains appear to have the majority of them. A large 

concentration of differences can be observed in the northeastern portion of the basin, where 

there is a greater ratio of green in comparison to the rest of the city. The common green area of 

the two classifiers is 115.21 km2, and yet again, the SVM classifier resulted in more land surface 

classified as green by 18.1 km2, in contrast with the RT which has classified only 2.71 km2 of extra 

green areas in comparison (Table 5.4.). 

 

Figure 5.6. Symmetrical difference between the Random Trees and SVM classifiers on the 
Sentinel-2 imagery 

Table 5.4.  
Area comparison between Random Trees and SVM classifiers used on the Sentinel-2 imagery 

Random Trees vs SVM (Sentinel-2) 

Extra in SVM Extra in RT Common area 

18.1 km2 2.71 km2 115.21 km2 
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5.3.3. PlanetScope vs Sentinel-2 with Random Trees 
The Symmetrical Difference performed between the PlanetScope and Sentinel-2 imagery 

regarding the Random Trees classifier is presented in Fig. 5.7. The main differences are observed 

again in the mountainous areas, as well as in dry fields in the far north of the city. Within the 

urban fabric, the differences are fewer, yet still significant. The common green areas between 

them take up only 105.32 km2 of land surface, while at the same time the PlanetScope image was 

classified as Green by 40.82 km2 of extra land in comparison with the Sentinel-2, much more than 

the 12.59 km2 of land that was classified as green in the Sentinel-2 image and not the PlanetScope 

one (Table 5.5.). 

 

Figure 5.7. Symmetrical difference between PlanetScope and Sentinel-2 imagery on the Random 
Trees classifier 

Table 5.5.  
Area comparison between PlanetScope and Sentinel-2 imagery on the Random Trees classifier 

PlanetScope vs Sentinel-2 (Random Trees) 

Extra in PS Extra in S2A Common area 

40.82 km2 12.59 km2 105.32 km2 
 

5.3.4. PlanetScope vs Sentinel-2 with SVM 
The Symmetrical Difference performed between the PlanetScope and Sentinel-2 imageries 

regarding the SVM classifier is presented in Fig. 5.8. The pattern is similar to the other dual 

comparisons made, with the biggest differences found in the mountain slopes and seemingly 

smaller but significant across the city. According to Table 5.6., the common Green between the 
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two images covers an area of 119.8 km2. The PlanetScope imagery resulted in a lot more land 

classified as Green using the SVM classifier by 46.15 km2 in relation to the Sentinel-2 imagery. In 

contrast, the Sentinel-2 image resulted in 13.53 km2 of Green-classified land, that the 

PlanetScope image classified as Developed or Water. 

 

Figure 5.8. Symmetrical difference between PlanetScope and Sentinel-2 imagery on the SVM 
classifier 

Table 5.6. 
Area comparison between PlanetScope and Sentinel-2 imagery on the SVM classifier 

PlanetScope vs Sentinel-2 (SVM) 

Extra in PS Extra in S2A Common area 

46.15 km2 13.53 km2 119.8 km2 

 

5.4. Classification accuracy assessment results 
The accuracy assessment carried out for the classification, resulted in the confusion (error) matrix 

shown in Table 5.7. It is evident that the techniques followed in the study’s methodology 

attributed to very accurate results, for both the Random Trees and SVM algorithms and for either 

of PlanetScope and Sentinel-2 imagery. The overall accuracy ranged between 91% and 95%, the 

producer’s accuracy between 87% and 100%, the user’s accuracy between 83% and 97%. These 

high percentages reflect the high probability that the classification of each class corresponds to 

reality in the case of Producer's Accuracy, as well as the subjectivity and explicit selection of 

algorithm training samples by the user in the case of User's Accuracy.  
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Table 5.7.  
Confusion (error) matrix of the Random Trees and SVM classification with 500 accuracy 
assessment points 

    PlanetScope     Sentinel-2   

  Random Trees Support Vector Machine Random Trees Support Vector Machine 

Class 
Producer's 
Accuracy 

(%) 

User's 
Accuracy 

(%) 

Producer's 
Accuracy 

(%) 

User's 
Accuracy 

(%) 

Producer's 
Accuracy 

(%) 

User's 
Accuracy 

(%) 

Producer's 
Accuracy 

(%) 

User's 
Accuracy 

(%) 

Developed 92.73 96.96 89.77 97.93 97.2 91.75 92.71 92.39 

Green 96.10 92.49 97.68 89.78 87.11 96.02 89.01 89.47 

Water 100.00 83.33 100 86.95 100 95.24 100 95.24 

Overall 
Accuracy (%) 

94.44 93.60 93.40 91.40 

Kappa 
coefficient 

0.90 0.881 0.872 0.834 

 

5.4.1. PlanetScope imagery 
For the PlanetScope imagery, the Random Trees classification got an overall accuracy (OA) that 

reached 94.44%, while Cohen’s kappa coefficient the value of 0.90. Regarding the classes’ 

individual accuracy, the Producer’s Accuracy ranges between 92.73% and 100%, while the User’s 

Accuracy ranges between 83.33% and 96.96%. The low percentage on Water’s UA is mostly due 

to the false classification of shadow and football fields with artificial turf that have a very similar 

spectral response with water surfaces.  

The SVM classification of the PlanetScope image got a lower overall accuracy (OA) that reached 

93.6%, as well as a lower Cohen’s kappa coefficient with the value of 0.90. Regarding the classes’ 

individual accuracy, the Producer’s Accuracy ranges between 89.77% and 100%, while the User’s 

Accuracy ranges between 86.95% and 97.93%. 

The different sets of accuracy assessment points do not seem to reveal any specific pattern 

regarding the final accuracy of either of the two classifications (Table 5.8.; Fig. 5.9.). The RT 

results are mostly similar, ranging between 91.5% and 94.48% on the OA and 0.843 to 0.906 on 

the Kc, with the exception of the set of 50 points, where the accuracy drops significantly to 84.2% 

OA and 0.749 Kc. On average, the OA is at 91.2% and the Kc at 0.850. The SVM results remain 

relatively unchanged, with small differences between each set of points. The OA and Kc remain 

above 91% and 0.83 respectively. The set of 25 points appears to have the highest OA at 97.06% 

and Kc at 0.955. The average OA is at 92.88% and the Kc at 0.875. 
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Table 5.8.  
The OA and Kc results for a different number of accuracy assessment points for the classification 

of the PlanetScope image  

  Random Trees SVM 

Accuracy 
Assessment 
Points 

Overall 
Accuracy (%) 

Kappa 
coefficient 

Overall 
Accuracy (%) 

Kappa 
coefficient 

25 91.17 0.866 97.05 0.955 
50 84.21 0.749 91.22 0.859 
100 94.34 0.902 91.50 0.854 
250 91.60 0.845 91.20 0.838 
400 91.47 0.843 92.73 0.866 
500 94.40 0.896 93.60 0.881 

 

 

Figure 5.9. Graph depicting the Overall Accuracy and Kappa coefficient for five sets of a different 
number of accuracy assessment points for the classification of the PlanetScope image 

5.4.2. Sentinel-2 imagery 
For the Sentinel-2 imagery, the Random Trees classification got an overall accuracy (OA) that 

reached 93.4%, while Cohen’s kappa coefficient the value of 0.872. Regarding the classes’ 

individual accuracy, the Producer’s Accuracy ranges between 87.11% and 100%, while the User’s 

Accuracy ranges between 91.75% and 96.02%.  

The SVM classification of the Sentinel-2 image got a lower overall accuracy (OA) that reached 

91.4%, as well as a lower Kappa coefficient with the value of 0.834. Regarding the classes’ 

individual accuracy, the Producer’s Accuracy ranges between 89.01% and 100%, while the User’s 

Accuracy ranges between 89.47% and 95.24%. 

The different sets of accuracy assessment points in the case of the Sentinel-2 image seem to have 

some more variation in their results (Table 5.9.; Fig. 5.10.). The accuracy of the RT results drops 

the fewer the points get until they reach 50 in number when it starts rising again, reaching the 

maximum OA and Kc at 100%. On average, the OA is at 91.58% and the Kc at 0.848. The SVM 

seems to have performed in a similar way, ranging between 88.6% and 100% on the OA and 0.819 

to 1 on the Kc, with the lowest accuracy found in 50 points and the highest in 25. The average OA 

is at 92.51% and the Kc at 0.864. 
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Table 5.9.  
OA and Kc results for a different number of accuracy assessment points for the classification of 

the Sentinel-2 image  

  Random Trees SVM 

Accuracy 
Assessment 
Points 

Overall 
Accuracy (%) 

Kappa 
coefficient 

Overall 
Accuracy (%) 

Kappa 
coefficient 

25 100.00 1.000 100.00 1.000 
50 91.22 0.858 91.22 0.858 
100 85.84 0.752 88.60 0.802 
250 87.60 0.765 90.40 0.819 
400 91.47 0.843 93.48 0.876 
500 93.40 0.871 91.40 0.834 

 

 
Figure 5.10. Graph depicting the Overall Accuracy and Kappa coefficient for five sets of a different 
number of accuracy assessment points for the classification of the PlanetScope image 

5.5. Urban Atlas 
The comparison of the city parks made between the Urban Atlas’ class of Green Urban Areas and 

the Green areas that emerged from the classifications that were performed in the present 

analysis are shown in Figures 5.11. and 5.12. The two layers' difference in the surfaces 

characterized as “Green” is noticeably rather large, as there are polygons that have little to no 

common area between them. This is especially profound in cemeteries which are conceived as 

green spaces by Urban Atlas, when in reality their surface in most cases is covered mostly by 

pathways and tombstones, with very little vegetation around them. Other such cases are found 

on hills and parks with low vegetation or rocky surfaces. Polygons that appear to be more 

coherent than others are found mostly in the northeast of the study area where the landscape is 

generally forested.  

In numbers, the GUAs cover an area of 22.1 km2. In contrast, the classifications performed with 

the two classifiers on the two images resulted in an area as follows. For the PlanetScope imagery, 

the Random Trees classifier has a Green area of 14.98 km2 bringing the non-common area to 7.1 

km2, while the SVM classifier has a slightly higher Green area of 16 km2 reducing the extension 

of the non-common area to 6.09 km2. For the Sentinel-2 imagery, the common area is yet lower 

compared to the PlanetScope imagery. The Random Trees classifier resulted in a common Green 

area of 14.37 km2, therefore bringing the non-common area up to 7.73 km2. The SVM classifier 

has a larger surface of common Green areas in this case too, at 15.07 km2, while the non-common 

area is at 7.03 km2. 
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Figure 5.11. The Green Spaces that emerged from the Random Trees and SVM classifications on 
the PlanetScope image were clipped with the Urban Atlas class of Urban Green Areas. The red 
color represents the surfaces classified as Green Spaces by UA but as Developed by the 
methodology followed in the study. 



 

48 

Figure 5.12. The Green Spaces that emerged from the Random Trees and SVM classifications on 
the Sentinel-2 image were clipped with the Urban Atlas class of Urban Green Areas. The red color 
represents the surfaces classified as Green Spaces by UA but as Developed by the methodology 
followed in the study. 
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Chapter 6: Discussion 
In the present study, the GEOBIA method was implemented with very high spatial resolution 

imagery from PlanetScope and medium spatial resolution imagery from Sentinel-2 to extract 

urban green spaces for the Greater Athens Area, in Greece. This method, in addition to the 

spectral information recorded at the image pixels, includes as well the implementation of a 

segmentation of the image that allows the generation of objects with spectrally and texturally 

homogeneous characteristics. As such, those methods generally tend to produce better visually 

and more accurate results in comparison to pixel-based classifiers (Petropoulos et al., 2012b; 

2015; Pandey et al., 2020). In the present study, OBIA returned very satisfactory results for the 

experimental study it was implemented for, as it is suggested from the statistical metrics that 

were computed and also the comparisons versus the Urban Green Atlas product. Results 

reported herein are comparable to those reported in other studies also using the GEOBIA 

technique with remote sensing multispectral imagery (Zylshal et al., 2016; Ozlem Yilmaz et al., 

2019; Al-Doski, et al., 2020; Topaloğlu et al., 2021).  

This chapter intends to cover the limitations of the methods and datasets used in the present 

study.  

6.1. Segmentation limitations 
The potential error sources in the technical implementation in this study affecting the 

technique’s performance may be attributed to many possible reasons. For example, 

segmentation parameterization can be very challenging and lead to quite different results when 

they are not applied correctly. An over-segmentation leads to an excessive number of objects 

with different spectral responses and, in combination with a low number of training samples, can 

negatively impact the classification’s accuracy (Pandey et al., 2020). On the other hand, an under-

segmentation can lead to very homogeneous objects that incorporate the spectral response from 

different classes, thus also having a negative impact on the classification’s accuracy (Elatawneh 

et al., 2012; Dawson et al., 2019). This issue has been solved by testing several values for the 

scale parameter in the segmentation process and choosing the appropriate one. This process can 

be automated by using an algorithm that calculates the local variance for the objects generated 

with a specific scale parameter offering information on the slightest changes in the segmentation 

process (Drǎguţ et al., 2010; Drăguţ et al., 2014).  

6.2. Sensor-related differences 
Another possible reason might be related to the spectral characteristics of the urban green 

spaces and their spectral similarity to other objects also present in the images. For example, there 

are several studies that reported that the presence of numerous spectrally unique and 

ambiguous materials such as dark shingles and asphalt roads that makes their discrimination and 

consequently classification process slightly inaccurate (Petropoulos et al., 2015; Fragou et al., 

2020). The results revealed a great difference in the extension of the green areas among the two 

images across the city. PlanetScope resulted overall in a much higher ratio of green spaces than 

Sentinel-2. The same is also true for the SVM in comparison with the Random Trees classifier in 

both images. The majority of those differences were located on the mountain slopes where there 

is low vegetation that emerged after several wildfires in recent years. A similar situation is 

observed in empty land plots across the city, especially in suburban areas. Due to the summer 

season, the images were retrieved for and the lack of rainfall, low vegetation completely dried 
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up. The spectral response of those areas was regarded as green by PlanetScope, whereas 

Sentinel’s spectral resolution differentiated the dry vegetation from the live one and therefore 

classified it as developed.  

In some instances, shadows were also misinterpreted as vegetation. The tree canopy and the 

satellites’ viewing angle posed difficulties for the segmentation and later the classification, as the 

3-meter and 10-meter pixel resolutions were not clear enough to allow the algorithms to tell such 

details apart. This issue was exacerbated even further by the 10-meter pixel resolution of the 

Sentinel-2 imagery. Despite the fact that Sentinel-2 is ideal for monitoring plant growth, as well 

as for mapping changes in land cover and monitoring the world's forests (ESA, 2022), in cases of 

urban green mapping the analysis gets trickier, as the spatial analysis of 10 meters impedes the 

detailed recording of smaller green spaces. PlanetScope imagery may lack spectral resolution in 

comparison, however, the most important for UGSs mapping is a higher spatial resolution. 

Another tricky feature for the classifiers, particularly in the case of PlanetScope, is the tiled roofs 

that in many cases were classified as vegetation. In addition, some buildings and open spaces are 

covered by spectrally similar urban surface materials, which further hamper clear discrimination 

between them. Other factors that may further complicate the analysis of urban areas leading to 

high within-class spectral variability include the 3-dimensional heterogeneity of urban areas and 

urban vegetation cover material aging (Herold & Roberts, 2005).  

All the above reasons lead to the conclusion that a further spectral separability analysis would 

be appropriate to be implemented on the training samples to avoid as much as possible such 

errors. One such method, that is not available in ArcGIS but could be performed in ENVI, is the 

Jeffries-Matusita distance method, according to which inter-class spectral separability is 

calculated in the classification scheme. The closer the distance or separation between classes, 

the more the two classes are vulnerable to being misclassified and vice versa (Wicaksono & 

Aryaguna, 2020). 

6.3. Classifiers’ parametrization 
Another important factor that should be taken into account is the lack of parametrization that is 

provided by the ArcGIS Pro tools, especially the ones related to the classifiers. The tools provided 

by the software lack of parametrization choices which are mostly set in default, such as the kernel 

type in the case of SVM, in an effort to provide a more user-friendly environment. Nevertheless, 

they proved to be highly effective in classifying satellite imagery compared, yet probably not 

equally accurate compared with other software tools that are intended for processing EO data, 

like ENVI and eCognition. The presence of parametrization choices would allow the examination 

of different alternatives of the algorithms and possibly lead to better results.  

6.4. Urban Atlas limitations 
Furthermore, a possible reason for the difference between the GEOBIA and the Urban Atlas 

layers is that the UA classifies the land according to its land use and treats each object as one 

whole entity (European Commission, 2020). Surfaces within parks where paths, open squares, 

bare soil, or rocks are found are not presented as such. Another example would be the 

cemeteries that are classified as GUA as a whole by UA, though, it is obvious that they are not 

completely covered by vegetation. On the contrary, the classification performed in this study 

shows the land cover rather than the land use. As a result, impermeable surfaces within green 
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urban areas were classified as developed, therefore not matching 100% with the UA.  Moreover, 

even if both data sources of UA and PlanetScope have similar resolutions (3m for Planet Scope 

images and 2-4m for the different images used to derivate the UA), the minimum mapping width 

of 10m used for Urban Atlas excludes linear elements which separate different elements from 

the same class (e.g., roads and street trees). The Sentinel-2 imagery partly exacerbates this 

difference due to its lower spatial resolution. 

6.5. Classification accuracy 
Regarding the classification accuracy, it refers to the degree of agreement between reality and 

the classified image. A thematic classification map is considered accurate when it provides an 

objective representation of the land cover of the area it depicts (Foody, 2002). According to 

Foody (2004), accuracy assessment is necessary for a classification to be considered complete, 

as many inaccuracies are often identified. In this application, with an overall accuracy of over 

90% for all four cases, the classification was expressed with very high accuracy and can be 

considered successful. 

According to Lillesand et al. (2015), a minimum of 50 validation points should be obtained per 

landcover class. In that sense, for the 3 landcover classes of this study, and considering that the 

analysis was performed on a large area, a minimum of 400 validation points would be required 

in total. It should be noted, though, that the extension of each landcover class may also 

determine the number of validation points that correspond to them when using random 

stratified sampling. Therefore, it is safe to say the 400 and 500 validation points provided better 

and more credible validation results.  
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Chapter 7: Conclusions and future work 
The study’s main objective was to implement the GEOBIA method and the Random Trees and 

SVM classifiers to classify and extract the green urban areas of Athens, using PlanetScope and 

Sentinel-2 imagery. The innovative aspect of this study is found in the use of and comparison of 

the two datasets as well as the comparison of the two classifiers and the validation of the results 

with the Urban Atlas. Overall, the results confirmed the research findings in the literature about 

the great utility of the method and the high overall and individual accuracy of the classes 

obtained by selecting only a small sample of objects for the training regions.  

PlanetScope proved to be ideal for applications that require high-resolution imagery, as it 

provides free and already pre-processed data for developers but not for commercial use. On the 

same note, Sentinel-2 is greatly useful in a vast variety of applications as it provides free, 

multispectral data in pre-processed or raw versions. In the analysis, the Sentinel-2 image showed 

more variation in terms of the pixels’ spectral response, which makes the satellite more suitable 

in cases when the image is required to be classified into further classes and make distinctions 

over the specific vegetation types. Nevertheless, this can’t undermine the great utility of 

PlanetScope’s high spatial resolution imagery, which proved to be of essential importance for the 

study of urban areas. This is especially true for densely built-up cities like Athens, where the detail 

of an HSR image helps in better classifying the different classes. Sentinel’s 10 m spatial resolution 

made the validation of the results much harder, as different spectral identities were mixed up in 

each pixel in these compact areas.  

When it comes to the classifiers used in the analysis, Random Trees outperformed SVM in terms 

of its accuracy in both imageries. Support Vector Machine is a supervised learning model which 

is probably the most popular in classification challenges. However, it is mostly used in 

classification problems where the data is sparse and easy to classify. Random Forest is one of the 

most used classifications in machine learning and has been gaining even more popularity in 

recent years in classification tasks, with its implementation exceeding the SVM method 

(Sheykhmousa et al., 2020). According to a review on SVM vs RF for remote sensing image 

classification by Sheykhmousa et al. (2020), the classification accuracies of the classifiers showed 

high variations, however, when it comes to land use – land cover applications the variance of 

Random Forest was little, showing its superiority over SVM on this field.  

The core of the city of Athens was confirmed to have very few UGSs of substantial size, especially 

in the case of excluding hilly and mountainous areas. One limitation of this study is that the 

extracted green areas include the trees’ canopy which may cover impermeable types of land 

cover. In this case, the exact size of the specific cover types is not precise and extra work needs 

to be done in order to deal with this overlapping.  

The Urban Atlas is a valuable dataset that can be used in various applications. However, many of 

its classes, aside from the initial classification, have received further manual work, emitting land 

cover types that are contained within larger ones. This is the case with the UGSs, where 

impermeable land cover types like paved paths, squares, or even tombs in cemeteries were 

absorbed in the larger UGSs class. Therefore, its use as reference data for accuracy assessment 

should be taken with a grain of salt. 
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In a broader context, the results of the present study may provide an important contribution 

toward the implementation of successful urban landscape planning and infrastructure 

development. The potential of this method’s operationalization may act as added value in the 

direction of improving existing global operational products, such as Urban Atlas. High-resolution 

imagery was proven to be more successful in classifying urban green, than medium-resolution 

imagery. On that account, PlanetScope or any other HSR imagery distributor is more suitable for 

such studies that require detail despite the possible costs. Last but not least, the findings of the 

present study can support global studies ongoing towards the evaluation of the capability of 

PlanetScope imagery use in obtaining UGSs, potentially at an operational scale.  

All in all, GEOBIA is a robust and perhaps more cumbersome to implement in comparison to most 

pixel-based classifiers, resulting generally also to more accurate classification results. Several 

studies have shown that only good segmentation results can lead to object-oriented image 

classification outperforming pixel-based classification (Pandey et al., 2020). Thus, the user 

experience with the GEOBIA implementation is a factor to be taken into account. On a positive 

note, the technique, at least in the present case study, did not require significant computational 

resources in its implementation, which can be important if access to such resources is limited. 

7.1. Future research 
In this section, potential research recommendations are mentioned that need pursuing for the 

further expansion of the present study in addressing and improving our understanding of the 

quality, quantity, and future needs of the UGSs in the city of Athens. 

1. Further classification of the green areas in more specific vegetation types, i.e., trees, 

sclerophyllous vegetation, and low vegetation. This could provide a better picture of how 

functional these spaces are, as low vegetation areas such as empty building plots are 

highly changeable and do not offer much in ecosystem services. 

2. Examination of the plants’ health in order to determine the amount of the green spaces 

that have a substantial positive effect on the overall quality of life in the city. 

3. Study of the different ecosystem services the examined green areas provide the city’s 

residents with. 

4. Focus on the study of the small UGSs and their contribution to mitigating the negative 

effects that surround the city’s intense urbanization. 
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