

 HAROKOPIO UNIVERSITY
SCHOOL OF DIGITAL TECHNOLOGY
DEPARTMENT OF INFORMATICS AND TELEMATICS
POSTGRADUATE PROGRAMME “INFORMATICS AND TELEMATICS”
COURSE “WEB TECHNOLOGIES AND APPLICATIONS”

Software repository aggregator for Linux distributions

Master Thesis

Ioannis Papadopoulos

Athens, 2022

2

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΣΧΟΛΗ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΜΑΤΙΚΗΣ
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ “ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ
ΤΗΛΕΜΑΤΙΚΗ”
ΚΑΤΕΥΘΥΝΣΗ “ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΙΣΤΟΥ”

Αποθετήριο πακέτων λογισμικού διανομών Linux

Μεταπτυχιακή εργασία

Ιωάννης Παπαδόπουλος

Αθήνα, 2022

3

 HAROKOPIO UNIVERSITY
SCHOOL OF DIGITAL TECHNOLOGY
DEPARTMENT OF INFORMATICS AND TELEMATICS
POSTGRADUATE PROGRAMME “INFORMATICS AND TELEMATICS”
COURSE “WEB TECHNOLOGIES AND APPLICATIONS”

Examining Committee

Tsadimas Anargyros (Supervisor)
Teaching Laboratory Staff, Department of Informatics and Telematics,

Harokopio University of Athens

Kamalakis Thomas (Examiner)
Professor, Department of Informatics and Telematics, Harokopio University of

Athens

Michalakelis Christos (Examiner)
Assistant Professor, Department of Informatics and Telematics, Harokopio

University of Athens

4

Ethics and Copyright Statement

I, Ioannis Papadopoulos, hereby declare that:

1) I am the owner of the intellectual rights of this original work and to the best of my knowledge,
my work does not insult persons, nor does it offend the intellectual rights of third parties.

2) I accept that the Library and Information Centre of Harokopio University may, without
changing the content of my work, make it available in electronic form through its Digital Library,
copy it in any medium and / or any format and hold more than one copy for maintenance and
safety purposes.

3) I have obtained, where necessary, permission from the copyright owners to use any third-
party copyright material reproduced in the master thesis while the corresponding material is
visible in the submitted work.

5

Knowledge itself is power,
Sir Francis Bacon

6

Acknowledgements

I would like to thank Mr. Tsadimas for giving me the opportunity to conduct a self-proposed
thesis subject and for the excellent communication we have had during the whole thesis

implementation.

7

TABLE OF CONTENTS

Περίληψη…………………………………………………………………………………...8
Abstract………………………………………………………………………………………9
List of figures…………………………………………………………………………….10
List of illustrations……………………………………………………………….…….11
Abbreviations…………………………………………………………………………….12
1. Introduction…………………………………………………………………………..13
1.1 Contributions of this thesis………………………………………………….13
1.2 Thesis outline………………………………………………………………………14
1.3 Linux packages…………………………………………………………………….14
1.4 Linux package managers………………………………………………………15
2. Background……………………………………………………………………………17
2.1 Package Information…………………………………………………………...17
2.2 Django REST Framework………………………………………………………19
2.3 SQLite………………………………………………………………………………....21
2.4 React JavaScript library………………………………………………………..22
2.5 Cron Job………………………………………………………………………..…….24
3. Related work……………………………………………………………………..….25
4. PKGman…………………………………………………………………………………26
4.1 Package information Collection……………………………………………28
4.2 Back-end……………………………………………………………………………..30
4.3 Front-end…………………………………………………………………………….36
5. Conclusions and future work…………………………………………………40
5.1 Conclusions…………………………………………………………………………40
5.2 Future Work………………………………………………………………………..40

8

Περίληψη

Η παρούσα διπλωματική εργασία έχει ως στόχο την ανάπτυξη μιας διαδικτυακής εφαρμογής

λογισμικού (“PKGman”), η οποία συλλέγει περιοδικά μια σειρά από χρήσιμες πληροφορίες για

πακέτα λογισμικού δημοφιλών διανομών Linux (π.χ. όνομα, διαθέσιμες εκδόσεις, μέγεθος), τις

αποθηκεύει σε μια βάση δεδομένων και επίσης υποστηρίζει έναν ιστότοπο με φίλτρα

αναζήτησης για την παρουσίαση τους.

Το όλο έργο αποτελείται από 3 ξεχωριστά μέρη: το μηχανισμό (python scripts εντός Docker

containers) που εξάγει τις πληροφορίες, το back-end (Django REST Framework) που είναι

υπεύθυνο για την εισαγωγή των εισαχθέντων χαρακτηριστικών στη βάση δεδομένων, την

αναζήτηση σε αυτή με βάση συγκεκριμένα κριτήρια, καθώς και για την παροχή των αντίστοιχων

αποτελεσμάτων στο front-end. Το τελευταίο κομμάτι αποτελεί το front-end (React.js), του

οποίου ο ρόλος είναι να λαμβάνει τα αποτελέσματα αναζήτησης που παρέχονται από το back-

end και να τα παρουσιάζει με έναν καλά δομημένο και διαισθητικό τρόπο.

Το τελικό αποτέλεσμα είναι μια διαδικτυακή εφαρμογή που μπορεί να ωφελήσει τόσο τους

επαγγελματίες πληροφορικής όσο και τους απλούς χρήστες Linux. Ένας dev ops μηχανικός θα

εκτιμήσει σίγουρα χαρακτηριστικά όπως το μέγεθος πακέτου και την άδεια χρήσης, ενώ σε έναν

απλό χρήστη θα αρέσει η εύκολη αναζήτηση πακέτων και η λήψη εκτελέσιμων αρχείων (deb,

rpm) μέσω απευθείας συνδέσμων. Συνολικά έχουν συγκεντρωθεί περισσότερα από 240.000

πακέτα λογισμικού. Το έργο υποστηρίζει επί του παρόντος τα Ubuntu 20.04, Debian 11, Kali

2021.4, Fedora 34 και CentOS 8.4.2105, αλλά μπορεί εύκολα να επεκταθεί για να συμπεριλάβει

ακόμη περισσότερες διανομές που χρησιμοποιούν τον apt ή τον dnf/yum package manager.

Ολόκληρη η εφαρμογή είναι containerized και επομένως μπορεί να γίνει εύκολα deploy, μέσω

ενός αρχείου Docker-Compose.

Λέξεις κλειδιά: Διανομές Linux, πακέτα λογισμικού, αποθετήριο, συλλογή πληροφοριών,

διαδικτυακή εφαρμογή

9

Abstract

The purpose of the particular thesis is the development of a software web application

(“PKGman”) that periodically collects a number of useful attributes about popular Linux

distributions’ software packages (e.g. name, available versions, size), stores them in a database

and also provides a website with search filters for their presentation.

The whole project consists of 3 distinguished parts: the mechanism (python scripts within Docker

containers) which extracts the information, the back-end (Django REST framework) which is

responsible for populating the database with the extracted attributes, querying it based on

specific search criteria and feeding the front-end with the corresponding results. The last part is

the front-end (React.js), whose role is to consume the queried results provided by the back-end

and present them in a well structured and intuitive way.

The end result is a web application that can benefit IT professionals and regular linux users alike.

A dev ops engineer will surely appreciate attributes such as package size and license, while a

simple user will definitely like the easy package searching and binary file (i.e. deb, rpm)

downloading via direct link. More than 240,000 software packages have been collected, in total.

The project currently supports Ubuntu 20.04, Debian 11, Kali 2021.4, Fedora 34 and CentOS

8.4.2105, but it can easily be extended to include even more distributions that utilize the apt or

dnf/yum package manager. The whole application is containerized and thus easily deployable via

a Docker-Compose file.

Keywords: Linux distributions, software packages, repository, information collection, web

application

10

LIST OF FIGURES

Fig.1: installing a software package via command line, on Ubuntu………………………….….σ.18
Fig.2: installing a software package via the GUI application, on Ubuntu………………….….σ.18
Fig.3: apt package manager - package info presentation………………………………………….…σ.19
Fig.4: dnf package manager - package info presentation……………………………………….……σ.20
Fig.5: pacman package manager - package info presentation………………………………….….σ.21
Fig.6: crontab syntax……………………………………………………………………………………………….….σ.25

Fig.7: Ubuntu package website - info for nano package……………………………………………...σ.25

Fig.8: Fedora package website - info for nano package…………………………………………….…σ.25

Fig.9: cron job file for executing the run_all_collector_scripts.sh script……………………...σ.29

Fig.10: run_all_collector_scripts.sh………………………………………………………………….…………σ.29

Fig.11: apt/dnf collector scripts pseudo code………………………………………………….………….σ.31

Fig.12: salsa.debian.org API’s JSON response…………………………………………………………..….σ.31

Fig.13: JWT format………………………………………………………………………………………………….….σ.33

Fig.14: OAuth 2.0 Access / Refresh tokens flow……………………………………………………….….σ.34

Fig.15: Django REST serializer for Package information………………………………………….……σ.34

Fig.16: Django model for Package information………………………………………………………......σ.35

Fig.17: Back-end API endpoints……………………………………………………………………………….….σ.36

Fig.18: PKGman landing page with the highest rated packages in descending order……σ.37

Fig.19: PKGman collapsible package results with corresponding versions……………………σ.38
Fig.20: PKGman search filters………………………………………………………………………………………σ.38

Fig.21: PKGman selected table columns………………………………………………………………………σ.39

Fig.22: PKGman selected packages (versions)...σ.39

Fig.23: PKGman selected packages information extracted in JSON format…………………..σ.40

Fig.24: PKGman generated Dockerfile with user’s selected packages (versions).............σ.40

Fig.25: PKGman log in/sign up forms……………………………………………………………………………σ.41

11

LIST OF ILLUSTRATIONS

Ill.1: whole app’s architecture…………………………………………………………σ.28
Ill.2: database schema…………………………………………………………………….σ.31

12

Abbreviations

CSV Comma Separated Values

JSON JavaScript Object Notation

JWT JSON Web Token

DNF Dandified YUM

YUM Yellow-Dog Updater Modified

API Application Programming Interface

REST Representational state transfer

HTTP Hypertext Transfer Protocol

HTML HyperText Markup Language

XML Extensible Markup Language

JSX JavaScript XML

DOM Document Object Model

URL Uniform Resource Locator

UI User Interface

I/O Input/output

distro Linux DIstribution

repo Repository

admin Administrator

RFC Request for Comments

RSA Rivest–Shamir–Adleman

HMAC Keyed Hash Message Authentication Code

ECDSA Elliptic Curve Digital Signature Algorithm

SWHID Software Heritage Identifier

13

1. Introduction

1.1 Contributions of this thesis

PKGman as an open source project itself could offer benefits to many and diverse members of

the linux community.

IT professionals, especially dev ops engineers often want to compare software packages from

different linux distributions in order to choose one for production environments. Packages’

availability, size, license are particularly important factors when making such a decision. With

PKGman they can easily have access to thousands of packages’ information, relieving them from

the necessity of installing multiple linux distributions locally. Not only that, but PKGman has a

functionality that allows users to generate and download Dockerfiles with their selected

packages and even with specific versions of their selected packages. Additional export methods,

to JSON/CSV formats, are also available.

Furthermore, software developers can take advantage of PKGman, since it provides direct links

to the packages’ code repositories, official websites with documentation and maintainers’

contact details for possible questions, new feature requests and bug reporting.

However even casual linux users can benefit from PKGman, as they may just want to find a

package to install for their everyday needs, like a good video player. PKGman gives users the

opportunity to search for packages with keywords or within a chosen category, such as

multimedia. Then they can conveniently download the corresponding selected binary file (i.e.

deb, rpm) via direct link. Last but not least, the rating system it supports can help users to avoid

installing bad quality software packages.

14

1.2 Thesis outline

First of all, we’ll start with a presentation of Linux software packages and their corresponding

package managers. We’ll continue by mentioning the existing related work in gathering Linux

packages. After that, we’ll make a documentation of the technology stack used in this project,

whereas crussial technical, implementation details and decisions will be explained. Finally, we’ll

sum up and note possible extensions and future work to be done.

1.3 Linux packages

Most modern Linux operating systems offer a centralized mechanism for finding and installing

software. Software is usually distributed in the form of packages, kept in repositories. Package

repositories help to ensure that code has been vetted for use on your system, and that the

installed versions of software have been approved by developers and package

maintainers.(Bearnes, 2016)

A package delivers and maintains new software for Linux-based machines. Just as Windows-

based computers rely on executable installers, the Linux ecosystem depends on packages that

are administered through software repositories. These files govern the addition, maintenance,

and removal of programs on the computer. (Haas, 2020)

A package consists of a collection of files that perform a task. A package file is usually an archive

which contains compiled binaries and other resources making up the software, along with

installation scripts. Packages also contain valuable metadata, including their dependencies, a list

of other packages required to install and run them. (Bearnes, 2016)

Each Linux distribution offers thousands of packages through their official repositories. Each

package can have its own different versions, as well.

15

1.4 Linux package managers

Working with packages is known as package management. Linux supports several major different

types of package managers. Each performs the same basic functions but uses a slightly different

under-the-hood architecture and different user interfaces to perform the package-manager's

core tasks. Generally, each one allows users to perform actions such as installing and managing

new packages, removing unnecessary packages, upgrading the already-installed packages,

searching for specific packages and updating the system to the latest available version.

For example for package installation/uninstall, regardless of the specific package manager, the

user launches a software catalog that reads from one or more repositories (archives of software

optimized for a given platform). Then he picks-and-chooses which software to install or uninstall

through the graphical catalog, or uses a shell session to execute the commands manually. (Haas,

2020)

Fig.1: installing a software package via command line, on Ubuntu

16

Fig.2: installing a software package via the GUI application, on Ubuntu

Common package-management systems include:

● DPKG: The base package manager for Debian-based distributions.

● Apt: A front-end for the DPKG system, found in Debian-based distributions, such as

Ubuntu, Linux Mint, and Elementary OS.

● Apt-get: A more feature-rich front-end for the DPKG system, found in Debian-based

distributions.

● RPM: The base package manager found in Red Hat-based distributions, such as Red Hat

Enterprise Linux, CentOS, and Fedora.

● Yum: A front-end for the RPM system, found in Red Hat-based distributions.

● Dnf: A more feature-rich front-end for the RPM system.

● ZYpp: Found in SUSE and OpenSUSE.

● Pacman: The package manager for Arch Linux-based distributions.

17

2. Background

2.1 Package Information

The particular project is focused on packages’ attributes collection. The several package

managers can provide information about a number of package characteristics.

For example the apt package manager lists the following package characteristics:

Fig.3: apt package manager - package info presentation (Subramanian, 2018)

18

The dnf package manager lists the following package characteristics:

Fig.4: dnf package manager - package info presentation (Subramanian, 2018)

The pacman package manager lists the following package characteristics:

Fig.5: pacman package manager - package info presentation (Subramanian, 2018)

19

2.2 Django REST Framework

Django REST Framework was used for the development of the application’s back-end. It is a

powerful and flexible toolkit for building RESTful Web APIs. Django is a high-level Python web

framework that enables rapid development of secure and maintainable websites. Built by

experienced developers, Django takes care of much of the hassle of web development, so that

the developer can focus on writing his app without needing to reinvent the wheel. It is free and

open source, has a thriving and active community and great documentation. (Django

Introduction - Learn Web Development | MDN, 2022)

Django helps writing software that is:

● Complete

Django follows the "Batteries included" philosophy and provides almost everything developers

might want to do "out of the box". Because everything a developer needs is part of the one

"product", it all works seamlessly together, follows consistent design principles, and has

extensive and up-to-date documentation. Additionally, it provides an optional administrative

create, read, update and delete interface that is generated dynamically through introspection

and configured via admin models.

● Versatile

Django can be (and has been) used to build almost any type of website, from content

management systems and wikis, through to social networks and news sites. It can work with any

client-side framework, and can deliver content in almost any format (including HTML, JSON, XML,

etc). Internally, while it provides choices for almost any functionality a developer might want

(e.g. several popular databases, templating engines, etc.), it can also be extended to use other

components if needed.

● Secure

Django helps developers avoid many common security mistakes by providing a framework that

has been engineered to "do the right things" to protect the web app automatically. For example,

20

Django provides a secure way to manage user accounts and passwords, avoiding common

mistakes like directly storing passwords rather than a password hash.Django enables protection

against many vulnerabilities by default, including SQL injection, cross-site scripting, cross-site

request forgery and clickjacking.

● Scalable

Django uses a component-based "shared-nothing" architecture (each part of the architecture is

independent of the others, and can hence be replaced or changed if needed). Having a clear

separation between the different parts means that it can scale for increased traffic by adding

hardware at any level: caching servers, database servers, or application servers. Some of the

busiest sites have successfully scaled Django to meet their demands (e.g. Instagram and Disqus,

to name just two).

● Maintainable

Django code is written using design principles and patterns that encourage the creation of

maintainable and reusable code. In particular, it makes use of the “Don't Repeat Yourself” (DRY)

principle so there is no unnecessary duplication, reducing the amount of code. Django also

promotes the grouping of related functionality into reusable "applications" and, at a lower level,

groups related code into modules.

● Portable

Django is written in Python, which runs on many platforms. That means that it is not tied to any

particular server platform, and can run its applications on many flavors of Linux, Windows, and

Mac OS X. Furthermore, Django is well-supported by many web hosting providers, who often

provide specific infrastructure and documentation for hosting Django apps.

21

2.3 SQLite

SQLite was used as the application’s database. SQLite is an in-process library that implements a

self-contained, serverless, zero-configuration, transactional SQL database engine. The code for

SQLite is in the public domain and is thus free for use for any purpose, commercial or private.

SQLite is the most widely deployed database in the world, including several high-profile projects.

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not

have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete

SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

The database file format is cross-platform (one can freely copy a database between 32-bit and

64-bit systems or between big-endian and little-endian architectures). These features make

SQLite a popular choice as an Application File Format.

SQLite is a compact library. With all features enabled, the library size can be less than 750KiB,

depending on the target platform and compiler optimization settings. 64-bit code is larger. And

some compiler optimizations such as aggressive function inlining and loop unrolling can cause

the object code to be much larger. There is a tradeoff between memory usage and speed. SQLite

generally runs faster the more memory it has been given. Nevertheless, performance is usually

quite good even in low-memory environments.

SQLite is very carefully tested prior to every release and has a reputation for being very reliable.

Most of the SQLite source code is devoted purely to testing and verification. An automated test

suite runs millions and millions of test cases involving hundreds of millions of individual SQL

statements and achieves 100% branch test coverage. SQLite responds gracefully to memory

allocation failures and disk I/O errors. Transactions are ACID even if interrupted by system

crashes or power failures. All of this is verified by the automated tests using special test harnesses

which simulate system failures. (About SQLite, n.d.)

22

2.4 React JavaScript library

React was utilized in order to build the application’s front-end. It is a JavaScript library, created

by Facebook. It is a tool for building interactive UI components.

Instead of manipulating the browser's DOM directly, React creates a virtual DOM in memory,

where it does all the necessary manipulating, before making the changes in the browser DOM. It

basically creates an in-memory data-structure cache, computes the resulting differences, finds

out what changes have been made, and changes only what needs to be changed.

It is Declarative, meaning that the developer can design simple views for each state in an

application, and React will efficiently update and render just the right components when the data

changes. Declarative views make the code more predictable and easier to debug.

It is also Component-Based, meaning that it gives a developer the opportunity to build

encapsulated components that manage their own state, then compose them to make complex

UIs. Since component logic is written in JavaScript instead of templates, rich data can be easily

passed through the app and state can be kept out of the DOM.

React can be used as a base in the development of single-page or mobile applications, as it is

optimal for fetching rapidly changing data that needs to be recorded. However, fetching data is

only the beginning of what happens on a web page, which is why complex React applications,

like the particular one, usually require the use of additional libraries for state management,

routing, and interaction with an API: Redux, React Router and axios are examples of such

libraries.

React components are typically written using JSX, or JavaScript XML, although they do not have

to be (components may also be written in pure JavaScript). JSX is an extension to the JavaScript

language syntax. Similar in appearance to HTML, JSX provides a way to structure component

rendering using syntax familiar to many developers.

23

Lifecycle Methods

Lifecycle methods are custom functionality that gets executed during the different phases of a

component. There are methods available when the component gets created and inserted into

the DOM (mounting), when the component updates, and when the component gets unmounted

or removed from the DOM.

Most widely used lifecycle methods include:

● shouldComponentUpdate allows the developer to prevent unnecessary re-rendering of

a component by returning false if a render is not required. In that way, the application

can be optimized.

● componentDidMount is called once the component has "mounted" (the component has

been created in the user interface, often by associating it with a DOM node). This is

commonly used to trigger data loading from a remote source via an API.

● componentWillUnmount is called immediately before the component is torn down or

"unmounted". This is commonly used to clear resource demanding dependencies to the

component that will not simply be removed with the unmounting of the component (e.g.,

removing any setInterval() instances that are related to the component, or an

"eventListener" set on the "document" because of the presence of the component).

● render is the most important lifecycle method and the only required one in any

component. It is usually called every time the component's state is updated, which should

be reflected in the user interface.

24

2.5 Cron Job

A Cron Job was utilized to implement the periodic collection of package information. Cron is a

utility program that lets users input commands for scheduling tasks repeatedly at a specific time.

Tasks scheduled in cron are called cron jobs. Users can determine what kind of task they want to

automate and when it should be executed.

Cron is a daemon i.e. a background process executing non-interactive jobs. A daemon is always

idle, waiting for a command to request it to perform a particular task. The command can be input

on any computer on the network.

A cron file is a simple text file that contains commands to run periodically at a specific time. The

default system cron table or crontab configuration file is /etc/crontab, located within the crontab

directory /etc/cron.*/.

With cron jobs, users can automate system maintenance, disk space monitoring, and schedule

backups. Because of their nature, cron jobs are great for computers that work 24/7, such as

servers. (Cron Job: A Comprehensive Guide for Beginners 2022, 2022)

The crontab syntax consists of five fields with the following possible values:

● Minute:The minute of the hour the command will run on, ranging from 0-59.

● Hour: The hour the command will run at, ranging from 0-23 in the 24-hour notation.

● Day of the month: The day of the month the user wants the command to run on, ranging

from 1-31.

● Month: The month that the user wants the command to run in, ranging from 1-12, thus

representing January-December.

● Day of the week: The day of the week for a command to run on, ranging from 0-6,

representing Sunday-Saturday. In some systems, the value 7 represents Sunday.

25

Fig.6: crontab syntax

3. Related work

Whereas almost every Linux distribution has its own packages website there are no centralized

ones that include package information from various different distributions. Another issue is that

most of these websites do not provide all the core information that a package manager can show

for a software package. Additionally, usually there is no consistency among them, in the

information they present.

Fig.7: Ubuntu package website - info for nano package (left)

Fig.8: Fedora package website - info for nano package (right)

26

4. PKGman

PKGman is a web application that periodically collects a number of useful attributes about

popular Linux distributions’ software packages, stores them in a SQLite database and also

provides a website with search filters for their presentation.

The application currently supports the following Linux distributions:

● Ubuntu 20.04

● Debian 11

● Kali 2021.4

● Fedora 34

● CentOS 8.4.2105

The collected package attributes are the following:

● name

● Linux distribution [Ubuntu, Debian, Kali, Fedora, CentOS]

● type [deb, rpm]

● category

● license

● maintainer

● description

● homepage website URL

● code repository URL

For every package version the following attributes are also collected:

● name

● architecture

● size

● binary file URL

Note: each package can have multiple versions

27

The whole application is containerized and split into services which are orchestrated via a

Docker-Compose file. Because of this, it can be easily run by just one command:

$ docker-compose up - -build

The diagram below depicts a representative visualization of the app’s architecture and

technology stack.

Ill.1: whole app’s architecture

As we can see on the diagramm there are three main services:

● the collection mechanism: a Cron-Job that builds the Linux distributions Docker images

(Ubuntu, Fedora etc.) and spawns the corresponding containers inside of which the

python scripts, responsible for the package info collection, are being executed.

● the back-end: developed using the Django REST framework. It is responsible for

populating the database with the extracted attributes, querying it based on specific

search criteria and feeding the front-end with the corresponding results. It utilizes a

SQLite database.

● the front-end: developed using the React.js library. Its role is to consume the queried

results provided by the back-end and present them in a well structured and intuitive way.

28

4.1 Package information Collection

The package information collection mechanism is triggered once a month, through a Cron-Job

service which runs endlessly on a Docker container. Once it is triggered, it executes the

run_all_collector_scripts.sh script, which is responsible for building the image for every

supported Linux distribution and executing the right collector python script, within the

corresponding container. The run_all_collector_scripts.sh script spawns the new Docker

containers (for every supported Linux distribution) on the host machine. It also contains some

environment variables that are passed on the newly spawned containers.

Fig.9: cron job file for executing the run_all_collector_scripts.sh script

Fig.10: run_all_collector_scripts.sh

There are two python scripts for extracting and collecting the package attributes:

● apt_collector.py: used for the Ubuntu, Debian and Kali distributions

● dnf_collector.py: used for the Fedora and CentOS distributions

They communicate with the back-end using HTTP requests via a RESTful API.

Both of them share the following command line arguments:

● --max-concurrency, -c <int> [default: 50]: Number of maximum packages that will be

processed concurrently

29

● --distro, -d <str>: The linux distribution name

● --API-URL, -u <url>: Back-end API base URL

● --archives-url, -a <url>: Linux distribution's archives base URL

Apart from those, the dnf_collector.py also accepts the:

● --repos-url, -r <url>: Linux distribution’s packages code repository base URL

Both scripts expect the following environment variables to be passed on:

● GITHUB-TOKEN: an access token for Github, since its API will be utilized to extract some

package attributes that the package managers may not always provide.

● USERNAME / PASSWORD: user’s credentials to login to the back-end API, since not

everyone is allowed to add package information to the database.

Both scripts utilize the Ray framework. Ray is an open source project that makes it simple to scale

any compute-intensive python workload. With a rich set of libraries and integrations built on a

flexible distributed execution framework, Ray makes distributed computing easy and accessible.

Parallelization is crucial on the particular application, due to the big amount of packages each

Linux distribution provides (e.g. Ubuntu has almost 60,000 packages).

The scripts’ logic can be depicted in the following pseudo code:

Fig.11: apt/dnf collector scripts pseudo code

One thing to note is that the apt and dnf package managers do not provide exactly the same

information for packages. For example the apt one does not provide the license attribute as the

dnf does. Furthermore, none of them normally provide URLs for the packages source code

30

repositories. For this reason, these attributes are attempted to be extracted from their github or

their distribution’s equivalent online repositories (e.g. salsa.debian.org for Debian) API. However

this is not always possible.

Fig.12: salsa.debian.org API’s JSON response

4.2 Back-end

The back-end was developed using the Django REST framework. It is responsible for populating

the database with the extracted attributes (feeded by the collector scripts), querying it based on

specific search criteria (feeded by the front-end) and feeding the front-end with the

corresponding results. It utilizes a SQLite database.

On the diagram below, the database’s schema is depicted. The tables for storing the packages’

information are the api_package and api_packageversion. The api_rating table is used for

storing users’ ratings on package versions. The auth_user table is for the default Django user

data. The token_blacklist_outstandingtoken, token_blacklist_blacklistedtoken tables are for

authorization purposes. All the other tables are for the Django's integrated permission system.

31

Ill.2: database schema

The application supports four user categories:

● visitors: unauthenticated users that have read rights to every resource and no write

permission to anything.

● regular users: authenticated users that can additionally rate package versions.

● package collector: authorized users that can additionally add package information to the

database using the API.

● admins: authorized users that have access to every resource with read and write

permissions. Furthermore, they have access to Django's admin panel and can upgrade a

regular user to a package collector.

As for the authorization the OAuth 2.0 protocol was followed utilizing JWTs. The JSON Web Token

(JWT) is an open standard (RFC 7519) that defines a compact and self-contained way for securely

transmitting information between parties as a JSON object. This information can be verified and

trusted because it is digitally signed. JWTs can be signed using a secret (with the HMAC algorithm)

or a public/private key pair using RSA or ECDSA.

32

JWT is widely used nowadays, because of its small overhead and its ability to be easily used across

different domains. (JSON Web Token Introduction - Jwt.io, n.d.)

Fig.13: JWT format

OAuth 2.0 uses Access Tokens and Refresh Tokens.

The Access token contains all the information the server needs to know if the user can access the

resource he is requesting or not. They are expired tokens with a short validity period.

The refresh token is used to generate a new access token. Typically, if the access token has an

expiration date, once it expires, the user would have to authenticate again to obtain an access

token. With refresh token, this step can be skipped and with a request to the API get a new access

token that allows the user to continue accessing the application resources. That is the case for

the particular application. (Refresh Token With JWT Authentication in Node.js, n.d.)

33

Fig.14: OAuth 2.0 Access / Refresh tokens flow

The API endpoints were implemented using Django REST’s ModelViewSet, whereas for data

serialization the Django REST’s ModelSerializer was used.

Fig.15: Django REST serializer for Package information

34

For the database creation the Django models were utilized.

Fig.16: Django model for Package information

Due to the huge amount of stored packages Django REST’s pagination functionality has been

enabled, returning multiple pages of 10 results per page.

35

API

A full API documentation can be found on <BACK_END_BASE_URL>/api/v1/swagger/.

Fig.17: Back-end API endpoints

36

4.3 Front-end

The front-end was developed using the React.js library. Its role is to consume the queried results

provided by the back-end and present them in a well structured and intuitive way. It

communicates with the back-end with HTTP requests via a RESTful API.

For the package presentation the react-data-table-component npm package was used. The

default results consist of the highest rated packages, in a descending order. The results are

paginated, meaning that when the next page icon is clicked a new batch of results will be fetched

from the back-end. The pagination is essential due to the enormous amount of the results.

Fig.18: PKGman landing page with the highest rated packages in descending order

Each row of the data-table is collapsible and when expanded each package’s corresponding

versions are presented.

37

Fig.19: PKGman collapsible package results with corresponding versions

It also contains a number of search filters so that the user can conveniently search for packages.

Fig.20: PKGman search filters

Additionally the user has the option to hide/show specific columns (package attributes) as he

pleases. Apart from that, multiple columns can be sorted in ascending or descending order. The

sorting is performed on the back-end side for performance purposes.

38

Fig.21: PKGman selected table columns

Furthermore, a user can select one or multiple packages. He can even pick specific package

versions. The selected packages (versions) are presented on top of the data-table in a collapsed

list. From there he can easily handle his selection by removing one or all of them. After he is done

with his selection he can extract their information in a CSV / JSON format or even create a

working Dockerfile that contains the appropriate commands for installing them. If the latter is

the case all selected packages must be of the same Linux distribution.

Fig.22: PKGman selected packages (versions)

39

Fig.23: PKGman selected packages information extracted in JSON format

Fig.24: PKGman generated Dockerfile with user’s selected packages (versions)

PKGman also provides log in/sign up functionality. A user must be authenticated in order to be

able to rate a package version.

40

Fig.25: PKGman log in/sign up forms

5. Conclusions and future work

5.1 Conclusions

The end result is a web application that can benefit IT professionals and regular linux users alike.

More than 240,000 software packages have been collected, in total. The project currently

supports Ubuntu 20.04, Debian 11, Kali 2021.4, Fedora 34 and CentOS 8.4.2105, but it can easily

be extended to include even more distributions that utilize the apt or dnf/yum package manager.

The whole application is containerized and thus easily deployable via a Docker-Compose file.

5.2 Future Work

Despite the fact that the end result is a fully functional and deployable application, some

additions and improvements could be made:

1. Support more Linux distributions.

2. Calculate, store and present the Software Heritage Identifier (SWHID) for each package

version.

3. Add export options to more formats.

4. Add full text search functionality.

41

References

(n.d.). Ray - Scaling Python made simple, for any workload. Retrieved February 26, 2022,

from https://www.ray.io/

About SQLite. (n.d.). SQLite. Retrieved February 26, 2022, from

https://www.sqlite.org/about.html

Bearnes, B. (2016, January 4). Package Management Basics: apt, yum, dnf, pkg.

DigitalOcean. Retrieved February 26, 2022, from

https://www.digitalocean.com/community/tutorials/package-management-basics-apt-

yum-dnf-pkg

Cron Job: a Comprehensive Guide for Beginners 2022. (2022, February 9). Hostinger.

Retrieved February 26, 2022, from https://www.hostinger.com/tutorials/cron-job

Django introduction - Learn web development | MDN. (2022, February 18). MDN Web

Docs. Retrieved February 26, 2022, from https://developer.mozilla.org/en-

US/docs/Learn/Server-side/Django/Introduction

Haas, J. (2020, September 11). A Basic Guide to Linux Packages - Software & Apps.

Lifewire. Retrieved February 26, 2022, from https://www.lifewire.com/guide-to-linux-

packages-2202801

JSON Web Token Introduction - jwt.io. (n.d.). JWT.io. Retrieved February 26, 2022, from

https://jwt.io/introduction

Refresh token with JWT authentication in Node.js. (n.d.). Izertis. Retrieved February 26,

2022, from https://www.izertis.com/en/-/refresh-token-with-jwt-authentication-in-

node-js

Subramanian, P. (2018, July 10). How To View Detailed Information About A Package In

Linux. 2DayGeek. Retrieved February 26, 2022, from https://www.2daygeek.com/how-

to-view-detailed-information-about-a-package-in-linux

