HAROKOPIO UNIVERSITY

SCHOOL OF DIGITAL TECHNOLOGY
DEPARTMENT OF INFORMATICS AND TELEMATICS

POSTGRADUATE PROGRAMME “INFORMATICS AND TELEMATICS”
COURSE “WEB TECHNOLOGIES AND APPLICATIONS”

Software repository aggregator for Linux distributions
Master Thesis

loannis Papadopoulos

Athens, 2022

&Yy APOKONEIO NANENISTHMIO

2XOAH WHOIAKHX TEXNOAOTIAZ

TMHMA NAHPO®OPIKHZ KAl THAEMATIKHZ

MPOrPAMMA METANTYXIAKQN 2MOYAQN “NAHPO®OPIKH
THAEMATIKH”

KATEYOYNZH “TEXNOAOTIEZ KAl EOAPMOTEZ IZTOY”

AToOeTHPLO TTAKETWV AOYLOMLKOU SLavopwv Linux

Metamtuylakn epyaocia

lwavvng NanadonouAog

ABrva, 2022

KAI

HAROKOPIO UNIVERSITY

SCHOOL OF DIGITAL TECHNOLOGY
DEPARTMENT OF INFORMATICS AND TELEMATICS

POSTGRADUATE PROGRAMME “INFORMATICS AND TELEMATICS”
COURSE “WEB TECHNOLOGIES AND APPLICATIONS”

Examining Committee

Tsadimas Anargyros (Supervisor)
Teaching Laboratory Staff, Department of Informatics and Telematics,
Harokopio University of Athens

Kamalakis Thomas (Examiner)
Professor, Department of Informatics and Telematics, Harokopio University of
Athens

Michalakelis Christos (Examiner)
Assistant Professor, Department of Informatics and Telematics, Harokopio
University of Athens

Ethics and Copyright Statement

I, loannis Papadopoulos, hereby declare that:

1) am the owner of the intellectual rights of this original work and to the best of my knowledge,
my work does not insult persons, nor does it offend the intellectual rights of third parties.

2) | accept that the Library and Information Centre of Harokopio University may, without
changing the content of my work, make it available in electronic form through its Digital Library,
copy it in any medium and / or any format and hold more than one copy for maintenance and
safety purposes.

3) | have obtained, where necessary, permission from the copyright owners to use any third-
party copyright material reproduced in the master thesis while the corresponding material is
visible in the submitted work.

Knowledge itself is power,
Sir Francis Bacon

Acknowledgements

| would like to thank Mr. Tsadimas for giving me the opportunity to conduct a self-proposed
thesis subject and for the excellent communication we have had during the whole thesis
implementation.

TABLE OF CONTENTS

TTEDUANWI N vttt et et eer s e b e e saeeaeete et s 8
ADSEIACT. .. it e e e e e e 9
LiST Of FIGUIES .. e s 10
List Of iHUStratioNns.......cooveieeee e e 11
ADDIeVIatioNS......cceciee e e e 12
R [o N oo [V Tox 4 o] o USSR 13
1.1 Contributions of this thesis.......c.ccceeveveiieeciciece e, 13
1.2 ThesSis OULINE.....cceieieeece et s 14
1.3 LiNUX PACKAEES.....vveeiteereeetectteiteeettee e eerte s steeetseesteseraeesaeseraeesaeenns 14
1.4 LinuX PacKage ManagerS.....cccceeeueeereerieenteeeteesreessseesresesaeessesesens 15
2. BACKErOUNG......eoeceeeetiee ettt e eeaae e ere e e sre e 17
2.1 Package INformation..........oeeeeieieceniencencesese e e 17
2.2 Django REST FrameworK........cccoeeeveevieciee et 19
2.3 SQLItE ettt e et e e e r e r e s na e 21
2.4 React JavaScript library.......eeece e 22
2.5 CroN JOD ittt e e b e e e 24
3. Related WOrK....ccovoeee ettt et e e aa e 25
L o T 1 1= o PO TR PPPRPPRPP 26
4.1 Package information Collection.........cccceeeeeveeceecieececeeecee e, 28
4.2 BACK-EN....eiietiieceeeee et et e e e 30
.3 FrONt-€N0...occoriirieece ettt ettt eae s e saeaennees 36
5. Conclusions and future Work........cc.ecvevecvene e evreeceese e 40
5.1 CONCIUSIONS...uiiieceieite ettt ettt ettt e rtae e re s e saeserae e stesenaeesreens 40

B2 FUTUTE WOKK ettt et eeeee e veeeeeaeeeeeaeeeeeeeeeseseaseesensessansensanansnnens 40

NepiAnyn

H mapouoa SumAwHATIKA epyacio €XeL wG oTOX0 TNV avamtuén plag SLadkTuaknG epopUoyng
AoylopikoU (“PKGman”), n omoio GUAAEYEL TTEPLOBIKA LA CELPA ATIO XPOLUEC TANPOdOpLES yLa
TLAKETO AOYLOUIKOU SnuodAwv dtavouwv Linux (.. ovopa, dtabéoipueg ekdooelg, pEyebog), Tig
anoBnkeVel oe plo Baon dedopévwv Kol emiong umootnpilel évav ototonmo pe diktpa
avalAtnong yla TV mapoucioon Toug.

To 6Ao €pyo amoteAeital anod 3 {exwplota PéEpN: TO UNXaviopo (python scripts evtog Docker
containers) mou €fayel T mAnpodopieg, to back-end (Django REST Framework) mou eivat
UMEVBUVO yla TNV El0OYWYN TWV ELCAXOEVTWY XOPAKTNPLOTIKWY otn PBdacn dedopévwy, tnv
avalnTnon o€ aUTr UE BACN CUYKEKPLUEVA KPLTHPLA, KABWG KaL YLa TNV TOPOX TWV OVTLoTOL WV
anoteAeopatwy oto front-end. To teAevutaio koppatt amoteAel to front-end (React.js), Tou
omoiou 0 poAog eival va AapPavel ta anoteAéopata avaltnong mou mapexovral anod to back-
end Kal va ta tapouolalel Pe vav KOAQ SounUEVo Kal SLoodnTiko tpormo.

To teAkd amotédeopa ival pla dStadiktuakn edappoyr mou pnopei va wdeAnoeL TG00 TOug
enayyeApatie¢ mAnpodoplkng 600 Kal Toug amAoug xpRoteg Linux. Evag dev ops pnxavikog a
EKTLUNOEL Olyoupol XOPOKTNPLOTLIKA OTIWG TO HEYEDOC TTAKETOU KAl TNV ASELa Xpriong, EVW OE €vav
a6 xprnotn Ba apéaoel n eUKoAn avalitnon MakETwy Kat N Ann ekteAéoipwy apxeiwv (deb,
rom) péow ameuBeiag cuvOECUWY. ZUVOALKA €XOUV CUYKeVTpwOEel meplocotepa and 240.000
TIAKETA Aoylopikou. To €pyo umootnpilel emt tou mapovtog ta Ubuntu 20.04, Debian 11, Kali
2021.4, Fedora 34 kot CentOS 8.4.2105, aAA& pnopel eUKoAa va eTekTaBel yla va cu umeplAaBet
OKOUN TIEPLOCOTEPEC SLAVOUEG TTIOU Xpnotpomnololv tov apt) tov dnf/yum package manager.
OAOKANpN n edpappoyn eival containerized Kot eMopEVWE UMopet va yivel eUkoAa deploy, Héow
€voG apyeiov Docker-Compose.

NEEELC KAEWOLA: Alavouég Linux, makéta Aoyloptkol, amoBetriplo, cuAoyr) TAnpodopLWY,
Stadiktuakn epapuoyn

Abstract

The purpose of the particular thesis is the development of a software web application
(“PKGman”) that periodically collects a number of useful attributes about popular Linux
distributions’ software packages (e.g. name, available versions, size), stores them in a database
and also provides a website with search filters for their presentation.

The whole project consists of 3 distinguished parts: the mechanism (python scripts within Docker
containers) which extracts the information, the back-end (Django REST framework) which is
responsible for populating the database with the extracted attributes, querying it based on
specific search criteria and feeding the front-end with the corresponding results. The last part is
the front-end (React.js), whose role is to consume the queried results provided by the back-end
and present them in a well structured and intuitive way.

The end result is a web application that can benefit IT professionals and regular linux users alike.
A dev ops engineer will surely appreciate attributes such as package size and license, while a
simple user will definitely like the easy package searching and binary file (i.e. deb, rpm)
downloading via direct link. More than 240,000 software packages have been collected, in total.
The project currently supports Ubuntu 20.04, Debian 11, Kali 2021.4, Fedora 34 and CentOS
8.4.2105, but it can easily be extended to include even more distributions that utilize the apt or
dnf/yum package manager. The whole application is containerized and thus easily deployable via
a Docker-Compose file.

Keywords: Linux distributions, software packages, repository, information collection, web
application

LIST OF FIGURES

Fig.1: installing a software package via command line, on Ubuntu.........ccccecveevernvnncnnne. 0.18
Fig.2: installing a software package via the GUI application, on Ubuntu..........ccccueueue..e. 0.18
Fig.3: apt package manager - package info presentation.........cccceoevveinencennccciceinecneenes 0.19
Fig.4: dnf package manager - package info presentation..........ccccevevevevevececer e, 0.20
Fig.5: pacman package manager - package info presentation.........ccccccecvevueivininecnecneenne. .21
Fig.6: CroNTab SYNTAX....ciiiieiciieiiet ettt et st s s st e e e e e en e 0.25
Fig.7: Ubuntu package website - info for nano package..........cocecevveeeiiecreininicicieiereee 0.25
Fig.8: Fedora package website - info for nano package........ccceoeveeeeceenincccee e, 0.25
Fig.9: cron job file for executing the run_all_collector_scripts.sh script.....cccccceverveeneee. 0.29
Fig.10: run_all_collector _SCriptS.Sh. ..ttt et et et eneeraenan 0.29
Fig.11: apt/dnf collector scripts PSEUO COUE.......ocimiiririeececreeterieeee et .31
Fig.12: salsa.debian.org API’S JSON FESPONSE......ccveveiuirceeireireceeneeereesteseeseeereesesseessensesnneas 0.31
T S T VAV I o o V- | TR 0.33
Fig.14: OAuth 2.0 Access / Refresh tokens fIoW........cccueeeeecececericeice et e 0.34
Fig.15: Django REST serializer for Package information............coevevveieccnne e, 0.34
Fig.16: Django model for Package information........c.cccoveveceeceeneeiececceece e 0.35
Fig.17: Back-end APl @NAPOINTS....c.vicuiiieieere ettt et et eree st eseesresreseraesses e nesnes 0.36
Fig.18: PKGman landing page with the highest rated packages in descending order......0.37
Fig.19: PKGman collapsible package results with corresponding versions..........cce.ueu..... 0.38
Fig.20: PKGMAN SEAICh filLEIS ..ottt st e 0.38
Fig.21: PKGman selected table COIUMNS.......cuieeieee et b et c.39
Fig.22: PKGman selected packages (VEIrSiONS)......ccccvvvrveeeeiiieeeiieiieiecccirireereeeeeeeeeeeee e 0.39
Fig.23: PKGman selected packages information extracted in JSON format....................... 0.40
Fig.24: PKGman generated Dockerfile with user’s selected packages (versions)............. 0.40
Fig.25: PKGMan l0g iN/SIigN UP fOIMS......uovieiiieceeeieeee ettt ettt vt s s eaa s s v s nanes 0.41

10

LIST OF ILLUSTRATIONS

[1.1: whole app’s architeCture........oeeeeeeeeeceecececeee e 0.28
[1.2: database SChemMa........cccocceiieceee e 0.31

11

Abbreviations

csv Comma Separated Values

JSON JavaScript Object Notation

JWT JSON Web Token

DNF Dandified YUM

YUM Yellow-Dog Updater Modified

API Application Programming Interface
REST Representational state transfer
HTTP Hypertext Transfer Protocol

HTML HyperText Markup Language

XML Extensible Markup Language

JSX JavaScript XML

DOM Document Object Model

URL Uniform Resource Locator

Ul User Interface

I/O Input/output

distro Linux Dlstribution

repo Repository

admin Administrator

RFC Request for Comments

RSA Rivest—Shamir—Adleman

HMAC Keyed Hash Message Authentication Code
ECDSA Elliptic Curve Digital Signature Algorithm
SWHID Software Heritage Identifier

12

1. Introduction

1.1 Contributions of this thesis

PKGman as an open source project itself could offer benefits to many and diverse members of

the linux community.

IT professionals, especially dev ops engineers often want to compare software packages from
different linux distributions in order to choose one for production environments. Packages’
availability, size, license are particularly important factors when making such a decision. With
PKGman they can easily have access to thousands of packages’ information, relieving them from
the necessity of installing multiple linux distributions locally. Not only that, but PKGman has a
functionality that allows users to generate and download Dockerfiles with their selected
packages and even with specific versions of their selected packages. Additional export methods,

to JSON/CSV formats, are also available.

Furthermore, software developers can take advantage of PKGman, since it provides direct links
to the packages’ code repositories, official websites with documentation and maintainers’

contact details for possible questions, new feature requests and bug reporting.

However even casual linux users can benefit from PKGman, as they may just want to find a
package to install for their everyday needs, like a good video player. PKGman gives users the
opportunity to search for packages with keywords or within a chosen category, such as
multimedia. Then they can conveniently download the corresponding selected binary file (i.e.
deb, rpm) via direct link. Last but not least, the rating system it supports can help users to avoid

installing bad quality software packages.

13

1.2 Thesis outline

First of all, we’ll start with a presentation of Linux software packages and their corresponding
package managers. We'll continue by mentioning the existing related work in gathering Linux
packages. After that, we’ll make a documentation of the technology stack used in this project,
whereas crussial technical, implementation details and decisions will be explained. Finally, we’ll

sum up and note possible extensions and future work to be done.

1.3 Linux packages

Most modern Linux operating systems offer a centralized mechanism for finding and installing
software. Software is usually distributed in the form of packages, kept in repositories. Package
repositories help to ensure that code has been vetted for use on your system, and that the
installed versions of software have been approved by developers and package

maintainers.(Bearnes, 2016)

A package delivers and maintains new software for Linux-based machines. Just as Windows-
based computers rely on executable installers, the Linux ecosystem depends on packages that
are administered through software repositories. These files govern the addition, maintenance,

and removal of programs on the computer. (Haas, 2020)

A package consists of a collection of files that perform a task. A package file is usually an archive
which contains compiled binaries and other resources making up the software, along with
installation scripts. Packages also contain valuable metadata, including their dependencies, a list

of other packages required to install and run them. (Bearnes, 2016)

Each Linux distribution offers thousands of packages through their official repositories. Each

package can have its own different versions, as well.

14

1.4 Linux package managers

Working with packages is known as package management. Linux supports several major different
types of package managers. Each performs the same basic functions but uses a slightly different
under-the-hood architecture and different user interfaces to perform the package-manager's
core tasks. Generally, each one allows users to perform actions such as installing and managing
new packages, removing unnecessary packages, upgrading the already-installed packages,

searching for specific packages and updating the system to the latest available version.

For example for package installation/uninstall, regardless of the specific package manager, the
user launches a software catalog that reads from one or more repositories (archives of software
optimized for a given platform). Then he picks-and-chooses which software to install or uninstall
through the graphical catalog, or uses a shell session to execute the commands manually. (Haas,

2020)

-

howtogeek@ubuntu; ~

howtogeek@ubuntu:~$ sudo apt-get install thunderbird
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
thunderbird-globalmenu thunderbird-gnome-support
Suggested packages:
latex-xft-fonts
The following packages will be upgraded:
thunderbird thunderbird-globalmenu thunderbird-gnome-support
3 upgraded, ® newly installed, ©® to remove and 285 not upgraded.
Need to get 21.6 MB of archives.
After this operation, 1,368 kB of additional disk space will be used.
Do you want to continue [Y¥/n]? I

Fig.1: installing a software package via command line, on Ubuntu

15

GVim Source ubuntu-focal-updates-universe -

GVim * %k k% (62)
Edit text Files

Vimis an almost compatible version of the UNIX editor Vi.

This package contains files shared by all GUI-enabled vim variants available in
Debian. Examples of such shared files are: gvimtutor, icons, and desktop
environments settings.

Website
Details
Version 2:8.1.2269-1ubunku5.7
Updated Never
Category Utilities = Text Editors
License Proprietary
Source ubuntu-focal-updates-universe
Download Size 86,5 kB

Fig.2: installing a software package via the GUI application, on Ubuntu

Common package-management systems include:

e DPKG: The base package manager for Debian-based distributions.

e Apt: A front-end for the DPKG system, found in Debian-based distributions, such as
Ubuntu, Linux Mint, and Elementary OS.

o Apt-get: A more feature-rich front-end for the DPKG system, found in Debian-based
distributions.

e RPM: The base package manager found in Red Hat-based distributions, such as Red Hat
Enterprise Linux, CentOS, and Fedora.

e Yum: A front-end for the RPM system, found in Red Hat-based distributions.

o Dnf: A more feature-rich front-end for the RPM system.

® ZYpp: Found in SUSE and OpenSUSE.

e Pacman: The package manager for Arch Linux-based distributions.

16

2. Background

2.1 Package Information

The particular project is focused on packages’ attributes collection. The several package

managers can provide information about a number of package characteristics.

For example the apt package manager lists the following package characteristics:

5 apt show nano

Package: nano

Version: 2.8.6-3

Priority: standard

Section: editors

Origin: Ubuntu

Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com=
original-Maintainer: Jordi Mallach <jordifdebian.org=

Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-5ize: 766 kB

Depends: libc6t (== 2.14), libncurseswh (»= 6), libtinfo5 (= 6)
Suggests: spell

Conflicts: pico

Breaks: nano-tiny (<< 2.8.6-2)

Replaces: nano-tiny (<< 2.8.6-2), pico

Homepage: https://www.nano-editor.orqg/

Task: standard, ubuntu-touch-core, ubuntu-—-touch

Supported: 9m

Download-S5ize: 222 kB

APT-Manual-Installed: yes

APT-S5ources: http://in.archive.ubuntu.com/ubuntu artful/main amdé4 Packages

Description: small, friendly text editor inspired by Pico

Fig.3: apt package manager - package info presentation (Subramanian, 2018)

17

The dnf package manager lists the following package characteristics:

$ dnf info tilix
Last metadata expiration check: 27 days, 10:00:23 ago on Wed 04 Oct 2017 06:4
Installed Packages

Name : tilix

Version : 1.6.4

Release : 1.fc26

Brch : x86_64

Size : 3.6 M

Source : tilix-1.6.4-1.fc2b.src.rpm

Repo : @System

From repo : @commandline

Summary : Tiling terminal emulator

URL : https://github.com/gnunnl/tilix
License : MPLv2.0 and GPLv3+ and CC-BY-SA

Description : Tilix is a tiling terminal emulator with the following feature:

Fig.4: dnf package manager - package info presentation (Subramanian, 2018)

The pacman package manager lists the following package characteristics:

$ pacman -Qi bash

Name : bash

Version : 4.4.012-2

Description : The GNU Bourne Again shell

Architecture : x86_64

URL : http://www.gnu.org/software/bash/bash.html
Licenses : GPL

Groups : base

Provides : sh

Depends On : readline>=7.0 glibe ncurses

Optional Deps : bash-completion: for tab completion
Required By : autoconf automake bison bzip2 ca-certificates-utils db

dheped diffutils e2fsprogs fakeroot figlet findutils
flex freetype2 gawk gdbm gettext gmp grub gzip icu
iptables keyutils libgpg-error 1libksba libpcap libpng
libtool 1vm2 m4 man-db mkinitepio nano neofetch nspr
nss openresolv os-prober pacman pcre pecre2 shadow
systemd texinfo vte-common which xdg-user-dirs =xdg-util

xfsprogs xorg-mkfontdir =XxXorg-xpr Xz

Optional For : None
Conflicts With : None
Replaces : None

Installed Size
Packager

Build Date
Install Date
Install Reason
Install Script
Validated By

Fig.5: pacman package manager - package info presentation (Subramanian, 2018)

:+ 7.13 MiB

: Jan Alexander Steffens (heftig)
: Tue 14 Feb 2017 01:16:51 PM UTC
: Thu 24 Aug 2017 06:08:12 AM UTC
: Explicitly installed

: No

: Signature

18

2.2 Django REST Framework

Django REST Framework was used for the development of the application’s back-end. It is a
powerful and flexible toolkit for building RESTful Web APIs. Django is a high-level Python web
framework that enables rapid development of secure and maintainable websites. Built by
experienced developers, Django takes care of much of the hassle of web development, so that
the developer can focus on writing his app without needing to reinvent the wheel. It is free and
open source, has a thriving and active community and great documentation. (Django

Introduction - Learn Web Development | MDN, 2022)

Django helps writing software that is:

e Complete
Django follows the "Batteries included" philosophy and provides almost everything developers
might want to do "out of the box". Because everything a developer needs is part of the one
"product”, it all works seamlessly together, follows consistent design principles, and has
extensive and up-to-date documentation. Additionally, it provides an optional administrative
create, read, update and delete interface that is generated dynamically through introspection

and configured via admin models.

e Versatile
Django can be (and has been) used to build almost any type of website, from content
management systems and wikis, through to social networks and news sites. It can work with any
client-side framework, and can deliver content in almost any format (including HTML, JSON, XML,
etc). Internally, while it provides choices for almost any functionality a developer might want
(e.g. several popular databases, templating engines, etc.), it can also be extended to use other

components if needed.

e Secure

Django helps developers avoid many common security mistakes by providing a framework that

has been engineered to "do the right things" to protect the web app automatically. For example,

19

Django provides a secure way to manage user accounts and passwords, avoiding common
mistakes like directly storing passwords rather than a password hash.Django enables protection
against many vulnerabilities by default, including SQL injection, cross-site scripting, cross-site

request forgery and clickjacking.

e Scalable
Django uses a component-based "shared-nothing" architecture (each part of the architecture is
independent of the others, and can hence be replaced or changed if needed). Having a clear
separation between the different parts means that it can scale for increased traffic by adding
hardware at any level: caching servers, database servers, or application servers. Some of the
busiest sites have successfully scaled Django to meet their demands (e.g. Instagram and Disqus,

to name just two).

e Maintainable
Django code is written using design principles and patterns that encourage the creation of
maintainable and reusable code. In particular, it makes use of the “Don't Repeat Yourself” (DRY)
principle so there is no unnecessary duplication, reducing the amount of code. Django also
promotes the grouping of related functionality into reusable "applications" and, at a lower level,

groups related code into modules.

e Portable
Django is written in Python, which runs on many platforms. That means that it is not tied to any
particular server platform, and can run its applications on many flavors of Linux, Windows, and
Mac OS X. Furthermore, Django is well-supported by many web hosting providers, who often

provide specific infrastructure and documentation for hosting Django apps.

20

2.3 SQLite

SQLite was used as the application’s database. SQLite is an in-process library that implements a
self-contained, serverless, zero-configuration, transactional SQL database engine. The code for
SQLite is in the public domain and is thus free for use for any purpose, commercial or private.

SQLite is the most widely deployed database in the world, including several high-profile projects.

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not
have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete
SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.
The database file format is cross-platform (one can freely copy a database between 32-bit and
64-bit systems or between big-endian and little-endian architectures). These features make

SQLite a popular choice as an Application File Format.

SQLite is a compact library. With all features enabled, the library size can be less than 750KiB,
depending on the target platform and compiler optimization settings. 64-bit code is larger. And
some compiler optimizations such as aggressive function inlining and loop unrolling can cause
the object code to be much larger. There is a tradeoff between memory usage and speed. SQLite
generally runs faster the more memory it has been given. Nevertheless, performance is usually

quite good even in low-memory environments.

SQLlite is very carefully tested prior to every release and has a reputation for being very reliable.
Most of the SQLite source code is devoted purely to testing and verification. An automated test
suite runs millions and millions of test cases involving hundreds of millions of individual SQL
statements and achieves 100% branch test coverage. SQLite responds gracefully to memory
allocation failures and disk 1/O errors. Transactions are ACID even if interrupted by system
crashes or power failures. All of this is verified by the automated tests using special test harnesses

which simulate system failures. (About SQLite, n.d.)

21

2.4 React JavaScript library

React was utilized in order to build the application’s front-end. It is a JavaScript library, created

by Facebook. It is a tool for building interactive Ul components.

Instead of manipulating the browser's DOM directly, React creates a virtual DOM in memory,
where it does all the necessary manipulating, before making the changes in the browser DOM. It
basically creates an in-memory data-structure cache, computes the resulting differences, finds

out what changes have been made, and changes only what needs to be changed.

It is Declarative, meaning that the developer can design simple views for each state in an
application, and React will efficiently update and render just the right components when the data

changes. Declarative views make the code more predictable and easier to debug.

It is also Component-Based, meaning that it gives a developer the opportunity to build
encapsulated components that manage their own state, then compose them to make complex
Uls. Since component logic is written in JavaScript instead of templates, rich data can be easily

passed through the app and state can be kept out of the DOM.

React can be used as a base in the development of single-page or mobile applications, as it is
optimal for fetching rapidly changing data that needs to be recorded. However, fetching data is
only the beginning of what happens on a web page, which is why complex React applications,
like the particular one, usually require the use of additional libraries for state management,
routing, and interaction with an APl: Redux, React Router and axios are examples of such

libraries.

React components are typically written using JSX, or JavaScript XML, although they do not have
to be (components may also be written in pure JavaScript). JSX is an extension to the JavaScript
language syntax. Similar in appearance to HTML, JSX provides a way to structure component

rendering using syntax familiar to many developers.

22

Lifecycle Methods

Lifecycle methods are custom functionality that gets executed during the different phases of a
component. There are methods available when the component gets created and inserted into
the DOM (mounting), when the component updates, and when the component gets unmounted

or removed from the DOM.

Most widely used lifecycle methods include:

e shouldComponentUpdate allows the developer to prevent unnecessary re-rendering of
a component by returning false if a render is not required. In that way, the application
can be optimized.

e componentDidMount is called once the component has "mounted" (the component has
been created in the user interface, often by associating it with a DOM node). This is
commonly used to trigger data loading from a remote source via an API.

e componentWillUnmount is called immediately before the component is torn down or
"unmounted". This is commonly used to clear resource demanding dependencies to the
component that will not simply be removed with the unmounting of the component (e.g.,
removing any setinterval() instances that are related to the component, or an
"eventListener" set on the "document" because of the presence of the component).

o render is the most important lifecycle method and the only required one in any
component. It is usually called every time the component's state is updated, which should

be reflected in the user interface.

23

2.5 Cron Job

A Cron Job was utilized to implement the periodic collection of package information. Cron is a
utility program that lets users input commands for scheduling tasks repeatedly at a specific time.
Tasks scheduled in cron are called cron jobs. Users can determine what kind of task they want to
automate and when it should be executed.

Cron is a daemon i.e. a background process executing non-interactive jobs. A daemon is always
idle, waiting for a command to request it to perform a particular task. The command can be input

on any computer on the network.

A cron file is a simple text file that contains commands to run periodically at a specific time. The
default system cron table or crontab configuration file is /etc/crontab, located within the crontab

directory /etc/cron.*/.

With cron jobs, users can automate system maintenance, disk space monitoring, and schedule
backups. Because of their nature, cron jobs are great for computers that work 24/7, such as

servers. (Cron Job: A Comprehensive Guide for Beginners 2022, 2022)

The crontab syntax consists of five fields with the following possible values:

o Minute:The minute of the hour the command will run on, ranging from 0-59.

e Hour: The hour the command will run at, ranging from 0-23 in the 24-hour notation.

e Day of the month: The day of the month the user wants the command to run on, ranging
from 1-31.

e Month: The month that the user wants the command to run in, ranging from 1-12, thus
representing January-December.

e Day of the week: The day of the week for a command to run on, ranging from 0-6,

representing Sunday-Saturday. In some systems, the value 7 represents Sunday.

24

minute (@ - 59)

| hour (@ - 23)

1| day of the month (1 - 31)

]| month (1 - 12)

#1011 day of the week (@ - &) (Sunday to Saturday;
#1111 7 is also Sunday on some systems)
#1001

#1001

* * * * * command to execute

Fig.6: crontab syntax

3. Related work

Whereas almost every Linux distribution has its own packages website there are no centralized
ones that include package information from various different distributions. Another issue is that
most of these websites do not provide all the core information that a package manager can show
for a software package. Additionally, usually there is no consistency among them, in the
information they present.

UL =

bionic

Péckage: nano (2.9.3-2)

small, friendly text editor inspired by Pico
Links for nano

Other Packages Related to nano

Ubuntu Resources:

BSEacEs
Download nano .
A small text editor
Malntsinas & Builds & Updates & Bugs 4 Sources @ Crash Reports = Koschei
GNU nano is a small and friendly text editor. Package Info
« Upstream: https:/iwww.nano-editor.org
Releases Overview + License(s): GPLV3+
« Maintainers: dwmw2, kdudka, svashisht
Original Maintainers (usually Release Stable Testing
from Debian):
Fedora Rawhide 6.21.1c37
Fedora 36 6.0-21c36
ntact the original maintainer. Fedora 35 5.8-4c35
External Resources:
Fedora 34 583134 56.1-110c34

Fig.7: Ubuntu package website - info for nano package (left)
Fig.8: Fedora package website - info for nano package (right)

25

4. PKGman

PKGman is a web application that periodically collects a number of useful attributes about

popular Linux distributions’ software packages, stores them in a SQLite database and also

provides a website with search filters for their presentation.

The application currently supports the following Linux distributions:

Ubuntu 20.04
Debian 11

Kali 2021.4
Fedora 34
CentOS 8.4.2105

The collected package attributes are the following:

For every package version the following attributes are also collected:

Note

name

Linux distribution [Ubuntu, Debian, Kali, Fedora, CentOS]
type [deb, rpm]

category

license

maintainer

description

homepage website URL

code repository URL

name
architecture
size

binary file URL

: each package can have multiple versions

26

The whole application is containerized and split into services which are orchestrated via a
Docker-Compose file. Because of this, it can be easily run by just one command:

S docker-compose up - -build

The diagram below depicts a representative visualization of the app’s architecture and

technology stack.

*dockrzr

SQLite

=
| (O debian
ey : cren -jO b ——* Z """"""" KALI LiNuk

O redora

| ¥ python

dnf esllector s

« > CentOS

I1.1: whole app’s architecture

As we can see on the diagramm there are three main services:

e the collection mechanism: a Cron-Job that builds the Linux distributions Docker images
(Ubuntu, Fedora etc.) and spawns the corresponding containers inside of which the
python scripts, responsible for the package info collection, are being executed.

e the back-end: developed using the Django REST framework. It is responsible for
populating the database with the extracted attributes, querying it based on specific
search criteria and feeding the front-end with the corresponding results. It utilizes a
SQLite database.

e the front-end: developed using the React.js library. Its role is to consume the queried

results provided by the back-end and present them in a well structured and intuitive way.

27

4.1 Package information Collection

The package information collection mechanism is triggered once a month, through a Cron-Job
service which runs endlessly on a Docker container. Once it is triggered, it executes the
run_all_collector_scripts.sh script, which is responsible for building the image for every
supported Linux distribution and executing the right collector python script, within the
corresponding container. The run_all _collector _scripts.sh script spawns the new Docker
containers (for every supported Linux distribution) on the host machine. It also contains some

environment variables that are passed on the newly spawned containers.

00 1** /bin/sh /collector/run all collector scripts.sh > /proc/1/fd/1 2> /proc/1/fd/2

2 # the script will be executing at 00:00 on the 1st of every month

Fig.9: cron job file for executing the run_all_collector_scripts.sh script

DOCKER_VOL |
WORK_DIR=
SHM SIZ
BACKEND A
GITHUB_TOKEN
USERNAME=""
PASSWORD="

docker build -t ubuntu distro -f $WORK DIR/ubuntu.Dockerfile $WORK DIR

docker run --rm $DOCKER VOL MOUNT --net host --shm-size=$SHM SIZE \
--env GITHUB-TOKEN=$GITHUB_TOKEN --env USERNAME=$USERNAME --env PASSWORD=$PASSWORD \
ubuntu_distro python3 apt_collector.py -d Ubuntu -u $BACKEND API -a http://archive.ubuntu.com/ubuntu

docker build -t debian_distro -f $WORK DIR/debian.Dockerfile $WORK DIR
docker run --rm $DOCKER VOL MOUNT --net host --shm-size=$SHM SIZE \
--env GITHUB-TOKEN=$GITHUB TOKEN --env USERNAME=$SUSERNAME --env PASSWORD=$PASSWORD \
debian distro python3 apt_collector.py -d Debian -u $BACKEND API -a http://ftp.debian.org/debian

Fig.10: run_all_collector_scripts.sh

There are two python scripts for extracting and collecting the package attributes:
e apt_collector.py: used for the Ubuntu, Debian and Kali distributions

e dnf_collector.py: used for the Fedora and CentOS distributions

They communicate with the back-end using HTTP requests via a RESTful API.

Both of them share the following command line arguments:
® --max-concurrency, -c <int> [default: 50]: Number of maximum packages that will be

processed concurrently

28

o --distro, -d <str>: The linux distribution name
e --API-URL, -u <url>: Back-end APl base URL

e --archives-url, -a <url>: Linux distribution's archives base URL

Apart from those, the dnf _collector.py also accepts the:

® --repos-url, -r <url>: Linux distribution’s packages code repository base URL

Both scripts expect the following environment variables to be passed on:
o GITHUB-TOKEN: an access token for Github, since its APl will be utilized to extract some
package attributes that the package managers may not always provide.
e USERNAME / PASSWORD: user’s credentials to login to the back-end API, since not

everyone is allowed to add package information to the database.

Both scripts utilize the Ray framework. Ray is an open source project that makes it simple to scale
any compute-intensive python workload. With a rich set of libraries and integrations built on a
flexible distributed execution framework, Ray makes distributed computing easy and accessible.
Parallelization is crucial on the particular application, due to the big amount of packages each

Linux distribution provides (e.g. Ubuntu has almost 60,000 packages).

The scripts’ logic can be depicted in the following pseudo code:

n not in

save_new_pkg_version_info(pkg, new

Fig.11: apt/dnf collector scripts pseudo code
One thing to note is that the apt and dnf package managers do not provide exactly the same

information for packages. For example the apt one does not provide the license attribute as the

dnf does. Furthermore, none of them normally provide URLs for the packages source code

29

repositories. For this reason, these attributes are attempted to be extracted from their github or
their distribution’s equivalent online repositories (e.g. salsa.debian.org for Debian) API. However

this is not always possible.

org: freeipa-teamy

as vity at: 10T i

Fig.12: salsa.debian.org API’s JSON response

4.2 Back-end

The back-end was developed using the Django REST framework. It is responsible for populating
the database with the extracted attributes (feeded by the collector scripts), querying it based on
specific search criteria (feeded by the front-end) and feeding the front-end with the

corresponding results. It utilizes a SQLite database.

On the diagram below, the database’s schema is depicted. The tables for storing the packages’
information are the api_package and api_packageversion. The api_rating table is used for
storing users’ ratings on package versions. The auth_user table is for the default Django user
data. The token_blacklist_outstandingtoken, token_blacklist_blacklistedtoken tables are for

authorization purposes. All the other tables are for the Django's integrated permission system.

30

= auth_group_permissions = auth_group = auth_user_groups = api_package

id I e Jiiiid id 13id
=5 group_id fscname 1z2yser_id =2t password secname
123 permission_id 23 group_id Al = last_login rec distro
H “o1#3is_superuser nec bype
H s ysername e section
< . .---~"reclast_name #et license
‘ = email ~cmaintainer
1%id Fid |=is_staff e description
123 content_type_id oot %2 user_id .- |'=sis_active st homepage
s codename 123 permission_id = date_joined e repo_URL
" Name = first_name v

'
'

== token_blacklist_blacklistedtoken = token_blacklist_outstandingtoken == api_packageversion

Hid Hid 3id Hid
#ecblacklisted_at | ST -|rctoken 123 rate . e version
123 token_id e created_at 123 pkg_version_id "= -gl=c architecture
e @xpires_at 12suser_id sec swhid
123yser_id 1z3swhid_exists
na:jt] 2igjze
2ipackage_id
¢ binary_URL

I1.2: database schema

The application supports four user categories:

e visitors: unauthenticated users that have read rights to every resource and no write

permission to anything.
e regular users: authenticated users that can additionally rate package versions.

o package collector: authorized users that can additionally add package information to the

database using the API.

e admins: authorized users that have access to every resource with read and write
permissions. Furthermore, they have access to Django's admin panel and can upgrade a

regular user to a package collector.

As for the authorization the OAuth 2.0 protocol was followed utilizing JWTs. The JSON Web Token
(JWT) is an open standard (RFC 7519) that defines a compact and self-contained way for securely
transmitting information between parties as a JSON object. This information can be verified and
trusted because it is digitally signed. JWTs can be signed using a secret (with the HMAC algorithm)

or a public/private key pair using RSA or ECDSA.

31

JWT is widely used nowadays, because of its small overhead and its ability to be easily used across

different domains. (JSON Web Token Introduction - Jwt.io, n.d.)

ALGORITHM HS256

Encoded Decoded

HEADER
eyJhbGci0iJIUzITNiIsInR5cCI6
IkpXVCJ9.eyJzdWIiOiIXMjMBNTY {
30DkwIiwibmFtZSI6IkpvaG4gRGY
1TiwiYWRtaW4i0nRydWV9.TJVASS }

‘alg”: "HS256",

"typ": "JW

E2cBab3ORMHrHDcEfxjoYZge

PAYLOAD:

h7HaQ

VERIFY SIGNATURE

Fig.13: JWT format

OAuth 2.0 uses Access Tokens and Refresh Tokens.

The Access token contains all the information the server needs to know if the user can access the
resource he is requesting or not. They are expired tokens with a short validity period.

The refresh token is used to generate a new access token. Typically, if the access token has an
expiration date, once it expires, the user would have to authenticate again to obtain an access
token. With refresh token, this step can be skipped and with a request to the APl get a new access
token that allows the user to continue accessing the application resources. That is the case for

the particular application. (Refresh Token With JWT Authentication in Node.js, n.d.)

32

RESTful API

POST Login Request

Access and Refresh

Refresh Token
HTTP request

JWT Auth Needed Unauthorized

React Page Request + Access Token
Browser/Website React

Token Expired {
oken Expire Browser/Website POST Login Request

Refresh Token
New Token New Tokens

Page Request + Access Token

Fig.14: OAuth 2.0 Access / Refresh tokens flow

The APl endpoints were implemented using Django REST’s ModelViewSet, whereas for data

serialization the Django REST’s ModelSerializer was used.

rating = serializers
rating(self, obj):
if obj.rating
return @

validated data):
lidated data.popl(

ersion)

Fig.15: Django REST serializer for Package information

33

For the database creation the Django models were utilized.

ac C L):
name = . Ld(max_ length=100)
distro arField(max length=50)
type = mot ield(max length=20, default='")
section = irField(max length=50, blank= , default="")

license odels irField(max length=300, blank= , default="'")
maintainer = CharField(max length=200, blank= , default="")
description CharField(max length=300, blank= , default="")
homepage = mode ield(max length=500, blank= , default="")
repo URL = models.URLField(max length=500, blank= , default="")

Fig.16: Django model for Package information

Due to the huge amount of stored packages Django REST’s pagination functionality has been

enabled, returning multiple pages of 10 results per page.

34

API

A full APl documentation can be found on <BACK_END_BASE_URL>/api/v1/swagger/.

packages

[

packages_list

(o ey

packages_create

| L8 /packages/dockerfile/

packages_dockerfile

| m /packages/versions/

packages_versions_list

| /packages/versions/

packages_versions_create

| m /packages/versions/ratings/

packages_versions_ratings_list

| /packages/versions/ratings/

packages_versions_ratings_create

| m /packages/versions/ratings/{id}/

packages_versions_ratings_read

| m /packages/versions/ratings/{id}/

packages_versions_ratings_update

| m /packages/versions/ratings/{id}/

packages_versions_ratings partial update

l /packages/versions/ratings/{id}/

packages_versions_ratings_delete

| m /packages/versions/{id}/

packages_versions_read

| m /packages/versions/{id}/

packages_versions_update

| m /packages/versions/{id}/

packages_versions_partial update

l /packages/versions/{id}/

packages_versions_delete

|m /packages/{id}/

packages_read

|m /packages/{id}/

packages_update

|m /packages/{id}/

packages_partial update

l /packages/{id}/

packages_delete

| /packages/{id}/versions/

packages_versions

users

| I fusers/Login/

users_login_create

| /fusers,/Login/token/refresh;/

users_login token_refresh create

| fusers/Llogout/

users_logout_create

| S8 /users/register/

users_register_create

Fig.17: Back-end APl endpoints

35

4.3 Front-end

The front-end was developed using the React.js library. Its role is to consume the queried results
provided by the back-end and present them in a well structured and intuitive way. It

communicates with the back-end with HTTP requests via a RESTful API.

For the package presentation the react-data-table-component npm package was used. The
default results consist of the highest rated packages, in a descending order. The results are
paginated, meaning that when the next page icon is clicked a new batch of results will be fetched

from the back-end. The pagination is essential due to the enormous amount of the results.

Useful info For Linux distributions packages
=0 sow: 5] | (] | [mom) | (immr] o (] o] (] o (=)o [rmewom)e |
Package Distribution Tpe category Rating License Maintainer Website CodeRepostory Description

Python Applications Packaging Team

Automatic model cade generator for

o > lacod deb Pytho 0 SQLAIchemy

[m] > 0 deb games. 0 Othes Reattime strategy game of ancient warfare
(=] > R-clisymbols pm 40 MIT Unicode Symbels at the R Prampt

o > ficar . P — The Maila CA oot cetifiate bundie

o N Oinstall-core deb admin . o license ;c‘u’i“dsmhutmn packaging system (non-Gul
[m] » ps-libs om 35 LGPLY2 and 2lib CUPS printing system - libraries

o > o o s G andBsDand i ang Cross ltform TS Came of Ancent Warare
o » o ram 30 GPL2+ Access control list utilities
B - . T COLD ks, s st e
0 > cremlnggitu n 30 soandaszo Tyme-safe Recis s fo Golang

Fig.18: PKGman landing page with the highest rated packages in descending order

Each row of the data-table is collapsible and when expanded each package’s corresponding

versions are presented.

36

Useful info For Linux distributions packages

svo: () 0| ()| ()0 (1) | [mome)o | [ma)o| (=)o () o | M

Package Distribution Type category Rating License Malntainer wiebsite Code Repository Description
Python Applications Packaging Team
O > sqlacodegen deb python s0 . oyplovthonorg/oyp... salsadeblan.org/out... “‘“""“*‘fm"'“’“‘““' generator for
o > oad deb games 40 Other layoad.com/ salsadeblan.org/ga...
O > Reclisymbols rom i it sre fedoraproiect.org CRAN R projiect.ora . Unicode Symbols at the R Prompt
O v cacentificates om 38 Public Domain i afu ’ The Mozilla C4
“Version Architecture. Size ‘Average Rating Binary Downlead Link
[m] 2021.2.52-1.0.Fc34 noarch 362 Bytes. 35 kojipkgs. fedoraproject ora/packaesica-cartificates(2021.2 52/1.0.Fc3asrefca-s +-2021.2.52-1.0.fc34 3rc rpm
O 0281700 naarch 936 Bytes a0 koiipk fea-cortficates 2020 2 41/7.1c34 ates2020 2 41-7 fe3d ssc.rpm

O > oinstallcore deb admin 35 Ho license Thomas Leonard <talexs@gmailcom> Oinstalloet/ github.com/Dinstall/. ;‘:“’““"’“""""“""‘“‘““‘V‘""‘ {ron-GUI
O v cupslibs rom s LGPLYZ and 2ib
Versian Architocture size Awerage Rating Binary Download Link
O 233ep2-13fc3s x86_64 13k8 20 koilpkos. fedoraproject ora/packagesicups-libs/2.3.30n2/13.Fc34/src/cups-2.3.30p2-13 Fe34 sre rpm
O 2330p211fcs x85_64 1686 665 Bytes 50 ksiipkgs.fed packagesfeups/2.3.3092/11 fc3: ps-2.3.30p2-11.fe3d sre.pm

CPLy2+ and BSD and MIT and

0 > o - o e, ntadeon s camest
o > ad Fedorai3a rom 20 GPL2e sl nroject.org/userfkdudk savanna

Fig.19: PKGman collapsible package results with corresponding versions

It also contains a number of search filters so that the user can conveniently search for packages.

Search Filters

Type Distribution

deb x Debian11 X Ubuntu2004 X

Architecture Category

x86_64 database X editors X

Show only exact search matches

Fig.20: PKGman search filters

Additionally the user has the option to hide/show specific columns (package attributes) as he
pleases. Apart from that, multiple columns can be sorted in ascending or descending order. The

sorting is performed on the back-end side for performance purposes.

37

Example: grep

Package

sqlacodegen

O > oad

O > Relisymbols
O > cacertificates
[u] > Dinstall-core
O > cupsdibs

O > oad

o > ad
O > binutils-gold
O > compatgolang-github-redis-devel

Useful info For Linux distributions packages

Distribution

4

Fig.21: PKGman selected table columns

Log in| 1

Rating Description
50 Automatic model code generator for SQLAIchemy
40 Realtime strategy game of ancient warfare
a0 Unicore Symbols at the R Frompt
8 The Mazilla C& oot cartificate bundle
35 cros iion packaging system non-GUI parts)
35 CUPS printing system - libraries
30 Cross-Platform RTS Came of Ancient Warfare
30 Access controllst ukilties
30 The GOLD linker, a Faster altemative to the 87D linker
0 Type-safe Redis lient for Galang

Furthermore, a user can select one or multiple packages. He can even pick specific package

versions. The selected packages (versions) are presented on top of the data-table in a collapsed

list. From there he can easily handle his selection by removing one or all of them. After he is done

with his selection he can extract their information in a CSV / JSON format or even create a

working Dockerfile that contains the appropriate commands for installing them. If the latter is

the case all selected packages must be of the same Linux distribution.

2 packages have been selected v
« Oinstall-core, 2.16-1, Debian:11
« sqlacodegen, Debian:11

Package
> sqlacodegen
a > oad
O > Relisymbols
a > cacertificates
v Oinstall-core

Version

216
] > cups-libs

o > o

o > ad

binutils-gold

Distribution

Architecture

x86_64

Useful info For Linux distributions packages

Category

python

games

admin
size

378k8

Rating

50

40

a0

: PKGman selected packages (versions)

Logout [+

svov (5] 0| (] 0| (] o | (i) o| (o] 0| o] 0| (] 0| (] o| (D

Deselect All @

License Maintainer Website
Python Applications Packaging Team
<python-apps-
team@lists.alioth.debian.org>
o Debian Games Team <pkg-games dlaiitia
devel@iists.alioth debian.org>
M doraproje er/qulogi CRAN R-project org/..
Public Domain elyes d
Nolicense Thomas Leonard <talexs@gmailcom> installnet/
Personal Ratir
3s 4 v fp.debian.org/debian/pool/m.

LGPLY2 and zlib

GPLY2+ and BSD and MIT and
1BM and MPLV2.0

GPLv2+

GPLV3+

oYRLoYthon ora/oYe..

Code Repository

salsadebian.ora/pit..

githubcom/Oinstll...

Description

Automatic model code generator for
5QUAIchemy

Real-time strategy game of ancient warfare
Unicode Symbols at the R Prompt

The Mozilla CA root certificate bundle

cross-distribution packaging system (non-GuI
parts)

or/Oinstall core_2.16-1_amd6d deb

CUPS printing system - libraries
Cross-Platform RTS Game of Ancient Warfare

Access control list utilities

The GOLD linker, a faster alternative to the

38

install @install-core
install sglacodegen

Fig.24: PKGman generated Dockerfile with user’s selected packages (versions)

PKGman also provides log in/sign up functionality. A user must be authenticated in order to be

able to rate a package version.

39

Fig.25: PKGman log in/sign up forms

5. Conclusions and future work

5.1 Conclusions

The end result is a web application that can benefit IT professionals and regular linux users alike.
More than 240,000 software packages have been collected, in total. The project currently
supports Ubuntu 20.04, Debian 11, Kali 2021.4, Fedora 34 and CentOS 8.4.2105, but it can easily
be extended to include even more distributions that utilize the apt or dnf/yum package manager.

The whole application is containerized and thus easily deployable via a Docker-Compose file.

5.2 Future Work

Despite the fact that the end result is a fully functional and deployable application, some

additions and improvements could be made:

1. Support more Linux distributions.

2. Calculate, store and present the Software Heritage Identifier (SWHID) for each package
version.

3. Add export options to more formats.

4. Add full text search functionality.

40

References

(n.d.). Ray - Scaling Python made simple, for any workload. Retrieved February 26, 2022,
from https://www.ray.io/

About SQlite. (n.d.). SQLite. Retrieved February 26, 2022, from
https://www.sqlite.org/about.html

Bearnes, B. (2016, January 4). Package Management Basics: apt, yum, dnf, pkg.
DigitalOcean. Retrieved February 26, 2022, from
https://www.digitalocean.com/community/tutorials/package-management-basics-apt-
yum-dnf-pkg

Cron Job: a Comprehensive Guide for Beginners 2022. (2022, February 9). Hostinger.
Retrieved February 26, 2022, from https://www.hostinger.com/tutorials/cron-job
Django introduction - Learn web development | MDN. (2022, February 18). MDN Web
Docs. Retrieved February 26, 2022, from https://developer.mozilla.org/en-
US/docs/Learn/Server-side/Django/Introduction

Haas, J. (2020, September 11). A Basic Guide to Linux Packages - Software & Apps.
Lifewire. Retrieved February 26, 2022, from https://www.lifewire.com/guide-to-linux-
packages-2202801

JSON Web Token Introduction - jwt.io. (n.d.). JWT.io. Retrieved February 26, 2022, from
https://jwt.io/introduction

Refresh token with JWT authentication in Node.js. (n.d.). Izertis. Retrieved February 26,
2022, from https://www.izertis.com/en/-/refresh-token-with-jwt-authentication-in-
node-js

Subramanian, P. (2018, July 10). How To View Detailed Information About A Package In
Linux. 2DayGeek. Retrieved February 26, 2022, from https://www.2daygeek.com/how-
to-view-detailed-information-about-a-package-in-linux

41

