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Abstract

The purpose of this PhD thesis is to present methods of optimally designing microring resonators
as well as racetrack resonators for their use in optical filter and optical sensing applications re-
spectively. Using various extensions of the modeling techniques already applied in the literature,
namely an alternative form of coupled mode theory (CMT), the transfer matrix method (TMM),
we came up with accurate analytical and semi/analytical model for the device transfer function that
are more easily applicable, using considerably less resources and time compared to existing models
found in literature. We then proposed figure of merits for characterizing the performance of the
design in order to finally find the optimal design through optimization techniques.

Initially we considered the optimal microring resonator design case for use in optical fil-
tering applications. Due to the increased number of input parameters in our model, we used an
interior point algorithm optimization method, which converts the original minimization problem
of figure of merit in a series of similar minimization problems based solely on equalities and other
constraints. Such problems are more easily solved by the use of methods such as conjugate gradient
etc., the analysis of which is out of the scope of this thesis. The figure of merit we chose in this
case was analogous to the difference of our layout transfer function from a sixth degree Gaussian
function, which is considered an ideal transfer function for use in filters.

On the other hand, in the case of optimal design of racetrack resonator devices for use in
optical sensing applications, where the input parameters of our model are limited in number, we
opted to use the exhaustive search method while checking for any restrictions we initially set. With
this procedure, if the constraints are satisfied, we calculate the figure of merit for each combina-
tion of values and store these values. During the exhaustive search, we keep the combination of
parameters for which we calculated the minimum value for the figure of merit, which in this case
is proportional to the frequency range of the detection area.

At this point it should be emphasized that in both of the above cases the range of input
parameters of our models was chosen in such a way that it is possible to implement the calculated
layout based on the state-of-the-art materials and manufacturing methods. Even if these change
in the future, with the discovery of new materials and methods, our model can also support them
simply by varying the range of input parameters.

After completing our calculations, we came up with optical filters and optical detectors
with improved features over the existing ones in the literature, which can be implemented using
the materials and manufacturing methods available today.
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Περίληψη

Σκοπός της Διδακτορικής αυτής διατριβής είναι η παρουσίαση μεθόδων βέλτιστης σχεδίασης
διατάξεων συντονιστών μικροδακτυλίων αλλά και συντονιστών τύπου racetrack με στόχο τη
χρήση τους σε εφαρμογές οπτικών φίλτρων και οπτικών αισθητήρων αντίστοιχα. Με τη
χρήση απλοποιήσεων και προσεγγίσεων στα μαθηματικά μοντέλα που ήδη εφαρμόζονται στη
βιβλιογραφία και συγκεκριμένα της εναλλακτικής μορφής της μεθόδου coupled mode theory
(CMT), την transfer matrix method (ΤΜΜ), καταλήξαμε σε μορφές των συναρτήσεων μεταφοράς
οι οποίες είναι ευκολότερα χρησιμοποιήσιμες, κερδίζοντας έτσι πόρους και χρόνο συγκριτικά με
τα ήδη υπάρχοντα μοντέλα της βιβλιογραφίας. Στη συνέχεια χρησιμοποιήσαμε έναν μαθηματικό
τύπο τον οποίο υπολογίσαμε, ως μέτρο ποιότητας (figure of merit) της διάταξής μας, διαφορετικό
για κάθε τύπο διάταξης, ώστε να καταλήξουμε στη βέλτιστη σχεδίαση της διάταξής μας. To figure
of merit είναι μιά παράμετρος η τιμή της οποίας είναι αντιστρόφως ανάλογη με την ποιότητα της
διάταξής μας, δηλαδή μια τιμή την οποία θέλουμε ιδανικά να μηδενίσουμε.

Αρχικά για την περίπτωση της σχεδίασης της βέλτιστης διάταξης συντονιστών
μικροδακτυλίου για χρήση σε εφαρμογές οπτικών φίλτρων, λόγω του αυξημένου αριθμού των
παραμέτρων εισόδου του μοντέλου μας, κάναμε χρήση μεθόδου βελτιστοποίησης με βάση τον
αλγόριθμο interior point, ο οποίος μετατρέπει το αρχικό πρόβλημα της ελαχιστοποίησης της τιμής
του figure of merit σε μια σειρά παρεμφερών προβλημάτων ελαχιστοποίησης τα οποία βασίζονται
μόνο σε ισότητες και άλλους περιορισμούς. Τέτοιου είδους προβλήματα λύνονται ευκολότερα με
τη χρήση μεθόδων όπως της conjugate gradient κλπ, η ανάλυση των οποίων δεν περιλαμβάνεται
στους σκοπούς της παρούσας διατριβής. Το figure of merit που επιλέξαμε στην περίπτωση αυτήν
ήταν ανάλογο της διαφοράς της συνάρτησης μεταφοράς της διάταξής μας από μια Gaussian
συνάρτηση έκτου βαθμού, η οποία θεωρείται ιδανική συνάρτηση μεταφοράς για χρήση σε φίλτρα.

Αντίθετα, στην περίπτωση της σχεδίασης της βέλτιστης διάταξης συντονιστών τύπου
racetrack για χρήση σε εφαρμογές οπτικών αισθητήρων, όπου οι παράμετροι εισόδου του
μοντέλου μας είναι περιορισμένες σε αριθμό, επιλέξαμε να χρησιμοποιήσουμε τη μέθοδο της
εξαντλητικής αναζήτησης, ελέγχοντας ταυτόχρονα αν ικανοποιούνται κάποιοι περιορισμοί που
θέσαμε αρχικά. Με τη διαδικασία αυτήν, εφόσον ικανοποιούνται οι περιορισμοί, υπολογίζουμε για
κάθε συνδυασμό τιμών την τιμή του figure of merit και αποθηκεύουμε τις τιμές αυτές. Κατά την
ολοκλήρωση της εξαντλητικής αναζήτησης κρατάμε εκείνον τον συνδυασμό τιμών παραμέτρων,
για τις οποίες υπολογίσαμε την ελάχιστη τιμή για το figure of merit, το οποίο στην περίπτωση αυτή
είναι ανάλογο με το εύρος συχνοτήτων της περιοχής ανίχνευσης.

Στο σημείο αυτό πρέπει να τονίσουμε ότι και στις δύο παραπάνω περιπτώσεις το εύρος
των τιμών των παραμέτρων εισόδου των μοντέλων μας επιλέχθηκε με τέτοιον τρόπο ώστε να είναι
δυνατή η υλοποίηση της υπολογιζόμενης διάταξης με βάση τα υλικά και τις κατασκευαστικές
μεθόδους που υφίστανται σήμερα. Ακόμα και αν τα παραπάνω αλλάξουν στο μέλλον, με
την ανακάλυψη νέων υλικών και μεθόδων, το μοντέλο μας μπορεί να τα υποστηρίξει απλά
μεταβάλλοντας το εύρος των τιμών των παραμέτρων εισόδου.
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Μετά το πέρας των υπολογισμών μας, καταλήξαμε σε διατάξεις οπτικών φίλτρων και
οπτικών αισθητήρων με βελτιωμένα χαρακτηριστικά σε σχέση με τα υπάρχοντα στη βιβλιογραφία,
τα οποία μπορούν να υλοποιηθούν χρησιμοποιώντας τα υλικά και τις κατασκευαστικές μεθόδους
που διατίθενται στις μέρες μας.

Λέξεις κλειδιά: Συντονιστές Μικροδακτυλίου, Συντονιστές Τύπου Racetrack, Φίλτρα,
Αισθητήρες
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1 Foreword

1.1 Purpose of the thesis

The main purpose of this dissertation is to contribute in the modeling and designing of key pho-
tonic building blocks including filters and sensors in an efficient manner. This is achieved through
design tools which take advantage of the underlying coupling physics of waveguides and micro-
ring resonators (MR) or waveguides and racetrack resonators (RR). This approach provides a semi-
analytic alternative to full-blown electromagnetic simulations that prove intractable both in the time
and frequency domain. The time-domain approach, which is very popular due to recent progress in
the finite difference time domain (FDTD) methods, results in particularly long computation time,
especially in the weakly coupled regime where it takes many iterations for the wave inside the
resonator to fully dissipate. Frequency domain methods such as the finite difference frequency do-
main method (FDFD) on the other hand typically involve the solution of large linear systems which
require huge memory resources in order to accurately capture the device curvature. Our semi-
analytical methods however, based on coupled mode theory (CMT) and transfer matrix method
(TMM) can quickly produce an accurate estimate of the spectral properties of the device.

Once an efficient model for computing the transfer function of the device is identified,
one may apply various techniques for optimizing the performance of a single or multiple coupled
resonator device. An initial literature survey revealed that researchers have been focusing on de-
veloping tools and methods for simulating the operation of a MR structure rather than seeking the
optimal parameters that maximize the performance of the device. In other words, much research
was done in the analysis front, i.e. in calculating the transfer function T (f,P) of the device from an
initial set of parameters P rather than the design of the structure itself which consists of choosing
P so that T (f,P) will have favorable properties, as illustrated in figure 1.1.

Considering for example uniform resonators structures, where all resonators are identical,
one could adopt several filter synthesis techniques already found in the literature [12]. This how-
ever may result in a set of predetermined values for the parameters P, such as the coupling coeffi-
cients, that could very well lie outside the range of feasible values under state-of-the-art fabrication
techniques, since there are no means of specifying the allowable range of the parameters.
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(a) (b)

Figure 1.1: Depiction of a) the analysis process and b) the optimization design process

In this thesis, we consider two types of devices each destined for different applications. One
is a non-uniform chain of coupled micro-ring resonators where we seek to render T (f,P) as close
to an ideal rectangular box-like transfer function as possible. As we will explain later on, this is
of major interest in filtering applications in optical networking. The other type of device is a race-
track resonator where the intra-cavity reflections between the curved and the straight waveguide
sections of the resonator may give rise to asymmetric spectral behavior around a resonant frequency
involving sharp transitions in one side and smooth transition in the other side of the peak. This is
of practical importance in sensing applications. For the first type of device, existing transfer matrix
models can be put into use for carrying out our optimizations and obtain the optimal values of P.
In the racetrack case, we show that under certain reasonable approximations, the transfer matrix
model actually leads to a closed form analytical solution for T (f,P), thereby rendering the search
for the optimal values of P much easier.

The components designed can be implemented using a number of state-of-the-art fabrication
technologies and widely used materials. This is ensured by initially defining the range of certain
parameters so as to reflect the materials and fabrication processes used today. Using the framework
developed in this thesis, the range of these parameters can be adjusted in order to include new
material and structural parameters reflecting different fabrication processes that may be developed
in the future.
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1.2 Outline of the thesis

The rest of the dissertation is organized as follows:

In chapter 2 we lay the foundations for this thesis, summarizing the pertinent current state-
of-the-art in optical communications and sensing. We also present the underlying physics of a basic
coupled waveguide/cavity system and then proceed to the case of single cavity and multiple cavity
structures. We also briefly review the properties of ring and racetrack resonators.

In chapter 3, we present the various approaches for modelling coupled cavity systems in-
cluding the coupled mode theory, the finite difference frequency domain and the finite difference
time domain methods. CMT differs fundamentally from FDFD and FDTD since it relies on mode
expansion while the latter two attempt to brute-force solve Maxwell’s equations in the frequency
and time domain respectively. Each method comes with its own merits and pitfalls which we at-
tempt to highlight in this chapter. We also briefly consider optimization techniques that can be used
for electromagnetic design.

In chapter 4 we present a framework for designing single- and non-uniform multi-cavity
coupled micro-ring structures by combining the transfer matrix method and optimization methods.
We calculate the optimal parameters P so that the transfer function of the device T (f) resembles a
box-like response. Given the number of rings, the design framework can be applied to calculate the
required parameters such as ring radii and coupling coefficients which can be kept within specific
ranges determined by the fabrication process. We also consider the effect of optical loss and the
chromatic dispersion.

In chapter 5 we present a detailed modeling and design framework for racetrack resonators
taking into account intra-cavity reflections. We discuss the conditions in which Fano resonances
appear and provide analytic expressions for the transfer function T (f) and validate their accuracy
against the more detailed TMMmodel. This analytic model yields significant insight in the spectral
properties of the device which is otherwise lost in the TMM. We then proceed to use the analytic
model to design the racetrack structure for sensing applications.

Finally, in the last chapter some conclusions extracted from our experience on the design
process are discussed, along with an outlook of the future research that can be done on the subject
in the fields of photonic crystal cavities, slow light graphene and neural networks.
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2 Introduction

In this chapter, we provide a brief introduction to the optical technologies associated with micro-
ring and racetrack resonators which constitute a fundamental building block in photonic integrated
circuits (PICs) intended for telecommunications and sensing. We also present the material plat-
forms that can be used for the realization of the basic building blocks of a coupled resonator system,
the underlying physics and potential applications.

2.1 Optical communications systems

The needs for communication and information exchange are rapidly increasing fueled by new ap-
plications and concepts such as cloud computing and the internet-of-things. According to CISCO’s
projections [13], the annual global internet protocol (IP) traffic will reach an impressive 4.8 ZB per
year by 2022, or 396 EB per month. In 2017, the annual run rate for global IP traffic was 1.5 ZB
per year, or 122 EB per month. This traffic explosion is sustained by the continuous improvement
of several data transmission technologies.

Technology has come a long way since the invention of the telegraph in 1830 which marks
the beginning of the electronic communications era. A few years later, in 1866, the first transatlantic
telegraph cable was successfully installed and started operating. With the use of Morse code, the
transmission speed was significantly increased. Ten years later, in 1876, Alexander Graham Bell
invented the telephone which allowed the electric signals to be transmitted in an analog manner by
constantly alternating electric current in a pair of copper wires. This technology was dominant for
more than a century. In the late 1930s, copper wire pairs started being replaced by coaxial cables
in an attempt to increase the system’s capacity. Although coaxial cables provided much larger
bandwidth, the losses, turned out to be proportional to the frequency of operation, introducing
many limitations. The late 1940s marked the birth of microwave communication systems and
by the mid 1960s optical communication networks started being deployed by gradually replacing
classic copper wires with optical fiber cables, allowing high bit rates to be achieved over longer
distances through visible or infrared radiation. Optical fiber technology has revolutionized the way
in which we can communicate offering several advantages to conventional microwave and coaxial
technologies. The merits of optical communication systems are summarized as follows [14], [15],
[16]:

• Optical fibers suffer from very low loss (∼= 0.2 dB/km attenuation) implying that very long-
reach optical links can be implemented.

• Fibers can offer huge amounts of transmission bandwidth of the order of several tens of THz
resulting in aggregate data rates of the order of 10Tb/s over just a single fiber.

• Their weight and size are very small which makes them relatively easy to install in large
densities.
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• They are immune to electromagnetic interference since fibers are not electrical conductors.
This means that they can be installed next to high power sources without any problems or
they can even be installed across the already existing electrical grid.

• They are not flammable and can be used in dangerous environments, such as chemical plants,
where a spark could easily trigger an explosion if flammable materials are present.

• They are very secure as it is quite difficult for someone to tap into a fiber cable in order to
read the data signals without being discovered.

• They alleviate the increasing concern about adverse biological effects of wireless communi-
cation radiation on human health.

As in the case of any communication network, optical networks can be envisioned as a
collection of several point-to-point links connecting the various network nodes. Each link consists
of three main parts, the transmitter, the communication channel and the receiver. Each part consists,
in turn, of several opto-electronic components such as light emitters, light detectors, amplifiers,
filters, waveguides etc. Although optical fibers suffer from relatively low loss, power loss increases
exponentially and hence the use of optical amplification is required, in long-reach systems.

The optical transmitter converts the electrical signal to light and couples it to the optical
fiber channel. The resulting optical signal may consist of several separately modulated wave-
lengths multiplexed together. This is referred to as wavelength division multiplexing (WDM). A
key component of the transmitter is the optical source, which is, in most of the cases, a LASER
diode. After the signal is transmitted through the communication channel it is coupled to the re-
ceiver, where wavelength demultiplexing is performed. Then the signal is converted back to its
electrical form with the aid of light detectors. Optical filters are the basic building blocks of a
wavelength multiplexer and demultiplexer.

Optical communications traditionally revolved around the telecom arena but recent years
have seen a shift towards datacom applications as well. Data center communications now constitute
a major driver for photonic technologies since the need for single channel data rates have now
exceeded 10 Gb/s both at an inter- and intra-rack level. Copper transmission lines simply can not
keep up with these data rates and introduce excessive loss, a fact that highlights the necessity for
a transition to photonic interconnects. Data center traffic doubles every year, whereas the silicon-
based packet switch chip capacity doubles every two years. As data rates increase and single-chip
bandwidth saturates, the scaling out of data center networks becomes increasingly difficult. This
inevitably leads to the replacement of silicon switching elements with optical switches which can
manage the optical signal directly [17], [11].

2.2 Optical add-drop multiplexers

WDM introduces an additional degree of freedom in the design of optical networks since switching
can be done on awavelength level, with the use of appropriate components. The architecture of such
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a typical wavelength-routing network is shown in figure 2.1. A lightpath is an optical connection
carried from end to end starting from a source node to a destination node over the same wavelength
on each intermediate link [1]. These lightpaths can be generated by synchronous optical network
terminals (SONET) or IP routers and are routed from one link to another at intermediate nodes
in the network. In a wavelength-routing network, the same wavelength can be used in different
lightpaths, as long as they do not share any common links. This feature, allows the samewavelength
to be spatially reused in different parts of the network. The basic network elements that enable
optical networking are the optical line terminals (OLTs), the optical cross-connects (OXCs) and
the optical add/drop multiplexers (OADMs) as depicted in figure 2.1. The role of an OLT is to
multiplex multiple wavelengths into a single fiber and demultiplex a set of wavelengths on a single
fiber into separate fibers and is used at the ends of a point-to-point WDM link. OXCs perform a
similar function but at much larger sizes. The number of ports they posses ranges from a few tens to
thousands and they are capable of switchingwavelengths from one input port to another. AnOADM
receives multiple wavelength signals and selectively drops some of these wavelengths locally while
allowing all others to pass through. Also, it selectively adds wavelengths to the complex outbound
signal. OADMs use two line ports for the composite WDM signals and a number of local ports for
the individual wavelengths that are dropped and added.

Figure 2.1: Representation of a typical wavelength-routing network [1]

Several key performance indicators (KPIs) are related to OADMs:

• They should present low insertion losses, independent of wavelength and polarization.

• The spectral characteristics (e.g. the positions of the central multiplexed and demultiplexed
wavelength) should not depend upon signal polarization and temperature.
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• Small wavelength drifts within a specified tolerance range, should not affect the device per-
formance.

• OADMs should reject wavelengths outside this tolerance range in order to avoid crosstalk
between adjacent channels.

• Ideally an OADM should be entirely passive (i.e. the power consumption should be negligi-
ble).

• OADMs should be fully transparent to all data rates and protocols.

• They should be fabricated using materials which are appropriate for integration.

• Their fabrication process should be cost-effective.

Reconfigurable add-drop multiplexers (ROADMs) enable dynamic (software-driven) provisioning
of wavelengths in a WDM network without major network changes or redesign. ROADMs consist
of a wavelength selective switch which is a device that can dynamically route a wavelength from
one input port to another and several auxiliary elements such as variable optical attenuators in or-
der to provide uniform power distribution of the output wavelengths and the corresponding power
monitors. ROADMs provide great flexibility in rerouting optical streams and bypassing damaged
connections which allows minimal service disruption and also provides the ability to adapt or up-
grade the optical network to different WDM technologies [18]. There are several technologies
used in order to fabricate an OADM. The majority of them use a variety of demultiplexer and mul-
tiplexer technologies including thin film filters, free space grating devices, fiber Bragg gratings
with optical circulators and integrated planar arrayed waveguide gratings. The switching and re-
configuration functions range from the manual fiber patch panel and micromirrors to a variety of
switching technologies including microelectromechanical systems, liquid crystal and thermo-optic
switches in planar waveguide circuits [19], [20], [21].

2.3 Optical sensors

The role of an optical sensor is to detect changes in a specific characteristic of the subject under in-
vestigation. During the last decades, optical sensors have been finding their way into an increasing
number of applications. The development of the semiconductor industry in the 1940s and ’50s led
to lower-cost, compact and efficient light-sensing devices. The interest in optical sensors is justified
due to the high sensitivity, low-cost, compactness, possibility of integration with other electronic
devices and electromagnetic immunity. Integrated photonic sensors include ring resonators [22]
and surface plasmons [23].

Resonant photonic structures lend themselves for the realization of optical sensors bymeans
of measuring (a) resonant-wavelength shift and/or (b) intensity variation induced by the substance
or physical magnitude under study. Nowadays, sensors are packaged along with tiny integrated
circuits resulting in a complete system-on-a-chip (SoC) which is far simpler to use. According
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to recent market research reports, the market of light sensors is expected to reach USD 2.14 Bil-
lion by 2022, a trend driven by the increasing usage of such devices in smartphones and tablets.
Additionally, the image sensor market is expected to reach USD 17.5 Billion by 2020 [24], [25],
[11].

Optical bio-sensors based on ring resonators are very intriguing technological platforms
[26] since planar waveguide ring resonators are easily integrated, have a small footprint, and can
be fabricated by standard techniques, thus enabling mass production at low cost [27]. The operating
principle depends on the variation of the effective refractive index of the optical mode propagating
into the structure, which is due to the presence of a chemical substance, detected near the sensor’s
surface. We shall further analyze the notions of the ring resonator and the effective refractive
index in later sections. In general, bio-sensors are devices used in order to characterize a chemical
quantity, the analyte, determine its concentration and study the kinetics of its chemical reactions.
The fundamental idea behind bio-sensing is the usage of the work done by biological evolution
in order to create highly selective bio-molecular pairings. Subsequently using one part of the pair
as a recognition element the selective measurement of the other part is detected. The biological
recognition system provides selectivity and translates information from the biochemical domain
into chemical or physical output [28]. According to the international union of pure and applied
chemistry, a bio-sensor is a self-contained integrated device that is capable of providing selective
quantitative analytical information using a biological recognition element which is in direct spatial
contact with a transducer element [29].

Another area where ΜR-based sensors can be employed, is for the realization of integrated
optical gyroscopes which estimate the angular velocity in inertial systems. In this situation, the
Sagnac effect is the operating principle which characterizes the photonic sensing mechanism [24].
In more detail, a phase shift between two counter-propagating beams, proportional to the angular
velocity at which the device is rotating, is detected. Due to the nature of optical waveguides, optical
sensors are suitable devices for various applications which include oil and gas applications, pipeline
monitoring, wind turbine blade monitoring, off-shore platform monitoring, power line monitoring,
down-hole monitoring and concentration measurement of different compounds by both visible and
infrared spectroscopy [25], [11].

The sensitivity of integrated photonic sensors using ring resonator technologies, can be sig-
nificantly enhanced if the spectral response of the resonator demonstrates asymmetric resonances
which would differ from the standard symmetric Lorentzian line-shape of a single cavity. To this
purpose, asymmetric Fano lineshapes would be ideal. This can be achieved by either using more
than one ring cavity or by using a racetrack shaped cavity structure, as will be explained in detail
in chapter 5. Optical sensors that exploit Fano resonances have been already demonstrated in ap-
plications such as bio-sensing [30] (see also [31], [32] and [33]) while the available design tools
for Fano resonant structures are enriched with the contribution of this dissertation [24], [34].
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2.4 Integrated optics and material platforms

Themajor challenges for the photonic component industry include integration (in order for the func-
tionality and cost benefits to be increased), standardization (common framework for manufacture
and development), cross-market platforms (to drive research and development) and supply-chain
coordination (to coordinate the manufacturing process) [11]. As a consequence, the future needs of
the systems and the identification of any gaps or roadblocks which might affect the manufacturing
of integrated photonic systems have to be defined, concentrating especially on the aforementioned
challenges, which should be addressed in order to achieve commercial success and viability. WDM
interconnects are likely to be deployed on a massive scale by 2025, a fact that will define the be-
ginning of commercial chip-to-chip and intra-package photonic interconnects era [11]. Working in
this frame, researchers are experimenting with different material platforms in an effort to address
the challenges and needs stated above. Those material platforms include [35]:

• Si-based platforms: Silicon-based platforms include silicon nitride-on-silica, silica-on-
silicon and silicon-on-insulator (SOI) [36]. Silica waveguides are easily interfaced with
free-space optics and fibers, resulting in the first demonstrations of integrated circuits [37].
Although the silica-on-silicon platform is being used today, especially for quantum com-
munication experiments [38], [39], for larger-scale information processing purposes, it has
been dominated by the SOI technology [40]. Silicon’s refractive index is much higher than
silica’s, which is a fact that allows 103 times smaller waveguide bend radius compared to
that in silica waveguides. Silicon’s indirect 1.12 eV band-gap along with its low intrinsic
carrier concentration, makes it transparent to photons at the telecommunication wavelength
of 1.55 µm. The major advantages of the SOI platform are its compatibility with the CMOS
industry [41] along with the well established fabrication techniques already developed for
silicon electronics and photonics [42], which has lead to the development of a full range of
required components. The combination of silicon nitride and silicon waveguides is a tech-
nique that can guarantee temperature-insensitive operation in data transmission systems. The
use of titania as a cladding material in a Si waveguide, can control the thermo-optic response.
Additional waveguide systems can broaden the applications range of the silicon photonic cir-
cuits as silicon nitride waveguides for instance, which are transparent to visible light, can be
utilized in order to fabricate compact biosensing systems on small Si chips [43], [44]. Re-
searchers also have to deal with the need for scaling the number of on-chip components and
achieving advanced functionalities [45].

• III-V platforms: III-V based platforms, such as GaAs and InP, offer radically new capa-
bilities in comparison to the silicon based platforms. Semiconductor laser technology used
today, allows on-chip integration of highly tunable pump sources with electrical injection
[46]. At present, GaAs is one of the most developed III-V photonic platforms [47] with
a high refractive index which allows high density integration, strong light confinement in
GaAs/AlGaAs waveguides and fast electro-optic switching. Due to their lack of inversion
symmetry, many III-V materials exhibit the electro-optic effect, which allows fast on-chip
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switching [48]. Recently, the generation, channeling and detection of single photons on the
same chip became possible, with the aid of on-chip integration of superconducting detectors
[49], [50].

• Polymers: Optical polymer materials possess unique optical and electrical properties, un-
available in other inorganic optical materials. These include structural diversity, large
thermo-optic effect with low thermal conductivity, index tunability by solution blending,
controllable birefringence and freestanding flexibility [51]. This is the reason behind the
boost of such platforms in practical applications. Devices that use polymers include broad-
band solar cells, ultra-fast electro-optic modulators, efficient white light emitting diodes and
flexible displays [52]. Due to the improvements in the fabrication technology, their imple-
mentation is now fast, cost-effective and provides flexibility and broad compatibility with
other semiconductor processing technologies [53], [54]. Integration of polymers in photonic
platforms such as silicon-on-insulator, III-V semiconductors, and silica, and vice versa, has
been reported [51].

• Bulk diamond and diamond-on-insulator: Diamonds present exceptional mechanical,
thermal and optical properties but are quite difficult to synthesize and process. Due to the
recent development of various fabrication techniques [55], diamond has proven to be a com-
petitive platform for realizing highly functional photonic integrated circuits [56]. Some of
the unique advantages of diamond include wide band-gap, high isotopic purity, high Debye
temperature and low free electron concentration [57].

• Lithium niobate: This optical material has been used since the beginning of the integrated
optics era and is considered highly versatile [58]. Its properties include ferro-electricity, bire-
fringence, electro-optic effect, chemical stability and high transparency. Large-scale wafers
are produced commercially and well developed fabrication techniques exist [59].

• Silicon carbide: This group IV material is a high band-gap material, which, like diamond,
presents a wide variety of color centers. In contrast to diamond, fabrication techniques for
SiC structures are better developed [60], [61].

Nowadays, the most popular photonic materials are Si, III-V and LiNbO3 because of the
particularly high degree of integration originating from their long history of development. Among
the elementary platforms, only the III-Vmaterials present the full range of required on-chip devices,
ranging from pump lasers to photon detectors. This is the reason why such platforms are expected
to achieve full integration within the next few years [35], [11].

Table 2.1 depicts the detailed results of the roadmap for individual supply chain compo-
nents, with respect to optical power capacity.
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Key Attribute Description 2016 2018 2020 2025 2035
Transparency (dB/cm) attenuation/distance 0.35 0.1 0.05 0.001 0.001
Material (n) effective index 1.8-4 1.8-4 1.8-4 1.8-4 1.8-4
Index contrast (∆n) n(core)-n(clad) 10−3 - 3 10−3 - 3 10−3 - 3 10−3 - 3 10−3 - 3

Stability (pm/oK)
spectral shift
of resonator

25 1 1 0.5 0.01

Power (mW)
optical power
capacity

30 30 50 100 500

Wafer uniformity (nm)
layer thickness

variation
10 1 1 0.5 0.5

Material system (Core/clad)
waveguide and

cladding materials
Si, SiN/SiO2

Si, SiN, Ge,
ChG/polymer,
SiO2, ChG

multilayer multilayer multilayer

.

Table 2.1: Roadmap for individual supply chain components results with respect to optical power
capacity [11]

As a conclusion one can suggest that the current technology is on the verge of achieving
an ultimate technology which will be able to integrate all photonic and electronic functions on a
single chip.

2.5 Optical waveguides

2.5.1 Waveguide structure and materials

The devices designed in this thesis comprise of two fundamental types building blocks: optical
waveguides and optical resonators. A dielectric optical waveguide is the basic structure used for the
confinement and guiding of light in well-defined discrete propagatingwaveguide modes in photonic
integrated circuits. By definition, a waveguide mode is a transverse field pattern whose amplitude
and polarization profiles remain constant along the propagation coordinate z of the waveguide. In
dielectric waveguides, total internal reflection (TIR) is a means of achieving this confinement. The
simplest dielectric guiding structure can be achieved by embedding a layer of high indexn1material
(core), inside a low index n2 material (cladding) as shown in figure 2.4a. This structure is referred
to as dielectric slab. Due to TIR at the interfaces between the high-index core and the lower-index
cladding media, light is confined within the core. The degree of confinement is relevant to the
refractive index contrast between the core and cladding:

∆n =
n1 − n2

n1

(2.1)

An optical ray is reflected back and forth between the two interfaces of the core layer, if the angle
of incidence between the propagating direction of the light and the perpendicular direction to the
material interface, is greater than a critical angle θc. This angle depends on the index of refraction
of the materials. Considering a ray of light moving from amaterial with refractive index n1 towards
another material with lower refractive index n2, with an angle of incidence of θ1, as depicted in
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figure 2.2, then Snell’s law dictates that:

n1

n2

=
sinθ2
sinθ1

(2.2)

From (2.2), we easily obtain that the angle of the refracted wave is:

θ2 = sin−1
(
n1 sin θ1

n2

)
(2.3)

If n1

n2
> 1 then we readily see that if sin θ1 is larger than n2

n1
then sin θ2 > 1 suggesting that no

refractive wave exists and hence TIR takes place. We define sin θc = n2

n1
or equivalently,

θc = sin−1n2

n1

(2.4)

We can therefore verify that if the angle of incidence θ1 is larger than θc, θ1 > θc, then TIR takes
place and no radiation is expected to leak outside the core layer. This geometrical optics description
is valid if the core widthw is much larger than the wavelength of light λ,w >> λ. The propagating
modes correspond to the various possible ray routes from the input to the output. As the core width
w becomes comparable with λ, one needs to resort to Maxwell’s equation in order to fully describe
the propagation of light, but geometric optics can still provide valuable insight. It turns out that
the different light paths are discrete and a structure with very small w can support only the direct
wave connecting the input and output terminals which corresponds to the fundamental waveguide
mode. A structure supporting only a single mode of propagation is referred to as a single mode
waveguide. When more paths exist, we obtain a multimode waveguide (see figure 2.3). Although
the dielectric slab can be used to illustrate the underlying physics of wave propagation in dielectric
optical waveguides, it confines the waves only in one direction and therefore has no major practical
application [62].

Figure 2.2: Snell’s law
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Figure 2.3: Total internal reflection at a slab waveguide

In practical applications, we wish to confine light in both directions perpendicular to the
propagation path. A strip waveguide is formed when a core layer is confined between cladding
layers in two out of three dimensions. The most straightforward example is a rectangular waveg-
uide, which is formed by a rectangular guiding core layer surrounded by a lower index material in
both transverse directions, as shown in figure 2.4b. Rectangular waveguides are commonly used
in integrated optical circuits such as laser diodes [62]. Additionally, they are utilized as a basic
component of Mach–Zehnder interferometers and wavelength division multiplexers.

(a) (b)

(c) (d)

Figure 2.4: Waveguide types: a) slab waveguide, b) strip waveguide c) rib waveguide and d) optical
fiber

A third kind of waveguide is a rib waveguide where the guiding layer consists of the slab
with one or several strips superimposed onto it, and this kind also provides a two dimensional wave
confinement, like the one depicted in figure 2.4c [62]. Although strip and rib waveguides typically
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maintain a consistent cross-section along the propagation direction, other waveguide structures
with periodic changes in their cross-section have been developed. These waveguides are known as
segmented waveguides or as photonic crystal waveguides and they still allow lossless transmission
of light, via the so-called periodic Bloch modes [62]. The previous designs are suitable for PICs but
perhaps the most popular optical waveguide is the optical fiber which consist of a dielectric material
surrounded by another dielectric material with a lower refractive index, as depicted in figure 2.4d,
commonly made from silica glass (for long distance applications) or plastic (for short-distance
applications). [62]. The most common waveguide material systems and their index contrasts are
presented in table 2.2, where one can see that the typical index contrast ∆n, ranges from about
1% (for weakly confined waveguides based on doped silica materials), to over 40% (for strongly
confined semiconductor waveguides) [63].

Core Material
Refractive Index
at λ = 1.55µm

Index Contrast
∆n(%)

Doped silica 1.45-1.5 0.7-4
Polymers 1.45-1.7 0.7-14
SiOxNy 1.45-2.0 0.7-24
SiNx 2.0-2.3 24-30

III-V (InP, GaAs) 3.16, 3.4 40, 41
Si 3.47 41

Table 2.2: Refractive indices and index contrasts of the most common integrated optic waveguide
materials, assuming SiO2 cladding with refractive index n2 = 1.44

2.5.2 Electromagnetic analysis

The finer details ofmode propagation in optical structures can be studied usingMaxwell’s equations
which describe the temporal evolution of the electric andmagnetic components. In the time domain,
the differential form of Maxwell equations becomes [64]:

∂B
∂t

= −∇× E−M (Faraday’s Law) (2.5a)

∂D
∂t

= ∇×H− J (Ampere’s Law) (2.5b)

∇ · D = 0 (Gauss’s Law for the electric field) (2.5c)

∇ · B = 0 (Gauss’s Law for the magnetic field) (2.5d)

where E is the electric field in V/m, D is the density of the electric flow in Cb/m2, H is the
magnetic field in A/m, B is the density of the magnetic flow in Weber/m2, J is the density of the
electric current in A/m2 andM is the density of the equivalent magnetic current in V/m2.

The field flows D and B are related to the fields E and H through the medium’s constitu-
tive relationships. Depending on the material and structure properties, these relation can be fairly
complex. A first approximation is to assume that these relationships are scalar. For most dielectric
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materials one can use the following equations:

D = ϵE (2.6a)

B = µH (2.6b)

with ϵ being the permittivity and µ the permeability of the medium. For most materials under
consideration one can simply assume that µ is equal to the vacuum permeability µ0 = 4π × 10−7

H/m while the permittivity is related to the refractive index n through ϵ = n2ϵ0 where ϵ0 = 8.854×
10−12 F/m is the vacuum permittivity. In the absence of electric and magnetic currents, it is useful
to cast Maxwell’s equations in the frequency domain [64],

∇× Ẽ = jωµH̃ (2.7a)

∇× H̃ = −jωϵẼ (2.7b)

∇ · {ϵẼ} = 0 (2.7c)

∇ · H̃ = 0 (2.7d)

where the tilde (˜) denotes the fields in the frequency domain calculated through the Fourier trans-
form. Assuming a structure that is uniform along the z-axis, ϵ = ϵ(x, y). In this case, the waveguide
modes are solutions to Maxwell’s equation in the frequency domain of the form [64]:

Ẽ = e(x, y)ejβz (2.8a)

H̃ = h(x, y)ejβz (2.8b)

where e and h are the modal fields along the transverse coordinates (x, y) and β is the propagation
constant determining the phase evolution of the wave along the propagation direction z. The effec-
tive index is determined as neff = β/k0 where k0 is the wavenumber in free space k0 = 2π/λ and is
an important parameter of the waveguide mode. For propagating modes in dielectric waveguides,
the effective index is between the refractive index of the background material and the core. For
example, in figure 2.4b one has n2, n3 < neff < n1.

The above equations can be re-written in scalar form:
∂ez
∂y
− jβey = jωµ0hx (2.9a)

∂ez
∂x
− jβex = −jωµ0hy (2.9b)

∂ey
∂x
− ∂ex

∂y
= jωµ0hz (2.9c)

∂ez
∂y
− jβhy = −jωεex (2.9d)

∂hz

∂x
− jβhx = jωεey (2.9e)

∂hy

∂x
− ∂hx

∂y
= −jωεez (2.9f)

∂ex
∂x

+
∂ey
∂y

+ jβez = 0 (2.9g)

∂hx

∂x
+

∂hy

∂y
+ jβhz = 0 (2.9h)
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Maxwell’s equations can be solved in a variety of numerical and analytical methods de-
pending on the structure at hand. The finite difference time domain method that will be presented
in section 3.8 is quite popular for solving the time domain equations in (2.5). In order to solve
Maxwell’s equation in the frequency domain the finite difference frequency domain method can be
applied which is also applicable for the modal equations in (2.9). We will further outline the FDFD
method in section 3.7. Both the FDTD and FDFD rely on the discretization of the structure using
a specified point grid and the approximation of the partial derivatives with finite differences and
are numerical methods. The various analytical and semi-analytical methods on the other hand take
advantage of the underlying material and structural characteristics in order to simplify Maxwell’s
equations. An example of such a method is the coupled mode theory framework further discussed
in section 3.3.

Another widely used semi-analytical method that can be used to solve the modal equa-
tions is the effective index method (EIM) [65]. The main idea behind the EIM in the case of
rectangular-like waveguide such as the one depicted in figure 2.4b, is that the components of the
mode e inside the waveguide, can be considered as the product of two functions of one variable,
i.e. ex = fx(x)gx(y). This effectively breaks down the problem into two slab-like problems one
in the y direction (vertical direction) and one in the x direction (horizontal direction) as shown in
figure 2.5. The solutions for the slab waveguide are relatively straightforward and are found by
solving well known transcendental equations [66]. One can therefore proceed to solve the verti-
cal problem and calculate the corresponding effective index ny

eff and then consider the horizontal
slab problem by replacing n1 with ny

eff as shown in 2.5. Although this approximation can lead to
significant errors especially in the case of high index contrast ∆n, it provides a powerful tool for
waveguide analysis due to its simplicity [67].

Figure 2.5: Graphical presentation of the EIM

2.6 Optical resonators

In general, a resonant optical cavity (or optical resonator) describes a set of optical components,
arranged in such a manner that allows a beam of light to circulate in a closed path, i.e. it confines
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light in all spatial directions. Such arrangements are implemented in various ways (disk resonators,
ring resonators, RRs etc). There are two basic types of cavities. The first type is the standing-wave
cavity where light travels back and forth between end-mirrors and the field at any point is the result
of the standing-wave interference pattern between waves traveling in opposite directions (figure
2.6a). As a result, the field in a standing-wave resonator has a spatially-dependent amplitude dis-
tribution. The second type is the traveling wave resonator where the light propagates in round-trips
in different directions without using any end mirrors (figure 2.6b) [68], [69]. The field amplitude
in a traveling-wave resonator is nearly uniform. In both cases, resonators may contain additional
optical elements which are passed in each round trip as in the case of a laser resonator which
contains a gain medium that can compensate the path losses in each round trip. An important ad-
vantage of traveling wave over standing wave resonators is that no mirrors are required which can
be difficult to fabricate in integrated optics. Moreover, the unidirectional propagating light in the
travelling wave resonators, favours the distinction between the output light signals from the input
light (physically isolated ports) [63].

(a) (b)

Figure 2.6: Examples of a) standing wave resonators [2] and b) traveling wave resonator

Some of the fundamental features characterizing resonators include:

• The resonant frequency (f0). The resonant frequency corresponds to the frequency at which
the various waves involved in both the standing-wave and the travelling-wave resonators are
added constructively with a phase difference equal to a multiple of 2π. Assuming a path
length L, the phase difference is expressed as:

∆ϕ =
2πneff
λ

L =
2πnefff

c
L (2.10)

Setting ∆ϕ equal to 2νπ we readily conclude that the resonant frequencies are given by:

f ν
0 =

cν

neffL
(2.11)

• The resonator bandwidth (∆f ). The field inside a resonator oscillates as ej2πf0t but in
practical situations it also decays due to resonator losses which can be intrinsic or due to
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couplingwith other structures. The resultant oscillations are described by e−α/2t+j2πf0twhere
α > 0 is a suitable attenuation coefficient. If we assume that these oscillations start at t = 0

then it is straightforward to show that this corresponds to a spectrum:

A(f) =
1

α/2 + j2πf
(2.12)

This spectrum has a 3dB full width half maximum bandwidth (FWHM) at ∆f = α/2/π.

• The quality factor (Q). Q is a dimensionless parameter that characterizes a resonator’s
bandwidth relative to its centre frequency and is equal to the ratio of the resonant frequency
to the bandwidth of the cavity resonance. It is given by:

Q =
f0
∆f

=
2πf0E

P
(2.13)

where f0 is the resonant frequency, E is the stored energy in the cavity and P = −dE/dt is
the power dissipated. The average lifetime of a resonant photon in the cavity is proportional
to the cavity’s Q [70].

• The free spectral range (FSR). Equation (2.11) suggest that the resonant frequencies of the
structure are uniformly spaced. This periodicity is expressed through the FSR which denotes
the spacing between the resonant frequencies,

FSR = f ν+1
0 − f ν

0 =
c

neffL
(2.14)

As can be deduced from equation (2.14), due to the fact that the FSR is inversely proportional
to the cavity length, the dimensions have to be small in order to achieve a high FSR and avoid
crosstalk.

• The finesse (F ). The finesse F is the ratio of the FSR to the FWHM ∆f

F =
FSR
∆f

(2.15)

and expresses the sharpness of the resonance compared to the spacing between the resonant
frequencies.

In this dissertation we focus on traveling wave MRs. The MR is an integrated element
fabricated by bending an optical waveguide to form a closed loop. The shape of this loop is typically
a circle or a racetrack as shown in figure 2.6b. Light propagating in the MR waveguide interferes
with itself after every trip around the ring. Constructive interference of light is obtained when the
circumference of the loop 2πR is exactly equal to an integer multiple of the guided wavelength νλ,
implying a phase difference multiple of 2π. This gives rise to sharp, Lorentzian-like resonances
and large field intensity buildup inside the MR. The most important features of a MR are namely,
the large field enhancement, the high wavelength selectivity, the high quality factor and the strong
dispersion [63]. All the above render MR resonators extremely versatile and useful for a wide
range of applications. These include signal processing, nonlinear optics, optical communication,
quantum optics and sensing [69], [68].
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2.7 Microring resonators

Figure 2.7a illustrates a ring resonator. The resonant condition of this device is given by ∆ϕ =

2πneffL/λ = 2νπ with with L = 2πR and R the radius of the ring [71]:

neffL = νλ (2.16)

Figure 2.7b shows the transfer function of a MR device which is described by a sharp Lorentzian-
like resonance [12], [72]. Much like the case of the simple Fabry-Perot cavity, the shape of the
transfer function of such a single ring structure is not very attractive, when considered from a
telecommunications application point-of-view. The reasons include the limited width of the pass-
band which, in combination with the slowly decaying tails, limit the channel spacing in case the
device is to be used as a WDM filter [1]. This is further illustrated in figure 2.7c which plots the
transfer function over a wider frequency spacing where the periodicity of the transfer function is
evident. The solution to the transfer function shape problem is to couple together several MRs in
series. This improves the flatness in the passband and increases the decay rate at the tails rendering
such devices more suitable for WDM applications.

(a) (b) (c)

Figure 2.7: Depiction of a) a simple ring resonator, b) its transfer function in a single and c) multiple
FSR range.

One of the main reasons for the increasing research interest in MRs, is the ability to fabri-
cate them using the majority of the available photonic material platforms mentioned in section 2.4
including silicon [73], III–Vs [74], lithium niobate [75] and polymers [76].

In figure 2.8, we illustrate a simple waveguide/cavity system which is a four-port optical
structure, consisting of a MR coupled to an input and an output waveguide. In the figure, we label
the four ports as input (port 1), through (port 2), add (port 3), and drop (port 4). An optical signal is
inserted in the system through port 1 and propagates in the lower waveguide until it exits the device
through port 2. At the lower coupling region, some wavelengths λi, which satisfy the resonance
condition may propagate in the ring in a counter-clockwise direction. Through the upper coupling
region, these wavelengths may couple to the upper waveguide and exit from port 4. In the same
manner, another wavelength which also satisfies the resonant condition, λn, can be inserted into the
device through port 3. This wavelength will be added to the initial signal of waveguide 1, through
the two coupling regions and will be finally received in port 2.
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Figure 2.8: Representation of the simplest form of waveguide/cavity system

This device can be used as an add-drop filter in a WDM communication network allowing
a wavelength channel from an input WDM signal that is in resonance with the MR, to be extracted
to the drop port while, at the same time, allowing all other channels to proceed to the through port.
In the same manner, a channel that is in resonance with the MR can be added onto the incoming
WDM stream through the add port.

2.8 Multiple resonator structures

There are many possible ways in which multiple MRs can be combined to form a filter with more
suitable properties. A coupled resonator optical waveguide (CROW) [77] is formed by placing the
MRs along a path as shown in figure 2.9b. In this case light can hop from one ring to another.
One can envision this series of MRs as a larger resonator in which many resonant frequencies are
obtained around the resonant frequency f0 of the single ring. If the spacing between the rings is
chosen carefully the superposition of the corresponding spectral peaks produces a flat top frequency
response. An input and an output waveguide can be used to couple light to and from the structure.
CROWs offer improved control over their dispersion characteristics and thus find applications in
delay lines for storing and buffering of optical pulses through slow-light propagation [78] which
can also enhance the non-linear response of the medium. In the majority of the cases, adjacent
rings with the same radii are used, placed symmetrically along each other [79].

Alternatively, one can use a waveguide as in figure 2.9a to further enhance the coupling
between the resonators. This device is called side-coupled integrated spaced sequence of resonators
(SCISSOR) [80] .
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(a) (b)

Figure 2.9: Multiple resonator structures: a) the SCISSOR geometry and b) the CROW geometry

In the SCISSOR case, if there is no resonator-to-resonator coupling, then light in all frequen-
cies is transmitted in a feed-forward sequential manner from one resonator to the next ‘‘pausing’’
for localized feedback at each site. As a result, the optical properties of the structure do not depend
on the spacing between neighboring resonators, but only the total number of resonators.

2.9 Applications of MRs

We have already discussed a basic add/drop functionality of the MR in section 2.7. MRs therefore
constitute essential components in implementing OADMs and other network components [81],
[82], [83], [84], [85]. MRs have also been proposed in a number of other applications including:

• lasers: Novel designs of three-terminal hybrid III–V-on-silicon lasers that integrate a metal-
oxide-semiconductor (MOS) capacitor into the laser cavity using MRs, have been demon-
strated. This approach enables a highly energy efficient method to tune both the output power
and wavelength ofMR lasers (figure 2.10a [3]). Additionally, a novel approach for achieving
single mode lasing in MR lasers by increasing the radiation loss of all but one of the resonant
modes of MR resonators by integrating second order gratings on the MRs’ waveguide, has
been proposed (figure 2.10b [4]).
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(a) (b)

Figure 2.10: Depiction of a) three-terminal hybrid III–V-on-silicon [3] and b) laser-based on inte-
grating second order gratings on the MRs’ waveguide [4]

• switching elements: Due to their high Q-factors and compact sizes, semiconductor MR
resonators are the most appropriate candidates for fast optical switching applications. Such
devices using micro-resonators can present up to ten times more enhanced field intensity
in the ring and a finesse of the order of 100. This can lower the switching threshold by
nearly four orders of magnitude. The carrier lifetime of the micro-cavity is found to be as
short as a few picoseconds, allowing switching rates in the hundreds of gigahertz range in
integrated form [86]. In addition, 2×2 versions of silicon multi-wavelength switches have
been demonstrated, which present switching transitions below 2 nanoseconds with up to
11.5dB extinction ratio at 10-Gb/s per channel data rates [87].

• optical gates: MR resonators are one of the best competitors for the development of digital
logic photonic integrated circuits, because of their planar and compact structure. Also, the
absence of back reflections which are a major disadvantage of the Fabry-Perot type cavities,
such as photonic crystals, is a major advantage. All-optical logic gates, based on symmetric
GaAs–AlGaAs MR resonators with closely matched resonances, have been demonstrated.
Furthermore, MR resonator based all optical gates have been reported [88]. In such struc-
tures, the use of more than one ring produces better cascading in photonic circuits due to the
higher number of available ports. The switching energy of the gate is of the order of 20 pJ
pulse, and the switching window is 40 ps, limited by the carrier lifetime (see figure 2.11) [5].
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(a) (b)

(c) (d)

Figure 2.11: Depiction of an a) AND gate [5] b) OR gate [5] c) NOR gate [5] and d) XOR gate [5]

• optical modulators: Electro-optical modulators utilizing MR resonators are critical com-
ponents which enable optical interconnection systems on a microelectronic chip, in an at-
tempt to meet the increasing bandwidth density demand that data centers and supercomput-
ing systems require. Silicon modulators based on the free-carrier dispersion effect have been
demonstrated [6]. Such modulators are either based on MOS capacitors or p-i-n diodes. Ad-
ditionally, various schemes have been presented for the enhancement of the operation speed
of the carrier-injection based p-i-n modulator (figure 2.12a). The major advantages of such
devices include high-speed operation above 10 Gb/s, low power consumption, small device
size and high modulation depth. Moreover, 40 Gb/s transmitters designed in 65nm CMOS
which achieve 4 level pulse amplitude modulation on a single MR device have also been
demonstrated (figure 2.12b) [7].
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(a) (b)

Figure 2.12: Depiction of the a) p-i-n modulator and its normalized transmission spectra [6] and b)
top and cross-section views of a carrier-depletion MR modulator [7]

• optical signal processors: Compact MR-assisted directional couplers in the silicon-on-
insulator material system have been fabricated, designed to have a wide range of spectral
characteristics, which include sharp asymmetric Fano line shapes, that can be utilized for
WDM applications among others (figure 2.13a) [8]. Also, reconfigurable silicon thermo-
optical devices have been demonstrated, which are able to tailor their intrinsic spectral opti-
cal response with the aid of the thermo-optical control of individual and uncoupled resonant
modes of MRs (figure 2.13b). Such devices can be utilized to build up distinct and reconfig-
urable logic levels for optical signal processing usage [9].

(a) (b)

Figure 2.13: Depiction of a) compact MR-assisted directional couplers in the silicon-on-insulator
material system [8] and b) reconfigurable silicon thermo-optical device [9]

• dispersion management: A combination of various waveguide cross sections, in an alu-
minum nitride MR resonator can be used to control dispersion. Narrow waveguides with
normal dispersion combined with wider ones with anomalous dispersion can be linked to-
gether with other tapering waveguides enclosed within a ring resonator, in order to produce
a nearly zero device dispersion (figure 2.14) [10].
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Figure 2.14: A multi-segment resonator that employs waveguides of different cross-sections for
dispersion compensation. The red and blue curves are the light of longer and shorter wavelengths,
respectively. The length of the arrows represent the speed of light for each wavelength in different
waveguide sections. Mode profiles in narrow and wide waveguides are also sketched. The group
velocity dispersion is either negative or positive depending on the material used [10]

2.10 Racetrack resonators

In order for a MR device to meet the required criteria, two basic parameters can be selected: the
loss (gain) coefficient gavg and the waveguide/MR coupling coefficient κ. The loss can be tailored
by controlling the bending losses through proper design [89], the usage of different gain materials
[90] and the clever matching of materials [91]. The coupling coefficient κ can be tuned by con-
trolling the lateral coupling between the bus and ring waveguides. One way of realizing this is by
vertically coupling the ring and the bus waveguide, which is a task that requires complex control
and increased accuracy, hindering its applicability [92], [93], [94]. A simpler way to control the
coupling coefficient is by using racetrack shaped resonator structures [95], [96], [97], as the one
shown in figure 2.15.

Figure 2.15: Representation of a RR structure
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One of the advantages of this method is that conventional directional couplers are used,
which makes the implementation simpler and more cost effective. The strength of the lateral cou-
pling is determined by the length of the straight section of the RR. This characteristic however
can also be a disadvantage as far as miniaturization is concerned. The increased losses due to the
mode mismatch between the straight and the curved section of the RR along with the reflections
at the interfaces are also considered a noticeable drawback of this approach. Important methods
of reducing the impact of the mode mismatch have been presented in the past [91]. Alternatively
however, intra-cavity reflections can provide additional degrees of freedom when designing a race-
track/waveguide system. In [96], the authors have numerically shown that intra-cavity reflections
in the active RRs result in various optical paths available to the oscillating field. The interfer-
ence of these paths produces Fano resonances [98] that can be manipulated via gain tuning, by
incorporating gain material [90] and then driving each of the waveguide’s sections with different
electrodes (separate current injections). Such Fano-type resonances can be utilized to implement
various novel applications in the field of bio-sensing [99].
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3 Design and simulation tools

3.1 Introduction

This chapter presents the basic tools for the analysis and design of coupled resonator/waveguide
systems. As stated in 2.5.2 there are several tools for the analysis of such structures including
direct solution of Maxwell’s equations in the time or frequency domain as well as semi-analytical
methods that take advantage of the specific nature of the coupling system. We begin with the latter
since they can also provide greater insight in the device operation.

The term simulation describes the procedure where a set of parameters is utilized in com-
bination with a mathematical model, in order to calculate the T (f) at the output of a structure. As
can be easily understood, this means that the result of the calculations is unknown until they are
completed and depends on the input parameter values used in the beginning. This fact is useful if
the accuracy of a mathematical model is to be certified. This is done by comparing the results of
this model with the results of other well established models, using the same set of input parame-
ters. The idea behind our work however, has to do with the opposite procedure, i.e. the design of
a structure: we need to find the best combination of the input parameters of a structure, in order to
obtain a predetermined T (f) at its output.

The ideal filter response for telecommunication applications would be a box-like function
T0(f):

T0(f) =

{
1 , |f − f0| ≤ B

2

0 , otherwise
(3.1)

where B is the bandwidth. To measure how close a given transfer function T (f) is to our ideal
box-like response T0(f) we need to identify a metric d. One example could be:

d =

∫ fb

fa

|T (f)− T0(f)|2df (3.2)

We have empirically found however that attempting to match T (f) directly to a box-like transfer
function T0(f) in such a manner was often not practical since if the integration interval [fa, fb] was
not chosen carefully, minimizing d could result in some peculiar looking T (f) which was of little
interest from a practical point-of-view. Chapter 4 discusses a more fine choice for d in the case of
the microring resonator. For the design of the RR structures for sensing applications in chapter 5
the problem was even more complex as it was not very clear what a reasonably attainable T0(f)

would look like. In this case we ended up choosing a metric d that involved some aspects of T (f)
related to its behavior rather than its match to a particular ideal T0(f). In both cases the metric
d = d(p) depends on the material and structural parameters p = (p1, . . . , pN) of the device, i.e. the
waveguide geometry, the number of resonators, etc. To optimize the design one should therefore
minimize d(p).

In practice, we expect that the fabrication process itself will impose limits on some or all
the values of the parameters p. We therefore need to perform the minimization on a finite interval.
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This is a special case of constrained minimization where each parameter pi must be kept within a
pre-defined interval [pmini , pmaxi ].

There are a number of optimization methods typically used in the literature for the min-
imization of functions of multiple variables. If the number N of parameters is small, one could
consider simply running an exhaustive search on a multidimensional grid of points pl. This is the
method used in chapter 5. The interior-point algorithm is used in this thesis in chapter 4 since the
number of design parameters is large and thus an exhaustive search is impractical. This algorithm
transforms the original minimization problem, minp d(p) to a series of approximate minimization
problems involving only equalities as constraints. These problems are easier to solve using meth-
ods such as the conjugate gradient, etc. A detailed analysis of such optimization methods is out of
the scope of this thesis and the interested reader is referred to [100] and [101] as well as the various
textbooks in the area e.g. [102], [103].

3.2 Reciprocity relations

Reciprocity relations are instrumental in the derivation of the coupled mode equations as they can
be used to relate the electromagnetic field components of two different structures. Let (E1,H1) and
(E2,H2) be solutions of Maxwell’s equations in the frequency domain corresponding to structures
with dielectric constant ϵ1 and ϵ2 and frequencies ω = ω1 and ω = ω2 respectively, i.e.,

∇× E1 = jω1µH1 (3.3a)

∇×H1 = −jω1ϵ1E1 (3.3b)

∇× E2 = jω2µH2 (3.4a)

∇×H2 = −jω2ϵ2E2 (3.4b)

Let us define the vector function F as follows:

F = E1 ×H∗
2 + E∗

2 ×H1 (3.5)

Assuming a planar surface S surrounded by a perimeter contour l on which n̂ is the unit
outward normal and z is the unit vector orthogonal to S, we can write:

∫
S

∇ · FdS =
∂

∂z

∫
S

F · zdS +

∮
l

F · ndl (3.6)

46



Using (3.5) we can calculate∇ · F as:

∇ · F = ∇ · (E1 ×H∗
2 + E∗

2 ×H1) =

= H∗
2 · ∇ × E1 − E1 · ∇ ×H∗

2 +H1 · ∇ × E∗
2 − E∗

2 · ∇ ×H1 =

= jω1µH1 ·H∗
2 − jω2ϵ2E1 · E∗

2 − jω2µH1 ·H∗
2 + jω1ϵ1E1 · E∗

2 =

jµ(ω1 − ω2)H1 ·H∗
2 + j(ω1ϵ1 − ω2ϵ2)E1 · E∗

2

(3.7)

We will now assume that S is a plane perpendicular to the propagation direction z and the fields
vanish on l, i.e. ∮

l

F · ndl = 0 (3.8)

We can therefore combine (3.7) and (3.6) in order to obtain:

∂

∂z

∫
S

(E1 ×H∗
2 + E∗

2 ×H1) · zdS = jµ(ω1−ω2)

∫
S

H1 ·H∗
2dS+

∫
S

j(ω1ϵ1−ω2ϵ2)E1 ·E∗
2dS

(3.9)

The reciprocity relation in (3.9) will be used to derive the coupled mode equations in the following
sections.

3.3 Coupled mode theory

(a) (b) (c)

Figure 3.1: Depiction of a) coupling region, b) uncoupled straight and c) uncoupled ring waveg-
uides.

Coupled mode theory is a general theoretical framework that describes the coupling of modes be-
tween waveguides and/or resonators. Given two or more coupled structures, the underlying idea is
to expand the field as a superposition of the modes of the isolated individual structures. In the case
of a straight waveguide coupled with a MR, we are interested in the analysis of the coupling region
shown in figure 3.1a where the distance between the MR and the straight waveguide is small. The
field in the straight waveguide can be written as:

Es = es(x, y)ejβsz (3.10a)

Hs = hs(x, y)ejβsz (3.10b)
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As a first approximation, we can assume that the curvature of the ring waveguide is very small and
hence the modal fields can be approximated by that of a straight waveguide as well,

Er = er(x, y)ejβrz (3.11a)

Hr = hr(x, y)ejβrz (3.11b)

The fields (Es,Hs) and (Er,Hr) obey Maxwell’s equations for the straight and the ring waveguide
respectively,

∇× Es = jωµHs (3.12a)

∇×Hs = −jωϵsEs (3.12b)

∇× Er = jωµHr (3.13a)

∇×Hr = −jωϵrEr (3.13b)

The dielectric constants ϵs and ϵr corresponding to the uncoupled straight and ring waveguides are
illustrated in figures 3.1b and 3.1c. The total field (E,H) inside the coupling region is written as a
superposition of the isolated fields,

E = ar(z)Er + as(z)Es (3.14a)

H = ar(z)Hr + as(z)Hs (3.14b)

where as and ar are the modal amplitudes along the propagation direction z. The total field obeys
the following Maxwell’s equations:

∇× E = jωµH (3.15a)

∇×H = −jωϵE (3.15b)

We can now apply the reciprocity relation (3.9) to derive the coupled mode equations for the
amplitudes ar and as. We start by considering the functional Fr = E×H∗

r +E∗
r ×H and consider

the left hand side of the reciprocity relation,

∂

∂z

∫
S

(E×H∗
r + E∗

r ×H) · zdS =

∂ar
∂z

∫
S

(Er ×H∗
r + E∗

r ×Hr) · zdS +
∂as
∂z

∫
S

(Es ×H∗
r + E∗

r ×Hs) · zdS+

ar
∂

∂z

∫
S

(Er ×H∗
r + E∗

r ×Hr) · zdS + as
∂

∂z

∫
S

(Es ×H∗
r + E∗

r ×Hs) · zdS (3.16)

We can assume that the mode fields are normalized so that,∫
S

(Er ×H∗
r + E∗

r ×Hr) · zdS =

∫
S

(Es ×H∗
s + E∗

s ×Hs) · zdS = 1 (3.17)

Applying the reciprocity relations for Fsr = Es ×H∗
r + E∗

r ×Hs we obtain,

κsr =
∂

∂z

∫
S

(Es ×H∗
r + E∗

r ×Hs) · zdS = jω

∫
S

(ϵs − ϵr)Es · E∗
rdS (3.18)

48



We therefore obtain,

∂

∂z

∫
S

(E×H∗
r + E∗

r ×H) · zdS =
∂ar
∂z

+
∂as
∂z

Λsr + asκsr (3.19)

with
Λsr =

∫
S

(Es ×H∗
r + E∗

r ×Hs) · zdS (3.20)

Considering the right hand side of the reciprocity relation (3.9), we obtain,

∂

∂z

∫
S

(E×H∗
r + E∗

r ×H) · zdS = jω

∫
S

(ϵ− ϵr)E · E∗
rdS =

jωar

∫
S

(ϵ− ϵr)Er · E∗
rdS + jωas

∫
S

(ϵ− ϵr)Es · E∗
rdS (3.21)

If we ignore the self coupling term,

jωar

∫
S

(ϵ− ϵr)Er · E∗
rdS ∼= 0 (3.22)

we can write:

∂

∂z

∫
S

(E×H∗
r + E∗

r ×H) · zdS = jωas

∫
S

(ϵ− ϵr)Es · E∗
rdS (3.23)

Combining (3.19) and (3.23), we obtain the following propagation equation,

∂ar
∂z

+
∂as
∂z

Λsr = jκsas (3.24)

where we have defined,
κs = ω

∫
S

(ϵ− ϵs)Es · E∗
rdS (3.25)

In a similar manner we obtain,
∂as
∂z

+
∂ar
∂z

Λrs = jκrar (3.26)

with
Λrs =

∫
S

(Er ×H∗
s + E∗

s ×Hr) · zdS = Λ∗
sr (3.27)

If we define the matrices C and K as follows:

C =

[
1 Λrs

Λsr 1

]
(3.28)

K =

[
0 κr

κs 0

]
(3.29)

and the vector a as:

a =

[
as

ar

]
(3.30)

then we can write the propagation equations (3.24) and (3.26) as:

∂a
∂z

= jC−1Ka (3.31)
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A formal solution to this system of equations is:

a(lc) = exp
(
j

∫ lc

0

C−1Kdz
)
a(0) (3.32)

where lc is the length of the coupling region and a(0) is the initial amplitude. LetM be the matrix,

M = exp
(
j

∫ lc

0

C−1Kdz
)

=

[
m11 m12

m21 m22

]
(3.33)

The amplitudes of the fields at the input and output of the coupling region in figure 3.1a are therefore
determined by, [

as(lc)

ar(lc)

]
=

[
m11 m12

m21 m22

][
as(0)

ar(0)

]
(3.34)

The parametersmpq are the scattering parameters of the coupling region andM is the scat-
tering matrix.

3.4 Power flow

The matrix equation (3.34) reveals that the input and output amplitudes of the fields in the coupling
region are related through a linear equation. Let us first consider the matrix C which is given by
(3.28) and (3.27). As indicated by (3.27) the non-diagonal elements of the matrix are the overlap
of the fields in the ring and the straight waveguides. If we apply the reciprocity relation (3.9) we
can show that:

∂Λrs

∂z
= jω

∫
S

(ϵr − ϵs)Er · E∗
sdS (3.35)

Figure 3.2: The distribution ϵr − ϵs along with the modal fields Es and Er

We therefore see that the variation of Λrs along the propagation equation is determined by
the integral of (ϵr− ϵs)Er ·Es over the plane S. Let us assume that the ring and straight waveguide
have similar cross-sections and that their modes are also similar. In this caseEr can be considered a
displaced version ofEs. Figure 3.2 illustrates the one-dimensional analog of the quantities involved
in (3.35). Based on the figure, we see that the integral in (3.35) comprises of nearly anti-symmetric
contributions which cancel one another: one inside the ring waveguide and one in the straight
waveguide. We therefore expect:

∂Λrs

∂z
∼= 0 (3.36)
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At the input of the coupling region, we expect that the overlap between the fields Es,Hs and Er,Hr

is negligible since the waveguides are placed far apart. Hence we can assume that,

Λ = Λrs =

∫
S

(Er ×H∗
s + E∗

s ×Hr) · zdS ∼= 0 (3.37)

This implies that the matrix C can be approximated by the identity matrix,

C =

[
1 Λrs

Λsr 1

]
∼=

[
1 0

0 1

]
(3.38)

The fields obeying: ∫
S

(E1 ×H∗
2 + E∗

1 ×H2) · zdS = 0 (3.39)

are said to be orthogonal. We therefore conclude that the fieldsEs,Hs andEr,Hr can be considered
orthogonal and this orthogonality is approximately maintained throughout the coupling region.
This simplifies the calculation of the power flow through the coupling region. The power along
the propagation equation is given by Poynting’s theorem,

Pz =

∫
S

(E×H∗ + E∗ ×H) · zdS (3.40)

Substituting the field expansion (3.14) in (3.40) and using the normalization condition (3.17) along
with the orthogonality condition (3.37) we can obtain:

Pz = |as|2 + |ar|2 (3.41)

3.5 Lossless coupling region

(3.41) illustrates that the power flow along the propagation direction is given by the sum of the
squares of the amplitudes of the propagating modes. Assuming that the coupling region is lossless,
the input and output amplitudes are related through,

|as(0)|2 + |ar(0)|2 = |as(lc)|2 + |ar(lc)|2 (3.42)

This imposes certain conditions on the structure of the matrix M. Denoting {.}T the conjugate
transpose, then:

aT (z)a(z) = |as(z)|2 + |ar(z)|2 (3.43)

Hence,
|as(lc)|2 + |ar(lc)|2 = aT (lc)a(lc) = aT (0)(MTM)a(0) (3.44)

and the lossless condition translates to:

MTM = I (3.45)

where I is the identity matrix. The above equations translate to:

|m11|2 + |m21|2 = 1 (3.46a)

|m12|2 + |m22|2 = 1 (3.46b)

m∗
11m12 +m∗

21m22 = 0 (3.46c)
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Using some mathematical manipulation we can show that the elements of the matrix are related as
follows:

|m11| = |m22| (3.47a)

|m12| = |m21| (3.47b)

We note that if the straight and ring waveguides are symmetrical we expect that κr = κ∗
s and the

matrix K can be written as,

K =

[
0 κs

κ∗
s 0

]
(3.48)

Since the matrix C is Hermitian we expect that the matrix C−1K is also Hermitian. Especially in
view of (3.38), we can approximate C−1K ∼= K and hence:

m = j

∫ lc

0

C−1Kdz ∼= j

∫ lc

0

Kdz =

[
0 jK

jK∗ 0

]
(3.49)

whereK is the cumulative coupling coefficient over the coupling region,

K =

∫ lc

0

κsdz (3.50)

Lets consider the matrix l given by,

l =

[
0 K

K∗ 0

]
(3.51)

which is Hermitian and has eigenvalues equal to ±|K|, while the eigenvectors (v1, v2) are deter-
mined by: [

0 K

K∗ 0

][
v1

v2

]
= ±|K|

[
v1

v2

]
(3.52)

which implies that v2 = ±v1ejϕK , where ϕK is the phase ofK. We can easily show that:

v =
1√
2

[
ejϕK/2

±ejϕK/2

]
(3.53)

are normalized eigenvectors corresponding to the eigenvalues±|K|. Constructing the unitary ma-
trix with the eigenvectors as columns,

U =
1√
2

[
ejϕK/2 ejϕK/2

e−jϕK/2 −e−jϕK/2

]
(3.54)

and the diagonal matrix,

D =

[
|K| 0

0 −|K|

]
(3.55)

we can readily see that l can be diagonalized as:

l = UDUT =
1

2

[
ejϕK/2 ejϕK/2

e−jϕK/2 −e−jϕK/2

][
0 |K|
−|K| 0

][
e−jϕK/2 ejϕK/2

e−jϕK/2 −ejϕK/2

]
(3.56)
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The exponential exp(jl) can be computed as:

M = exp(jl) =
1

2

[
ejϕK/2 ejϕK/2

e−jϕK/2 −e−jϕK/2

][
0 exp(j|K|)

exp(−j|K|) 0

][
e−jϕK/2 ejϕK/2

e−jϕK/2 −ejϕK/2

]
(3.57)

which is also written as:

M =

[
cos(|K|) j sin(|K|)ejϕK

j sin(|K|)e−jϕK cos(|K|)

]
(3.58)

We can define the power coupling coefficient κ and the power transmission coefficient τ as:

τ = cos2(|K|) (3.59a)

κ = sin2(|K|) (3.59b)

(3.59c)

in which case the scattering matrix is written as:

M =

[ √
τ j

√
κejϕK

j
√
κe−jϕK

√
τ

]
(3.60)

We readily obtain,
τ + κ = cos2(K) + sin2(K) = 1 (3.61)

The scattering matrix (3.60) describes the evolution of the fields inside the coupling region
as a result of which the fields may obtain a phase difference ϕK . If we assume that the propagation
constant is the same in the straight and the ring waveguide, we expect that:

Es · E∗
r = es · e∗r (3.62)

and hence we expect that:

κs = ω

∫
S

(ϵ− ϵs)Es · E∗
rdS = ω

∫
S

(ϵ− ϵs)es · e∗rdS (3.63)

We can choose the modal fields es and er so that κs is real and hence ϕK = 0. This implies that:

M =

[√
τ j

√
κ

j
√
κ
√
τ

]
(3.64)

3.6 Transfer function calculation

The transfer matrix method is essential in the analysis of more complex coupled structures and
essentially amounts to breaking down a larger structure into basic building blocks, each described
by a matrix Mi. In our case we will consider uncoupled waveguides and coupling regions. Later
on we will consider reflections arising inside RRs that can also be described by a matrix.
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Figure 3.3: Representation of a simple waveguide/ring system

Referring to figure 3.3, we can relate the input (a1, a2) and output amplitudes (b1, b2) at the
coupling region, [

b1

b2

]
=

[√
τ j

√
κ

j
√
κ
√
τ

][
a1

a2

]
(3.65)

The amplitude a2 is related to the amplitude b2 through the following relation:

a2 = e−(jϕ+2aRπR)b2 (3.66)

where aR is the loss coefficient in the ring and depends on the material, R is the ring radius ϕ is the
roundtrip phase shift,

ϕ =
2πneff2πR

λ
(3.67)

where neff is the effective refractive index of the ring waveguide. Using (3.65) and (3.66) we obtain
the following relation:

H =
b1
a1

=

( √
τ − e−(jϕ+2aRπR)

1− e−(jϕ+2aRπR)
√
τ

)
(3.68)

where H is the amplitude transfer function of the device, relating the input and output amplitudes
in the straight waveguide. The power transfer function T = |H|2, is obtained as:

T =

∣∣∣∣ b1a1
∣∣∣∣2 = ∣∣∣∣ √τ − e−(jϕ+2aRπR)

1− e−(jϕ+2aRπR)
√
τ

∣∣∣∣2 (3.69)

An example of T for the single ring case is presented in figure 3.4. A ring of radius R=14.7µm
was used with κ = 0.3. The neff was considered to be 3.3 which is typical for silicon waveguides.
The transfer function is plotted in terms of δf = f − f0 where f0 =196 THz corresponding to a
free space wavelength of λ0 = 1.531µm.
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Figure 3.4: Representation of a single ring MR system transmission coefficient

The above analysis can be extended in the case of multiple rings and waveguides. Consider
the double ring structure shown in figure 3.5 which depicts a serially coupled double ring resonator
structure.

Figure 3.5: Representation of a double ring MR system where the rings are placed in series

It consists of two straight waveguides and two ring waveguides. We first start by writing
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down the equations relating the input and output fields in the three coupling regions:[
b1

b2

]
=

[ √
τ1 j

√
κ1

j
√
κ1

√
τ1

][
a1

a2

]
(3.70a)[

a3

a4

]
=

[ √
τ2 j

√
κ2

j
√
κ2

√
τ2

][
b3

b4

]
(3.70b)[

b5

b6

]
=

[ √
τ3 j

√
κ3

j
√
κ3

√
τ3

][
a5

a6

]
(3.70c)

where κi and τi are the power coupling and transmission coefficients of the ith coupling region.
The propagation equations for the ring waveguides are written as:

a2 = e−(j
ϕ1
2
+aR1πR1)a3 (3.71a)

b3 = e−(j
ϕ1
2
+aR1πR1)b2 (3.71b)

a5 = e−(j
ϕ2
2
+aR2πR2)a4 (3.71c)

b4 = e−(j
ϕ2
2
+aR2πR2)b5 (3.71d)

where ϕ1, ϕ2 andR1,R2 represent the phase shifts and radii of the first and second ring respectively.
If we assume that no signal enters in the add port in figure 3.5 then a6=0. Equations (3.70) and the
(3.71) constitute a system of ten equations which can be used to calculate the unknown amplitudes.
In the case where the rings are weakly coupled, we can assume that the clockwise propagating
wave on the first ring (a3) exiting the coupling region between the first and second ring, inside
the first ring, is negligible with amplitude a3 = j

√
κ2b4 +

√
τ2b3 and thus can be approximated

as a3 ∼=
√
τ2b3. After some mathematical manipulation we end up to the solution of the equations

system with respect to T :

T =
(1− τ1)(1− τ2)(1− τ3)e

−2aR1πR1e−2aR2πR2

|1−√τ1τ2e−(jϕ1+aR1)2πR1|2|1−√τ2τ3e−(jϕ2+aR2)2πR2|2
(3.72)

In the general case of N rings, making the same assumptions, the transmission coefficient T can
be obtained by:

T = (1− τN+1)
N∏

n=1

(1− τn)e
−2aRnπRne−2aRnπRn

|1−√τnτn+1e−(jϕn+aRn)2πRn|2
(3.73)

An example of T for the double ring case is presented in figure 3.6. In this case we have assumed
that f0 = 196 THz and neff = 3.3 just as in figure 3.4. Also κ1 = κ3 = 0.3, κ2 = 0.08,
R1 = 24.6µm and R2 = 17µm.
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Figure 3.6: Representation of a double ring MR system transmission coefficient

3.7 Finite difference frequency domain method

3.7.1 Yee’s grid

In the previous sections we have provided a coupling of modes analysis of coupled resonator struc-
tures. The modal fields are important in the estimation of the coupling coefficients, e.g. in (3.25).
In chapter 2, we have given an example of how approximate methods such as the effective in-
dex method (section 2.5.2) can be used to obtain an approximation of the modal fields Es and Er.
Although computationally efficient, one may encounter cases where such methods are not accu-
rate (e.g. high-index contrast structures) or not applicable altogether (e.g. non rectangular shaped
waveguides). In this section we present an alternative method of estimating the modal fields based
on finite differences, namely the finite difference frequency domain method which utilizes the fi-
nite differences approximation to replace derivatives in Maxwell’s equations [79], for example:

∂Ez(x, y)

∂y
≈

Ez(x, y +
1
2
∆y)− Ez(x, y − 1

2
∆y)

∆y
(3.74)

By properly choosing the points where the derivatives are approximated, one can cast the differen-
tial problem of equations (2.9) into an eigenvalue problem whose solution is much more straight-
forward. Yee’s grid is a very popular choice of points [104], [105] and is depicted in figure 3.7. To
simplify the notation in the subsequent equations, we omit the grid spacing∆x and∆y in the field
arguments. HenceEz(i, j) stands forEz(i∆x, j∆y) andEy(i, j+

1
2
) stands forEy(i∆x, (j+1

2
)∆y).
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Figure 3.7: The two dimensional Yee’s grid

Adopting Yee’s grid, (2.9) become:

Ez(i, j + 1)− Ez(i, j)

∆y
− jβEy(i, j +

1

2
) = jωµ0Hx(i, j +

1

2
) (3.75a)

Ez(i+ 1, j)− Ez(i, j)

∆x
− jβEx(i+

1

2
, j) = −jωµ0Hy(i+

1

2
, j) (3.75b)

Ey(i+ 1, j + 1
2
)− Ey(i, j +

1
2
)

∆x
−

Ex(i+
1
2
, j + 1)− Ex(i+

1
2
, j)

∆y
= jωµ0Hz(i+

1

2
, j +

1

2
)

(3.75c)
Hz(i+

1
2
, j + 1

2
)−Hz(i+

1
2
, j − 1

2
)

∆y
− jβHy(i+

1

2
, j) = −jωεEx(i+

1

2
, j) (3.75d)

Hz(i+
1
2
, j + 1

2
)−Hz(i− 1

2
, j + 1

2
)

∆x
− jβHx(i, j +

1

2
) = jωεEy(i, j +

1

2
) (3.75e)

Hy(i+
1
2
, j)−Hy(i− 1

2
, j)

∆x
−

Hx(i, j +
1
2
)−Hx(i, j − 1

2
)

∆y
= −jωεEz(i, j) (3.75f)

jβEz(i, j) +
Ex(i+

1
2
, j)− Ex(i− 1

2
, j)

∆x
+

Ey(i, j +
1
2
)− Ey(i, j − 1

2
)

∆y
= 0 (3.75g)

jβHz(i+
1

2
, j +

1

2
) +

Hx(i+ 1, j + 1
2
)−Hx(i, j +

1
2
)

∆x
+

Hy(i+
1
2
, j + 1)−Hy(i+

1
2
, j)

∆y
= 0 (3.75h)

The field components in equations (3.75) are only calculated at the points determined from the Yee
grid.
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3.7.2 Eigenvalue problems

These equations can be re-written in a matrix form, using the column vectors ex, ey, ez, hx, hy and
hz which are correlated with the fields at the Yee’s grid points via the following equations:

ex(p) = ex(i+
1

2
, j) (3.76a)

ey(p) = ey(i, j +
1

2
) (3.76b)

ez(p) = ez(i, j) (3.76c)

hx(p) = hx(i, j +
1

2
) (3.76d)

hy(p) = hy(i+
1

2
, j) (3.76e)

hz(p) = hz(i+
1

2
, j +

1

2
) (3.76f)

where p = (j − 1)Nx + i and Nx is the number of points at the x-axis. Consequently, equations
(3.75) can be re-written as:

ez(p+Nx)− ez(p)

∆y
− jβey(p) = jωµ0hx(p) (3.77a)

− ez(p+ 1)− ez(p)

∆x
+ jβex(p) = jωµ0hy(p) (3.77b)

ey(p+ 1)− ey(p)

∆x
− ex(p+Nx)− ex(p)

∆y
= jωµ0hz(p) (3.77c)

hz(p)− hz(p−Nx)

∆y
− jβhy(p) = −jωεx(p)ex(p) (3.77d)

− hz(p)− hz(p− 1)

∆x
− jβhx(p) = −jωεy(p)ey(p) (3.77e)

hy(p)− hy(p− 1)

∆x
− hx(p)− hx(p−Nx)

∆y
= −jωεz(p)ez(p) (3.77f)

jβez(p) +
ex(p)− ex(p− 1)

∆x
+

ey(p)− ey(p−Nx)

∆y
= 0 (3.77g)

jβhz(p) +
hx(p+ 1)− hx(p)

∆x
+

hy(p+Nx)− hy(p)

∆y
= 0 (3.77h)

We define the matrices:

U (pq)
y = [Uy]pq =

1

∆y

1 , p+Nx = q

−1 , p = q
(3.78a)

U (pq)
x = [Ux]pq =

1

∆x

1 , p+ 1 = q

−1 , p = q
(3.78b)

V (pq)
y = [Vy]pq =

1

∆y

−1 , p−Nx = q

1 , p = q
(3.78c)

V (pq)
x = [Vx]pq =

1

∆x

−1 , p− 1 = q

1 , p = q
(3.78d)
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the vector form of (3.77) becomes:

Uyez − jβey = jωµ0hx (3.79a)

−Uxez + jβex = jωµ0hy (3.79b)

Uxey − Uyex = jωµ0hz (3.79c)

Vyhz − jβhy = −jωε0εxex (3.79d)

−Vxhz + jβhx = −jωε0εyey (3.79e)

Vxhy − Vyhx = −jωε0εzez (3.79f)

−jβεzez = Vxεxex + Vyεyey (3.79g)

−jβhz = Uxhx + Uyhy (3.79h)

The diagonal matrices εx, εy and εz are given by:

[εx]pp = εr(i+
1

2
, j) (3.80a)

[εy]pp = εr(i, j +
1

2
) (3.80b)

[εz]pp = εr(i, j) (3.80c)

We next define the following submatrices:

Pxx = VyUy + Uxε
−1
z Vxεx + k2εx (3.81a)

Pxy = −VyUx + Uxε
−1
z Vyεy (3.81b)

Pyx = −VxUy + Uyε
−1
z Vyεy (3.81c)

Pyy = VxUx + Uyε
−1
z Vyεy + k2εy (3.81d)

Qxx = VxUx + Uyε
−1
z Vyεy + k2εy (3.81e)

Qxy = VxUy − Uyε
−1
z Vxεy (3.81f)

Qyx = VyUx − Uxε
−1
z Vyεx (3.81g)

Qyy = VyUy + Uxε
−1
z Vxεy + k2εy (3.81h)

where k = 2π/λ is the wavenumber. Finally we end up with two equivalent eigenproblems, one
for electric field: [

Pxx Pxy

Pyx Pyy

][
ex
ey

]
= β2

[
ex
ey

]
(3.82)

and one for the magnetic field and:[
Qxx Qxy

Qyx Qyy

][
hx

hy

]
= β2

[
hx

hy

]
(3.83)

We can use standard eigenvalue calculations methods to solve either of the eigenproblems and
obtain the propagation constant and the modal fields of the propagating modes.
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3.7.3 Boundary conditions and averaging

At this point it is important to stress out that in order to extract the equations presented above, the
electric and magnetic fields at the edges of the grid are considered to be equal to zero, implying
that the components of the fields outside the grid are not taken into account. For this reason it is
very important that the selection of the grid has to be done is such a manner, so that the field has
sufficiently dissipated at the edges of the grid which can increase the grid size considerably. There
are more sophisticated solutions in order to enhance field dissipation such as the perfectly matched
layers method (PML) presented in [106]. The main idea behind PML is the placement of a fully
absorbing layer, which causes almost no reflections, at the edges of the grid.

An analysis of PML is presented in [107]. The introduction of a PML absorber is accom-
plished by using the following dielectric constant and permeability tensor:

⃗⃗ε =


sy
sx
ε 0 0

0 sx
sy
ε 0

0 0 sxsyε

 (3.84a)

⃗⃗µ =


sy
sx
µ 0 0

0 sx
sy
µ 0

0 0 sxsyµ

 (3.84b)

where sx and sy determine the absorption of the layers according to:

sx = 1 +
σx

jωε0
(3.85a)

sy = 1 +
σy

jωε0
(3.85b)

and σx and σy represent the losses coefficients of the PML.

The PML is reflection-less in the limit of very small grid spacing (∆x,∆y → 0). In practice,
reflections arise and for this reason the coefficients σx and σy have to be chosen in such a way that
they increase gradually rather than abruptly in the edges of the computational grid. It is common
to adopt a polynomial variation,

σx = σmax

(
dx
dpml

)n

(3.86a)

σy = σmax

(
dy
dpml

)n

(3.86b)

where dx and dy are the distances from the inner PML boundary at the x and y direction respectively
and dpml is the PML thickness. By retracing the steps of the derivation of the eigenproblem in
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(3.7.2) and including the tensor quantities we obtain [108]:

Pxx = VyUyMyM−1
z + UxE−1

z VxEx + k2ExMy (3.87a)

Pxy = −VyUxMyM−1
z + UxE−1

z VyEy (3.87b)

Pyx = −VxUyMxM−1
z + UyE−1

z VxEy (3.87c)

Pyy = VxUxMxM−1
z + UyE−1

z VyEy + k2EyMx (3.87d)

Qxx = VxUxMxM−1
z + UyE−1

z VyEy + k2EyMx (3.87e)

Qxy = VxUyMyM−1
z − UyE−1

z VxEy (3.87f)

Qyx = VyUxMxM−1
z − UxE−1

z VyEx (3.87g)

Qyy = VyUyMyM−1
z + UxE−1

z VxEx + k2ExMy (3.87h)

The auxiliary diagonal matrices M and E describe the PML absorption effect and their diagonal
elements are given by:

[Ex]pp = εr(i+
1

2
, j)

sy(j +
1
2
)

sx(i)
(3.88a)

[Ey]pp = εr(i, j +
1

2
)

sx(i)

sy(j +
1
2
)

(3.88b)

[Ez]pp = εr(i, j)sx(i)sy(j) (3.88c)

[Mx]pp = εr(i, j +
1

2
)

sy(j)

sx(i+
1
2
)

(3.88d)

[My]pp = εr(i+
1

2
, j)

sx(i+
1
2
)

sy(j)
(3.88e)

[Mz]pp = εr(i+
1

2
, j +

1

2
)sx(i+

1

2
)sy(j +

1

2
) (3.88f)

If εr has large discontinuities as in the case of a high-index contrast optical waveguide, the grid
must be dense enough to capture the fine details of the structure. An alternative is to smooth the
discontinuities by averaging around a grid point. For this reason, εr is replaced by:

ε̄(x, y) =
1

∆x

1

∆y

x+ 1
2
∆x∫

x− 1
2
∆x

dx′

y+ 1
2
∆y∫

y− 1
2
∆y

dy′ε(x′, y′) (3.89)

The above formula assumes a rectangular region with dimensions∆x×∆y and (x, y) as its center.
The double integral is used to calculate the average of the dielectric constant within this region.

3.7.4 Application of the FDFD method

In order to present a complete picture of the FDFD method, a few examples of the the parameters
obtained are shown in figures 3.8, 3.9 and 3.10, which include the number of modes calculated for
different waveguide dimensions at different wavelengths, along with the depiction of the compo-
nents of the transverse electric field for the highest and second highest neff mode. The parameters
used for the simulation of the strip waveguide depicted in the figures are summarized in table 3.1.
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Parameter Value Parameter Value
n1 1.567 grid step ∆ = ∆x = ∆y = 0.48µm
n2 1.45 PML profile polynomial
n3 1 order of PML loss coefficients n = 3

hcore 1.5µm grid dimensions 10×10
wcore 1.5µm σmax −(n+ 1) logR0

2hdpml

hcladding 10µm R0 e32

wcladding 10µm h (µ0/ε0)
1/2

dpml 10×∆

Table 3.1: FDFD parameters

(a) (b)

Figure 3.8: FDFD calculation of the number of modes for different values of the width and height
of the waveguide for λ= a) 1550 nm and b) 1330 nm

(a) (b)

Figure 3.9: FDFD calculation of the a) horizontal and b) vertical component of the transverse
electric field of the waveguide for the highest neff mode, for λ=1500 nm
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(a) (b)

Figure 3.10: FDFD calculation of the a) horizontal and b) vertical component of the transverse
electric field of the waveguide for the second highest neff mode, for λ=1500 nm

3.8 Finite difference time domain method analysis

3.8.1 Yee’s grid in 3D

In section 3.7 we used finite difference to approximate Maxwell’s equations in the frequency do-
main and calculate the modal fields. One can also apply a similar approach based on Yee’s grid to
discritize and solve Maxwell’s equations in the time domain. This is known as the finite difference
time domain (FDTD) method.

We start from Maxwell’s equations in the time domain which can be written in scalar form
as follows:

∂Hx

∂t
=

1

µ

(
∂Ey

∂z
− ∂Ez

∂y

)
(3.90a)

∂Hy

∂t
=

1

µ

(
∂Ez

∂x
− ∂Ex

∂z

)
(3.90b)

∂Hz

∂t
=

1

µ

(
∂Ex

∂z
− ∂Ey

∂y

)
(3.90c)

∂Ex

∂t
=

1

ε

(
∂Hz

∂y
− ∂Hy

∂z

)
(3.90d)

∂Ey

∂t
=

1

ε

(
∂Hx

∂z
− ∂Hz

∂y

)
(3.90e)

∂Ez

∂t
=

1

ε

(
∂Hy

∂x
− ∂Hx

∂y

)
(3.90f)

The discretization of equations (3.90) is based on the Yee grid shown in figure 3.11, which
is similar to the one used in FDFD, but in this case the grid is three dimensional and not two
dimensional as the one presented in section 3.7.
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Figure 3.11: The three dimensional Yee’s grid

Usually the points of the grid (xi, yj, zκ) on the three dimensional space, where 1≤ i≤ Nx,
1 ≤ j ≤ Ny and 1 ≤ κ ≤ Nz are equidistant. Nx, Ny and Nz are the number of points on the x, y
and z axes respectively. One therefore obtains, xi+1−xi = ∆x , yj+1−yj = ∆y, zκ+1−zκ = ∆z.
The components of the electric and magnetic field are calculated at the following points:

• Ex is calculated at {i∆x, (j + 1/2)∆y, (κ+ 1/2)∆z}

• Ey is calculated at {(i+ 1/2)∆x, j∆y, (κ+ 1/2)∆z}

• Ez is calculated at {(i+ 1/2)∆x, (j + 1/2)∆y, κ∆z}

• Hx is calculated at {(i+ 1/2)∆x, j∆y, κ∆z}

• Hy is calculated at {i∆x, (j + 1/2)∆y, κ∆z}

• Hz is calculated at {i∆x, j∆y, (κ+ 1/2)∆z}

In FDTD, the time variable t is also discretized so that the magnetic field is calculated at
times t = n∆t and the electric field at times t = (n+ 1

2
)∆t. Equations (3.90) can be re-written in

their finite difference form as:

Ex

∣∣∣n+ 1
2

i,j+ 1
2
,κ+ 1

2

= Ex

∣∣∣n− 1
2

i,j+ 1
2
,κ+ 1

2

+
∆t

εi,j+ 1
2
,κ+ 1

2

Hz

∣∣∣n
i,j+1,κ+ 1

2

−Hz

∣∣∣n
i,j,κ+ 1

2

∆
−

Hy

∣∣∣n
i,j+ 1

2
,κ+1
−Hy

∣∣∣n
i,j+ 1

2
,κ

∆

 (3.91a)
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Ey

∣∣∣n+ 1
2

i+ 1
2
,j,κ+ 1

2

= Ey

∣∣∣n− 1
2

i+ 1
2
,j,κ+ 1

2

+
∆t

εi+ 1
2
,j,κ+ 1

2

Hx

∣∣∣n
i+ 1

2
,j,κ+1

−Hx

∣∣∣n
i+ 1

2
,j,κ

∆
−

Hz

∣∣∣n
i+1,j,κ+ 1

2

−Hz

∣∣∣n
i,j,κ+ 1

2

∆

 (3.91b)

Ez

∣∣∣n+ 1
2

i+ 1
2
,j+ 1

2
,κ
= Ey

∣∣∣n− 1
2

i+ 1
2
,j+ 1

2
,κ
+

∆t

εi+ 1
2
,j+ 1

2
,κ

Hy

∣∣∣n
i+1,j+ 1

2
,κ
−Hy

∣∣∣n
i,j+ 1

2
,κ

∆
−

Hx

∣∣∣n
i+ 1

2
,j+1,κ

−Hx

∣∣∣n
i+ 1

2
,j,κ

∆

 (3.91c)

Hx

∣∣∣n+1

i+ 1
2
,j,κ

= Hx

∣∣∣n
i+ 1

2
,j,κ

+
∆t

µ

Ey

∣∣∣n+ 1
2

i+ 1
2
,j,κ+ 1

2

− Ey

∣∣∣n+ 1
2

i+ 1
2
,j,κ− 1

2

∆
−

Ez

∣∣∣n+ 1
2

i+ 1
2
,j+ 1

2
,κ
− Ey

∣∣∣n+ 1
2

i+ 1
2
,j− 1

2
,κ

∆

 (3.92a)

Hy

∣∣∣n+1

i,j+ 1
2
,κ
= Hy

∣∣∣n
i,j+ 1

2
,κ
+

∆t

µ

Ez

∣∣∣n+ 1
2

i+ 1
2
,j+ 1

2
,κ
− Ez

∣∣∣n+ 1
2

i− 1
2
,j+ 1

2
,κ

∆
−

Ex

∣∣∣n+ 1
2

i,j+ 1
2
,κ
− Ex

∣∣∣n+ 1
2

i+ 1
2
,j− 1

2
,κ

∆

 (3.92b)

Hz

∣∣∣n+1

i,j,κ+ 1
2

= Hz

∣∣∣n
i,j,κ+ 1

2

+
∆t

µ

Ex

∣∣∣n+ 1
2

i,j+ 1
2
,κ+ 1

2

− Ex

∣∣∣n+ 1
2

i,j− 1
2
,κ+ 1

2

∆
−

Ey

∣∣∣n+ 1
2

i+ 1
2
,j,κ+ 1

2

− Ey

∣∣∣n+ 1
2

i− 1
2
,j,κ+ 1

2

∆

 (3.92c)
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Note that according to (3.91) and (3.92) the field calculation can be separated into two steps.
The electric field components are updated at times t = (n+ 1

2
)∆t using (3.91), based on their values

on t = (n− 1
2
)∆t and the values of the magnetic field components at t = n∆t. In a similar manner,

the magnetic field components are updated at time t = (n+1)∆t based on their values at t = n∆t

and the values of the electric field at time t = (n + 1
2
)∆t obtained from the previous step. This

update procedure is the underlying notion of the FDTD method which unlike FDFD is based on
update equations rather than an eigenvalue problem. Starting from suitable initial conditions, we
can therefore calculate the time evolution of the electromagnetic field inside the structure.

3.8.2 Perfectly matched layers

In section 3.7, we introduced the PML technique in order to avoid the reflections at the edges of
the grid. In the 3D case, the tensors used are:

⃗⃗ε =


sysz
sx

ε 0 0

0 sxsz
sy

ε 0

0 0 sxsy
sz

ε

 (3.93a)

⃗⃗µ =


sysz
sx

µ 0 0

0 sxsz
sy

µ 0

0 0 sxsy
sz

µ

 (3.93b)

where:

sx = 1 +
σx

jωε0
(3.94a)

sy = 1 +
σy

jωε0
(3.94b)

sz = 1 +
σz

jωε0
(3.94c)

where σx, σy and σz represent the losses coefficients of the PML and are calculated in the same
manner as in section 3.7. In order to extract the proper relationships that represent the fields in
the time domain, we have to start with Maxwell’s equations in the frequency domain and combine
them with (3.93) and (3.94), i.e.:

∇× Ẽ = −jω⃗⃗µH̃ (3.95a)

∇× H̃ = jω⃗⃗εẼ (3.95b)
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Splitting the above equations to their components one obtains:

∂H̃z

∂y
− ∂H̃y

∂z
= jωε

sysz
sx

Ẽx (3.96a)

∂H̃x

∂z
− ∂H̃z

∂x
= jωε

szsx
sy

Ẽy (3.96b)

∂H̃y

∂x
− ∂H̃x

∂y
= jωε

sxsy
sz

Ẽz (3.96c)

∂Ẽz

∂y
− ∂Ẽy

∂z
= −jωµsysz

sx
H̃x (3.96d)

∂Ẽx

∂z
− ∂Ẽz

∂x
= −jωµszsx

sy
H̃y (3.96e)

∂Ẽy

∂x
− ∂Ẽx

∂y
= −jωµsxsy

sz
H̃z (3.96f)

In order to transform the above equations in first level differential equations in the time domain,
the variables D̃ and B̃ have to be introduced, so that:

D̃x = ε
sz
sx

Ẽx (3.97a)

D̃y = ε
sz
sy
Ẽy (3.97b)

D̃z = ε
sy
sz
Ẽz (3.97c)

B̃x = µ
sz
sx

H̃x (3.97d)

B̃y = µ
sx
sy
H̃y (3.97e)

B̃z = µ
sy
sz
H̃z (3.97f)

Substituting (3.97) into (3.96) we obtain:

∂H̃z

∂y
− ∂H̃y

∂z
= jωsyD̃x = jωD̃x +

σy

ε0
D̃x (3.98a)

∂H̃x

∂z
− ∂H̃z

∂x
= jωszD̃y = jωD̃y +

σz

ε0
D̃y (3.98b)

∂H̃y

∂x
− ∂H̃x

∂y
= jωsxD̃z = jωD̃z +

σx

ε0
D̃z (3.98c)

∂Ẽz

∂y
− ∂Ẽy

∂z
= −jωsyB̃x = −jωB̃x −

σy

ε0
B̃x (3.98d)

∂Ẽx

∂z
− ∂Ẽz

∂x
= −jωszB̃y = −jωB̃y −

σz

ε0
B̃y (3.98e)

∂Ẽy

∂x
− ∂Ẽx

∂y
= −jωsxB̃z = −jωB̃z −

σx

ε0
B̃z (3.98f)
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which can be re-written in the time domain as:

∂Hz

∂y
− ∂Hy

∂z
=

∂Dx

∂t
+

σy

ε0
Dx (3.99a)

∂Hx

∂z
− ∂Hz

∂x
=

∂Dy

∂t
+

σz

ε0
Dy (3.99b)

∂Hy

∂x
− ∂Hx

∂y
=

∂Dz

∂t
+

σx

ε0
Dz (3.99c)

∂Ez

∂y
− ∂Ey

∂z
= −jω∂Bx

∂t
− σy

ε0
Bx (3.99d)

∂Ex

∂z
− ∂Ez

∂x
= −jω∂By

∂t
− σz

ε0
By (3.99e)

∂Ey

∂x
− ∂Ex

∂y
= −jω∂Bz

∂t
− σx

ε0
Bz (3.99f)

Replacing the derivatives with their finite differences approximation and assuming for simplicity
∆x = ∆y = ∆z leads to:

Dx

∣∣∣n+ 1
2

i,j+ 1
2
,κ+ 1

2

=
2ε0 − σy∆t

2ε0 + σy∆t
Dx
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Hy
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2
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−Hy
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2
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∆

 (3.100a)

Dy

∣∣∣n+ 1
2

i+ 1
2
,j,κ+ 1

2

=
2ε0 − σz∆t

2ε0 + σz∆t
Dy
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2
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∆

 (3.100b)

Dz
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2
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2
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2
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2
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2

∆

 (3.100c)
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Bx

∣∣∣n+1

i+ 1
2
,j,κ
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 (3.101a)

By
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 (3.101b)
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 (3.101c)

Note that the introduction of the PML alters the update equations since they now involve the
components of D through (3.100) which are updated based on the components of the magnetic
field and also the components of B which are updated from the components of the electric field.
We therefore need to relate the components of D with the components of E and the components of
B with the components of H. To do this, we need to write (3.97) in the time domain:
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We next need to discretize (3.102) in order to obtain the relations between D and B with E and H
respectively,
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The FDTD algorithm for PML media, is therefore summarized as follows: Starting from
suitable initial conditions, we use (3.100) to calculate the components of D at time t = (n+ 1

2
)∆t

from the magnetic field components H at time t = n∆t. We next calculate the components of E
from D using (3.103). We next use (3.101) to calculate the components of B and then (3.104) to
calculate the magnetic field.

3.8.3 2D structures

If ε is independent of one of the three dimensions, e.g. the z dimension (ε = ε(x, y)), the field
can be decomposed into two components: one having zero magnetic field component along z
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(Hz = 0), the transverse-magnetic TMz component and one having zero electric field component
along z (Ez = 0), the transverse-electric TEz component. The evolution of each wave can be
calculated independently using the following Maxwell’s equations for the TMz components:
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and for the TEz components:
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3.9 FDTD in MR structures

The popularity of FDTD has grown significantly over the years and several open source and com-
mercial packages have been developed. The MEEP package [109] is an open-source platform
incorporating many features including a suitable averaging scheme for ε which uses an effective
dielectric tensor for non-PML media as well, which is given by:

⃗⃗εavg = P⟨ε−1⟩+ (I− P)⟨ε⟩−1 (3.107)

Matrix I is a unitary 3× 3 matrix and matrix P expresses the vertical projection of the surface. Its
elements are:

Pab = nanb (3.108)

where 1 ≤ a, b ≤ 3 and n = [n1, n2, n3] is the unitary vector which is vertical to the surface between
the two materials. The values inside the ⟨⟩ denote the mean value of the variable calculated inside
a cube of dimensions ∆×∆×∆ whose center is the point where ε needs to be calculated.

Ιn figure 3.12 we show the electric field Ez inside an MR structure, calculated with MEEP
assuming a 2D structure. The parameters used for this simulation are presented in table 3.2. At
this point it is important to highlight that we used a current-source of central wavelength λ = 1µm
which stimulates the TMz waves. One can see the value of the electric field during its first pass
through an MR device, for various moments ranging from 100fs to 300fs.
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Parameter Value Parameter Value
n1 1.5 ∆ 33nm
n2 1 (air) ring radius 5.25µm

waveguide width 0.5µm waveguide-ring distance 0.2µm
dpml 1µm waveguide-PML distance 4µm

source distance from left edge of structure 2µm waveguide length 40µm

Table 3.2: MEEP parameters

Figure 3.12: Depiction of the value of electric field Ez during its first pass, inside an MR device
using MEEP for different moments varying from 100 fs to 300 fs
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Although the results seem to indicate that FDTD can be applied in MR structures, we have
found that themethod can not be used accurately for large scale design optimizationwhere the fields
need to be calculated for different sets of design parameters. This is true even for the 2D case of
(3.12) where we ignore field confinement in the vertical direction. Even in this simplified scenario,
the time required on a standard desktop computer, for the simulation to complete is of the order of 1h
which is prohibitive even for a single simulation especially, if denser grid is used. It was therefore
realized early on our work that using FDTD combined with the optimization schemes outlined in
the next section was highly impractical. This is why, the CMT framework is used throughout this
thesis as a basis for the calculation of the transfer function. It is interesting to note that evidence in
the literature [110] suggests that FDTD and coupled mode analysis agree very well for the coupling
region of the ring even if a full-blown 3D model is assumed.
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4 Designing MR structures

In this chapter, we outline the procedure proposed to design multiple MR structures and calculate
the optimum values for structural parameters such as the coupling coefficients and the ring radii.
Our approach can be applied independently of the number of the rings (N ) that might be used in a
multi MR device.

The work presented in this chapter is not a simulation method. As emphasized in section
1.1 we address the design/optimization problem in figure 1.1b rather than the simulation/analysis
problem in figure 1.1a. In section 3.1 we have already described that the design problem can be
reduced to the minimization of a suitable metric d that measures the difference between the device
T (f) and the (nearly) rectangular function T0(f) in (3.1). The location of the minimum p = popt
in the multi-dimensional space will yield optimum design parameter values. To our knowledge,
this is the first time optimization methods have been applied in the design of multiple micro-ring
structures. We search inside a multi-parameter space defined by the ring radii and coupling coeffi-
cients, the range of which are predefined so as to ensure that the optimum values can be realized in
practice. Before resorting to optimization methods one could first try an exhaustive search method
as explained in section 3.1, where the multi-dimensional parameter space is sampled and the T (f)
is calculated for every point on the grid in order to determine the closest match to the ideal T (f).
However, as the number of rings increases, the size of the multi-dimensional search grid grows
exponentially, which renders this approach inefficient.

The choice of the method by which the T (f) is calculated has also an important bearing
on the feasibility of the endeavor. In the present analysis, we have used as a basis the coupled-
mode theoretic approach of sections 3.2-3.6 which is both intuitively appealing and efficient in
terms of computational time and memory requirements. This is unlike full-blown electromagnetic
simulation tools such as the FDTD and the FDFD methods of sections 3.7 and 3.8 respectively.
As explained in 3.9, in both cases the computational resources required can be huge even if a
2D approximation is carried out by means of the effective index method. FDTD may require a
large amount of time for the simulations to conclude due to the fact that the ring resonances are
usually spectrally narrow, implying a slow power exchange between the waveguides and the rings.
Hence, once the device is excited by the incident pulse, the simulation may require many round-
trips for the electromagnetic field to fully dissipate at the output waveguide. In FDFD, one usually
runs into excessive memory requirements in order to store the system matrix corresponding to
the structure at hand. Coupled mode theory is much faster and equally accurate when compared
with full-blown simulation tools. Coupled mode theory also forms the basis for the TMM, which
is frequently adopted in multi-ring structures. In the present analysis, we start from the coupled
mode framework that can be used in order to reduce the problem of calculating the T (f) into the
solution of a (4N +2)× (4N +2) system of unknowns which correspond to the modal amplitudes
of the electromagnetic field inside the structure. We discuss in detail how the matrix of the system
can be systematically constructed for an arbitrary number of micro-rings and how its elements are
related to the geometric and coupling parameters. Using this scheme and optimization methods we
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are thus able to obtain transfer functions with reasonably flat pass-band which are aperiodic and
hence are not severely restricted by the FSR of the individual resonators. The results of this work
were published in [111].

(a) (b)

Figure 4.1: Schematic of a) a uniform multiring structure and b) a non uniform multiring structure

The spacing between the waveguides and the adjacent rings as well as between consecu-
tive rings, as shown in figure 4.1, determines the coupling coefficients κi of the various coupling
regions [12], [112]. There are a total ofN +1 coupling regions in the structure and κ1 refers to the
coupling coefficient between the input waveguide and the first ring, κi for 2 ≤ i ≤ N stand for the
coupling coefficient between the (i− 1)th and the ith rings while κN+1 is the coupling coefficient
between the last ring and the output waveguide. We also assume that the rings have radii Ri for
1 ≤ i ≤ N . For structures such as the ones depicted in figure 4.1, coupled mode theory provides
an intuitive way of describing the electromagnetic field interaction at the various components of
the structure. Each ring supports two degenerate guided modes, one propagating clockwise and the
other counterclockwise along the ring. At the first coupling region, light at the input waveguide is
coupled to the clockwise mode of the first ring near the resonant frequency of the resonator. The
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coupling of light in the counter-clockwise mode is negligible due to poor phase-matching condi-
tions. At the second coupling region between the first and the second ring, light enters from the
opposite direction and is therefore coupled to the counter-clockwise guided mode of the second
ring. This interaction continues as light is coupled from resonator to resonator until it is coupled
to the output waveguide. Depending on whether the number of rings N is even or odd, light may
exit the output waveguide in either the same or opposite direction respectively with regards to the
light incident at the input waveguide.

4.1 CMT framework

Using the reciprocity relations in section 3.2, it is possible to rigorously relate the amplitudes of
the modes at the input and the output of each interaction region through the coupling coefficients
[72]. The coupling coefficients κi are determined by the electric field profiles of the modes of the
isolated waveguides and can be calculated approximately analytically assuming an effective index
2D approximation [12] or numerically using rigorous mode analysis and numerical integration of
the modal field overlap near the coupling region [112]. Since the number of coupling regions is
N + 1, there are 4(N + 1) modal amplitudes describing the transfer of the electromagnetic field
across the structure. We choose to label the amplitudes so that in the ith coupling region a4i−3

and a4i−2 are the amplitudes of the modes at the input of the region while a4i−1 and a4i are the
amplitudes at the output. According to the analysis in section 3.6, these amplitudes are related
through the following equations:

a4i−1 =
√
1− κia4i−3 − j

√
κia4i−2 (4.1a)

a4i = −j
√
κia4i−3 +

√
1− κia4i−2 (4.1b)

The above equations hold for 1 ≤ i ≤ N + 1. As a result of the field propagation inside the rings,
the amplitudes undergo a phase shift. Taking into account the arrangement of figure 4.1 we see
that:

a4i+1 = a4ie
−jϕi (4.2a)

a4i−2 = a4i+3e
−jϕi (4.2b)

where ϕi is the phase shift resulting from the half round-trip propagation in the left or right half of
the ith ring resonator determined by:

ϕi =

(
2πneff
λ
− ja

)
πRi (4.3)

In (4.3) λ is the wavelength, neff is the effective refractive index of the waveguide mode in the ring
and a is the propagation loss written in units of neper per unit length, which is initially considered
as zero. Equation (4.2a) describes the propagation of the wave exiting the ith coupling region in the
ith ring up to the point that it enters the (i+1)th region. Equation (4.2b) describes the propagation
of the wave exiting the latter region up to the point that it re-enters the ith region. Since there are
N rings, (4.2) hold for 1 ≤ i ≤ N . Given the ranges of index i in (4.1) and (4.2) we deduce that
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the amplitudes am (which are 4N +4 in number) are determined by a system of 4N +2 equations.
We should also bear in mind that according to figure 4.1, a1 is the amplitude of the incident field
in the input waveguide that can be assumed equal to unity, a1 = 1 while a4N+2 is the field entering
the output waveguide which should be zero since this waveguide is not excited at its input, hence
a4N+2 = 0. The remaining unknown amplitudes can in principle be determined by the system of
(4.1)-(4.2).

Given a waveguide structure, the effective index neff can be calculated using either approx-
imate analytical expressions [113] or numerical mode solvers [108]. If the waveguide design is
different for each ring, we can allow for different effective refractive indices n(i)

eff in (4.3). However
adopting different waveguide designs might unnecessarily complicate the fabrication process. It
therefore makes more sense to assume that the waveguide parameters (dimensions and material
indices) do not vary across the rings of the structures. Another point to consider is that the waveg-
uides can be generally lossy, as a result of the either curvature-induced radiation losses or scattering
loss due to fabrication imperfections. The losses can be incorporated in the imaginary part of the
effective index ni = Im{neff} [92]. In this work, we carry out our designs assuming negligible loss
but should the need arises for inclusion of loss, this is easily accomplished by properly adjusting
ni.

Equations (4.1)-(4.2) form the basis for estimating the T (f) of the device defined as the
ratio of a4N+4 to a1 corresponding to the amplitude of the waveguide mode exiting the output
waveguide and at the input waveguide respectively:

T (f) =

∣∣∣∣a4N+4

a1

∣∣∣∣2 (4.4)

To calculate a4N+4 it is useful to write (4.1)-(4.2) in matrix notation. We define:

ti = −
√
1− κi (4.5a)

xi = j
√
κi (4.5b)

and taking into account that a1 = 1, the equations for the first coupling region (i = 1) are written
as:

a2 − a7e
−jϕ1 = 0 (4.6a)

a3 + x1a2 = −t1 (4.6b)

a4 + t1a2 = −x1 (4.6c)

a5 − a4e
−jϕ1 = 0 (4.6d)

For intermediate coupling regions (2 ≤ i ≤ N , assuming that N ≥ 2), we re-write the coupling
equations as:

a4i−2 − a4i+3e
−jϕi−1 = 0 (4.7a)

a4i−1 + xia4i−2 + tia4i−3 = 0 (4.7b)

a4i + tia4i−2 + xia4i−3 = 0 (4.7c)

a4i+1 − a4ie
−jϕi−1 = 0 (4.7d)
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At the last coupling region (i = N + 1) we have a4N+2 = 0 and hence the following equations:

a4N+3 − tN+1a4N+1 = 0 (4.8a)

a4N+4 − xN+1a4N+1 = 0 (4.8b)

In matrix notation, we may define the coupling region sub-matricesMi:

M1 =


1 0 0 0 0 −e−jϕ1

x1 1 0 0 0 0

t1 0 1 0 0 0

0 0 −e−jϕ1 1 0 0

 (4.9a)

Mi =


0 1 0 0 0 0 −e−jϕi

ti xi 1 0 0 0 0

xi ti 0 1 0 0 0

0 0 0 −e−jϕi 1 0 0

 , (2 ≤ i ≤ N) (4.9b)

MN+1 =

[
tN+1 xN+1 1 0

xN+1 tN+1 0 1

]
(4.9c)

and the (4N+2)×(4N+2) sparse systemmatrixM = [Mpq]which is formed from the sub-matrices
as follows:

M =


M1 04×4 · · · 04×2

M4×3 M2 · · · 04×2

...
... . . . ...

04×3 04×4 · · · MN+1

 (4.10)

where the matrix 0µ×ν stands for a µ × ν matrix with zero elements. The sub-matrices Mi for
1 ≤ i ≤ N + 1 are arranged so that the elements Mpp of the diagonal of M are always equal to
unity. We also define the vectors:

a = (a2, · · · , a4N+1, a4N+3, a4N+4)
T (4.11a)

c = (0,−t1,−x1, 0, · · · , 0)T (4.11b)

where ()T stands for transpose of the vector. Based on these definitions, it is easy to see that the
system of (4.6)-(4.8) is written in matrix notation as:

Ma = c (4.12)

The system in (4.12) can be easily solved for a with standard numerical analysis algorithms [79].
Once a is determined we readily calculate the transfer function through (4.4). This provides a
general, and easily scalable framework for estimating the transfer function of the structure given
its parameters, valid for an arbitrary number of rings N . Figure 4.2a shows the function obtained
for a single ring structure N = 1 assuming that neff ≈ 3.3 which is typical for silicon waveguides,
R1 = 14.7 µm and κ1 = κ2 = 0.3. The transfer function is plotted in terms of δf = f − f0

where f0 = 196 THz corresponding to a free space wavelength of λ0 = 1.531 µm. We obtain
the well-known Lorentzian-like response of the single micro-ring resonator filter. We also plot the
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transfer function in a wider frequency range±2 THz around f0 in figure 4.2b, where we observe the
periodic response because of the multiplicity of the resonant frequencies of the single micro-ring
occurring when the phase difference from one full roundtrip in the ring is equal to multiples of 2π,
i.e. 2ϕ1 = 2mπ wherem is an integer.

(a) (b)

Figure 4.2: Transfer function of single micro-ring structure

As shown above, the transfer function obtained through the matrix M and the vector c
depends on the coupling coefficients κi and the phases ϕi which are dependent on the ring radii Ri

through (4.3). We may therefore formally write:

T (f) = F (f, κ1, · · · , κN+1, R1, · · · , RN) (4.13)

4.2 Minimization metric

In order to choose the design parameters κi and Ri we can minimize a suitable metric d between
T (f) and an almost rectangular transfer function weighted by some appropriate function w(f), as
explained in section 3.1. We choose the following minimization metric:

d =

+∞∫
−∞

|T (f)− 1|w(f)δf +

+∞∫
−∞

T (f) |(1− w(f)| δf (4.14)

The weighting function w(f) can be any sufficiently box-like function which ensures that T (f)
is matched to unity inside a specified frequency range f ∈ IF . Outside this region we desire
the smallest possible crosstalk and hence T (f) should be matched to zero for f /∈ IF The first
integral of the minimization metric in (4.14) calculates the distance between the transfer function
and unity for frequencies mainly inside IF while the second integral takes care of the frequency
region away from the central frequency. In our calculations we have chosen w(f) to be a super-
Gaussian function of order 6, i.e.:

w(f) = exp
(
−(f − f0)

6

B6

)
(4.15)
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where f0 is the desired central frequency of our filter and 2B is the desired pass-band range. We
assume B = 15 GHz for the remainder of the analysis. If d is minimized we therefore expect a
flat pass-band near f = f0 and small cross-talk far from f0. In practice we sampled the frequency
axis on 200 points inside [fmin, fmax] where fmin = f0 − 1.5B and fmax = f0 + 1.5B and used the
trapezium rule to evaluate the minimization metric d in (4.14). In most cases, we found that the
obtained transfer function had low cross-talk over a much wider frequency region than [fmin, fmax]
as we shall see below.

In our minimizations, it is useful to exclude values inside the multi-dimensional parameter
space for which we do not expect favorable behavior for T (f). Much insight can be gained from
considering the system of coupled resonators as one large resonator in order to facilitate the search.
The resonant frequencies of the large resonator are obtained from the resonant frequencies of the
individual resonators which are detuned because of the resonator-to-resonator coupling [114]. In
order to obtain a flatter frequency response we should ensure that the resonances occur at frequen-
cies near f0. Possibly the simplest way to do this is to have all micro-rings resonate at f0, i.e.:

2πneff
λ0

(2πRi) = 2πµi (4.16)

where µi are integers determining the order of the resonance and λ0 = c/f0. The above condition
implies that the central frequency f0 belongs to the resonant frequencies of the individual rings and
hence a flatter response is expected near its vicinity. To impose this condition in the minimization
process we simply evaluate the integer νi which is closest to 2πneff/λ0Ri and set:

R̄i =
νiλ0

2πneff
(4.17)

and then use R̄i instead of Ri when evaluating the transfer function in (4.13).

In our designs we have assumed that f0 = 196 THz and neff = 3.3 just as in figure 4.2.
We assume that the ring radii Ri range from 14 µm to 24 µm while the coupling coefficients κi

vary from 0 to 0.3 [115], [116]. It should be noted that the range of values of radii and coupling
coefficients in general is bounded by the limits of state-of-the-art fabrication processes on the one
hand and the application requirements on the other. The chosen range for Ri and κi lies within the
capabilities of large scale fabrication techniques and as it will be shown below complies with the
operational requirements. In this work, we used an interior-point approach that combines a direct
method for solving the constrainedminimization problem along with conjugate gradient steps using
trust regions [101]. The initial guess (starting point) is of particular importance in order to ensure
a favorable convergence. The metric d in (4.14) generally possesses many local minima in the
multi-parameter space and we would benefit from starting our minimization close to one suitable
minimum. On the other hand we need to avoid minima corresponding to rings with similar radii
because the nearly periodic nature of the transfer function in this case would imply increased cross-
talk away from f = f0 just as in figure 4.2b. We therefore choose the initial guess for the ring radii
with a uniform random distribution. The coupling coefficients on the other hand can initially be
chosen to favor a flat design. Again referring to the resonant frequencies of the larger resonator
consisting of the N individual resonators, we see that the inner ring-to-ring coupling coefficients
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(κi, 2 ≤ i ≤ N) should be small, in order to allow for a small detuning of the resonant frequencies.
The outer coupling coefficients (κ1 and κN+1) should be large in order to ensure a broad resonance.
We therefore choose to set κ1 = κN+1 = 0.3 and κ2 = · · · = κN = 0.1 as a starting point in our
minimizations.

4.3 Results and discussion

In this part of the dissertation we demonstrate the results obtained from the minimization of the
metric in (4.14). We considered the cases where N=2,3,4,5 and 6 since a higher number of rings
may render the implementation of the design impractical. Figures 4.3 and 4.4 provide bar plots
of the coupling coefficients and the ring radii of the optimized designs respectively. Figures 4.5
and 4.6 show the corresponding transfer functions near the pass-band and a larger frequency range
respectively. All minimizations took less than 4min on a standard desktop personal computer with
8 GB of RAM and an eight-core AMD FX3120, 3.3 GHz processor. The iterations required in the
minimization algorithm were always less than 300.

(a) (b) (c)

(d) (e)

Figure 4.3: Coupling coefficients κi obtained for a) N = 2, b) N = 3, c) N = 4, d) N = 5 and e)
N = 6 rings
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(a) (b) (c)

(d) (e)

Figure 4.4: Ring radii Ri obtained for a) N = 2, b) N = 3, c) N = 4, d) N = 5 and e) N = 6

rings

(a) (b) (c)

(d) (e)

Figure 4.5: Transfer functions near the pass-band obtained for a) N = 2, b) N = 3, c) N = 4, d)
N = 5 and e) N = 6 rings. Dashed lines indicate the weighting function w(f)
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(a) (b) (c)

(d) (e)

Figure 4.6: Transfer functions in a ±2 THz frequency region obtained for a) N = 2, b) N = 3, c)
N = 4, d) N = 5 and e) N = 6 rings

A number of interesting observations can be made. As shown in figure 4.3, the coupling
coefficients are not symmetric with respect to the central coupling region which is the case for
uniform coupled micro-ring structures as presented in [12], [117] and [118]. The outer coupling
coefficients κ1 and κN+1 are much larger than the inner coupling coefficients κi, 2 ≤ i ≤ N and are
always fixed to a value of 0.3. In contrast to the necessity of having paired ring radii, as indicated
in [117], [118], figure 4.4 suggests that the obtained designs are composed from rings of different
sizes and hence we expect that the crosstalk away from the pass-band will be reduced. Regarding
the transfer functions shown in figure 4.5 at the vicinity of f0, we observe that as the number of
rings is increased one gradually obtains sharper transitions from the pass-band to the stop-band.
This is quantitatively shown in figure 4.7 where we have plotted the shape factor ρ = B30dB/B5dB

of the 30 dB to the 5 dB bandwidth. A large ρ implies the need for increased channel separation.
We deduce that ρ drops rapidly when increasing the number of rings from N = 2 to N = 3 but
the reduction is smaller from then onwards. From N = 5 to N = 6, the value of changes from
ρ ≈ 1.33 to ρ ≈ 1.31 indicating that by increasing the number of N beyond 6 is not expected to
yield further reductions in ρ.
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Figure 4.7: Ratio ρ of the 30 dB bandwidth to the 5 dB bandwidth for the designs in question as a
function of the ring number N

It is interesting to note that the definition of the shape factor varies in the literature. For
example, in [119] the shape factor is defined as the ratio ρ1 = B1dB/B10dB of the 1 dB bandwidth
over the 10 dB bandwidth. In this case, a larger value for ρ1 is more favorable. Comparing our
results with [119] for the same number of rings, we obtain a value of ρ1 = 0.73 for the three
ring resonator design shown in figure 4.5b (instead of ρ1 = 0.51 in [119]) while for the four ring
resonator design shown in figure 4.5c, we obtain ρ1 = 0.86 (instead of ρ1 = 0.68 in [119]). In
[118], the shape factor is defined as the ratio ρ2 = B20dB/B3dB of the 20 dB bandwidth over the 3
dB bandwidth. In this case, a smaller value for ρ2 is more desirable. Comparing the values of ρ2
for the two ring resonator designs considered in [118], we obtain ρ2 = 2.69 for the device shown
in figure 4.5a (instead of ρ2 = 3.16 obtained in [118]).

The crosstalk at the stop-band is another key feature of the obtained designs. Figure 4.6
suggests that away from the vicinity of f = f0 the crosstalk quickly drops as the number of rings
is increased. This stems from the fact that the rings have different radii and hence as the number of
rings increases, it is much more difficult to obtain a constructive interference away from the central
frequency, unlike the case of uniform structures where the transfer function is periodic [117], [118].
This is further quantified in figure 4.8 where we plot the average and maximum crosstalk Cavg and
Cmax respectively which are defined in the stop-band |f − f0| ≥ B30 as:

Cmax = max|f−f0|≥B30{TdB(f)} (4.18a)

Cavg = ⟨TdB(f)⟩|f−f0|≥B30 (4.18b)

where ⟨⟩ stands for average value. We see that increasing the number of rings quickly reduces both
the average and the maximum crosstalk. The fact that the average crosstalk drops more rapidly
than the maximum crosstalk suggests a gradual thinning of the side-lobes of the transfer function
at the stop-band as a result of the progressive difficulty in obtaining constructive interference.
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Figure 4.8: Average and maximum crosstalk for the designs as a function of the ring number N

It is also interesting to consider how the progressive transfer functions are obtained at in-
termediate steps of the optimization process. In figure 4.9, we show these transfer functions at the
nth step of the minimization assuming N = 3 micro-ring resonators. Initially the transfer function
T (f) is most irregular since we start at a non-optimal point in the multi-parameter space. The min-
imization process results in the formation of the main lobe. The main lobe is gradually flattened
near the desired frequency.

Figure 4.9: Intermediate transfer functions obtained during the minimization process for a three
ring structure

In figure 4.10, we compare the chromatic dispersion coefficients∆ϕ2 = −2πc/λ2∂2ϕ/∂ω2

where ϕ = arg{H} and H = a4N+4/a1 is the amplitude transfer function of the filter which can
be calculated in the same way as T (f) in section 4.1 for the single-ring (N = 1) and the six-
ring design (N = 6). We deduce that the six-ring design has higher chromatic dispersion. In
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an attempt to further investigate the performance of the latter filter we have used the fast-Fourier
transform (FFT) to numerically calculate the pulse broadening for an input Gaussian pulse with a
25 ps 1/e full-width and observed a pulse broadening of 12% for the single ring structure and 15%
for the multi-ring structure (N = 6) implying its suitability for high-speed optical communication
applications. For pulses with 50 ps 1/e full-width, the pulse broadening was less than 1% in both
cases.

Figure 4.10: Chromatic dispersion of the single ring (N = 1) and six ring (N = 6) design

We also discuss the impact of the ring waveguide propagation losses on the spectral prop-
erties of the device. In practical silicon waveguides, losses may vary from 0.5 dB/cm to∼6 dB/cm
depending on the fabrication method [120], [121]. In order to assess the impact of the propagation
loss on our ring structures we use (4.3) and recalculate the transfer functions taking into account
the non-zero loss coefficient a. Figure 4.11 elaborates on the impact of propagation loss in the
spectral characteristics of the six-ring design mentioned above. The figure shows that although
ring waveguide propagation losses result in insertion losses for the optical filter, the shape of the
transfer function remains flat even at high values of a. This is quantified in table 4.1, where the
ratio ρ corresponds to the four loss coefficients mentioned in the legend of figure 4.11.

a ρ

0 dB/cm 1.32
0.5 dB/cm 1.32
3 dB/cm 1.42
6 dB/cm 1.76

Table 4.1: Ratio ρ corresponding to the four loss coefficients
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Figure 4.11: Comparison of the transfer function of a 6 ring design for different loss factors

4.4 Conclusions

In the analysis presented in this chapter, we discussed the tailoring of the spectral properties of
coupled micro-ring structures. By allowing non-uniform resonator arrangements we show how
standard minimization methods can be used to design the structure with desirable spectral charac-
teristics without resorting to complex analytical schemes or exhaustive search in a multi-parameter
space. The obtained transfer functions are relatively flat and are characterized by very low cross-
talk unlike a uniform array of micro-ring resonators where the stop-band is limited by the periodic
nature of the transfer function. Our technique may open up new paths for designing and imple-
menting compact optical filters with tailored spectral properties.
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5 Designing RR structures

In this chapter an analytical model for estimating the spectral properties of an active racetrack
resonator/waveguide system, which directly involves all pertinent parameters, will be presented.
Under reasonable approximations, we will show that the transfer function can be approximated
by a rational function, the coefficients of which are determined by the parameters of the structure
and whose poles significantly determine the spectral properties of the device. We also provide ex-
pressions for estimating the maxima and minima of the power transfer function T = |H|2. The
intra-cavity reflections arising at the interfaces between the straight and the curved waveguides of
the racetrack, provide an additional degree of freedom in the design of the spectral properties of the
device and under certain conditions Fano-type resonances appear which can be useful in a number
of applications including optical sensing. Additionally, the conditions under which asymmetric
transitions around a spectral peak can occur which are characteristic of Fano-type resonances will
be identified. The accuracy of our model is verified by rigorous transfer matrix numerical simu-
lations. Suitable metrics that can be used to optimize the design are identified along with a set of
conditions that the transfer function must fulfill from an application point-of-view. We show how
the design parameters involved in the transfer function calculation, can be used to determine the
required structural and material parameters of the device and provide examples of structure designs
that possess favorable spectral characteristics. We also discuss how the model can be applied for
tailoring the transfer function in order to obtain sharper transitions from the spectral peaks to the
minima and higher contrast between the minima and the maxima of T , as stated in chapter 2, in
order for the structure to be used for sensing applications. To our knowledge, this is the first time
an analytical model, which includes the effects of reflectivity, is presented. The results of this work
were published in [122] and [123].

5.1 Transfer matrix analysis

Figure 5.1 shows the basic coupled racetrack/waveguide system. At the waveguide input, let Ain

be the amplitude of the incident wave and Ar the amplitude of the reflected wave, while A′
in and A′

r

denote the amplitudes of the incident and the output fields at the device output. We also assume
that R′

CCW and R′
CW are the amplitudes of the counter-clockwise and clockwise propagating fields

at the input of the coupling region while RCCW and RCW are the corresponding fields at the output
of the coupling region.
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Figure 5.1: The coupled racetrack resonator / waveguide system. In the figure Ain, Ar are the
amplitudes of the incident and reflected waves at the input,A′

in andA′
r are the corresponding waves

at the output, while R′
CCW and R′

CW are the amplitudes of the counter-clockwise and clockwise
propagating fields at the input of the coupling region and RCCW and RCW are the corresponding
fields at its output.

The device can be described by the total transfer matrix of the systemM, which relates the
fields at the racetrack: [

R′
CCW

R′
CW

]
= M

[
RCCW

RCW

]
(5.1)

The amplitude transfer function of the device H(ω) is given by the ratio A′
r

Ain
of the input and out-

put waveguide mode field and is calculated by the following equation according to the analysis
presented in section 3.6 and [96]:

H(ω) =
A′
r

Ain
=

1√
τ
+

κ√
τ
×

√
τ −m22

m12m21

√
τ − (1−m11

√
τ)(
√
τ −m22)

(5.2)

where ω = 2πf is the frequency. The power transfer function T (ω) is simply determined as
T (ω) = |H(ω)|2.

In (5.2), τ and κ denote the power transmission and coupling coefficient respectively, be-
tween the waveguide and the racetrack with κ + τ = 1, while mpq are the elements of the total
transfer matrix of the systemM:

M =

[
m11 m12

m21 m22

]
(5.3)

The coupling coefficient κ can be calculated using the coupled mode theory which may incorporate
full-blown computationalmethods such as the finite difference time domain and the finite difference
frequency domain methods as analytically described in chapter 3.
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The total transfer matrixM can be written as a product of the individual transfer matrices
of the various device sections:

M = MS
(
L
2

)
MTMCMTMS(L)MTMCMTMS

(
L
2

)
(5.4)

In (5.4), L is the length of the straight waveguide section and the sub-matrices are defined in a
manner analogous to the total matrixM. The matrixMS(l) describes the propagation in a straight
waveguide section of length l and is determined by:

MS(l) =

[
e−jβSl 0

0 ejβSl

]
(5.5)

where βS is the propagation constant of the waveguide mode. MC is the matrix describing the
propagation in the half-circle of radius R:

MC =

[
e−jβCπR 0

0 ejβCπR

]
(5.6)

where βC is the propagation constant in the half-circle waveguide. MT is the matrix describing the
transition from a curved to a straight interface and vice-versa:

MT =
1

j
√
1− r2

[
−1 −r
r 1

]
(5.7)

where r is the power reflection coefficient at the interfaces between the straight and the curved
sections. The propagation constants in (5.5) and (5.6) are determined by:

βS =
ωnS
c

+ j
gS
2

(5.8)

βC =
ωnC
c

+ j
gC
2

(5.9)

where gS and gC are the gain coefficients of the straight and curved section, which also include the
various losses of the device, while nS and nC are the effective indices of the straight and curved
section respectively and c the speed of light in vacuum. The transfer matrix model described by
(5.2)-(5.9) can be used to estimate the spectral properties of the device taking into account the intra-
cavity reflections described by the reflection coefficient r. In the next sections, we will develop
an analytical model that can yield significant insight in the influence of the various parameters and
study the spectral properties of the transfer function, paying particular attention to the formation of
Fano-type resonances.

5.1.1 Transfer matrix elements approximations

We define the auxiliary phase differences in order to facilitate our calculations. The phase differ-
ence ϕ when propagating in the straight waveguide section of length L is equal to:

ϕ(ω) = βSL =
ωnS
c

L+ j
gS
2
L (5.10)
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The phase difference θ when propagating in the half-circle section of the racetrack is given by:

θ(ω) = βCπR =
ωnC
c

πR + j
gC
2
πR (5.11)

The round-trip phase difference Ψ is calculated as:

Ψ(ω) = 2 (ϕ(ω) + θ(ω))

=
ωnC
c

2L+
ωnS
c

2πR + jgSL+ jgCπR
(5.12)

Taking into account (5.3)-(5.12), we obtain the following closed-form expressions for the elements
of the transfer matrix:

m11 = −
e−jΨ

(r2 − 1)2
{
r2 ej2ϕ + 2 r2 ej2θ − r4ej4θ

−2 r2ejΨ + r2ejΨ+j2θ − 1
} (5.13)

m12 = −m21 = −
re−jΨ+jϕ

(r2 − 1)2
{
ej2θ − ejΨ + ejΨ+j2θ+

r2 ej2ϕ + r2 ej2θ − r2 ej4θ − r2 ejΨ − 1
} (5.14)

m22 =
e−jΨ

(r2 − 1)2
{
ej2Ψ + r4 ej4ϕ + 2 r2 ejΨ

−r2ejΨ+j2θ − 2 r2 ejΨ+j2ϕ − r2ej2ϕ
} (5.15)

Equations (5.13)-(5.15) can be used in order to directly calculate the total matrix elements without
resorting to matrix multiplications. For small reflectivity r (r ≪ 1), the matrix elements can be
accurately approximated by:

m11
∼= e−jΨ (5.16)

m12 = −m21
∼= −re−jΨ+jϕ

(
ej2θ − ejΨ+j2θ − 1

)
(5.17)

m22
∼= ejΨ (5.18)

Equations (5.16)-(5.18) show that to first order, only the non-diagonal elementsm12 andm21 con-
tain the influence of r. Multiple reflections giving rise to higher powers rn of r with n > 1 in the
elementsmpq can be ignored in this case. Since Fano resonances are typically associated with low
reflection values [96], we will consider the low reflectivity approximation for the remainder of our
analytical treatments.

Let ω = ω0 = 2πf0 be a resonant angular frequency of the racetrack resonator, measured in
rad/s. In this case the real part of the round-trip phase Ψ0 = Ψ(ω0) = 2θ0 +2ϕ0 where θ0 = θ(ω0)

and ϕ0 = ϕ(ω0), must be a multiple of 2π, i.e. ℜ{Ψ0} = 2µπ where µ is an integer referred to as
the resonance order, or equivalently,

2nSf0L

c
+

2nCf0πR

c
= µ (5.19)
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where f0 = ω0/2π is the resonant frequency, measured in Hz. Also at resonance:

ejΨ0 = e−gSL−gCπRej2µπ =
1√
G

(5.20)

where G is the roundtrip gain determined by:

G = e2gSL+2gCπR = e2gavg(πR+L) (5.21)

In (5.21), gavg is the average gain coefficient across the racetrack path. Using (5.20), (5.16)-(5.18)
and assuming r ≪ 1 we obtain:

m11(ω0) ∼=
√
G (5.22)

g ≜ m12(ω0) ∼= −rejϕ0

(√
G+ 1

) (
ej2θ0 − 1

)
(5.23)

m22(ω0) ∼=
1√
G

(5.24)

where to simplify the notation we denoted the value ofm12 at resonance as g.

Considering a small frequency detuning ∆ω = ω − ω0 around the resonant frequency ω0,
we can expand the propagation constants in (5.8) and (5.9) around ω = ω0 as:

βS(ω) = βS(ω0 +∆ω) ∼= βS(ω0) + βS1∆ω (5.25)

βC(ω) = βC(ω0 +∆ω) ∼= βC(ω0) + βC1∆ω (5.26)

where βS1 and βC1 are the first-order derivatives of the propagation constants calculated at ω = ω0.
We may also write:

Ψ(ω) = Ψ(ω0) + ∆Ψ (5.27)

with
∆Ψ = 2(βS1L+ βC1πR)∆ω (5.28)

We define the frequency scaling factor S to be equal S = βS1L + βC1πR and the normalized
frequency Ω = S∆ω. We choose to retain a first order expansion in terms of Ω for the diagonal
elementsm11 andm22. Using (5.16) and (5.18), we obtain the following first order expansion:

m11
∼=
√
G− j2Ω

√
G (5.29)

m22
∼=

1√
G

+
j2Ω√
G
∼=

m∗
11

G
(5.30)

Figure 5.2 shows the accuracy of the first-order approximation by comparing the values obtained
form11 by (5.4) and (5.29). The parameters chosen are adapted from [96]. We deduce that the first-
order approximation accurately captures the variations of the imaginary part ofm11. The real part
ofm11 exhibits a maximum at ω = ω0 and can not be described using a first-order approximation.
However the variations of the real part are much smaller than the imaginary part. Also, since the
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non-diagonal elements m12 and m21 can be treated as perturbations we retain only the zero-order
term and assume:

m12(ω) = −m21(ω) ∼= g (5.31)

where g is determined by (5.23). The validity of these approximations will further be discussed in
the next section.

(a) (b)

Figure 5.2: First order approximation for a) the real and b) the imaginary part of the diagonal matrix
elementm11 assuming the parameters of table 5.1.

5.2 Transfer function model

Using (5.29), (5.30) and (5.31) in (5.2), we obtain after some mathematical manipulation the fol-
lowing rational function for H:

H =
1√
τ

AΩ2 + EΩ + F

AΩ2 +BΩ + C
(5.32)

where the following coefficients are used:

A = −4
√
τ (5.33)

B = 2j

(
1√
G
− τ
√
G

)
(5.34)

C = −2
√
τ +

1√
G

+ τ
√
G− g2

√
τ (5.35)

E =
2jτ√
G
− 2jτ

√
G (5.36)

F =
τ√
G

+ κ
√
τ − 2

√
τ + τ

√
G− g2

√
τ (5.37)

According to (5.32), the amplitude transfer function H can be written as a rational function where
both the numerator and the denominator are second-order polynomials of the normalized frequency
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Ω. The coefficients of the polynomials depend on three parameters: the roundtrip gainG, the power
coupling coefficient κ = 1 − τ and the off-diagonal element of the transfer matrix g = m12(ω0)

at resonance determined by (5.23). The material (nC, nS) and structural parameters (L, R) of the
racetrack determine the resonant frequency f0 around which the transfer function is obtained and
the value of g also contains the impact of the intra-cavity reflections. (5.32) is far more suitable for
analytic manipulations than the transfer matrix model of section 5.1.

It is useful to write the rational function (5.32) in a slightly alternative form using only real
coefficients, which is a form that will be used in the following sections:

H =
1√
τ

Ω2 + ju1Ω + u0

Ω2 + jv1Ω + v0
(5.38)

with:
v1 =

Y 2 − 1

2Y
(5.39)

v0 =
g2 + 2− Y − 1

Y

4
(5.40)

u1 =
Y 2 + κ− 1

2Y
= v1 +

κ

2Y
(5.41)

u0 = −
(−κ+ 1− Y )(1− Y )− g2

4Y
= v0 +

κ(1− Y )

4Y
(5.42)

Before we apply the analytical model to describe the spectral properties of the device, it
is useful to ascertain the accuracy of the analytical approximations. Figure 5.3 shows the transfer
function calculated for both the full transfer matrix model described by (5.2) and (5.4) and its
analytical approximation given by (5.32) for the set of parameters quoted in table 5.1. The material
and structural parameters of the racetrack are adapted from [96]. We see that the low-reflectivity and
first-order approximation accurately describes the shape of the power transfer function T = |H|2

at the frequency range of interest.

Parameter Value Parameter Value
nS 3.6 G 1.041
nC 3.5 g 0.0397j
gS -0.2cm−1 S 1.78ps
gC 3cm−1 f0 193.02THz
L 120µm µ 1372
R 10µm eϕ = ejϕ0 0.11 + 0.99j
r 0.01 eθ = ejθ0 0.11 - 0.98j
κ 0.025

Table 5.1: Initial racetrack parameters

95



Figure 5.3: Comparison of the transfer functions calculated for by (5.2)-(5.4) and the rational ap-
proximation (5.32) for the set of parameters quoted in table 5.1.

The rational transfer function in (5.32) can be written in a more suitable form using partial
fraction decomposition [124]. LetΩ = ρ1 andΩ = ρ2 be the poles ofH in (5.32). The discriminant
∆ of the equation is determined by:

I2r =
∆G

4
= −(Y − 1)4 − 4g2Y (5.43)

where
Y =

√
τG (5.44)

In the absence of reflections (r = 0) one obtains g = 0 and hence the discriminant∆0 is determined
by:

I20 =
∆0G

4
= −(Y − 1)4 (5.45)

and is negative. Since the sum of the poles,−B/A, is imaginary as suggested by (5.33) and (5.34),
this implies that the poles ρ1 and ρ2 in this case will be purely imaginary. In the general case, the
poles are given by:

ρ1,2 =
j(1− Y 2)± Ir

4Y
(5.46)

The roots ρ1 and ρ2 determine the poles of the partial fraction decomposition of the transfer function.

H =
1√
τ
+

c1
Ω− ρ1

+
c2

Ω− ρ2
(5.47)

where
c1 =

κ

A
√
Y

(
(Y − 1)2

Ir
− j

)
(5.48)

c2 =
κ

A
√
Y

(
−(Y − 1)2

Ir
− j

)
(5.49)
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(5.47) shows that the transfer function of the device can be written as the sum of a constant
term and two Lorentzian functions Hi determined by the poles ρi = ρ′i + jρ′′i :

Hi(Ω) =
ci

(Ω− ρ′i)− jρ′′i
(5.50)

The real part ρ′i of the poles ρi is associated with the frequency detuning of the two spectral peaks
of the transfer function, while the imaginary part ρ′′i determines the linewidth of the resonances.

5.3 Symmetric resonances

We next consider the special case where ρ1 = −ρ∗2 which according to (5.46) occurs when Ir

determined by (5.43) is real, i.e.:

−(Y − 1)4 − 4g2Y ≥ 0 (5.51)

In this case, ρ′1 = −ρ′2 implying that the peaks of two Lorentzian functions occurring at Ω = ρ′1
and Ω = ρ′2 are placed symmetrically aroundΩ = 0. Also, since ρ′′1 = ρ′′2, the linewidths of the two
functions are the same. In addition using (5.48) and (5.49) given the fact that Ir is real, we obtain:

c1 = −c∗2 (5.52)

and hence the peak amplitude of the two Lorentzian components is determined by |Hi(ρ
′
i)| =

|ci/ρ′′i |. Using (5.50) we deduce that the transfer components Hi(Ω) are related through H1(Ω) =

H∗
2 (−Ω) and hence:

H(Ω) = H∗(−Ω) (5.53)

implying that the power transfer function T (Ω) = |H(Ω)|2 is symmetric around Ω = 0. In this
case, we can use (5.38) to derive a convenient form for T (Ω) = |H(Ω)|2:

T (Ω) =
1

τ

(Ω2 + u0)
2
+ u2

1Ω
2

(Ω2 + v0)
2 + v21Ω

2
(5.54)

The function T (Ω) determined by (5.54) is a function of x = Ω2 alone and one can find the extrema
by differentiating T (x) with respect to x. After some mathematical manipulation, we can find that
the extrema of T located at the positive Ω−axis are Ω = Ωext where:

Ω2
ext =

v20 − u2
0 ±Θ

u2
1 − v21 + 2(u0 − v0)

(5.55)

The parameter Θ is determined by:

Θ2 = ((u0 − v0)
2 − u0v

2
1 − u2

1v0)
2 − (u0u1v1 + u1v0v1)

2 (5.56)

Note that for the design of table 5.1, the parameter g2 is negative and I2r ∼= 6.28×10−3 > 0 implying
that the transfer function is symmetric as already indicated by figure 5.3. Using (5.55) and (5.56)
we can find the non-zero extrema of T that are located at Ωext = ±0.0134 and Ωext = ±0.0212.
The frequencies corresponding to Ωext can be found through fext = Ωext/(2πS). For the parameters
of table 5.1, we obtain fext = ±1.2GHz and fext = ±2.02GHz which is in excellent agreement
with the extrema observed in figure 5.3.
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5.3.1 Fano resonance tailoring in the symmetric case

In this section, we apply the analytical model presented in section 5.1.1 in order to design a race-
track/waveguide system exhibiting asymmetric transfer function near the vicinity of its spectral
peak. Such properties are useful in sensor applications where one seeks spectral regions where the
transmittance exhibits sharp transitions from a maximum to a minimum value. We focus our atten-
tion to the symmetric case discussed in section 5.3. As pointed out at that section, the parameter
g = jg′′ should be imaginary and (5.51) should be fulfilled so that the poles obey the condition
ρ1 = −ρ∗2. Given the definition of g in (5.23), we deduce that:

ejϕ0
(
ej2θ0 − 1

)
= ±jg′′

r

1√
G+ 1

. (5.57)

Taking into account (5.10) and (5.11), we deduce that (5.57) imposes certain restrictions on the
parametersR andL. For the values ofR andL in table 5.1, we see that g is almost purely imaginary
and hence (5.57) already holds. Keeping R and L constant and varying r or G we can therefore
change the value of g′′ at will. Since only g2 appears in the equations, the sign of g′′ is of no
consequence. We therefore assume that g′′ > 0. Given that (5.57) holds, there are three parameters
that determine the transfer function:

• the roundtrip power gain G (G ≥ 1).

• the power transmission coefficient τ (τ < 1).

• the parameter g = jg′′ assumed to be purely imaginary which is a necessary condition in
order to fulfill (5.51).

In order to identify a suitable design we perform an exhaustive search over a three-dimensional
uniform grid of values (mG∆G,mτ∆τ,mg∆g) where ∆G, ∆τ and ∆g denote the grid spacing
for the parameters G, τ and g′′ and mG, mτ ,mg are integers. In our application we have chosen
∆G = 0.001,∆τ = 0.001 and∆g = 0.001while the range of values considered isG ∈ [1.01, 1.2],
τ ∈ [0.8, 0.98] and g′′ ∈ [0.02, 0.1] resulting in a 191 × 181 × 81 parameter grid. For each set of
parameters (Gq, τq, g

′′
q ) in the grid we check to see whether the condition (5.51) is fulfilled. If this

is the case, we calculate the two extrema Ωext > 0 lying in the positive Ω-axis based on (5.55) and
based on the value of T (Ωext), we find which one of them is the location of the maximum Ωmax and
the minimum Ωmin and estimate the spacing between the minimum and the maximum:

∆Ω = |Ωmax − Ωmin| (5.58)

We also calculate the contrast:

rC[dB] = 10 log10

(
T (Ωmax)

T (Ωmin)

)
(5.59)

We consider the designs for which rC exceeds a threshold value rmin, in our case 5 dB,
which offers sufficient contrast between theminimum andmaximum values. ∆Ω can be considered
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as a figure of merit in our design process. The lower the value of ∆Ω, the sharper transition we
expect from the maximum to the minimum and hence the design will be more favorable for sensing
applications. If for a set of parameters, the condition in (5.51) is not fulfilled or if rC < rmin, then
we set ∆Ω = 0. After the exhaustive search is complete, we choose the design with the lowest
non-zero value ∆Ω.

Figure 5.4 shows the optimized design. The design of table 5.1 is also included as a refer-
ence. Table 5.2 summarizes the parameters for the optimized design. Given the values of g′′, G
and τ obtained through exhaustive search we can calculate the rest of the parameters of the struc-
ture. We choose to retain the same values for nC, nS, R and L as in table 5.1. This implies that
the resonant frequency f0 and the order µ of the resonance are the same. We have also chosen the
value gC = 2.5cm−1 for the gain of the curved section in order to obtain a roundtrip gain value of
G = 1.011. The power coupling coefficient is obtained through κ = 1 − τ while the value of the
reflectivity r is obtained by solving (5.57) with respect to r:

r =

∣∣∣∣ jg′′√
G+ 1

1

ejϕ0 (ej2θ0 − 1)

∣∣∣∣ . (5.60)

Figure 5.4: Transfer functions of the original designs outlined in table 5.1 and the optimized design
of table 5.2, calculated by the rational first-order approximation and the full transfer matrix model.

Figure 5.4 includes the transfer function for the optimized design using just the values of
g′′, G and κ obtained through exhaustive search based on the rational transfer function mode of
(5.32) with a solid line and the transfer function obtained by applying the full transfer function
model of section 5.1 with circles. We again obtain an excellent agreement for this case as well
since the value of r is much smaller than unity. The optimized design has larger contrast (∼= 5.1

dB) between the maximum and the minimum compared to the original design (∼= 3.4 dB). For the
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Parameter Value Parameter Value
nS 3.6 G 1.011
nC 3.5 g 0.02j
gS -0.2cm−1 S 1.78ps
gC 2.5cm−1 f0 193.02THz
L 120µm µ 1372
R 10µm eϕ = ejϕ0 0.11 + 0.99j
r 0.005 eθ = ejθ0 0.11 - 0.98j
κ 0.021

Table 5.2: Parameters for optimized design

original design we have ∆Ω = 6.2 × 10−3 while the optimized design yields ∆Ω = 5.5 × 10−3.
Between the maximum and the minimum, the average rate of change, defined as:

rch =
∆T

∆f
=

T (Ωmax)− T (Ωmin)

fmax − fmin
(5.61)

where fmax = Ωmax/S and fmin = Ωmin/S are the frequencies corresponding to the maximum and
the minimum respectively, is rch = 4.8 GHz−1 for the initial design and rch = 9.8 GHz−1 for
the optimized design. We therefore deduce that the transition region between the peak and the
minimum is shorter for the latter.

Figure 5.5 shows the effect of small perturbations ∆nS of the effective index nS of the
straight section. The transfer function is plotted as a function of f − f0 where f0 is the resonant
frequency of the design with ∆nS = 0.

Figure 5.5: Influence of effective refractive index perturbations∆nS in the power transfer function
for the optimized design.
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The figure illustrates that a positive ∆nS shifts the transfer function towards smaller fre-
quencies while the reverse is true when ∆nS < 0. This behavior can be easily explained based on
the condition at resonance (5.19). Perturbing the refractive index changes the value of the resonant
frequency f0. We can calculate the sensitivity of the power transfer function in terms of minute
differences of the refractive indices of the straight or the curved racetrack sections nS and nC re-
spectively. Considering the resonance condition (5.19), a small perturbation ∆nS in the former
causes a resonant frequency shift ∆f determined by:

∆f

∆nS
∼=

−cµL
2 (nSL+ nCπR)2

(5.62)

We can calculate the sensitivity sn of the transmittance with respect to the refractive index sensi-
tivity as:

sn =
∆T

∆nS
=

∆T

∆f

∆f

∆nS
= rch

−cµL
2 (nSL+ nCπR)2

(5.63)

Based on (5.63) we can calculate the sensitivity values per refractive index unit (RIU) change of
sn = −2.08 × 105 per RIU and sn = −4.27 × 105 per RIU for the original and the optimized
design respectively. The calculations carried out in this section, illustrate how our RR model can
be applied for tailoring the device for various sensing applications.

5.4 Non-symmetric case

As stated earlier in this dissertation, racetrack resonators present an interesting alternative to im-
plement waveguide/resonator coupling systems enabling accurate control of the power coupling.
The intra-cavity reflections arising at the interfaces between the straight and the curved waveguides
of the racetrack can, under certain conditions, lead to the creation of Fano-type resonances, which
can be useful in a number of applications including optical sensing. In this section we present a
comprehensive framework for engineering the spectral properties of these resonances. We define a
set of conditions that the TF must fulfill along with suitable metrics which can be used to optimize
the design, and then we show how the design parameters involved in the calculation of the TF, can
be used to determine the required structural and material parameters of the device.

In thework presented in section 5.2, we have shown that the spectral properties of this device
can, under certain conditions, be described by an analytical model. Based on realistic assumptions,
we have shown that the amplitude H and power transfer function T = |H|2 can be described by
rational functions (i.e. fraction of polynomials) of the frequency ω. The power TF T (ω) exhibits
two peaks around the RR resonant frequency ω = ω0. Under certain conditions, the variations of
T around the peaks can be highly asymmetric exhibiting Fano-type behavior.

An example of such a behavior is illustrated in figure 5.6 as a function of the normalized
frequency Ω = S(ω − ω0). The TF possesses five extrema, three of which are maxima occurring
at Ω = Ω

(i)
max and two minima at Ω = Ω

(i)
min. A Fano-type behavior is obtained around Ω = Ω

(1)
max

where the TF is highly asymmetric exhibiting a sharp transition to the right (regionA2) and a much
smoother transition to the left (regionA1). The TF is also relatively smooth in the valley regionA3
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between Ω(1)
min and Ω

(2)
min. A similar situation is observed at the peak Ω = Ω

(3)
max. Such a spectral be-

havior involving regions of low absorption followed by sharp transitions leading to smooth valleys
of high absorption imply increased sensitivity of the transmittance in the intermediate range with
respect to refractive index perturbations. The presence of a chemical substance (analyte) causes a
change in the refractive index of the cladding of the racetrack waveguide and therefore the trans-
mittance depends on the properties of the analyte. This is much sought after in applications such
as bio-sensing [99]. Refractive index perturbations may also be due to non-linearity or the electro-
optic effect which renders these devices very useful in optical gating [125] and modulation [126]
applications.

Figure 5.6: Example of a RR/waveguide system TF T = T (Ω) which is symmetric around Ω = 0.
The TF exhibits sharp transitions in regions A2 and A4 switching from a regions of low absorption
A1 and A5 to a valley of high absorption A3.

We have also shown in section 5.3, that under certain conditions related to the phase of the
cross-coupling coefficient g = gr + jgi between the clockwise (CW) and the counter-clockwise
(CCW) wave inside the racetrack shown in figure 5.1, the TF can retain its asymmetric nature
around the peaks but still be symmetric with respect to Ω. More specifically if gr = 0 then one has
T (Ω) = T (−Ω) (this is the case shown in figure 5.6). In this case, it is possible to calculate the
position of the minima and maxima in closed form. We have used this model to tailor the properties
of a symmetric T = T (Ω) in section 5.3.1 in order for it to be suitable for sensing applications. Due
to the closed form nature and the symmetry properties of the transfer function, the design process
is relatively straight-forward since one simply needs to minimize the spectral distance between the
maxima and minima of the transfer function in either side, e.g. M = Ω

(1)
min − Ω

(1)
max and impose

a condition for the contrast between the corresponding transfer function maximum T (Ω
(1)
max) and
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minimum T (Ω
(1)
min). This ensures that the transfer function has a sharp transition of considerable

contrast to be used in sensing applications.

One expects to obtain better results, however, if one considers non-symmetric transfer func-
tions occurring for gr ̸= 0. The general case requires special care since one is no longer aided by
analytical expressions for the location of the minima and maxima of the transfer function. Hence
the results presented in section 5.3 do not apply and one must come up with a different frame-
work in order to optimize the asymmetric transfer functions. In the absence of analytical tools, one
must ensure that both the metricM and the set of conditions R are chosen carefully in order to
exclude unsuitable transfer functions, e.g. non-Fano transfer functions consisting of ultra-narrow
Lorentzian-type resonances with very high gain-assisted peaks which are not useful for sensing
applications where one prefers sharp transitions between otherwise smooth high and low transmit-
tance regions as shown in figure 5.6.

In the following sections, we show how the design framework of section 5.2 can be extended
to handle the asymmetric cases as well. In more detail,

• We introduce a more suitable albeit slightly more complex metricM designed to handle the
asymmetric transfer function case, considering the behavior of the transfer function on either
side of Ω = 0.

• We introduce an extended set of conditionsR that the transfer functionmust satisfy in order to
be considered as suitable. Since most of the properties of the transfer function, including the
positions of the minima and maxima can not be obtained in closed form, this set of conditions
is carefully chosen so as to ensure that only meaningful designs are obtained through the
optimization.

• We present an algorithm for calculating themetricM taking into accountR that a component
designer can apply to characterize each design in question.

• We clarify how the structural and material parameters are related to the optimal transfer
function parameters in the general case where gr ̸= 0. We show that for a given resonance
order µ there are many possible values for the length of the straight and curved racetrack
waveguide sections and the corresponding gain coefficients.

• We present the optimal designs obtained through exhaustive search on a specified parameter
space. We show that the majority of these designs turn out to be asymmetric and discuss
various application issues.

Applying the approximations discussed in section 5.2, it is evident that the device amplitude
TF along with its spectral properties can be described by equations (5.38)-(5.42), which hold for
both the symmetric case where gr = 0 and the asymmetric case gr ̸= 0, since no restriction is
imposed on g in their derivation in the analysis presented in section 5.3. The round-trip gain G of
equation 5.21 is alternatively given by:

G = e2gSL+2gCπR = G2
SG

2
C (5.64)
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with GS and GC being the gain of a single straight and curved section respectively:

GS = egSL (5.65)

GC = egCπR (5.66)

The coefficients G, GS and GC are net gain coefficients including the influence of both the active
material gain and the propagation losses. Note that the round-trip gain can be adjusted with the aid
of the gain tuning techniques mentioned in section 2.10, in order to compensate for excess optical
loss at the waveguide.

As can be deduced from (5.39)-(5.42) there are three design parameters that completely
determine the TF: the round-trip device gain G, the power coupling coefficient κ (or equivalently
the transmission coefficient, τ = 1−κ) and the CCW/CW coupling coefficient g = gr+jgi. We can
therefore proceed with the design in two stages: in the first stage we estimate the required values
of the three design parameters that correspond to the optimum design. This can be done through
exhaustive search or by numerical optimization methods. Once the optimum design parameters are
determined, then we need to translate them into structural and material parameters (radius of the
curved section R, etc). This is the objective of section 5.5.

5.5 Relating the design and structural parameters

Before optimizing the transfer function of the device, we first need to relate the material and struc-
tural parameters of the device to the required values of the design parameters (G, κ, g) of the transfer
function. This has not been previously undertaken in the literature and is the subject of the current
section.

5.5.1 Gain parameters

To relate the TF parameters (G, κ, g) with the device structural and material parameters, we first
use (5.12) to obtain:

θ0 =
Ψ0

2
− ϕ0 (5.67)

We also define ḡ as:
ḡ =

1

r
(√

G+ 1
) (gr + jgi) (5.68)

and rewrite (5.23) to read:

−ḡ = ejϕ0
(
ej2θ0 − 1

)
= ejϕ0+2jθ0 − ejϕ0 = ejΨ0−jϕ0 − ejϕ0 (5.69)

Taking into account (5.20) and (5.64) we use the transformation:

z = ejϕ0 (5.70)
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Using (5.65), we can easily deduce that:

|z| = |ejϕ0| = exp
(
−gS

2
L
)
= 1√

GS
(5.71)

and hence:
GS = exp (gSL) =

1

|z|2
(5.72)

Using (5.70) we can rewrite (5.69) as:

z2 − ḡz − 1√
G

= 0 (5.73)

According to (5.10), ϕ0 and therefore z, depend on the length L and the gain gS of the straight
waveguide section. If the values of the reflectivity r and the TF parameters G and g are known,
one can use (5.73) to obtain the values of ϕ0. The roots of this equation are:

za,b = exp(jϕ0a,b) =
ḡ ±
√
∆

2
(5.74)

where the discriminant ∆ is given by:

∆ = ḡ2 +
4√
G

(5.75)

The roots in (5.74) correspond to two possible values za,b = exp(jϕ0a,b) of exp(jϕ0) which in turn
can be used to determine the length L and the gain coefficient gS of the straight section. One can
relate the gain of the straight section GSa = |za|−2 and GSb = |zb|−2 corresponding to the two
solutions, since the product of the two roots of (5.73) is readily given by:

zazb =
1√
G

(5.76)

We therefore deduce that:
GSaGSb =

1

|za|2|zb|2
= G (5.77)

Using (5.64), we readily see that:

G2
SaG

2
SbG

2
CaG

2
Cb = G2 (5.78)

and substituting (5.77), we obtain:
GCaGCb = 1 (5.79)

Equations (5.77) and (5.79) suggest that the gains of the single curved and straight section cor-
responding to the two solutions of (5.73) are closely related to each other. Once the necessary
individual section gain values GS = GSa, GSb and GC = GCa, GCb are determined, we can proceed
to estimate the structural and material parameters of the device.
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5.5.2 Structural parameters

The length of the straight section is determined by the angle ϕTa,b of za,b:

ϕTa,b = ∠za,b (5.80)

Since exp(jϕTa,b) = exp(jℜ{ϕ0}), one obtains that ϕ0 = ϕTa,b + 2νπ for any integer ν. Using
(5.10), we obtain:

nSω0La,b

c
= ϕTa,b + 2νπ (5.81)

Given the waveguide mode effective refractive index nS which can be calculated using well known
numerical techniques [127], [105], we can calculate the possible values of the length of the straight
waveguide section, La,b = La,b(ν) using (5.81). To calculate the radius Ra,b of the curved section
we can use (5.12) to obtain:

nCω0πRa,b

c
= ℜ

{
Ψ0

2

}
− ϕTa,b − 2νπ = (µ− 2ν)π − ϕTa,b (5.82)

The gain coefficients gS and gC of the straight and curved waveguide respectively are easily ex-
tracted through (5.65) and (5.66):

gSa,b =
1

La,b
ln (GSa,b) (5.83)

gCa,b =
1

πRa,b
ln (GCa,b) (5.84)

To summarize, the first step in the calculation of the required structural and gain parameters L, R,
gC and gS given the TF design parameters g, κ, G and a suitable value for the reflectivity r, is to
calculate the parameter ḡ in (5.69). Next, the two roots z = za and z = zb of the quadratic equation
(5.73) have to be calculated. Each of the roots corresponds to sets of alternative structural param-
eters for the same design. The magnitude of the roots determines the required gain of the straight
section GSa,b through (5.65) and the angle of the roots determines the required phase difference at
the straight section through (5.80). The length of the straight section La,b is determined by (5.81).
Note that there are several values La,b = La,b(ν) that satisfy (5.81) corresponding to the different
values of the integer ν. The gain coefficient of the straight section gSa,b = gSa,b(ν) is determined
by (5.83). Subsequently, a suitable value of the order µ has to be selected and then an estimation of
the values of the curved waveguide radius Ra,b = Ra,b(ν) and its gain coefficient gCa,b = gCa,b(ν)

through (5.82) and (5.84) respectively, can finally be extracted.

5.6 RR/waveguide structure design

This section presents the additional contribution of the dissertation by detailing the optimization
of the transfer function T (Ω) and presenting some useful device designs obtained by the optimiza-
tion. As stated previously, the general case where T (Ω) is not necessarily symmetric aroundΩ = 0

necessitates the introduction of a new metricM and a new set of optimization conditions R, fol-
lowed by the introduction of an algorithm outlining the characterization of a specific design in
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section 5.6.1. We discuss howM and R can be efficiently applied by further explaining this al-
gorithm in 5.6.2. We also present the results obtained by the design framework proposed in 5.6.3,
highlighting their applicability for sensing applications.

5.6.1 Metric and restrictions definition

In order to design a coupled RR/waveguide system we need to first identify a suitable metricM
which quantifies the appropriateness of the design in terms of its TF T (Ω). We can then either per-
form exhaustive search in a predefined design parameter search space S or use some optimization
method to identify the point in S that minimizesM. Given the values of (g,G, κ) of a point in
S, we calculate the TF using (5.38) inside the normalized frequency region Ω ∈ [−10xext, 10xext]
where xext is the far right extremum for the symmetric design (gr = 0) which is known in closed
form. We assume a uniformly spaced 1000-point frequency grid and numerically calculate the TF.
Based on the calculated values of T (Ω), we check whether a set of conditions R are satisfied and
if they are, we calculate a metricM characterizing the suitability of the design. We assume that
the metric is defined in such a way so thatM is minimized for the optimum design. Algorithm 1
summarizes the calculation of the metricM insuring a suitable set of restrictions are met.

Algorithm 1 Characterization of an RR/waveguide design
1: procedure Characterize(G, κ, g, Cmin, QT) ▷ returns the metricM of a design
2: Calculate the TF T (Ω) on the frequency grid based on (5.38)-(5.42).
3: Numerically find the maxima Ω(i)

max and the minima Ω(i)
min of T (Ω).

4: if there are three maxima and two minima and Ω(1)
max < Ω

(1)
min < Ω

(2)
max < Ω

(2)
min < Ω

(3)
max then

5: Calculate the 1 dB bandwidths ∆Ωlo, ∆Ωro, ∆Ωli and ∆Ωri.
6: Ql ← ∆Ωlo/∆Ωli, Qr ← ∆Ωro/∆Ωri.
7: Calculate the contrast levels Cl and Cr.
8: if Ql > QT and Cl > Cmin then ▷ is left peak suitable?
9: δωl ← Ω

(1)
min − Ω

(1)
max

10: else
11: δωl ← +∞
12: if Qr > QT and Cr > Cmin then ▷ is right peak suitable?
13: δωr ← Ω

(3)
max − Ω

(2)
min

14: else
15: δωr ← +∞
16: M← min {δωr, δωl}
17: else
18: M← +∞
19: returnM

Regarding the restrictions R we impose in the design process, these relate to the contrast
between the peak and the minima and the flatness of the low and high absorption regions in the
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frequency ranges adjacent to each transition. We also impose the condition that the TF must have
five extrema and specifically three maxima Ω(i)

max, i = 1, 2, 3 with two minima Ω(i)
min, i = 1, 2 in

between, which is the case of the TF shown in figure 5.6 withΩ(1)
max < Ω

(1)
min < Ω

(2)
max < Ω

(2)
min < Ω

(3)
max.

Referring to the figure, we also define the following bandwidths:

• the 1 dB bandwidth ∆Ωlo to the left of Ω
(1)
max (frequency region A1).

• the 1 dB bandwidth ∆Ωro to the right of Ω
(3)
max (frequency region A5).

• the 1 dB bandwidth ∆Ωli to the right of Ω
(1)
min (frequency region A3).

• the 1 dB bandwidth ∆Ωri to the left of Ω
(2)
min (frequency region A3).

The ratio Ql = ∆Ωlo/∆Ωli measures the width of the low absorption region A1 compared to the
width of the valley region A3 in figure 5.6. We have empirically verified that Ql should be larger
thanQT = 0.3, in order to have a reasonably flat region of low absorption to the left of Ω(1)

max. In the
same manner, we calculate the ratio Qr = ∆Ωro/∆Ωri around the transition region A4 and check
whether this is also larger than QT. We also calculate the contrast levels Cl and Cr of the transition
regions shown in figure 5.6 as:

Cl = 10 log10
T
(
Ω

(1)
max

)
T
(
Ω

(1)
min

) (5.85)

Cr = 10 log10
T
(
Ω

(3)
max

)
T
(
Ω

(2)
min

) (5.86)

and assume a minimum contrast value Cmin that is deemed acceptable for the transition regions.
The metricM must be related to the spectral width of the transition regions which we seek to
minimize in order for the designs to be suitable for sensing applications. The metricM calculated
by the algorithm is related to the spectral ranges of the transition regions A2 and A4 in figure 5.6
which are:

δωl = Ω
(1)
min − Ω(1)

max (5.87)

δωr = Ω(3)
max − Ω

(2)
min (5.88)

5.6.2 Design characterization

We now clarify the manner in which we calculate the conditions R and the metricM for a given
design using algorithm 1. According to the algorithm, we calculate the values of T (Ω) and then
proceed to numerically locate the minima and the maxima. If these meet the conditions stated in
line 4 of algorithm 1 then we proceed to calculate the 1 dB bandwidths around each transition region
and the corresponding contrast level. If the conditions regarding the contrast and the bandwidth are
met then we calculate the spectral width of the transition region δωi otherwise we set δωi = +∞
in which case the corresponding transition region in ignored in calculatingM in line 16. If both
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transition regions do not meet the conditions then this will result in settingM = +∞ in the same
line. Also if the conditions regarding the minima and maxima positions are not satisfied in line 4,
then we setM = +∞ in line 18.

5.6.3 Results and discussion

Based on the values of Cmin and QT, the metricM can be calculated for many different values
of (G, κ, g) and the optimum design can be identified by minimizingM using exhaustive search
or some other optimization method. In our case, we performed exhaustive search in the four-
dimensional parameter space (G, κ, gr, gi) assuming a uniform 41× 51× 101× 81 grid contained
within 1.01 ≤ G ≤ 1.05, 0 ≤ gr ≤ 10−4, 0.02 ≤ gi ≤ 0.1 and 0.01 ≤ κ ≤ 0.06 with corre-
sponding grid spacing ∆G = 10−3, ∆gr = 10−6, ∆gi = 10−3 and ∆κ = 10−3. The range of these
parameters was selected so that corresponding gain values can be achieved in typical III-V mate-
rials and can be adjusted depending on the material platform considered. Given that the number
of parameters to be varied is equal to four, we have chosen to carry out exhaustive search rather
than more elaborate optimization methods. Exhaustive search has the advantage of being able to
locate the global minima for a small number of search variables. However, if more design variables
come into play as in the case of multiple coupled racetrack structures, more elaborate optimization
methods [128] should be adopted, since the dimension of the search space will increase and this
will render exhaustive search inefficient. The ratio QT was set equal to 0.3 while various values
for the minimum contrast Cmin where assumed ranging from 7 dB to 15 dB.

Figure 5.7 shows the TFs of the optimal designs obtained using exhaustive search while
table 5.3 shows the corresponding parameters of each TF. As shown in the figure, the transfer
functions exhibit a typical Fano-type resonance behavior which is much desired in sensing appli-
cations. In all cases, a relatively flat frequency region of high and low transmittance is obtained
for large |Ω| and small |Ω| respectively with very sharp transition regions in between. Depending
on the required values of Cmin one can obtain large contrasts at the expense of a smaller valley
region near Ω ∼= 0. Figure 5.8 shows the values ofM = δω obtained in each case. There are
several interesting conclusions to be drawn from table 5.3. First of all, the majority of optimum
designs for the various values of Cmin considered in the table have a non-zero gr. We also note
that as Cmin increases, a larger κ is needed in order to enhance the cavity/waveguide interaction.
Also all designs have gi = 0.02 implying that the Fano-type behavior is favored for relative weak
CCW/CW wave coupling inside the RR. Another interesting conclusion can be drawn from figure
5.8 where we see that the optimum transition regionM = δω varies linearly with Cmin expressed
in dBs. This implies that the structure can be designed with transitions of larger contrast but this
comes at the expense of a larger spectral width for the transition region and a smaller valley region
A3. This is evident in figure 5.7. Given the TF parameters (G, κ, gr, gi), we calculate the possi-
ble gain coefficients and lengths for two designs of table 5.3. We apply the framework of section
5.5 to obtain these structural and material parameters for each design. Figure 5.9a shows the TF
obtained from the optimization process as a function of the frequency detuning ∆f = f − f0

from the central resonant frequency f0 = 193.55THz corresponding to a free-space wavelength
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λ0 = 1.55µm, assuming a resonance order µ = 686 and a reflectivity coefficient r = −20 dB.
For the purposes of our design, typical refractive index values nS = 3.6 and nC = 3.5 for III-V
materials (e.g. AlGaInAs or InGaAsP) where used [129], [130]. The half width half max for our
design was calculated 0.4362 GHz for the first peak and 0.4216 GHz for the second peak.

Cmin κ G gi gr

7 dB 0.025 1.011 0.020 8.1× 10−5

8 dB 0.029 1.015 0.020 5.2× 10−5

9 dB 0.029 1.012 0.020 9.3× 10−5

10 dB 0.032 1.014 0.020 0.0

11 dB 0.033 1.014 0.020 1.6× 10−5

12 dB 0.034 1.014 0.020 6.8× 10−5

13 dB 0.035 1.014 0.020 0.0

14 dB 0.036 1.014 0.020 3.9× 10−5

15 dB 0.036 1.013 0.020 9.4× 10−5

Table 5.3: Optimal TF parameters

Figure 5.7: Optimized TFs obtained through exhaustive search and for various values of Cmin. The
corresponding design parameters are included in Table 5.3.
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Figure 5.8: Values ofM = δω obtained for the various values of Cmin.

Figure 5.9b shows the values of the length La,b = La,b(ν) and the radius Ra,b = Ra,b(ν)

obtained by (5.81) and (5.82) while figure 5.9c shows the values of the gain coefficients gSa,b =

gSa,b(ν) and gCa,b = gCa,b(ν) of the straight and curved sections of the RR, calculated by (5.72) and
(5.64). As discussed in section 5.5, we have to account for the two roots z = za and z = zb of (5.73)
which lead to two sets of values for each parameter designated by the subscripts ”a” and ”b” in the
figures. It is interesting to note that for each integer ν, the lengths La and Lb are approximately
equal La ∼= Lb and this holds for the radii Ra and Rb as well. This is because, according to (5.81),
the lengths La = La(ν) and Lb = Lb(ν) differ only in the values of the phase ϕTa,b of za,b which lies
inside [−π, π]. As ν increases one has 2νπ >> ϕTa,b and hence La ∼= Lb. This is also the case for
Ra andRb. Another interesting conclusion is that La,b is increasing with ν whileRa,b is decreasing.
This is also evident in (5.81) and (5.82) and is due to the fact that the round-trip phase difference
at resonance, ℜ{Ψ0}, is kept constant and equal to 2µπ. The gain coefficients in figure 5.9c are
also of interest: the first root (black lines) corresponds to an active curved section (gCa > 0) and a
straight waveguide section with very small gain gSa ∼= 0. The other root corresponds to an active
straight waveguide section gSb > 0 and a passive curved section gCb < 0. The figure illustrates the
manner in which the gain parameters must be chosen accordingly in order to achieve the desired
Fano-type behavior in the transition regions.
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(a) (b) (c)

Figure 5.9: Design obtained for Cmin = 7 dB: a) the TF in terms of the frequency detuning ∆f

from the resonant frequency, b) the lengths of the straight and the radii of the curved section cor-
responding to the two roots of (5.73) and c) the gain coefficients corresponding to the roots.

(a) (b) (c)

Figure 5.10: Design obtained for Cmin = 15 dB: a) the TF in terms of the frequency detuning
∆f from the resonant frequency, b) the lengths of the straight and the radii of the curved section
corresponding to the two roots of (5.73) and c) the gain coefficients corresponding to the roots.

Similar conclusions can be drawn for the case where Cmin is chosen equal to 15 dB, where
the half width half max is 0.8917 GHz for the first peak and 0.8735 GHz for the second peak.
The waveguide lengths for the two roots are again approximately equal and similar to the case of
Cmin = 7 dB, since only the phase ϕT is different. The gain coefficients exhibit a similar behavior
as well but their values are somewhat different. This opens up an interesting possibility of being
able to fine-tune the TF properties of the RR/waveguide system by changing the values of the gain
coefficients and achieving higher contrast at the expense of a smaller valley region A3.

It is useful to quantify the effect of small refractive index perturbations on the power transfer
function. Assume that the value of the refractive index nS is perturbed by ∆nS then this causes
a frequency shift on the resonant frequency f0 = ω0/(2π) determined by (5.12). In figure 5.11
we demonstrate how a small change in the refractive index of ∆nS = ±10−5, shifts the transfer
function, because of this resonant frequency detuning. In section 5.3.1, we have shown that the
frequency shift ∆f is determined by,

sf =
∆f

∆nS
≈ −cµL

2(nSL+ nCπR)2
(5.89)
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(a) (b)

Figure 5.11: The effect of the effective index perturbations∆nS in the power transfer function for:
a) Cmin = 7dB and b) Cmin = 15dB.

At the transition regions A2 and A4 in figure 5.6, the transfer function has a contrast equal
to Cl and Cr respectively while the size of the transition region is δωl/(2π) and δωr/(2π) respec-
tively. The transmittance rate of change with respect to frequency is therefore sl = 2πCl/δωl and
sr = 2πCr/δωr in A2 and A4 respectively. The sensitivities of the transmittance with respect to the
change in the refractive index are calculated as Sl = slsf and Sr = srsf. Table 5.4 summarizes the
transmittance sensitivity for the designs of figure 5.11 as well as the lengths and the gain coeffi-
cients of the racetrack sections assumed. The length L of the straight section was chosen from the
possible values of figures 5.9b and 5.10b so that it is the closest to 100µm. We have also chosen the
corresponding gain coefficients from figures 5.9c and 5.10c so that both sections are active (gS > 0,
gC > 0). The table quotes the sensitivity values Sl for regionA2 since in both designs this transition
region had the largest contrast. The obtained Sl values are both in the order of 105 dB/RIU which
suggests that such structures can indeed be used in sensing applications due to their high sensitivity
in refractive index changes. Such high sensitivity values also imply that the structures can be used
in signal processing applications based on the non-linear Kerr effect.

Cmin L[µm] R[µm] gS[cm−1] gC[cm−1] sf[THz/RIU] Sl[dB/RIU]

7 100.1 16.0 0.079 0.929 36.44 3.78× 105

15 100.1 16.0 0.103 1.078 36.44 3.96× 105

Table 5.4: Transfer function sensitivity

We should note that the manner in which these parameters are chosen in table 5.4 is by no
means optimal and different values of L could achieve better sensitivities. We have verified that
choosing a different target for L say 50µm did not change the order of magnitude for Sl.
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5.7 Conclusions

In the previous sections, an analytical model that can be used in order to calculate the spectral
properties of an active coupled racetrack/waveguide system was demonstrated in detail. The model
takes into account intra-cavity reflections that can provide additional degree of freedom for tailor-
ing the spectral response of the device. We have shown that the transfer function can be accurately
described by a rational transfer function, the coefficients of which directly depend on the parame-
ters of the structure. We further discussed the applicability of the model in tailoring of Fano-like
resonances for various applications for both the symmetric and non-symmetric case. In the sym-
metric case, we presented the optimal design, calculated after an exhaustive search was performed,
inside the parameter’s range imposed by the restrictions that have to apply in the design process
of such a device. In the non-symmetric case, we have shown how one can obtain different types
of TFs with different contrast levels and spectral widths in the transition regions between low and
high transmittance. We have also related the design parameters determining the TF to the struc-
tural and material parameters of the device. The design process can be achieved by an exhaustive
search sweeping in the design parameter space. We have identified a suitable metricM and a set of
restrictionsR that can be used in order to quantify the suitability of any given design encountered
in the search space. We have presented examples of suitable designs along with their design and
structural parameters.

Our results for both cases, can serve as a guide for the realization of compact optical sensors
based on RR/waveguide coupling and can be also interesting for other applications that demand
sharp spectral transitions between regions of high and low transmittance such as optical modulation
and signal processing. As a final note, we mention that it is also very interesting to extend the
analytical transfer function model and design framework in order to investigate the incorporation
of multiple racetrack cavities and/or multiple bus waveguides in order to obtain better performance.
This could be the subject of further research.
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6 Conclusions and outlook

The final chapter of this thesis, summarizes the main results of our research work and provides
some ideas for possible extension of the work in new domains of photonics.

6.1 Contribution of this thesis

This thesis mainly focused on the design problem of figure 1.1b, i.e. finding the optimum values
for both structural and material parameters taking into account possible constraints imposed by the
device implementation methods. Towards this end, we applied optimization methods and efficient
numerical simulation tools based on the coupled-mode theoretic framework. Themain contribution
of this thesis to the existing state-of-the-art is outlined as follows:

• In the work presented in chapter 4, we analyzed a new approach for tailoring the spectral
properties of coupled micro-ring resonator optical filters using numerical optimization meth-
ods. By allowing the micro-rings to have different radii, we showed that considerably lesser
crosstalk levels in a wide frequency region can be obtained, unlike the uniform ring case
commonly found in literature, where the stop-band is limited by the periodic nature of the
transfer function. We proved that a variation of the coupled-mode approach can be applied,
for efficiently calculating the transfer function at each optimization step, scalable to an ar-
bitrary number of rings. Using standard optimization methods, transfer functions with rela-
tively flat pass-band and small cross-talk have been obtained for various ring numbers. Our
technique may open up new paths for designing and implementing compact optical filters
with pre-defined requirements on their spectral properties. This work was published in L.
Dogkas, T. Kamalakis, P. Kanakis, and D. Alexandropoulos, “Engineering the spectral
properties of non-uniform coupled micro-ring resonator optical filters using numerical
optimization,” Journal of Optics, vol. 19, no. 6, p. 065703, 2017.

• Having completed the multi-MR design optimization method, we focused on RRs because
of the unique characteristics they present in the sensing field. The first outcome of this effort
was analyzed in chapter 5 and published in L. Dogkas, T. Kamalakis, and D. Alexan-
dropoulos, “Analytical model for active racetrack resonators with intracavity reflec-
tions and its application in Fano resonance tailoring,” Applied Optics, vol. 57, no. 17,
pp. 4824–4831, 2018, where we presented an analytical model for estimating the spectral
properties of an active racetrack resonator/waveguide system. Under reasonable approxima-
tions, we have proved that the transfer function can be approximated by a rational function,
the coefficients of which are determined by the parameters of the structure. Our model takes
into account intra-cavity reflections which can provide additional degrees of freedom in the
design. We also identified the conditions under which asymmetric transitions around a spec-
tral peak can occur which are characteristic of Fano-type resonances. The accuracy of our
model is verified by rigorous transfer matrix numerical simulations. We also suggested that
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this model can be applied for tailoring the transfer function in order to obtain sharper transi-
tions from the spectral peaks to the minima in order for the structure to be used for sensing
applications.

• Subsequently, in the rest of chapter 5, we also presented a comprehensive framework for
engineering the spectral properties of the Fano-type resonances in a RR system. Suitable
metrics can be used to optimize the design were identified along with a set of conditions
that the transfer function must fulfill, from an application point-of-view. We showed how
the parameters involved in the transfer function calculation, can be used to determine the
required structural and material parameters of the structure and provide examples of struc-
ture designs that possess favorable spectral characteristics. The findings were published in
L. Dogkas, T. Kamalakis, and D. Alexandropoulos, “Engineering the spectral proper-
ties of fano-type resonances in active racetrack-waveguide coupled structures,” Optics
Communications, vol. 450, pp. 39–47, 2019.

In order to validate our conditional optimization research, MATLAB’s optimization tool,
was intensively utilized in order to minimize the performance metric set in the beginning of the
design process, taking into consideration any restrictions imposed. The non-linear constrained
minimization algorithm used by the tool, is the interior-point algorithm which solves non linear
problems by traversing the interior of the feasible region and finally finds the best solution.

The methods we developed can in general be applied in order to solve almost any design
problem, given that a tractable device/system model exists and suitable performance metrics can
be identified along with a list of constraints which are usually derived through intuition and trial-
and-error.

6.2 Outlook

In this section we point out some possible areas of photonics where our work can be extended.

The main characteristic of the periodic optical nano-structure called photonic crystal, is that
it can affect the motion of photons in a similar way to the one that ionic lattices affect electrons in
solids [131]. Photonic crystals exist in nature in the form of structural coloration and animal reflec-
tors (opal changing color, patterns on butterfly wings etc). They compose of periodic dielectric,
metallo-dielectric or even superconductor micro-structures or nano-structures that have a major ef-
fect in electromagnetic wave propagation [132]. They contain regularly repeating regions of higher
and lower dielectric constant. As a consequence, some photons propagate through this structure
(modes) and some do not (band gaps), depending on their wavelength [133]. This feature, can
be exploited in order to discover various applications which include spontaneous emission, high-
reflecting omni-directional mirrors, Fabry-Perot cavities, optical filters and distributed feedback
lasers [134]. Using appropriate mathematical models in combination with a suitable minimization
metric, our method could be utilized in order to obtain the optimum photonic crystal characteris-
tics which would lead to the implementation of unique devices, appropriate for filtering and other
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applications. The challenge here is to identify accurate models for photonic crystals that can be
applied in the optimization schemes. Efficient block conjugate gradient algorithms can be used in
combination with plane wave expansion [135] to calculate the modal fields and dispersion prop-
erties of bulk photonic crystals, while interior point Jacobi/Davidson methods can also speed-up
estimation in the case of photonic crystal waveguides [136]. As a result, there is high hope of ap-
plying optimization methods in order to tailor the loss and dispersion properties of such devices.
Preliminary work indicates that this is indeed feasible [137] for limited degrees of freedom, i.e. as-
suming only a small set of parameters of the crystal that can change. It is interesting to investigate
the optimal photonic crystal design extending the search space to find the optimal photonic crystal
building cell.

Additionally, structures such as photonic crystal waveguides, may possess remarkable prop-
erties including slow light propagation. The term ”slow light” represents a dramatic reduction in
the group velocity of light, which originates from the way in which the refractive index of a material
changes with frequency. If the refractive index changes rapidly over a small range of frequencies,
then the group velocity might become very low [138]. Many mechanisms which can generate slow
light exist, all of which lead to the aforementioned procedure, i.e. create narrow spectral regions
with high dispersion. These mechanisms can be grouped into two major categories: material dis-
persion and waveguide dispersion. The first mechanism involves the modification of the temporal
component of a propagating wave, by using a nonlinear effect to modify the dipole response of
a medium to a signal or ”probe” field. Some examples of this procedure include electromagneti-
cally induced transparency, coherent population oscillation, and various four-wave mixing (FWM)
schemes [139]. The other mechanism involves the modification of the spatial component (k-vector)
of a propagating wave. This can be met in photonic crystals, coupled resonator optical waveg-
uides, and other micro-resonator structures. Slow light could be used as a means to control optical
switches or even used in interferometers that are far more sensitive to frequency shift as compared
to conventional interferometers, which is a property that can be used to build better, smaller fre-
quency sensors and compact high resolution spectrometers [140]. The methods could be adjusted
to facilitate the designing process of such devices. The key problem here is to maintain the desir-
able properties of slow light such as the slow group velocity that can be used for photonic buffering
applications and non-linearity enhancement while at the same time reducing optical losses which
are also enhanced due to slow light to an acceptable level [141]. This is an important task, since
slow light devices are typically highly lossy and this prohibits their commercialization. Reduc-
ing the optical losses using proper device design can pave the way for a new generation of highly
functional slow light devices [142].

In 2004 the attention of researchers turned towards two-dimensional semiconductors, which
are natural semiconductors with thicknesses on the atomic scale. The cause of this turn was the
discovery of a new semiconducting material called ”graphene” [143]. Graphene can be described
as a flat monolayer of carbon atoms arranged in a 2D lattice which very much reassembles a honey-
comb [144]. It was then proved that a 2D monolayer semiconductor exhibits stronger piezoelectric
coupling than traditionally employed bulk forms, which in turn enables and encourages the testing
of 2D materials applications in new electronic components used for sensing and actuating [145],
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[146]. Our method could be utilized in order to design a sensing device made of graphene, which
will demonstrate optimum characteristics, given that an appropriate mathematical models in com-
bination with a suitable minimization metric is used.

The last few years the development of photonics reservoir computing (PRC) has proved to
be a suitable candidate technology in the field of machine learning. The reason for this is related
to its ability to perform typical tasks of artificial neural-networks which include pattern generation,
emulation of simple boolean operations, bit-sequences or chaotic time series prediction, detection
of epileptic seizures, speech recognition, robot localization and more. Different technologies of
photonic implementations have been proposed. The most popular of them are namely a single
nonlinear node with delayed feedback such as optoelectronic oscillators and laser diode with optical
feedback, integrated photonic reservoirs using passive nodes made of delay lines and splitters,
coupled photonic crystal cavities, networks of semiconductor optical amplifiers and networks of
InGaAsP/InP-based ring resonators [147]. Recently, a novel photonics architecture of reservoir
computing integrated on a silicon chip, using silicon-on-insulator MRs as nonlinear nodes, has
been presented. In order to tune the reservoir dynamics into an appropriate regime for the task at
hand, only a few global parameters, such as the overall gain in the system, the magnitude of the
inputs, and the network size have to be optimized [148]. Our method can be utilized in an effort to
achieve this task.

6.3 Thesis publications

The following publications have been carried out within this dissertation:

• L.Dogkas, T. Kamalakis, P. Kanakis, and D. Alexandropoulos, “Engineering the spec-
tral properties of non-uniform coupled micro-ring resonator optical filters using nu-
merical optimization,” Journal of Optics, vol. 19, no. 6, p. 065703, 2017

• L. Dogkas, T. Kamalakis, and D. Alexandropoulos, “Analytical model for active race-
track resonators with intracavity reflections and its application in Fano resonance tai-
loring,” Applied Optics, vol. 57, no. 17, pp. 4824–4831, 2018

• L. Dogkas, T. Kamalakis, and D. Alexandropoulos, “Engineering the spectral proper-
ties of fano-type resonances in active racetrack-waveguide coupled structures,” Optics
Communications, vol. 450, pp. 39–47, 2019
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