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Abstract 

This thesis explores machine learning models for the analysis and classification of 

electroencephalographic (EEG) signals used in Brain-Computer Interface (BCI) systems. 

The goal is 1) to develop a system that allows users to control home-automation devices 

using their mind, and 2) to investigate whether it is possible to achieve this, using low-cost 

EEG equipment. The thesis includes both a theoretical and a practical part.  

In the theoretical part, we overview the underlying principles of Brain-Computer Interface 

systems, as well as, different approaches for the interpretation and the classification of 

brain signals. We also discuss the emergent launch of low-cost EEG equipment on the 

market and its use beyond clinical research. We then dive into more technical details that 

involve signal processing and classification of EEG patterns using machine leaning. 

Purpose of the practical part is to create a brain-computer interface that will be able to 

control a smart home environment.  As a first step, we investigate the generalizability of 

different classification methods, conducting a preliminary study on two public datasets of 

brain encephalographic data. The obtained accuracy level of classification on 9 different 

subjects was similar and, in some cases, superior to the reported state of the art.  

Having achieved relatively good offline classification results during our study, we move 

on to the last part, designing and implementing an online BCI system using Python. Our 

system consists of three modules. The first module communicates with the MUSE (a low-

cost EEG device) to acquire the EEG signals in real time, the second module process those 

signals using machine learning techniques and trains a learning model. The model is used 

by the third module, that takes control of cloud-based home automation devices. 

Experiments using the MUSE resulted in significantly lower classification results and 

revealed the limitations of the low-cost EEG signal acquisition device for online BCIs.    

 

 

Keywords:   Brain-Computer Interface, Machine Learning, Deep Learning, Signal 

Processing, Electroencephalography, Spatial Filtering, Python, Smart Home  
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Abstract (Greek) 

Η διπλωματική αυτή εργασία εξετάζει μοντέλα μηχανικής μάθησης για την ανάλυση και 

την κατηγοριοποίηση ηλεκτροεγκεφαλογραφικών σημάτων (EEG), που χρησιμοποιούνται 

σε συστήματα διεπαφής εγκεφάλου-υπολογιστή (BCI). Ο στόχος είναι 1) να αναπτυχθεί 

ένα σύστημα που να επιτρέπει στους χρήστες να ελέγχουν συσκευές «έξυπνου σπιτιού» 

χρησιμοποιώντας το μυαλό τους, και 2) να διερευνηθεί εάν αυτό μπορεί να επιτευχθεί 

χρησιμοποιώντας φθηνές εμπορικές συσκευές ηλεκτροεγκεφαλογραφίας. Η διπλωματική 

αυτή περιλαμβάνει τόσο θεωρητικό, όσο και πρακτικό μέρος. 

Στο θεωρητικό μέρος εξετάζουμε τις βασικές αρχές των συστημάτων διεπαφής 

εγκεφάλου-υπολογιστή, καθώς και διαφορετικές προσεγγίσεις για την ερμηνεία και την 

κατηγοριοποίηση των εγκεφαλικών σημάτων. Συζητάμε επίσης, την εμφάνιση 

καταναλωτικών φορητών συσκευών ηλεκτροεγκεφαλογραφίας, καθώς και την πιθανή 

χρήση τους πέρα από την κλινική έρευνα. Στη συνέχεια, αναλύουμε τεχνικές πτυχές που  

αφορούν την επεξεργασία και κατηγοριοποίηση σημάτων ηλεκτροεγκεφαλογραφίας. 

Σκοπός του πρακτικού μέρους είναι να αναπτυχθεί μια διεπαφή εγκεφάλου-υπολογιστή 

που θα είναι σε θέση να ελέγξει ένα περιβάλλον «έξυπνου σπιτιού». Για το σκοπό αυτό, 

αρχικά εξετάζουμε μεθόδους για την κατηγοριοποίηση των εγκεφαλικών νευρωνικών 

σημάτων και στη συνέχεια, διεξάγουμε μια προκαταρκτική συγκριτική μελέτη με την 

εφαρμογή τεχνικών προεπεξεργασίας και κατηγοριοποίησης σήματος σε δύο δημόσια 

σύνολα εγκεφαλογραφικών δεδομένων, επιτυγχάνοντας καλές αποδόσεις πρόβλεψης. 

Στο τελευταίο μέρος υλοποιούμε ένα σύστημα διεπαφής εγκεφάλου-υπολογιστή, που 

αποτελείται από τρεις μονάδες. Η πρώτη μονάδα επικοινωνεί με τη συσκευή 

ηλεκτροεγκεφαλογραφίας για την απόκτηση των σημάτων EEG σε πραγματικό χρόνο. Στη 

συνέχεια, η δεύτερη μονάδα επεξεργάζεται αυτά τα σήματα χρησιμοποιώντας τεχνικές 

μηχανικής μάθησης και εκπαιδεύει ένα μοντέλο που τροφοδοτείται στην τρίτη μονάδα, η 

οποία αναλαμβάνει τον έλεγχο των συσκευών αυτοματισμού του «έξυπνου σπιτιού». 

 

Λέξεις κλειδιά:   Διεπαφή Εγκεφάλου-Υπολογιστή, Μηχανική Μάθηση,  Βαθιά μάθηση, 

Επεξεργασία Σήματος, Ηλεκτροεγκεφαλογράφημα, Χωρικά Φίλτρα, Έξυπνο Σπίτι  
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Any sufficiently advanced technology is indistinguishable from magic 

Arthur C. Clarke 
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Chapter 1. 

Introduction 

Over eons, biology via evolution and natural selection has solved the problem of 

processing, prioritizing and interpreting massive amount of noisy and highly redundant 

information, coming from a rapidly changing external environment.  The brain, a 

constantly evolving network of billions of interconnecting neural cells, processes internal 

and external stimuli and makes decisions in a very short time. The input of the brain 

includes sensory cells (associated with seeing, hearing, tasting, touching etc.), 

motor/muscle cells, and even some cells within the brain. These cells pick up the stimulus 

provided and take it in for further processing.  In fact, it's not only the brain but our entire 

nervous system that contributes towards the larger network, which is our consciousness. 

During the last decades, humanity is developing artificial constructions, aiming to 

solve the exact same problems. Building a system that mirrored the simulations of the 

human brain, was the starting point of artificial neural networks (ANNs). But despite the 

recent technological advances that boosted the usage of artificial neural networks in 

multiple domains of human decision making and automation, and gave a thrive to artificial 

intelligence, there is still a huge gap in terms of abilities and effectiveness between the 

human brain and the artificial constructions of the man. There is also a big efficiency gap, 

which results in today’s supercomputers that run on megawatts to consume huge amount 

of power, while the human brain relies only on water and some calories in order to function.  

In recent years, researches in the field of Artificial Intelligence are resuming the 

study of the models and the architecture of the human brain as a means for the development 

of AI, introducing structural and operational principles of the brain into the design of 

machine learning algorithms. Convolutional feedforward networks, which now dominate 

computer vision, take inspiration from the architecture of the primate visual hierarchy. 

Other research approaches are inspired by the recurrent connections in the human brain, 

and their key role for associative learning and pattern classification. 

On the other side, neuroscientists use AI tools to learn more about the workings of 

the brain.  In order to decode and understand the brain signals, ANNs and other machine 
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learning algorithms are being applied for pattern recognition, anomaly detection, and brain 

neural signals interpretation.  

Recently, another research approach aiming to develop the technology for human 

enhancement by merging human with artificial intelligence is gaining attention. The ability 

to cooperatively use the two types of intelligence, by providing the appropriate interfaces 

that will allow human brain to communicate unobtrusively with a computer program and 

vise versa, will unlock the great potential of the human brain and will open new research 

opportunities in human-driven artificial intelligence. Brain-computer interfaces, 

combining knowledge and techniques both from neuroscience and Artificial Intelligence, 

are already used in medical applications but gradually, non-medical application paradigms 

also emerge. Translating thoughts into action, without acting physically or allowing direct 

brain-based communication between humans may seem to belong to the realm of science 

fiction today, and yet science fiction has a good track record for predicting inventions and 

developments we now take for granted.  

Investments to the fields of human-driven intelligence and Brain-computer 

Interfaces (BCIs) are steadily increasing and more companies and research laboratories are 

entering the field. According to a market analysis conducted by OMR (OMR, 2018), global 

BCI market is expected to witness a significant growth rate at a CAGR of 22.8% during 

the forecasted period (2018-2023). Recently Elon Musk entered the industry, announcing 

a $27 million investment in Neuralink, a venture with the mission to develop a BCI that 

improves human communication in light of AI, and Facebook announced its plans for a 

Brain-Computer Interface technology, that would allow for more efficient digital 

communication between brains.  
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Brain-Computer Interfaces 

Human-computer interaction (HCI) is a research field focused on the interfaces 

between people (users) and computers. Humans interact with computers in many ways. 

Those include the prevalent graphical user interfaces (GUI) of today, the emerging voice 

user interfaces (VUI) which are used for speech recognition and synthesizing, as well as, 

other types of interaction mechanisms aiming to make human-computer interaction more 

natural, such as touch-screens, gesture-based interfaces, or eye-tracking driven interfaces.  

Over the last twenty years, neural engineering has emerged as a new field that 

merges neuroscience and information technology and has resulted in neurotechnology, able 

to link brain activity with man-made devices. A brain-computer interface (BCI) is a 

combination of hardware and software that permits the capture of cerebral activity 

associated with a user’s intent or emotions and the translation of this recorded activity to 

specific control signals. These control signals can be used to control an external device, 

such as a computer or an external smart-home device. In other words, a BCI allows direct 

communication between the brain and an external device. 

A modern definition defines BCI as a system which captures a biosignal measured 

from a person in real-time and predicts an abstract aspect of the person’s cognitive state. 

 

Figure 1: A Brain-Computer Interface system 

Image from BCILAB tutorials and presentations: ftp://sccn.ucsd.edu/pub/bcilab/ 

Brain-computer interfaces combine knowledge and techniques from neuroscience, 

signal processing, and machine learning domains. 

The original development of BCI systems targeted severely paralyzed people and 

was focused on the ability to communicate with the external environment, without the 
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necessity of muscular control. Recently, the advent of the first commercial, inexpensive, 

dry-electrode devices, made it feasible to target new fields and apply this technology 

outside the laboratory. In the near future, it is possible to develop BCIs that will be able to 

facilitate hands-free applications, allowing the mind-controlling of machines. 

Despite strong efforts, current BCIs are still facing several challenges that limit 

their usefulness for everyday applications. These challenges are related to increasing bit 

rates (Allison et al., 2012b), optimizing sensors, signal processing, and classification 

techniques, but also to the type of control signal and overall systems design. Many of these 

issues directly affect BCI performance, which is a field of active research and addressed at 

multiple levels of the BCI loop. 
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Thesis Objective 

This thesis includes both a theoretical and a practical part. 

The theoretical part has three main objectives. The first is to give an overview of 

the underlying functionality of BCI systems, focusing specifically to EEG systems. The 

second is to give an overview of the state of the art of machine learning algorithms, 

focusing on supervised classification algorithms and neural networks. The third is to 

evaluate different EEG pipelines, by conducting experiments on publicly available datasets 

of brain signals. 

 The practical part aims in designing and implementing an asynchronous active BCI 

system, using a commercially available EEG device able to control external home-

automation devices. In our experiment, we employed Muse, a portable headband launched 

by InteraXon in 2014 to collect data of brain waves. We also developed an interface with 

the Amazon Echo (Alexa) device, in order to send control commands for home automation 

devices. 

In order to implement the proposed BCI solution, we focus on the classification of 

EEG signals generated during motor imagery tasks (e.g. imagining the movement of a 

limb). This method has been reported as a reliable way for developing Motor Imagery (MI)-

based BCI, which means BCIs that can recognize imagined movements, such as left or 

right-hand imagined movements. This is usually done by associating different limb 

movements to software commands. 

In order to complete this thesis, we had to carry out several tasks such as: 

• Review of the EEG decoding and BCI systems literature. 

• Review of the Machine learning methodology. 

• Develop, train, and evaluate different EEG decoding Pipelines in Python.  

• Comparison of the obtained results with state-of-the art-results in literature. 

In addition, we performed an initial attempt to: 

• Develop an EEG Pipeline using Deep Learning Neural Networks. 

• Develop an active BCI system, able to control home-automation devices in a real-

time scenario. 
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Thesis Structure 

This thesis consists of 8 chapters structured as follows:  

Chapter 2 provides a brief overview of the underlying functionality of BCI 

systems. This chapter begins by describing the building blocks of the human brain and the 

electrochemical interactions that produce its electrical signals. Furthermore, presents 

various methods for measuring brain activity, and discusses in more detail the functional 

principles of Electroencephalography.  

Chapter 3 elaborates on EEG-based BCI systems and their fields of application. 

Different EEG-based activity patterns used in the development of BCI systems are 

presented and the emergence commercialization of EEG devices is discussed, along with a 

presentation of their basic characteristics and limitations. Finally, some examples of novel 

applications, which provide evidence for the promising potential of BCI technology both 

for medical and non-medical uses, are presented. 

Chapter 4 gives an overview of the state-of-the-art machine learning algorithms, 

focusing on supervised learning used for EEG classification. Furthermore, it discusses deep 

learning approaches based on artificial neural networks.  

Chapter 5 discusses in more depth the fundamental steps for the design of an EEG 

pipeline suitable for BCI systems, based on oscillatory EEG activity. It analyses the 

importance of proper data recording and data pre-processing, detailing the processing steps 

and providing an overview of the most important features extraction algorithms for EEG 

signals.   

Chapter 6 presents our methodology for the evaluation of different EEG 

classification pipelines and discusses the results of experiments conducted on two publicly 

available datasets.  

Chapter 7 presents the setup and methodology for the implemented BCI system 

and details on the hardware & software stack and the software architecture.  

Chapter 8, summarizes and concludes the work presented on this thesis. This final 

chapter provides also ideas for future development of this work.   
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Chapter 2. 

Theoretical background and basιc concepts 

Introduction 

A brain-computer interface (BCI) acquires brain signals and provides to the Human 

Neural System a new output that is not neuromuscular or hormonal. In order to design such 

a system, a thorough understanding of the complexities of the human brain, both in 

structure and in function, are required. It’s also important to investigate different 

approaches for acquiring the input signals and select the source that is more suitable for 

the use case of the designed BCI-system.  

This chapter first presents the neurophysiological and anatomical basis of the 

function of the human brain. Next, we discuss various methods for capturing the brain 

activity and explain the advantages and drawbacks for each one. The chapter concludes 

with a brief introduction to Electroencephalography (EEG), the most commonly used 

method for brain signal acquisition and the one we are using for the development of our 

BCI system in this thesis.   
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The Building blocks of the brain 

The human brain is the main organ of the human central nervous system (CNS). 

The brain consists of hundreds of thousands of cells, so-called neurons. Recent studies 

estimate that there are approximately 100 billion neurons in the human brain, which are all 

heavily interconnected.  

A typical neuron consists of three parts: the soma or cell body, several dendrites, 

and the axon. The soma is usually compact; the axon and dendrites are filaments that 

extrude from it. The soma may give rise to numerous dendrites, but never to more than one 

axon. Dendrites typically branch profusely, getting thinner with each branching, and 

extending their farthest branches a few hundred micrometers from the soma. 

 

Figure 2: A typical neuron 

Picture from Wikipedia under CC BY-SA 

https://creativecommons.org/licenses/by-sa/3.0/
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Methods for measuring brain functions 

BCI must operate on observable effects of brain activity. Most BCI systems, 

operate on electrical effects of neural processes using Electroencephalography (EEG) and 

can detect large-scale neural dynamics (e.g. 10.000 neurons firing in near-synchrony). 

Other methods based on the metabolic changes of the brain during neural activity (e.g. 

PET, fMRI) can also be used, but are less suitable for BCI systems, because of their low 

temporal resolution.  

From the methods for capturing signals that represent brain activity, 

Electroencephalography is the most commonly used and is the method used in this work. 

In order to give a more systematic and detailed description than the other methods, we 

dedicate the next section especially to it.  Ιn the remainder of this section, we summarize 

the main methods for capturing brain activity. 

Electroencephalography 

Electroencephalography (EEG) is an electrophysiological monitoring method to 

record the electrical activity of the brain. It is typically noninvasive, with the electrodes 

placed along the scalp, although invasive electrodes are sometimes used such as 

in electrocorticography (ECoG). One important strength of EEG is its high temporal 

resolution, which is in the range of milliseconds (Nunez & Williamson, 1996). This highly 

temporal resolution of EEG allows the capture of underlying physiological changes of the 

cognitive processes, most of which, occur within tens of millisecond. 

Magnetoencephalography 

Magnetoencephalography (MEG) is a non-invasive technique that measures the 

magnetic fields generated by neural activity. Like EEG, MEG has excellent time resolution 

and is often considered to capture deeper neural activity much better than EEG. One 

important advantage of MEG over EEG is the fact that the measured signals are not 

distorted by the body. However, the signal strengths are extremely weak and specialized 

shielding is required to eliminate the magnetic interference of the external environment.  
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MEG scanners are large, stationary and expensive and they require heavy technical 

maintenance and training resources. 

Functional Magnetic Resonance Imaging 

Functional Magnetic Resonance Imaging (fMRI) measures the metabolic changes 

that take place in the active parts of the brain, and more specifically, the changes in blood 

flow associated with neural activity. Increased neural firing increases the need for oxygen, 

which is delivered by the neighboring blood vessels. Because the magnetic properties of 

oxygenated blood are different from those of non-oxygenated blood, the increase in 

oxygenated blood is measured by fMRI as a distortion of the magnetic field generated by 

protons. fMRI has excellent spatial resolution (a few millimeters), but poor time resolution 

(comparable to EEG). Apart from the low time resolution, the disadvantages of fMRI 

include the fact that it measures the brain function indirectly and that it requires large-scale 

non-portable and expensive equipment. 

Positron emission tomography 

Positron emission tomography (PET) is an invasive nuclear imaging technique 

based on gamma radiation of a decay, which is inserted into the body of the subject. Like 

fMRI, PET monitors the metabolic activity (for example, blood flow, oxygen, and glucose 

metabolism) of neurons, and therefore provides an indirect measure of neural activity. 

While PET has a high spatial resolution, in the order of few millimeters, it is lacking in 

time resolution. The temporal resolution of PET varies from minutes to hours (Nunez & 

Williamson, 1996). Its main drawbacks, beyond the low temporal resolution, is the 

injection of a radioactive substance into the bloodstream and that it requires a large-scale 

non-portable and expensive equipment.  
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Electroencephalography 

Overview 

Electroencephalography (EEG) measures electrical activity on the scalp. This 

activity is the sum of the post-synaptic potentials generated by thousands of neurons having 

the same radial orientation (typically pyramidal neuron cells) with respect to the scalp. 

Electroencephalography has been discovered in 1929, by Hans Berger. In a set of 

experiments in which electrodes were placed on the scalp, Berger described the 

electroencephalogram (the plotting of the changes in voltage over time) and suggested that 

brain electrical currents reflected the functional status of the brain such as sleep, anesthesia, 

and epilepsy. Over the following decades, EGG has been widely used in both scientific and 

clinical applications (e.g. to evaluate neurological disorders or to monitoring depth of 

anesthesia during a surgery). 

 

Figure 3: One of the first recordings of EEG signals made by Berger 

By Hans Berger - Berger H. Über das Elektrenkephalogramm des Menchen. Archives für 

Psychiatrie. 1929; 87:527-70., Public Domain, 

https://commons.wikimedia.org/w/index.php?curid=2900591 

The electrical signals of the brain 

The neural cells exchange signals with each other via the synapses, the structures 

that permit a neuron to pass an electrical or chemical signal to another neuron or to the 

target effector cell. Synaptic signals from other neurons are received by the soma and 

dendrites; signals to other neurons are transmitted by the axon. A typical synapse, then, is 

a contact between the axon of one neuron and a dendrite or soma of another. Synapses can 

act as inhibitory or excitatory gateways, preventing or propagating impulses across 

neurons. The synaptic transmission is triggered by the release of neurotransmitters 

https://commons.wikimedia.org/w/index.php?curid=2900591
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(dopamine, epinephrine, acetylcholine, etc.), which causes a voltage change across the cell 

membrane. 

 

Figure 4: Structure of a typical chemical synapse 

Image from Wikipedia 

 There are two main types of electrical activity associated with neurons, action 

potentials, and postsynaptic potentials.  

• Action potentials (AP) are discrete voltage spikes that travel from the beginning 

of the axon at the cell body to the axon terminals, where neurotransmitters are being 

released.  

• Postsynaptic potentials (PSP) are the voltages that arise when the 

neurotransmitters bind to receptors on the membrane of the postsynaptic cell, 

causing ion channels to open or close and leading to a graded change in the potential 

across the cell membrane.  

 

If the PSP reaches the threshold conduction level for the postsynaptic neuron, the 

neuron fires and an AP is initiated (Atwood and MacKay, 1989). Because neurons rarely 
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fire at precisely the same time, action potentials in different axons will typically cancel, 

and the only way to record the action potentials from a large number of neurons is to place 

the electrode near the cell bodies and to use a very high impedance electrode that is 

sensitive only to nearby neurons. Whereas the duration of an action potential is only about 

a millisecond, postsynaptic potentials typically last tens or even hundreds of milliseconds. 

In addition, postsynaptic potentials are largely confined to the dendrites and cell body and 

occur essentially instantaneously rather than traveling down the axon at a fixed rate. Under 

certain conditions, these factors allow postsynaptic potentials to summate rather than 

cancel, making it possible to record them at a great distance (i.e., at the surface of the scalp).   

Not all electrical fields generated by the brain are strong enough to spread all the 

way through tissue, bone, and skull towards the scalp surface. Research indicates that it is 

primarily the synchronized activity of pyramidal neurons in cortical brain regions which 

can be measured from the outside. Pyramidal cells can be found in all cortical areas 

(occipital, temporal, parietal, frontal cortices), where they are always oriented 

perpendicular to the cortical surface. The cell body is heading away from the surface 

(towards the grey matter), while their dendrite is heading towards the surface (for more 

details see Luck, 2014 and Buzsáki et al., 2012). This unique orientation of the pyramid 

cells generates an electrical field with a very stable orientation. EEG activity, therefore, 

represents a sum of the activity of millions of neurons having a similar spatial orientation. 

By contrast, the electrical fields from cells in deeper brain structures (such as brain stem or 

cerebellum) that don’t have this specific orientation, are more likely to spread into various 

directions and cancel out instead of projecting in a stable way towards the scalp surface - 

even if hundreds of thousands of neurons in these deeper regions show synchronized 

activity. 

Oscillatory activity  

In general, EEG signals have a broad spectral content, but also expose oscillatory 

activity in specific frequency bands. Although the raw data obtained from EEG are 

formatted as a function of time, neural oscillations are usually visualized in terms of 

frequency using the Fourier transform and are measured in units of Hertz (Hz).  
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Figure 5: Neural Oscillations 

Neural oscillations are visualized in terms of frequency. 

From a diagnostic perspective, neural oscillations can be used as indicators of 

specific neurological phenomena such as sleep state, state of consciousness, perception and 

information processing, memory, abnormal neural function, such as epilepsy, and 

Parkinson’s. There are 5 frequency bands categorizing the EEG signals based on their 

frequencies, named after Greek letters: 

• delta (1–4 Hz), which are high amplitude waves mostly linked with slow-wave 

sleep. 

• theta (4–8 Hz), which are mostly observed when the subject is in a meditative, 

daydreaming or in early stages of sleep. 

• alpha (7.5–12.5 Hz), which are associated with cognitive functions such as 

relaxation and disengagement and are therefore the most commonly used in 

mood/meditation applications. 

• beta (13–30 Hz), which are commonly associated with concentration or attention 

or more generally when. a subject is actively engaged in an activity. 

• gamma (> 30 Hz), which are thought to play a crucial role in information 

processing, concentration, and learning. 

Electrode arrays and placement 

EEG recordings are performed using electrode arrays, comprising of a varying 

number of electrodes, depending on the scope of the experiment. Conventional EEG 
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systems use a conductive gel or paste for the electrodes, but many cheaper commercial 

systems use dry electrodes, reducing the preparation time, and making EEG more suitable 

for generic use. 

For faster application, and consistent results between different recordings, EEG 

electrodes are mounted in elastic caps, meshes or rigid grids, ensuring that the data can be 

collected from identical scalp positions across sessions or respondents.  Electrode locations 

and names are specified by an international system, named ‘10–20 system’. This system 

ensures that the naming of electrodes is consistent across laboratories and experiments. In 

the 10-20 system, electrode names begin with one or two letters indicating the general brain 

region where the electrode is placed (F = frontal, Fp = frontopolar; C = central; P = parietal; 

O = occipital; T = temporal). Each electrode name ends with a number or letter indicating 

the distance to the midline. Odd numbers are used in the left hemisphere, even numbers in 

the right hemisphere. Larger numbers indicate greater distances from the midline, while 

electrodes placed at the midline are labeled with a “z” (for zero). 

Because the EEG voltage reflects the potential (or current) between two sites, 

different montages can be used for the electrodes.  

• In bipolar (or sequential) montage the potential difference between a pair of 

electrodes is measured.  

• In unipolar (or referential) montage the potential of each electrode is compared to 

a common neutral (reference) electrode. Typical reference positions are the tip of 

the nose, the cheek, and the right and left mastoids (the bony part behind left/right 

ears).  

• In an average referential montage, the average of all electrodes is used as a 

reference point. 

 

Advantages of EEG 

EEG has several benefits compared to other imaging techniques. The most central 

benefit of EEG is its excellent time resolution, that is, it can take hundreds to thousands of 

snapshots of electrical activity across multiple sensors within a single second. This makes 
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EEG an ideal technology to study the precise time course of cognitive and emotional 

dynamics most of which, occur within tens of millisecond. The second reason that justifies 

EEG as such an advantageous technique for the study of neurocognitive processes is that 

it allows the direct measure of neural activity. EEG signals directly reflect biophysical 

phenomena occurring on neuron populations. This is a clear advantage over other methods 

such as fMRI that do not directly measure neural activity but introduce an extra relationship 

between what is measured (changes in blood flow in the case of fMRI) and the actual neural 

activity.  Finally, EEG is non-invasive, and the required equipment is relatively cheap, 

portable and relatively easy to operate.   

Disadvantages of EEG 

The main disadvantage of EEG is its poor spatial resolution. Neural activity is 

conducted through the brain volume to the scalp and electrodes by volume conduction (the 

transmission of electric or magnetic fields from an electric primary current source through 

biological tissue towards measurement sensors).  The concept of volume conduction carries 

important implications for surface EEG measurements because it means that (a) currents 

are not restricted to the immediate neighborhood of the source, and (b) the electrical 

activity measured between electrodes has more to do with their orientation to the actual 

generator than with the proximity of the electrodes to the generator. Because the skull is a 

poor conductor current tends to “splash off of it” and each electrode receives signals from 

millions of neurons, reducing any potential spatial localization. This is exacerbated by the 

fact that the conductivities of the head tissues, varies across individuals and within the same 

individual due to variations in age, disease state, and environmental factors. The inference 

of the location of the current sources from electrode voltage measurements on the scalp is 

known as the EEG inverse problem and is comparable to reconstructing an object from 

its shadow: only generic features (the shape) are uniquely determined, others must be 

deduced on the ground of additional information. 

EEG is also very sensitive to subject movement and external noise. Electrodes used 

in EEG recording do not discriminate the electrical signals they receive. The recorded 

activity which is not of cerebral origin is termed artifact. Artifacts are noncerebral signals 

that often contaminate the recordings in both temporal and spectral domains within a wide 



31 

 

frequency band. The internal source of artifacts may be due to physiological activities of 

the subject (e.g., eyes movement, electrocardiographic activity, sweat or muscle artifacts) 

or its movement. External sources of artifacts are environmental interferences such as 

electrical noise from mains interference, bad contacts between electrode and skin, or 

interferences from recording equipment and cable movement.   
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Chapter 3. 

EEG-based BCI Systems 

Introduction 

A brain-computer interface is a direct communication pathway between a brain and 

an external device. There are four criteria that need to be met, for a system to function as a 

BCI system:  

1. Direct: The system must rely on activity recorded directly from the brain. 

2. Intentional control: At least one recordable brain signal, which can be 

intentionally modulated, must provide input to the BCI (electrical potentials, 

magnetic fields or hemodynamic changes). 

3. Real-time processing: signal processing must occur online and yield a 

communication or control signal. 

4. Feedback: The user must obtain feedback about the success or failure of his/her 

efforts to communicate or control. 

Although that, as we have already mentioned, there are various types of bio-signals 

that can be used to measure brain activity and act as an input for a BCI. Ιn the rest of this 

thesis, we will discuss and describe BCI systems that are based on EEG signals in order to 

function.  The main advantage of using EEG as an input signal for a BCI is that EEG (using 

dry electrodes) is the easiest and least invasive method.  

The most difficult task in designing real-time BCI systems is interpreting the 

recorded data.  First, EEG data are a superposition of the brain signals of interest, with a 

plethora of other signals from other brain regions, muscles, and from non-biological 

artifacts. Second, brain activity exhibits a huge variability across subjects. Since neural 

responses are different across subjects even for the same stimulus, almost all EEG-based 

brain-computer interfaces need some labeled, subject-specific, data to calibrate a new 

subject. As a result, a major challenge in developing high-performance and user-friendly 

BCIs is to cope with such individual differences, so that the calibration can be reduced or 

even completely eliminated (He, Wu, & Member, 2018). In order to overcome these 
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problems, state of the art BCI systems need to use continuous adaptive signal processing 

and machine learning algorithms, to extract meaningful information from brain signals. 

Until recently, the requisite technology to adapt and analyze the EEG in real-time, either 

did not exist or was extremely expensive. The improvements in processing power along 

with the developments in machine learning algorithms allow the introduction of small 

portable BCI systems suitable for every-day use.  
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BCI Applications 

The ability to control the world around us, using only our mind, has been a feature 

of some of the best science fiction stories. Still, a lot of research is taking place around the 

world for advanced brainwave-based digital interfaces and in recent years remarkable 

strides have been achieved toward this goal. Brain-computer interfaces are already been 

applied in various fields of research.  

One of the main areas of applied research concerns the use of BCIs in medical 

applications. Such systems are mainly targeting people with severe disabilities such as 

tetraplegia, locked-in syndrome etc. The aim of these BCIs is to either restore movement 

of individuals with paralysis or provide some special devices to assist them 

(POSTELNICU, TALABĂ, & M.I, 2010). In other cases, the research targets the restoring 

of communication with the external environment. The brain-controlled speller is one of the 

most famous BCI paradigms as it allows communication disabled people to spell letters or 

words.  MindDesktop (Ossmy et al., 2017) is a medical purpose BCI allowing people with 

severe disabilities to operate any Windows-based operating system. Another area of 

medical BCIs is focusing on motor neuroprosthetics. For example, artificial arms or legs 

are being controlled by a portable BCI system, thus allowing individuals with a paralyzed 

or missing body part to move or grasp.  

Gaming is among the most promising applications for BCI systems mainly because 

the number of potential users in BCI games is very high. BCI can be used either as a 

primary controller of a game or as an extra channel for special actions.  For example, the 

user may imagine body part movement or concentrate on a certain object to generate brain 

signals that reveal the user's intention. Studies have shown promise in achieving 2D or 3D 

navigation, including moving a computer cursor or walking in a virtual world. Several 

studies have demonstrated the use of  BCI for controlling popular games such as Tetris 

(Pires, Torres, Casaleiro, Nunes, & Castelo-Branco, 2011)  or World of Warcraft (Van De 

Laar, Gurkok, Plass-Oude Bos, Poel, & Nijholt, 2013). An example of use in Virtual 

environments was demonstrated by the He’s research group in studies that showed that 

human subjects could fly a virtual helicopter in a 3D virtual world using EEG signals 

recorded from the scalp (Doud, Lucas, Pisansky, & He, 2011). A different approach 
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promotes the use of BCI for mental state monitoring during gaming, in order to make 

adaptive and dynamic games.  

 

Figure 6: Brain-computer interfacing controlled Tetris game 

A volunteer is playing a BCI-controlled version of the Tetris computer game. He uses 

left- and right-hand motor imagery to move the falling pieces horizontally, mental 

rotation to rotate it clockwise and foot motor imagery to let it drop. 

Another active field or research concerns BCIs that allows for continues mental 

state monitoring. There is a wide range of everyday application that can be enhanced by 

adding passive mental state monitoring. When aiming to optimize the design of user 

interfaces or, more generally, of a workflow, the mental state of a user during task 

execution can provide valuable information. This information can be exploited for the 

improvement of industrial production environments, the user interface of cars and for many 

other applications. Examples of these mental states are the levels of arousal, fatigue, 

emotion, workload or other variables the brain activity correlates of which are (at least 

partially) accessible by measurement (Blankertz et al., 2010).  

More futuristic research proposals include the ability of “telepathic” 

communication between people, or the use of brain waves for user authentication. 

Published studies have demonstrated direct transmission of brain activity between two 
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humans (Rao et al., 2014), between two animals, and even between human and rat (Yoo, 

Kim, Filandrianos, Taghados, & Park, 2013). DARPA, the Pentagon's technology research 

division, is currently working on an initiative called "Silent Talk," which would let soldiers 

on secret missions communicate with their thoughts alone. Various studies have proposed 

the use of brain signals as a two-factor, changeable, authentication method resistant to 

shoulder-surfing. 
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Major Components of a BCI system  

 

Figure 7: A typical BCI pipeline 

A typical BCI pipeline. Image from https://www.mne-cpp.org/wp-

content/uploads/2015/08/BCI_processing_pipeline-1024x717.jpg 

From the technical point of view, a BCI system consists of at least 5 components:  

• Signal Acquisition: Although there are various methods to acquire brain signals, 

the one most suitable for real-time applications is Electroencephalography (EEG). 

With EEG, brain signals are recorded on the scalp of the users using electrodes. 

This preferably happens in a non-invasive manner, using external scalp electrodes 

or even better, dry EEG electrodes making direct contact with the skin without 

requiring the application of electrode gel.  
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• Signal Preprocessing: The measured signals are quite weak. Even worse, existing 

electric network current or muscular movement and eye-blinks can greatly 

influence them. Therefore, complex algorithms are applied to a) filter and b) 

enhance the raw signal quality and increase the signal to noise ratio (SNR). 

• Features Extraction: Signal processing techniques are applied to extract features 

that can be used later by a machine learning algorithm. Depending on the task, 

different methods can be used, e.g. spatial information to identify signal on certain 

areas of the brain, spectral information that represents frequency bands of interest, 

or temporal information representing the change of signal over time.  

• Machine Learning: The extracted features are analyzed with modern machine 

learning methods to discriminate between different classes of commands. Most 

methods conform to a common framework of a training, evaluation and prediction 

function. Typical classifiers for BCI applications are Linear Discrimination 

Analysis, Support Vector Machines and various types of Neural Networks. 

• Control and Feedback: the predicted target from the previous step is then used to 

control an external device or application. For most BCI systems, the device is a 

computer screen and the output is the selection of certain targets. Advanced 

applications include the controlling of external devices such as prosthetic, robotic 

or smart-home devices. 
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Types of BCI systems 

According to Zander et al (2009) BCI systems can be classified in one of the 

following types: 

• Active BCIs: which derives its outputs from brain activity which is directly 

consciously controlled by the user, independently from external events, for 

controlling, for instance, an application. 

• Reactive BCIs:  which derives its outputs from brain activity arising in reaction to 

external stimulation, which is indirectly modulated by the user for controlling an 

application. 

• Passive BCIs:  which derives its outputs from arbitrary brain activity without the 

purpose of voluntary control, for enriching a human-computer interaction with 

implicit information. 

 

A BCI usually includes a piece of software responsible for signal analysis and 

pattern recognition to achieve the translation of raw brain activity to control signals. 

Depending on whether this analysis happens in real-time or not, BCI systems can further 

be split into synchronous, which only analyzes the signals during pre-defined time 

windows, and asynchronous, which always looks at the signals seeing if there is a 

command pattern present. An asynchronous BCI is always active and besides reacting to 

the predetermined mental tasks that control the system, is also able to identify (and ignore) 

rest states. Synchronous is much easier to implement, but asynchronous offers much more 

seamless interaction. (Heyden, 2016). 

Another distinction is that between one-directional and two-directional BCI 

systems. One-directional refers to BCIs that only “read” brain activity and affect the 

external environment of the user. In two-directional (or closed-loop) BCIs, the system can 

also affect the brain, e.g., by electric stimulation of the brain’s reward center. The 

development of closed-loop systems raises intriguing ethical issues and requires additional 

research and clear governing policies. 

Recently, novel approaches have been proposed for BCIs that combine various, 

possibly diverse, types of signals.  These are called hybrid BCIs. Input signals used in 

hybrid BCIs can either be two different types of brain imaging methods (e.g., EEG and 
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functional Near-Infrared Spectroscopy, fNIRS), or the combination of one brain signal with 

another physiological signal (e.g., heart rate, eye tracker etc.). 
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EEG devices 

Encephalographic measurement devices are consisting of 1) electrodes, 2) 

amplifiers with or without filters, 3) an A/D converter and 4) a recording device. Electrodes 

read the signal from the head surface, amplifiers bring the microvolt signals into the range 

where they can be digitalized accurately, converter changes signals from analog to digital 

form, and a storage device (or more commonly a personal computer) stores obtained data.  

Until recently, the collection of electroencephalographic (EEG) data used to be 

associated with expensive (>$25,000 USD), large electrode array systems. However, in the 

past ten years, there has been a rapid increase in the availability and number of “low-cost” 

EEG systems available to researchers (Krigolson, Williams, & Colino, 2017).  At the lower 

end of the cost, there are devices costing less than 1,000 euros, although the research 

potential of such devices is ultimately limited by the few numbers of channels. A wide 

range of options, with up to 64 channels, is available at the middle price range, with devices 

costing between 1,000 and 25,000. 

Apart from the cost, for EEG technology to become widely-adopted and more user-

friendly, EEG systems must move from the bulky systems used in clinical settings to sleek, 

convenient compact systems. At the hardware level, there are currently three types of 

approaches that aim to improve EEG-based BCI portability and usability. First, the 

transition from the bulky EEG devices that consists of different components for the 

recording and the amplification of the EEG signal, to more compact, wearable devices with 

embedded parts. Second the replacement of gel or water-based EEG electrodes with dry 

electrodes that do not require the application of conductive gel. And third, the wireless 

connection between the amplifier and the recording device, which eliminates the need for 

cables and allows their use in a wide range of new settings. While such systems are already 

offered for end-users and consumers and can be used for BCI applications, the signal 

quality of such EEG hardware is not yet comparable to professional devices and their use 

is not yet recommended for serious applications. 
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Commercial EEG headsets 

There are a lot of “low-cost” EEG headsets out in the market. These EEG headsets 

are often mentioned in different terms such as “Mind Controller”, “Brainwave Controller”, 

“EEG headbands”, etc. Most of these devices have the lowest number of electrodes and 

low sampling rates.  

OpenBCI is an open-source brain-computer interface device, created after a 

successful Kickstarter campaign in 2013. Today the company behind OpenBCI offers 

various versions of the device, allowing to choose between 4 and 16 channels and different 

boards with or without Bluetooth connectivity.  The cost for an 8 channels OpenBCI board 

along with a headset is around 1,000 euros.  

 Emotiv offers 5 and 14 channel solutions. The internal sampling rate of the device 

is 2048 Hz, but the data is then down-sampled to 128 Hz before becoming available to the 

user. Emotiv’s devices are also wireless, giving the possibility of more free movement to 

the user. The cost for the 14 channels device is around 700 euros. Currently, access to the 

raw EEG data of the Emotiv comes with an additional cost-per-usage, which can increase 

significantly the total cost of use.  

The lower end of the consumer available devices includes devices with the lowest 

number of electrodes. Companies like NeuroSky and Muse offer neurofeedback solutions 

that are targeting meditation and monitoring uses, with limited research potential. 

Neurosky MindWave is at the lower end of usability of low-cost consumer EEG devices 

with only one electrode (placed at Fp1) and a 128Hz sampling rate.  Muse offers a device 

with 4 channels and at a prize around 300 euros.   
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EEG-based paradigms for BCI systems 

For the development of a BCI system, besides having the hardware to capture brain 

signals, it is also important to know which parts of the brain are responsible for certain 

mental processes and how the signals in the brain behave under these mental processes. 

Using certain mental processes to activate brain regions to control a device or a computer 

program is called paradigms (Strategien et al., n.d.).  

There are two main paradigms that are used as control signals for BCIs. Event-

Related Potentials and Sensorimotor Rhythm Activation.  The former uses brain 

activity generated in response to specific visual or auditory stimuli while the latter uses 

activity spontaneously generated by the user or by the user’s mental state. 

Event-Related Potentials 

Event-Related Potentials (ERPs), are characterized by a phase-locked, time-

domain waveform that appears in response to stimulation. Typical features are time-

domain signal, generally averaged across several repetitions of the stimulation in order to 

increase the signal to noise ratio.  

ERPs are perhaps the most studied type of activity in EEG and has been used in 

cognitive science, cognitive psychology, and psychophysiological research. In ERP 

studies, the EEG is recorded from participants, as experimental stimuli are presented. In 

this context, the cognitive “events” of interest may include a particular class of stimulus, 

the absence of an expected stimulus (omitted stimulus paradigm), a correct or incorrect 

response, among many other possibilities, as long as a distinct time point for ERP time - 

locking can be defined.  Segments of the EEG, each encompassing a fixed period of time 

before and/or after each instance of an event, is then averaged to yield an average ERP. 

Averaging over multiple trials eliminates unrelated background activity that is random with 

respect to the stimulus and thus averages to zero, given enough trials. The resulting ERP 

reveals brain activity that is related, and synchronized in time and phase, to the presented 

stimulus (Faust, 2012). The averaged ERP waveform consists of a series of positive and 

negative voltage deflections, which are called components. Years of research have helped 
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to link different components to specific cognitive processes, making ERPs a powerful 

technique for examining the nature of cognitive and neural processes.  

There are many advantages of event-related potentials for the study and analysis of 

complex neuro-cognitive processes.  ERPs are simple and fast to compute, mainly because 

ERPSs generally involve significantly fewer data. They have a highly temporal resolution, 

providing continues measure of processing, including both ex-stimulus and post-stimulus 

activity. This highly temporal resolutions of ERPs allow the measurement of brain activity 

with the precision of millisecond, which is particularly important if we consider that many 

aspects of attention and perception appear to operate on a scale of tens of milliseconds. 

Besides, ERP-based BCIs have the advantage that usually do not require subject-specific 

training sessions, making it suitable for generic-use (no learning sessions are required in 

order to adapt the system to new users). The main drawback regarding the use of ERPs for 

the development of BCI systems is their dependency on the external stimuli, which 

prohibits the development of voluntary controlling interfaces suitable for active BCIs. 

Sensorimotor Rhythm 

A different control signal for active BCIs is the sensorimotor rhythm (SMR) that is 

based on the neural oscillations. These oscillations appear naturally in ongoing EEG 

activity and are representative of a wide range of different cognitive states (e.g. sleep stage, 

meditation, etc.) or can be induced by a specific task, for example, a hand movement or the 

performance of mental calculus. Sensorimotor Rhythm Activation is characterized by a 

change in signal power in specific frequency bands. The SMR modulation manifests as a 

decrease in the alpha (also known as mu rhythm) and beta frequency bands accompanied 

by an increase in the gamma frequency band. Typical features are extracted using fast 

Fourier transform based algorithms, or more simply variance/covariance of the signal after 

frequential filtering. 

BCI systems based on oscillatory activity are functioning by detecting patterns in 

mental states which lead to changes in the oscillatory components of EEG signals, i.e., that 

lead to change in the power of EEG signals in some frequency bands. The increase of EEG 

signal power in a given frequency band is called an Event-Related Synchronization (ERS), 

whereas a decrease of EEG signal power is called an Event-Related Desynchronization 
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(ERD). Unlike ERPs, ERD/ERS are not phase locked to a stimulus presentation and, 

therefore, cannot be identified by averaging the EEG amplitudes, instead, band-power is 

measured in frequency bands of interest, localized in some specific brain areas. As such, 

they naturally need to exploit both the spatial and spectral information. The original EEG 

signals are converted to time-frequency signals by applying a function of short time Fourier 

transforms (STFTs) and are localized using either channel selection or spatial filtering 

techniques. 

Imagining a movement or performing an action mentally is known as Motor 

Imagery (MI). Studies based on fMRI revealed that imagery and executed movements had 

similar activation patterns  (Lotze et al., 1999). Motor Imagery is very commonly used in 

BCI systems because it allows the development of asynchronous active BCIs. The main 

advantage of MI-based BCIs is that it allows the user to control the system spontaneously, 

by imaging the execution of a movement. On the other hand, they suffer from high 

variability across and within subjects and therefore require excessive user training and long 

calibration times in order to achieve reasonable performance. 

 

 

Figure 8: fMRI scans of actual and motor imagery 
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Chapter 4. 

Machine Learning 

Introduction 

Machine learning (ML) is a field of artificial intelligence that uses statistical 

techniques in order to give information systems the ability to "learn" from data, without 

being explicitly programmed. The concept of learning here means the progressively 

improving of their performance on certain future tasks. We say that learning a general 

function or rule from specific input-output pairs is called inductive learning (Russell, 

Norvig, & Davis, 2010). Predictive modeling is the problem of developing a model using 

historical data, which will be able to make predictions on new (unseen) data. Typically, a 

model includes a machine learning algorithm that learns a function from a training dataset 

in order to make predictions. 

According to the feedback that is available to learn from, machine learning 

algorithms can be grouped into three main types:  

• Unsupervised learning: where a learning agent discovers patterns in the input data 

without any explicit feedback. The most common unsupervised learning task is 

clustering: the detection of potentially useful cluster of input instances.  

• Reinforcement learning: Where an agent “learns” from a series of awards or 

penalties in a series of interactions with the environment.  In each step of the 

learning process, the agent is informed about the state of the environment and 

decides which action to perform. For every action, the agent gets feedback from the 

environment in the form of numerical rewards, that is positive if the action was 

correct, or negative when the action was incorrect. This procedure helps the agent 

to form a policy for associating the correct actions to states. To maximize the long-

term reward, the agent must explore its environment and update its policy to 

incorporate the discovered knowledge into the policy. 

• Supervised learning: Where the learning agent has access to training data 

consisting of examples of input-output pairs and learns a function that maps from 

input to output. A supervised learning algorithm analyzes the training data and 
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produces an inferred function, which can be used for mapping new unseen 

examples. The discovered function is represented in a structure referred to as a 

model. There are two major categories of supervised learning, regression, and 

classification. Regression models are based on the analysis of relationships 

between variables and trends in order to make predictions about a continuous target 

variable, while the task of classification models is to assign discrete class labels to 

observations.  In supervised classification, the class labels in the dataset, which is 

used to build the classification model, are known. 

 

In the following sections, we will describe in more details the theory and the main 

algorithms for supervised classification, as it is the learning model that has been used to 

develop the BCI System for this thesis. 
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Supervised Classification  

More formally, the task of a supervised classification learning algorithm is this:  

Given a training set of N tuples of examples – class variable pairs 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑁 , 𝑦𝑁) , 

where each 𝑦𝑖 was generated by an unknown function  𝑦 = 𝑓(𝑥) 

discover a function ℎ that approximates the true function 𝑓. 

 

 An example is a collection of features that have been measured from some object, 

fact or event. We typically represent an example as a vector 𝑥 ∈ 𝑅𝑛 where each entry 𝑥𝑖 

of the vector is called a feature.  A training set is a collection of tuples of examples, each 

one associated with a label or class. Classification is made by choosing the best possible 

function  h that assigns each feature vector 𝑥 to a class  𝑦𝑖 based on the samples in the 

training set. The function h is called a hypothesis. Learning is a search through the space 

of possible hypothesis for one that will perform well on unobserved data. The simplest kind 

of classification problem is binary classification, when there are only two values for the 

output class.  

Performance Evaluation for Supervised Classification 

To evaluate the performance of a classification algorithm, we usually measure the 

accuracy of the model, which is defined as the proportion of examples for which the model 

produces the correct output. The accuracy measured on the training dataset is called 

training accuracy. The inaccuracy of predicted output values is termed training error or 

the training error rate.  

Usually, we are interested in how accurately a classification algorithm can predict 

outcome values for previously unseen data. Measurements of accuracy or error on the 

training data do not provide much information about predictive ability on new data. We, 

therefore, evaluate the algorithm on a previously unseen dataset, called the test dataset. 

That accuracy is often called testing accuracy or simply accuracy. The error rate on the 

test dataset is called test error or generalization error. We say that an algorithm 

generalizes well if it correctly predicts the value y for previously unobserved examples. 
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In the end, the factors determining how well an algorithm will perform are its ability 

to a) make the training error as small as possible and b) make the gap between training and 

test error as small as possible. These two goals correspond to the two central challenges in 

machine learning: underfitting and overfitting. Underfitting occurs when the model is not 

able to obtain a sufficiently low training error, indicating that the learning algorithm cannot 

adequately capture the underlying structure of the data. Overfitting occurs when the gap 

between training and test error is too large, indicating that the learning function 

corresponds too closely or exactly to the training set, and therefore fails to fit additional 

data or predict future observations reliably. 

In some cases, there are parameters in the classifier that must be tuned. These are 

usually chosen by splitting the data into three instead of two sets: Training, testing, and 

validation. The classifier is trained on the training set for different parameter 

configurations (also called hyperparameters) and evaluated on the validation sets. The 

one that performs best is then chosen and tested on a previously untouched test set to yield 

its generalization performance by obtaining the performance characteristics such as 

accuracy, sensitivity, specificity, F-measure, and so on. 

Resampling 

When the amount of data is limited, it is common practice to re-sample the data, 

that is, partition the data into training and test sets in different ways. By doing so, a more 

reliable estimate of the true generalization error of the inducer is estimated. There are 

various methods to re-sample the data, and the choice between them depends both on the 

size of the dataset and the specificities of the learning problem. 

• Single Random Sampling: This method is mainly used when the dataset is 

substantially large.  The dataset is divided randomly into two separate subsets, the 

training set, and the test (or holdout) set.  A general rule-of-thumb suggests an 80-

20 split, thus 80% of the examples for training and the rest 20 % for testing. The 

training set is used for learning a classifier and the test set is used for evaluating the 

classifier. The training set should not be used in the evaluation as the classifier is 

biased toward the training set. That is, the classifier may overfit the training data, 

which results in very high accuracy on the training set but low accuracy on the test 
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set. Using the unseen test set gives an unbiased estimate of the classification 

accuracy.   

• Multiple Random Sampling: In cases where the available dataset is small, 

splitting the dataset into training and test subsets, can be unreliable because the test 

set would be too small to be representative. One approach to deal with the problem 

is to perform the abovementioned random sampling multiple times. Each time a 

different training set and a different validation set are produced. This results also to 

multiple accuracies. The final estimated accuracy on the data is the average of the 

resulted accuracies. When randomly selecting training or validation sets, we may 

want to ensure that class proportions are maintained in each selected set. This can 

be done via stratified sampling (first stratify instances by class, then randomly 

select instances from each class proportionally). 

Cross-Validation  

Another widely used approach when the dataset is small is the n-fold cross-

validation method. In this method, the available data is partitioned into n equal-sized 

disjoint subsets. Each subset is then used as the validation set and the remaining n-1 subsets 

are combined as the training set to learn a classifier. This procedure is then repeated n 

times, which gives n accuracies. The final estimated accuracy of learning from this dataset 

is the average of the n accuracies. In stratified cross-validation, stratified sampling is used 

when partitioning the data, to maintain class proportions in each set. 

An extreme case of cross-validation is the leave-one-out cross-validation (or LOO 

for short) method. In this method, the number of folds is set to the total number of examples 

in the dataset so that each example is given a chance to be the held out. In such a case,  if 

the original data has m examples, then it yields to a  m-fold cross-validation. This method 

is mostly used when the available data is very small, but it is not efficient for a large dataset 

as it has very high computational costs. 

Another special case of cross-validation, frequently used while evaluating EEG 

datasets, is the leave-one-group-out cross-validation (or LOGO for short). In this method, 

the examples are partitioned based on an external group property and the number of folds 

is set equal to the number of groups. This method is used on EEG datasets containing data 

from different subjects, to perform cross-subject evaluation. 



 

Supervised Classification Algorithms 

Linear Classifiers 

Linear classifiers are a family of algorithms that learn a linear function to 

distinguish classes by separating input vectors using linear (hyperplane) decision 

boundaries. Linear classifiers work well for problems with many variables (features), 

reaching accuracy levels comparable to non-linear classifiers while taking less time to train 

and use. Logistic Regression and Linear Discrimination Analysis are the main algorithms 

belonging to this category.  

Classification via Logistic Regression 

The goal of the Logistic Regression algorithm (LR) is to find the best fitting and 

most parsimonious model to describe the relationship between an outcome (dependent 

variable) and a set of independent variables. LR can be applied to more than two categories 

but in its simplest form called Binary Logistic Regression, there is only one binary output 

variable with two possible values. 

Logistic regression is a special case of the generalized linear model and thus 

analogous to linear regression. In linear regression, we try to find the parameters (theta 

values) to minimize a special cost function𝐽(𝛩), so that a hypothesis of the 

formℎ𝜃  (𝑥) = 𝜃0
 
+ 𝜃1𝑥1 + ⋯ +  𝜃𝑛𝑥𝑛, outputs a value for ℎ𝜃 (𝑥)  as close as possible to 

y for all the input-output pairs of x and y. 

Logistic regression uses the same basic formula, but instead of the continuous 

output, it is regressing for the probability of a categorical outcome. LR measures the 

relationship between the categorical dependent variable and one or more independent 

variables by estimating probabilities which are restricted to (0,1) through a logistic sigmoid 

function of the form  𝑓(𝑧) =
1

1+ 𝑒−𝑧
 . In the case of binary LR, if the probability in the 

modeled class (usually the positive class) is above some cut point (the default is 0.50), the 

example is predicted to be a member of the modeled class otherwise the example is 

predicted to be a member of the other class. For multinomial LR the probability scores are 

calculated for all the possible classes, instead of just the positive class.  
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LDA 

Linear Discriminant Analysis (LDA) is a classification method originally 

developed in 1936 by R. A. Fisher. LDA is based upon the concept of searching for a linear 

combination of variables (predictors) that best separates two classes. LDA classifies 

samples by projecting them onto a vector and thus obtaining a scalar value  𝑦 =  𝑤 𝑇 ·  𝑥 . 

The goal then is to find a vector 𝑤 which maximizes the separability of the projections of 

a given training set 𝑋. This is achieved by first maximizing the difference between the 

projected means, and then minimizing the interclass variance. 

In the simplest case of binary classification, the two classes are assumed to be 

normally distributed with different means but identical full rank covariance matrix (∑ 𝑐1 =

 ∑ 𝑐2  ). Suppose the true means 𝜇𝑖 (𝑖 = 1,2) and the true covariance matrix ∑  are 

known, then the normal vector 𝑤 of the Bayes optimal separating hyperplane of the LDA 

classifier is given as 𝑤 =  ∑ ( 𝜇1 −  𝜇2)−1 . 

LDA makes more assumptions than linear regression, requiring a normal 

distribution of the data, with equal covariance matrix for classes.  However, when these 

assumptions are met, LDA is more powerful than logistic regression. 

Support Vector Machine 

Support Vector Machine (SVM) classifies samples by constructing a linear 

hyperplane separating classes with a maximized margin on either side. In this regard SVM 

is a linear classifier. However, SVM can also perform a non-linear classification by 

constructing a hyperplane in a higher dimensional space, allowing the separation of data 

that are not linearly separable in the original input space.  This is achieved by mapping the 

original data with a kernel function that computes the inner-product between two projected 

vectors. The most commonly used kernel is the Gaussian kernel, also called RBF kernel.  

The basic SVM algorithm is designed for the classification of examples into two 

possible classes. For multi-class classification problems, the most common approach is 

called One-against-all, and it works by first finding a discrimination hyperplane between 

each class and all the rest and then combining the results using a maximization rule (each 

example is assigned to the class corresponding to the SVM that outputs the largest score).   
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Nearest Neighbor Classifiers  

The intuition underlying Nearest Neighbor Classification is quite simple, examples 

are classified based on the class of their nearest neighbor. It is often useful to take more 

than one neighbor into account, so the technique is more commonly referred to as k-Nearest 

Neighbor (k-NN). This type of learning is a type of instance-based learning, or lazy 

learning, where the function is only approximated locally, and all computation is deferred 

until classification. Because classification is based directly on the training examples it is 

also called Example-Based Classification or Case-Based Classification. During the 

classification stage for a given testing example, the k-NN algorithm directly searches 

through all the training examples by calculating the distances between the testing example 

and all the training data. The distance between two examples is calculated by a similarity 

measure (or distance function). The Euclidean distance is the most widely used distance 

function but there are several other types of distance functions, such as cosine similarity, 

Minkowsky and Chi square.   

Simple Bayesian Classifiers 

Simple Bayesian classifiers are a family of simple "probabilistic classifiers" based 

on applying Bayes' theorem for classification on new examples using the conditional 

probability model. The naive Bayes classifier is the simplest of these models. 

Naive Bayes classifier is making strong (naive) assumptions about the input data, 

by considering each of the input features to contribute independently to the probability that 

an example belongs to a specific class. It then assigns probabilities to each class using 

Bayes’ theorem and selects the one with the maximum a posterior probability rule.  

Different types of naive Bayes classifiers rest on different assumptions about the 

distributions of features. These assumptions are called the event model of the Naive Bayes 

classifier. In general, the Naive Bayes classifier is not linear, but if the likelihood factors 

𝑝( 𝑥𝑖  ∣ x) are from exponential families, the naive Bayes classifier corresponds to a linear 

classifier in a particular feature space. An important advantage of Naive Bayes classifier is 

that it only requires a small number of training data to estimate the parameters necessary 

for classification. 
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Decision Trees  

Decision trees is one of the simplest and yet successful families of machine learning 

algorithms as they are capable of modeling complex nonlinear decision boundaries. Tree 

models where the target variable can take a discrete set of values are called classification 

trees. A classification tree is a multistage decision process which instead of using the 

complete set of features jointly to decide, uses different subsets of features at different 

levels of the tree. 

There are many specific core algorithms for building decision trees. The most 

famous is ID3 by J. R. Quinlan which employs a top-down, greedy search through the 

space of possible branches with no backtracking. ID3 uses Entropy and Information Gain 

to construct the decision tree. 

Decision-tree can create over-complex trees that do not generalize well from the 

training data (overfitting). Mechanisms such as pruning are often used to avoid this 

problem, by eliminating nodes based on statistical significance tests.   
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Deep Learning and Artificial Neural Networks 

As already mentioned, neuroscience is based on the hypothesis that mental activity 

consists primarily of electrochemical activity in networks of brain cells called neurons. 

Inspired by this hypothesis, some of the earliest AI work aimed to create artificial neural 

networks (Russell, Norvig, & Davis, 2010). Today, artificial neural networks (ANNs) are 

deployed on a large scale, particularly for image and visual recognition problems and 

belong to an architectural approach in Machine learning, called Deep learning. Deep 

learning is part of the broader family of machine learning methods based on learning data. 

The term Deep is referring to the many layers involved. 

Unlike the biological brain where any neuron can connect to any other neuron 

within a certain physical distance, artificial neural networks have discrete layers of 

neurons, connections, and directions of data propagation. Each level of neurons learns to 

transform its input data into a slightly more abstract and composite representation. Each of 

the connections has a number associated with it called the connection weight and each of 

the neurons has a number and a special formula associated with them called a threshold 

value and an activation function respectively. These are the parameters of the neural 

network. When a neural network is being trained, it learns to adjust its weights and 

threshold values to arrive at the correct output.  

One of the key ideas behind deep learning is to extract high-level features from the 

given dataset. Thereby, deep learning aims to overcome the challenge of the often-tedious 

feature engineering task. 

MultiLayer Perceptron 

The most widely used Neural Network architecture is the MultiLayer Perceptron 

(MLP) or deep feedforward network. An MLP is composed of at least three layers of 

neurons: an input layer, one or more hidden layers, and an output layer. The number of 

layers is called the depth of the model.  Each neuron’s input is connected with the output 

of the previous layer’s neurons whereas the neurons of the output layer determine the class 

of the input feature vector. (Lotte et al., 2007) 



56 

 

MLP is a feedforward artificial neural network in which connections between the 

nodes do not form a cycle and the information moves only forward, from the input nodes, 

through the hidden nodes and finally to the output nodes. Except for the input nodes, each 

node simulates a neuron using a nonlinear activation function that models the firing of 

action potentials of biological neurons.    

 

Figure 9: Layers of the MultiLayer Perceptron 

Picture from Wikipedia with CC BY-SA license. 

Learning occurs in the perceptron by changing connection weights after each piece 

of data is processed, based on the amount of error in the output compared to the expected 

result. In this sense, training of a neural network is like training any other machine learning 

model using gradient descent. The largest difference between the linear models and neural 

networks is that the nonlinearity of a neural network causes most interesting loss functions 

to become nonconvex. This means that neural networks are usually trained by using 

iterative, gradient-based optimizers that merely drive the cost function to a very low value 

(Goodfellow, Bengio, & Courville, n.d.). This is carried out through backpropagation, an 

algorithm that adjusts the weight of the network during the training phase.  

 Feedforward networks with at least one layer of hidden units have been proved to 

be universal function approximators: Given a sufficient number of hidden units, a network 

can approximate any continuous function of the inputs in the output units (Hornik, 1991). 
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Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are a family of neural networks for processing 

variable-length sequential data. RNNs are called recurrent because they perform the same 

task for every element of a sequence, with the output being depended on the previous 

computations. In a sense, RNNs introduce the concept of “memory” which holds 

information about what has been calculated so far. This allows it to exhibit temporal 

dynamic behavior for a time sequence. In theory, RNNs can make use of information in 

arbitrarily long sequences, but in practice, they are limited to looking back only a few steps 

because of the so-called vanishing gradient problem (Hochreiter & Urgen Schmidhuber, 

1997). 

An RNN maintains a recurrent hidden state whose activation at each time is 

dependent on that of the previous time step. Training an RNN is similar to training a 

traditional Neural Network. It makes use of the backpropagation algorithm, but because 

the parameters are shared by all time steps in the network, the gradient at each output 

depends not only on the calculations of the current time step but also on those of the 

previous time steps. This is called Backpropagation Through Time (BPTT). 

In the last few years, RNNs have been particularly useful to a variety of problems: 

speech recognition, language modeling, machine translation, grammar learning, speech 

synthesis, and recognition. Approaches based on RNNs have, for example, set records for 

the accuracy of phoneme recognition (Graves, Mohamed, & Hinton, n.d.) and speech 

synthesis (Fan, Qian, Xie, & Soong, 2014). Essential to these successes is the use of a new 

special kind of recurrent neural network called Long Short-Term Memory networks or 

LSTMs.  

LSTMs solve the so-called vanishing gradient problem of back-propagated error 

signals that either shrink rapidly or grow out of bounds in traditional RNNs (Hochreiter & 

Urgen Schmidhuber, 1997). Because of the vanishing gradient problem, RNNs have 

difficulties to learn long-range dependencies. To overcome this problem, an LSTM is 

augmented by recurrent gates called "forget" gates that prevent backpropagated errors from 

vanishing or exploding. There are several architectures of LSTM units. A common 

architecture is composed of a memory cell, an input gate, an output gate, and a forget gate. 

In LSTMs, errors can flow backward through unlimited numbers of virtual layers unfolded 
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in space, allowing the network to learn tasks that require memories of events that happened 

many time steps earlier.  

A slightly newer variation on the LSTMs are the Gated Recurrent Unit Networks ( 

GRUs). First proposed in 2014 (Cho et al., n.d.), GRUs are simplified versions of LSTMs 

that merge the cell and hidden state, and combine the forget and input gates into a single 

update gate.  

Convolutional Networks 

Convolutional neural networks (CNNs) are a kind of neural network specialized for 

processing data that has a known grid-like topology  (Goodfellow et al., n.d.). Their design 

is inspired by the brain with the connectivity pattern between neurons resembling that of 

the mammal’s visual cortex. CNNs were originally developed and are still most commonly 

applied for the analysis of visual imagery. CNNs use a sequence of 3 basic types of layers: 

convolution, pooling, and activation.  

Convolution layers are used to extract spatial features. In a convolutional layer, 

neurons receive input from only a restricted subarea of the previous layer. This restricted 

input area of a neuron is called its receptive field. The layer's parameters consist of a set 

of learnable filters, which have a small receptive field but extend through the full depth of 

the input volume. During the forward pass, each filter is convolved across the width and 

height of the input volume, computing the dot product between the entries of the filter and 

the input and producing a 2-dimensional activation map of that filter. As a result, the 

network learns filters that activate when it detects some specific type of feature at some 

spatial position in the input. Weight sharing scheme is used in Convolutional Layers to 

reduce the number of parameters, based on the logical assumption that, if one feature is 

useful to compute at some spatial position, then it should also be useful to compute and at 

a different position.  

The activation layer controls how the signal flows from one layer to the next, 

emulating the firing of the neuron in our brain. Output signals which are strongly associated 

with past references would activate more neurons, enabling signals to be propagated more 

efficiently. Among the various activation functions that can be used, the one most 
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frequently used in CNNs is Rectified Linear Unit (ReLU), which is favored for its faster 

training speed. 

Convolutional networks may include local or global Pooling layers, which 

combine the outputs of neuron clusters at one layer into a single neuron in the next layer. 

Pooling (also called subsampling or downsampling) reduces the dimensionality of each 

feature map but retains the most important information. For example, max pooling uses 

the maximum value from each of a cluster of neurons at the prior layer. Another example 

is average pooling, which uses the average value from each of a cluster of neurons at the 

prior layer. This is done in part to tackle overfitting by providing an abstracted form of the 

representation, as well as, to reduce the computational cost by reducing the number of 

parameters to learn.  

The output from the convolutional and pooling layers represent high-level features 

of the input. A Fully Connected layer is then used on these features for classifying the 

input into various classes based on the training dataset. Neurons in a fully connected layer 

have connections to all activations in the previous layer, as in regular (non-convolutional) 

artificial neural networks. 

CNNs vary in the number of convolutional layers, ranging from shallow 

architectures with just one convolutional layer to very deep architectures with more than 

1000 layers. CNNs paced the way for major breakthroughs in Image Classification and are 

the core of most Computer Vision systems today. More recently CNNs have been used for 

classification problems in Natural Language Processing and EEG decoding. 
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Chapter 5. 

The EEG Pipeline for MI-BCIs 

Introduction 

From the perspective of system design, a BCI is deployed in four phases: 

• The training phase consists in 1) Acquiring the training EEG signals (i.e., training 

examples) and 2) Optimizing an EEG signal processing pipeline by tuning the 

feature parameters and training a classifier. 

• The evaluation phase: Where the results of various classification pipelines are 

evaluated, and their parameters are re-adjusted based on the outcomes.  

• The calibration phase: Because neural responses are different across subjects to 

even the same stimulus, almost all EEG-based brain-computer interfaces require 

some subject-specific data to calibrate a new subject.  

• The use (or production) phase: This consists in using the best-trained 

classification model obtained after the test phase and calibrated during the 

calibration phase, to recognize the mental state of the user from previously unseen 

EEG signals, or in other words to operate a BCI system. 

 

In this chapter we review the so-called EEG pipeline i.e. the main stages used for 

the training and evaluation phase, describing in more details the main approaches and 

considerations for Motor Imagery based BCIs.  

In general, the training phase of a BCI consists of the following processing stages: 

a data recording stage, where neural data is recorded; a signal processing stage, where the 

recorded data is preprocessed and cleaned; a feature extraction stage, where meaningful 

information is extracted from the neural data, and a classification stage, where a decision 

is interpreted from the data. Following the training phase, is the evaluation phase where 

the trained classification models are evaluated and their parameters are tuned until the 

results are satisfactory.  
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Figure 10: The outline of a BCI training and evaluation pipeline 
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Data Recording 

The design of any BCI systems entails the recording of training data. For MI-based 

BCIs, a cue (usually visual) is presented to the subject while the EEG recording device is 

capturing the brain signal.  The signal is then synchronized with event markers that encode 

the class of the stimulus presented to the subject and is sent to a storage device for offline 

analysis.  The accuracy of synchronization of the recorded data with the event markers is 

essential for the subsequent analysis and specialized protocols are often used to lessen the 

transmission lags.  

Signal digitization and amplification 

Low noise and high-resolution processing are critical factors for accurate and robust 

EEG measurements. The amplitude of an EEG signal typically ranges from 1 to 100 µV in 

a normal adult. Since the electrical signals are very small, they must be amplified before 

conversion to digital.  After amplification, an A/D converter is interfaced to the recording 

system so that each sample can be saved in its digital representation. A/D conversion 

transforms the analog signal to a series of discrete, discontinuous data points separated by 

equal intervals of time. Important characteristics are the resolution and the sampling rate. 

The resolution of the converter is determined by the smallest amplitude that can be 

sampled. A/D converters for EEG usually use minimally 12 bits (discriminating 4,096 

value levels).  The sampling rate or sampling frequency is measured in Hertz (Hz) and 

defines the rate, per second, at which the original analog signal is sampled. Therefore, a 

sampling rate of 512 means that the original signal was sampled 512 times per second. The 

higher the sampling rate, the higher the temporal precision of the resampled signal’s 

representation.  

While having high temporal precision is generally desirable, it has the drawback of 

yielding large data files, which in turn are much slower to process. Therefore, it is often 

necessary to reduce the sampling frequency. However, it is not possible to choose the new 

sampling frequency in an arbitrary manner; there is a rule, called the Nyquist rule, which 

determines the extent to which we can reduce the sampling frequency. According to the 

Nyquist rule, the sampling frequency must be at least twice the highest frequency that we 
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wish to analyze. In most MI-BCIs, we are usually interested in activity below 35Hz, which 

implies that a sampling frequency of 512 is not necessary. Generally, for MI analysis a 

sampling frequency of 128Hz  or 256Hz is sufficient (CREx, 2018). 

Environment & Subject Preparation 

There are specific protocols that define the procedures and the criteria for the 

recording of brain signals. For data acquisition of suitable quality, the choice of the right 

representative group of volunteers should be considered. The position of subjects during 

the EEG measurements should be comfortable enough to avoid unwanted activities. The 

keeping of the same conditions and instructions across subjects and recording periods for 

the whole length of the experiment period is desired.  

Recording data for BCI training can often be a monotonous and lengthy task, and 

it is easy for the subject to get tired and lose focus, deteriorating the quality of the recording. 

To encourage the subjects and keep them focused, a form of feedback is provided after 

each trial, so the subject knows how he or she is doing. The operation of a BCI is not 

intuitive and users need to learn how to voluntarily control their neural activities. 

Especially in case of motor imagery based BCIs, a rather long training period is required 

until the users gain skill in the imagery task and achieve optimal performance (Alimardani, 

Nishio, & Ishiguro, 2016). 

Special electrically shielded rooms minimize the impact of external electric 

background, in particular, 50/60 Hz alternating current line noise. For usual purposes, a 

shielded room is not necessary but for advanced research purposes when the maximal 

amount of information is desired, the shielded room must be used. In these cases, amplifiers 

run on batteries and an optical cable leads to the recording device or PC which is standing 

outside from the shielded space.  

Data Recording Structure 

A typical EEG experiment consists of multiple session recordings per subject.  

Different sessions for a particular subject can be recorded on different days, but a session 

must always be completed within the same day.  Sessions contain multiple runs each 
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containing multiple trials. A run is a series of experimental trials, where a trial is the 

repetition of the same procedure. For MI-BCI recording a trial is the recording of MI tasks, 

whenever a cue or stimulus is presented to the user. The interstimulus interval (often 

abbreviated as ISI) is the temporal interval between the offset of one stimulus to the onset 

of another. The inter-trial interval (ITI) is the time from the end of one trial to the beginning 

of the next.  

 Neuroimaging experiments result in complicated data that can be arranged in many 

ways. So far there is no consensus on how to organize and share data obtained in 

neuroimaging experiments and there are various formats such as HD5, EGI, and EDF. The 

European Data Format (EDF) is a simple and flexible format for exchange and storage of 

multichannel biological and physical signals.  It was developed by European 'medical' 

engineers who met at the 1987 international Sleep Congress in Copenhagen. After its 

official introduction in 1992, the European Data Format (EDF) became the standard for 

EEG and PSG (Sleep) recordings. An extension of EDF, named EDF+, was developed in 

2002. EDF+ is largely compatible with EDF and supports interrupted recordings, 

annotations, stimuli, and events. 
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Data Preprocessing 

Data preprocessing is an important step in any data mining or machine learning 

project. Preprocessing refers to any transformation between data collection and data 

analysis (Cohen, 2014). In general, we perform data preprocessing because the original 

data may be incomplete (e.g. lacking attribute values, lacking certain attributes of interest), 

noisy (e.g. containing errors or outliers) or inconsistent (e.g. containing discrepancies in 

codes or names). In other cases, preprocessing steps may merely reorganize the data to 

facilitate analysis. 

In EEG signal analysis, preprocessing steps may include more specific tasks such 

as extracting epochs from continues data, removing whole channels, or rejecting epochs 

with unwanted artifacts and reduce the noise to signal ratio. 

Epoching 

Epoching refers to the segmentation of continues EEG data based on the 

experiment’s events. Epoching increases the dimension of the EEG data from two-

dimensional (channels x time) to three-dimensional (trials x channels x time). Important 

decisions that need to be addressed when epoching EEG data is the selection of the event 

to use for time locking (the time 0) as well as the duration of each epoch. Both decisions 

depend on the specificities of the experiment.  For the time locking event, we usually select 

the earliest event of each trial because it allows us to shift the data to a later time, if we 

choose to do so, during the analyses phase. Similarly, for the selection of the duration of 

each epoch, the maximum time, that is the duration of a trial, is the safest option. On the 

other hand, if we perform a specific analysis that for example computes only ERP 

components then we can reduce the duration of an epoch to that of the specific components 

plus a baseline period (e.g. -200ms to 500ms for a P300 component analysis).  

Reduce class imbalance 

A dataset is imbalanced if the classification categories are not approximately 

equally represented. Most machine learning algorithms work best when the number of 

examples for each class are roughly equal. When the number of instances of one class far 
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exceeds the other, problems can arise. Especially for EEG datasets, analyses based on 

phase are more sensitive to class imbalance than analyses based on power or the ERP. 

The reduction of class imbalance usually involves identifying the class with the 

minimum appearances and then selecting trials from the other classes so that we end up 

with an equal number of trials for each class (under-sampling) or duplicating the minority 

classes till we have an equal number of examples for each class (over-sampling). By 

under-sampling, we risk removing some of the majority class instances which is more 

representative, thus discarding useful information, while, by over-sampling, we risk to 

overfit the classifier to a few examples.  

To overcome these problems, a sampling-based algorithm called SMOTE 

(Synthetic Minority Over-Sampling Technique) was introduced (Chawla, Bowyer, Hall, & 

Kegelmeyer, 2002). SMOTE is a combination of over-sampling and under-sampling, but 

the oversampling approach is not based on replicating minority class but instead on 

constructing new minority class data instances via a KNN algorithm. SMOTE has been 

reported  (Fergus, Hignett, Hussain, Al-Jumeily, & Abdel-Aziz, 2015) to further improved 

sensitivity, specificity, and AUC results when used to increase the number of seizure and 

non-seizure records on a seizure detection EEG-based analysis. 

Frequency Filtering 

Frequency filtering (in contrast to spatial and other types of filtering) refers to the 

attenuation of signal components of a particular frequency (band). The common rationale 

behind filtering is to attenuate noise in the recordings while preserving the signal (of 

interest). In electrophysiology, neither noise nor signal is clearly defined. Typically, there 

is an overlap of signal components and noise components in the same frequency band. 

(Widmann, Schröger, & Maess, 2015).  The low signal-to-noise ratio of EEG recordings 

makes filtering a useful tool for the analysis of EEG data. However, filtering can also result 

in various unintended adverse filter effects (distortions such as smoothing) and filter 

artifacts, biasing or even invalidating the results. Usually, we prefer to run these frequency 

filters before any other type of correction, on the continuous EEG signal. 

There are 4 basic types of frequency filters:  
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• Low-pass filter:  all frequencies below a defined frequency are passed and all 

frequencies above this limit are rejected. 

• High-pass filter:  the inverse of the low-pass filter in which all frequencies above 

a defined frequency limit are passed and all below are rejected. 

• Band-pass filter:  all frequencies between defined lower and upper-frequency 

limits are passed. 

• Band-stop filter: also referred to as a « notch filter » is the inverse of the band-

pass filter; all frequencies between a defined lower and upper-frequency limit are 

rejected. Notch filters are commonly applied to suppress electrical noise from 

mains interference (50 or 60 Hz). 

 

Figure 11: Four basic filter types  

Figure presents the frequency responses of each filter type (f = frequency, a = amplitude) 

.(CREx, n.d.) 
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Rejecting of bad epochs/trials 

In some cases, extracted epochs or entire trials are strongly affected by muscular 

noise or external artifacts. In cases that the noise or artifacts cannot be reduced using 

frequency filtering, those segments can be marked as bad and excluded from further 

analysis.  Bad trials/epochs detection is usually based on a combination of different criteria, 

such as extreme amplitudes (deviation criterion), lack of correlation with any other trial 

(correlation criterion) and unusual high-frequency noise (noisiness criterion).  
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Feature Extraction 

Usually, not all the data in the feature space are important for classification. 

Especially for EEG signals, which are captured as high-dimensional multivariate time 

series, we usually try to isolate a few relevant values called “features” which capture the 

information embedded in EEG signals that is relevant to describe the classes we want to 

identify. To reduce the volume of data, we usually opt for: 

1. Feature selection: where only some of the original features are kept either based 

on information gain using entropy, or on searching for the best (near optimal) 

features, using some heuristic searching algorithm such as genetic algorithms. For 

EEG, selecting features can also mean to select channels and only use data 

extracted from the selected channels. 

2. Feature extraction: where the original feature space is transformed into one with 

lower dimension, using methods that include but are not limited to: general 

purpose algorithms, such as, principal component analysis (PCA), Independent 

component analysis,  linear discriminate analysis, Fourier transforms, wavelet 

transform, discrete cosine transform , as well as , other more specific to the 

analysis of EEG signals, such as common spatial patterns (CSP) and Riemannian 

transformations. All features extracted are usually arranged into a vector, known 

as a feature vector. 

 EEG Dimensionality reduction 

Raw EEG signals are high-dimensional and thus are not suitable as a direct input 

for most classifiers. EEG data require dimensionality reduction before they could be 

classified mainly because of i) the low EEG signal-to-noise ratio, and ii) the redundancy 

from the strong statistical correlation between signals recorded from close positions in the 

scalp. Another reason for not using raw EEG data as features vector is due to the so-called 

“curse of dimensionality” which states that as the number of features or dimensions grows, 

the amount of data we need to generalize accurately grows exponentially. There is no one-

size-fits-all ratio between the number of features and the number of available examples, 

but a general rule of thumb defines this ratio between 1/5 and 1/10. In the case of a typical 
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EEG two seconds trial with 32 electrodes and a sampling rate of 256Hz, this means that 

we would need at least 81920 (5x2x32x256) trials per class, to be able to train a classifier. 

Considering the high cost (both in money and time) to acquire EEG training data, as well 

as, the cost of analysis, the direct use of EEG signal as a features vector is usually avoided. 

Instead, we extract specific features from the EEG signal. These features can be related to 

three main sources of information: 1) Spatial information that focus on the signal coming 

from specific brain areas, 2) Frequency information that describe the variation of power 

in specific relevant bands and 3) Temporal information that describe the variation of the 

EEG signal in specific time windows. In many cases, a combination of these sources is 

used. One of the most used approaches for MI-BCIs is using spatial-frequency features 

extracted by the filter bank common spatial pattern algorithm (FB-CSP). 

Spatial Filters 

Spatial filtering is useful not only because it reduces the dimension from many EEG 

channels to a few spatially filtered signals, but also because it can help to minimize volume 

conduction effects. As already mentioned, the EEG signals measured on the surface of the 

scalp are a blurred image of the signals originating from within the brain, as the underlying 

brain signal is spread over several EEG channels. Spatial filtering can help to recover this 

original signal by gathering the relevant information that is spread over different channels.  

There are two main categories of spatial filters. Fixed spatial filters with their 

weights fixed in advance, according to predefined neurophysiological knowledge, or data-

driven filters, that are, optimized on training data. Among the fixed spatial filters, we can 

notably mention the bipolar and Laplacian, which are local spatial filters that try to locally 

reduce the smearing effect and some of the background noise (McFar- land et al, 1997).  

On the other hand, data-driven spatial filters are optimized for each subject according to 

training data. The weights of data-driven spatial filter can be estimated either in an 

unsupervised way, without the knowledge of the actual class the trial data belongs to, or in 

a supervised way, with each training example being labeled with its class.  

Among the unsupervised spatial filters, generic algorithms such as Principal 

Component Analysis (PCA) and Independent Component Analysis (ICA) have been 

reported to offer rather good results. xDAWN (Souloumiac, Souloumiac, Attina, & Gibert, 
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2009) is another dimensionality reduction algorithm specifically designed to separate brain 

waves for ERP classification by enhancing the discrimination between signal and noise 

and reducing the dimension of the EEG signals. xDAWN is commonly used on ERP 

experiments to calculate the principal components of the average evoked responses. 

 Common Spatial Patterns (CSP) and Filters based on Riemannian Topologies are 

commonly used as supervised data-driven filters in EEG Classification problems. CSP 

separates a multivariate signal into additive subcomponents. The general idea behind CSP 

is for each subcomponent to maximize its variance for one class while minimizing it for 

the other  (Hülsmann, J., Jirku, M., Dyck, 2017). The CSP algorithm is highly successful 

in calculating spatial filters for detecting Event-Related 

Desynchronization/Synchronization. The core idea behind algorithms using Riemannian 

geometry is to manipulate covariance matrices in the manifold of symmetric positive-

definite (SPD) matrices and use them directly as features in a classifier that respects their 

intrinsic geometry (Rodrigues et al., 2017). Tangent space projection is used to convert 

covariance matrices in Euclidean vectors while conserving the inner structure of the 

manifold. The tangent space projection is an operation that project matrices from the 

manifold in a vector space named Tangent space. This tangent space is Euclidean and 

locally homeomorphic to the manifold and Riemannian distance computations in the 

manifold can be well approximated by Euclidean distance computations in the tangent 

space. (Alexandre Barachant, 2014).  

The Filter Bank Common Spatial Patterns  

The most widely used spatial-frequency features extraction algorithm for 

classification of Motor Imagery EEG is Filter Bank Common Spatial Patterns (FB-CSP) 

algorithm. There are three steps in the FB-CSP method: 1) a group of band-pass filters is 

applied to the raw EEG data to obtain specific frequency bands, 2) the CSP algorithm is 

applied to every filter result to extract the optimal spatial features and 3) the best-resulting 

features among the multiple spatial filters obtained are then selected using feature selection 

algorithms. Finally, a classifier is used on the extracted features. 
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Figure 12: Filter Bank Common Spatial Patterns 

The principle of Filter Bank Common Spatial Patterns (FBCSP) (Lotte, 2014) 
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Classification  

For BCI, the most used classifiers so far are discriminant classifiers and notably 

Linear Discriminant Analysis classifier. LDA is preferred for BCI mainly because of its 

low computational requirements and its simplicity which makes it good at generalizing to 

unseen data. Another very popular classifier for BCI is the Support Vector Machine 

(SVM). SVM is known to have good generalization properties, to be insensitive to 

overtraining and to the curse-of-dimensionality. The kernel generally used in BCI research 

is the Gaussian or Radial Basis Function (RBF) kernel. 

Among the Non-linear classifiers used in BCI systems, Bayes quadratic and Hidden 

Markov Model are also known for their performance. Both classifiers produce non-linear 

decision boundaries. The advantages of these classifiers are that they are generative and 

reject uncertain samples more efficiently than discriminative classifiers (Lotte et al., 2007). 

KNN algorithms are not very popular in the BCI community, probably because they 

are known to be very sensitive to the curse-of-dimensionality, which made them fail in 

several BCI experiments (Lotte et al., 2007). A more promising distance-based 

classification based on distance computation makes use of the Riemannian geometry, to 

calculate the (Riemannian) distance to mean. Since the covariance matrices are symmetric 

positive definite (SPD) and lie on a Riemannian manifold, a popular approach is to view 

each covariance matrix as a point in the Riemannian space and use its geodesic to the 

Riemannian mean as a feature in classification. This approach is called the Minimum 

Distance to Riemannian Mean (He et al., 2018). The computational complexity of 

algorithms based on this ground is of concern for high-density EEG data. This happens 

because Riemannian algorithms rely on eigendecompositions, whose number of operations 

is on the order of n3, where n is the number of electrodes. 

Classifiers can also be combined to reduce the variance and thus increase the 

classification accuracy. The combination of various classifiers is termed Ensemble 

learning.  Ensemble learning approaches allow the production of better predictive 

performance compared to a single model. That is why ensemble methods placed first in 

many prestigious machine learning competitions.   

Deep learning classification methods can also be used for BCIs, although, deep 

Neural Network architectures are not hardware friendly and it takes a lot of resources to 
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train deep networks fast. Convolutional Neural Networks (CNNs), which have been used 

in computer vision and speech recognition to perform automatic feature extraction and 

classification, have successfully been applied to EEG-based BCIs. An attractive property 

of CNNs that was leveraged in many previous applications is that they are well suited for 

end-to-end learning, i.e., learning from the raw data without any a priori feature selection. 

End-to-end learning might be especially attractive in brain-signal decoding, as not all 

relevant features can be assumed to be known a priori. (Schirrmeister et al., n.d.). Deep 

RNN architectures have also be used to extract the sequential relationships from EEG 

signals. Albeit its suitability for processing time series data, RNNs models are not 

performing as well as expected in classifying motor imagery EEG data (Fedjaev, 2017). A 

mixed approach (Bashivan, Rish, Yeasin, & Codella, 2015) combines RNNs with CNNs. 

In this approach, the EEG time series were transformed into spectral images before being 

used in the deep recurrent-convolutional network. The authors suggest that such 

representation of data preserves temporal, spectral and spatial information.  
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Model Evaluation 

An evaluation defines how we go from trials per subject and session to a 

generalization statistic score (AUC score, f-score, accuracy, etc.). For evaluation of EEG 

pipelines, there can be three different evaluation approaches: 

• within-recording-session evaluation 

•  across-session within-subject evaluation 

• across-subject evaluation, 

Evaluations within the same session or within the sessions of the same subject yield 

the best results but are less useful for generic-purpose BCIs. In contrast, the inter-subject 

variability of EEG recordings poses a challenge in across-subject BCI classification. As a 

matter of fact, in cross-subject learning, not all available subjects may improve the 

performance on a test subject (Nasiri Ghosheh Bolagh, Bagher Shamsollahi, Jutten, & 

Congedo, 2016). 

There are many methods to evaluate a classifier, and there are also many different 

measures to compare the performance of a set of classifiers. The best approach for cross-

subject evaluation is to use the Leave One Subject Out Cross-validation (LOSO-CV) 

strategy, where in each fold, the training set of examples used for learning consists of all 

the subjects but one. The one excluded from training is then used only to assess the 

performance of the classifier on completely unseen data. 

The measures of accuracy and confusion matrix are very prevalent to evaluate the 

performance of a classification system, but accuracy may not be a useful measure in cases 

where there is a large class skew, or there are differential misclassification costs between 

the classes.  More recently, receiver operating characteristic (ROC) curves have been used 

to evaluate the trade-off between true and false-positive rates of classification algorithms. 

A ROC curve (receiver operating characteristic curve) is a graph showing the performance 

of a classification model at all classification thresholds. This curve plots True Positive Rate 

(or recall) vs False Positive Rate.  A ROC Curve compares the classifiers’ performance 

across the entire range of class distributions and error costs. However, often there is no 

clear dominating relation between two ROC curves in the entire range; in those situations, 

the area under the ROC curve, or simply AUC, provides a single-number “summary” for 

the performance of a learning algorithm. AUC (stands for "Area under the ROC Curve") 
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measures the two-dimensional area underneath the entire ROC curve. This is equal to the 

probability that a classifier will rank a randomly chosen positive example higher than a 

randomly chosen negative example. AUC ranges in value from 0 to 1. A model whose 

predictions are 100% wrong has an AUC of 0; one whose predictions are 100% correct has 

an AUC of 1. From the literature, it has been shown that AUC is a more statistically 

consistent and more discriminating, measure than accuracy and should be preferred over 

accuracy (Ling & Zhang, 2003). This thesis mainly uses ROC AUC to assess the 

performance of the classification models. Accuracy is reported only when necessary to 

compare performance with other published results. 
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Chapter 6. 

Evaluation of Public Datasets 

Introduction 

In this chapter, we experiment with various motor imagery pipelines by applying 

them on two public datasets related to left/right hand motor imagery.  The datasets are BCI 

Competition IV Dataset 2b (Leeb, Brunner, Müller-Putz, Schlögl, & Pfurtscheller, 2008)  

and Physionet Motor Imagery (Schalk, McFarland, Hinterberger, Birbaumer, & Wolpaw, 

2004). The objective of the experiments is to evaluate different decoding pipelines for 

motor imagery classification, in order to decide on an optimal configuration which can 

possibly be used later in the development of our BCI system.   

To tune the performance of the classification, we developed a pre-processing 

analysis script in Python that searches in a space of possible pre-processing configurations 

for the optimal parameters. Using the best possible pre-processing configuration, we then 

fine-tuned the hyper-parameters of the classification algorithm, achieving a classification 

score (AUROC) of 0.855 for the first dataset and a score of 0.963 for the second dataset. 



78 

 

Datasets 

For the evaluation of the different pipelines and configurations we selected two 

publicly available datasets of EEG Motor Imagery, namely:  

• BCI Competition IV (2008) - Graz dataset 2b, 9 subjects using 3 EEG channels 

(BCI42B) 

• PHYSIONET MI dataset, 109 subjects using 64- EEG channels (PhysionetMI) 

Table 1: Evaluation datasets 

Dataset Type Channels Trials Sessions Subjects Epoch 

BCI42B MI 3 120 5 9 3 - 7.5 

PhysionetMI MI 64 40-60 1 109 1 - 3 

Dataset B from BCI Competition 2008 (BCI42B) 

The dataset was originally released as dataset 2b of the BCI Competition IV and 

contains 2-class MI recordings from 9 different subjects.  For each subject, 5 sessions were 

recorded. Each session consisted of six runs with ten trials each and two classes of imagery 

(left and right hand). This resulted in 20 trials per run and 120 trials per session. Three 

bipolar recordings (C3, Cz, and C4) were recorded with a sampling frequency of 250 Hz. 

They were bandpass- filtered between 0.5 Hz and 100 Hz, and a notch filter at 50 Hz was 

enabled. The electrode position Fz served as EEG ground. 

It should be noted that prior to the first motor imagery training, the subject executed 

and imagined different movements for each body part and selected the one, which they 

could imagine best (e. g., squeezing a ball or pulling a brake). Furthermore, the placement 

of the three bipolar electrodes was slightly different for each subject. 

Each trial started with a fixation cross and an acoustic warning tone. Some seconds 

later a visual was presented for 1.25 seconds. Afterward, the subjects had to imagine the 

corresponding hand movement over a period of 4 seconds. Each trial was followed by a 
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short break of at least 1.5 seconds. A randomized time of up to 1 second was added to the 

break to avoid adaptation 

Physionet Motor Imagery dataset. 

The Physionet Motor Imagery dataset consists of over 1500 one- and two-minute 

EEG recordings, obtained from 109 subjects. Subjects performed different motor/imagery 

tasks while 64-channel EEG was recorded using the BCI2000 system (“BCI 2000,” n.d.). 

From the different motor/imagery tasks, we used only the corresponding for imagery and 

executed left or right fist movement. We used only the first 9 subjects for our analysis, both 

for reasons of consistency and comparison with the first dataset, but mainly due to limited 

resources for the training (hardware & time).  

Past studies on the same datasets 

While the two datasets we used for our evaluation are freely available, we didn’t 

manage to find similar studies with reproducible results to benchmark our methodology. 

There are some studies on the same datasets but because of different setups, subsets of data, 

and performance metrics are not directly comparable with our evaluation results. 

Nonetheless, we are presenting here some relevant past studies and their reported results.  

Kai Keng Ang et al applied the Filter Bank Common Spatial Pattern algorithm on 

2 datasets of the BCI competition  2008  (Ang, Chin, Wang, Guan, & Zhang, 2012). In the 

case of dataset 2b, FBCSP using the Mutual Information-based Rough Set Reduction 

(MIRSR) algorithm for feature selection and Naïve Bayesian Parzen Window (NBPW) 

classifier, reached a kappa value (an indicator that measures the agreement between two 

raters classifying a set of items into mutually exclusive categories) of 0.599.  

J.Sleight et al, classified trials of imagined and executed movement of the 

PhysionetMI dataset (Sleight, Pillai, & Mohan, 2009). Their study was aiming to 

distinguish between trials of imagined and executed movements and achieved a 0.566 

accuracy for cross-subject evaluation.  

Hülsmann, J et al, used the Common Spatial Patterns with LDA to distinguish 

between imagined hands and foots movements (Hülsmann, J., Jirku, M., Dyck, 2017). The 
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reported intra-subject classification results, using multiple randomly selected subjects for 

training and a random set of remaining subjects for testing, was around 60%.  

Alomari et al applied various pre-processing steps and used SVM classification on 

the PhysionetMI dataset (Alomari et al., 2013). In their study they used only trials of 

executed movement on a subset of 6 subjects, reporting a cross-validation accuracy of 97%. 
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Evaluation Design 

Initial experiments with both datasets, using different classification algorithms, 

revealed that beyond the algorithms, an important role for the classification performance 

had the pre-processing configuration, namely: the segmentation of the trials (epoching), 

the spectral filters, as well as, the selection of feature extraction algorithms.  

As a result, we developed a Python script to automatically apply different 

combinations of time-windows, spectral filters, feature extraction methods and 

classification algorithms to each dataset. The script allows for different configuration of 

pre-processing hyper-parameters to be applied by setting flags and passing command line 

arguments.   

 

 

Figure 13: Evaluation design for the Analysis of Public datasets 

The architecture of the analysis script used in the evaluation of different pre-processing 

configurations and classification algorithms 
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The varying parameters we used for the pre-processing are: 

Spectral filters: 

Instead of directly using a wide filter band, we applied various bandpass filters on 

raw EEG by using a set of overlapping subbands. These subbands are constructed using a 

high-pass frequency in [1,3,7] Hz and a low-pass frequency ranging between 30–60 Hz 

with an overlapping rate of 5 Hz. This way we constructed 3 different groups of band-pass 

filters: 

• Fb1k = 1–k Hz, k in [30,35,40,45,50,55,60] Hz. 

• Fb3k = 3 -k Hz k in [30,35,40,45,50,55,60] Hz. 

• Fb7k = 7 – k Hz, k in [30,35,40,45,50,55,60] Hz. 

In total 22 different band-pass filters were tested as we included also a pass with no 

filtering. 

Epoching  

In order to evaluate the influence of different time segments of each trial on the 

classification success rate, a sliding time window with a step of 200ms and varying 

durations applied to the raw data resulting in: 

• 40 different time windows for the first dataset (BCI42B) starting between 0 and 1 

seconds with steps of 200ms and a duration between 1 and 4.5 seconds with steps 

of 500ms. Epochs overlapping the maximum trial duration (4.5 seconds) were 

automatically rejected. 

• 22 different time windows for the second dataset (PhysionetMI) starting between 0 

and 1 seconds with steps of 200ms and a duration between 1 and 3 seconds with 

steps of 500ms. Epochs overlapping the maximum trial duration (3 seconds) were 

automatically rejected. 

Features extraction algorithms:  

For the features extraction we tested eight different algorithms:  

• Covariance estimation with tangent space mapping. This simply performs a 

covariance matrix estimation for each given trial. 
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• ERP Covariances with and without projection to Tangent Space. Estimation of 

special form covariance matrix dedicated to ERP processing. 

• XDawn Covariances, with and without projection to Tangent Space. Estimation of 

special form covariance matrix dedicated to ERP processing combined with 

xDAWN spatial filtering. This is similar to ERP Covariances, but data are spatially 

filtered with xDAWN. A complete description of the method is available in 

(Alexandre Barachant, 2014). 

• Common Spatial Patterns (CSP) with 4, 6 ,8 components. 

Classifiers 

We tested the following classifiers on both datasets:  

• Logistic Regression 

• LDA 

• SVM with linear, poly and Rbf kernels 

• Riemannian Minimum Distance to Mean (RMDM), which computes a geometric 

mean for each class from the training data and then assigns an unlabeled trial to the 

class corresponding to the closest mean. 

 

We used the sklearn Python library to combine the features extraction and 

classification algorithms into evaluation pipelines. In total, we tested 25 pipelines on each 

dataset over 880 (22*40) pre-processing configurations for the first dataset (BCI42B) and 

484 (22*22) pre-processing configurations for the second dataset (PhysionetMI).  

Table 2: The 25 pipelines that have been used to evaluate the 2 public datasets 

Pipeline Name Features Extraction Classifier 

RG + LR Covariances, projection to Tangent Space Logistic Regression 

RG + LDA Covariances, projection to Tangent Space LDA 

CSP4 + LR Common Spatial Patterns (4 components) Logistic Regression 

CSP4 + LDA Common Spatial Patterns (4 components) LDA 

CSP6 + LR Common Spatial Patterns (6 components) Logistic Regression 



84 

 

CSP6 + LDA Common Spatial Patterns (6 components) LDA 

CSP8 + LR Common Spatial Patterns (8 components) Logistic Regression 

CSP8 + LDA Common Spatial Patterns (8 components) LDA 

ERPCov + TS + LR ERP Covariances, projection to Tangent Space Logistic Regression 

ERPCov + TS + LDA ERP Covariances, projection to Tangent Space LDA 

ERPCov + TS + SVM 

Rbf 

ERP Covariances, projection to Tangent Space SVM with Rbf kernel 

ERPCov + MDM ERP Covariances Riemannian Minimum 

Distance to Mean 

XdawnCov+ TS + LR Xdawn Covariances, projection to Tangent Space Logistic Regression 

XdawnCov+ TS + LDA Xdawn Covariances, projection to Tangent Space LDA 

XdawnCov+ TS + SVM 

Rbf 

Xdawn Covariances, projection to Tangent Space SVM with Rbf kernel 

XdawnCov+ MDM Xdawn Covariances Riemannian Minimum 

Distance to Mean 

RG + SVM Linear Covariances, projection to Tangent Space SVM with Linear 

kernel 

RG + SVM Poly Covariances, projection to Tangent Space SVM with Poly kernel 

RG + SVM Rbf Covariances, projection to Tangent Space SVM with Rbf kernel 

CSP4 + SVM Linear Common Spatial Patterns (4 components) SVM with Linear 

kernel 

CSP4 + SVM Poly Common Spatial Patterns (4 components) SVM with Poly kernel 

CSP4 + SVM Rbf Common Spatial Patterns (4 components) SVM with Rbf kernel 

CSP8 + SVM Linear Common Spatial Patterns (8 components) SVM with Linear 

kernel 

CSP8 + SVM Poly Common Spatial Patterns (8 components) SVM with Poly kernel 

CSP8 + SVM Rbf Common Spatial Patterns (8 components) SVM with Rbf kernel 
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Script Implementation 

The script for evaluation of different pre-processing configurations was developed 

in Python and it uses the open sourced libraries NumPy, Pandas, scikit-learn, pyRiemann, 

and MNE. The latter (Larson et al., 2018) is a community-driven software for processing 

neural signals including EEG. NumPy and Pandas are general-purpose Python packages, 

offering libraries and tools for general scientific computation while scikit-learn is a 

machine learning library for the Python programming language.  pyRiemann (A. 

Barachant, 2015)  is a python toolkit for covariance matrices manipulation and 

classification through Riemannian geometry. 

The evaluation script starts by applying (or not) a specific band-pass filter to the 

row data. It then creates epochs using a specific time-window.  The number of features is 

then reduced using a specific feature selection algorithm and then a classification algorithm 

is applied. This process is repeated for all the combination of pre-processing configurations 

and classification algorithms. 

At the end of every run, the script exports the current pre-processing configuration 

and the results for each pipeline to a folder named according to the dataset and the 

evaluation type (cross-subject or cross-session). In this folder, the results are stored as csv 

files named according to specific pre-processing parameters (e.g. applied spectral filters). 

The automatic evaluation script run continually for long periods of time, on two online 

servers dedicated to this task, evaluating over 2 million combinations. 

Cross-Validation methodology 

For the evaluation of the pipelines, we employed a leave-one-subject-out cross-

validation (LOSO-CV) procedure, i.e. for predicting the labels of a particular subject we 

only use training data from other subjects. The Area Under the ROC curve (AUROC) is 

used as the scoring metric of each evaluation.  

For the BCI42B dataset, we applied both cross-subject and inter-subject (cross-

session) evaluation in order to assess the impact of inter-subject variability of EEG signal 

in the classification performance.  This resulted in 990,000 distinct scores for each type of 
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evaluation (25 Pipelines * 880 hyper-parameter configurations * 9 subjects * 5 sessions 

per subject) and a total of 1,980,000 evaluation scores for the BCI42B dataset.  

For the PhysionetMI dataset, we applied only cross-subject evaluation, but we run 

the evaluation script 3 times. One using only trials of imagined movement, one using only 

trials of executed movement and one using trials of imagined and executed movement.  

This resulted in 108,900 distinct scores for each category (25 Pipelines * 484 hyper-

parameter configurations * 9 subjects) and a total of 326,700 evaluation scores for the 

PhysionetMI dataset.  On this dataset, we also applied deep learning classification using a 

Shallow Feed Forward Neural Network and tried Automated Machine Learning (ensemble) 

approaches using TPOT a Python tool that optimizes machine learning pipelines using 

genetic programming. 
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Analysis Results 

BCI42B Dataset 

For the BCI42B dataset, we found that the optimal pre-processing configuration 

consists of the combination of a [0.2 – 4.2sec] time-window for the epoch with the 

application of a [7-35Hz] band-pass filter. The best cross-subject classification 

performance, for the optimal configuration, was 0.8 (AUROC) using pipelines based on 

Common Spatial Pattern for features extraction. After excluding ‘bad’ training subjects 

(subject selection) we got an even better performance of 0.846 for cross-subject 

classification. Finally, we fine-tuned the classifier’s hyper-parameters using Grid Search, 

achieving a final performance of 0.855. For this dataset, we also applied inter-subject 

classification reaching a performance of 0.813 (AUROC) without subject selection and 

0.864 after applying subject selection.  

 

Figure 14: BCI42B - optimization steps and results 

 

Detailed results 

From the results of the pre-processing evaluation script, we found that for this 

dataset the optimal pre-processing configuration was the use of a [0.2 – 4.2sec] time-

window for the epoch with the application of a [7-35Hz] band-pass filter. The top five 
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performing pipelines are using Common Spatial Patterns (CSP) for features extraction.  

The number of components for CSP (4,6 or 8) or the classification algorithm (Logistic 

Regression, LDA, SVM) do not appear to have any significant effect on the final 

classification result.  

Table 3: BCI42B – Cross-Subject classification performance for the top 5 pipelines using 

optimal pre-processing configuration. 

pipeline Mean 
AUROC 

CSP4 + LR 0.800 

CSP6 + LR 0.800 

CSP8 + LR 0.800 

CSP4 + SVM Linear 0.800 

CSP8 + SVM Linear 0.800 

 

The following table presents the classification performance (AUROC) for all the 

pipelines averaged over four different setups for the pre-processing configuration: 

• evaluations filtered at [7-35Hz], over all different time-windows (column 2). 

• evaluations for the [0.2 – 4.2sec] time-window, over all filter setups (column 3). 

• evaluations filtered at [7-35Hz], over the evaluations for the [0.2 - 4.2sec] time-

window. The optimal pre-processing setup (column 4). 

• all evaluations with all spectral and epochs setups (column 5). 

Table 4: BCI42B – Cross-Subject mean classification score for all the pipelines over 

different pre-processing configuration 

Pipeline Spectral Filter 7-35Hz All   7-35Hz All 

epoch All 0.2 - 4.2 0.2 - 4.2 All 

CSP4 + LDA 0.781 0.757 0.799 0.742 

CSP4 + LR 0.781 0.757 0.800 0.742 

CSP4 + SVM Linear 0.781 0.757 0.800 0.742 

CSP4 + SVM Poly 0.764 0.733 0.778 0.725 

CSP4 + SVM Rbf 0.781 0.757 0.800 0.742 

CSP6 + LDA 0.781 0.757 0.799 0.742 
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CSP6 + LR 0.781 0.757 0.800 0.742 

CSP8 + LDA 0.781 0.757 0.799 0.742 

CSP8 + LR 0.781 0.757 0.800 0.742 

CSP8 + SVM Linear 0.781 0.757 0.800 0.742 

CSP8 + SVM Poly 0.764 0.733 0.778 0.725 

CSP8 + SVM Rbf 0.781 0.757 0.800 0.742 

ERPCov + MDM 0.768 0.775 0.784 0.755 

ERPCov + TS + LDA 0.755 0.770 0.765 0.749 

ERPCov + TS + LR 0.767 0.782 0.779 0.760 

ERPCov + TS + SVM Rbf 0.780 0.794 0.797 0.770 

RG + LDA 0.776 0.752 0.792 0.742 

RG + LR 0.777 0.754 0.793 0.743 

RG + SVM Linear 0.776 0.753 0.792 0.742 

RG + SVM Poly 0.743 0.716 0.756 0.708 

RG + SVM Rbf 0.779 0.757 0.796 0.745 

XdawnCov + MDM 0.764 0.769 0.779 0.751 

XdawnCov + TS + LDA 0.755 0.768 0.762 0.749 

XdawnCov + TS + LR 0.768 0.782 0.779 0.761 

XdawnCov + TS + SVM Rbf 0.780 0.794 0.797 0.770 

mean (all pipelines) 0.773 0.760 0.789 0.745 

Score per subject 

Analysing further the results, we found that subject number 2 (M = 0.641, 95% CI 

[0.6335, 0.6489]) and 3 (M = 0.603, 95% CI [0.5944, 0.6118]) had significantly lower 

results for the optimal pre-processing configuration. When we excluded subjects 2 and 3 

from the evaluation, we got a higher score of 0.846 for the optimal pre-processing 

configuration and the best pipeline. 

Table 5: BCI42B – Cross-Subject classification performance (AUROC) per subject 

 
All pre-processing 

configurations 
Optimal pre-processing 

configuration 

subject 
mean score (all 

pipelines) 
mean score 

(best pipeline) 
mean score (all 

pipelines) 
score (best 
pipeline) 

4 0.940 0.954 0.962 0.973 

8 0.818 0.821 0.821 0.832 

9 0.797 0.806 0.832 0.842 

6 0.750 0.754 0.854 0.878 

1 0.738 0.741 0.815 0.826 
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7 0.729 0.723 0.742 0.751 

5 0.721 0.687 0.829 0.834 

3 0.607 0.607 0.603 0.608 

2 0.602 0.586 0.641 0.653 

mean 
 (all subjects) 

0.745 0.742 0.789 0.800 

 

Figure 15: BCI42B dataset – Cross-Subject performance (AUC) per subject using 

optimal pre-processing configuration and the best pipeline. 

 

Cross-subject vs inter-subject evaluation 

Comparing the results between cross-subject and inter-subject evaluations, we 

found that there is a very small increase in the cross-validation score when we apply inter-

subject (cross-session within the same subject) evaluation.  The best score for the inter-

subject evaluation was 0.813, an increase of only 0.013 against the cross-subject 

evaluation. We found a similar increase when we excluded the ‘bad’ subjects (0.846 for 

cross-subject vs 0.867 for inter-subject evaluation). 
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Table 6: BNCI - Cross-Subject vs Inter-Subject classification score (AUROC) 

 All subjects Excluding subjects 2,3 

Cross-Subject 0.800 0.846 

Inter-Subject 0.813 0.867 

PhysionetMI Dataset 

For the PhysionetMI dataset, we found that the optimal pre-processing 

configuration consists of the combination of a [0 – 3sec] time window for the epoch and 

the absence of any band-pass filters. The best cross-validation score, for the optimal 

configuration, was 0.94 (AUROC) using the ERPCov + TS + LR Pipeline.  After excluding 

‘bad’ training subjects (subject selection) we got an even better score of 0.958 for cross-

subject evaluation. Finally, we fine-tuned the classifier’s hyper-parameters using Grid 

Search, achieving a final score of 0.963. This score is at the upper end of the scale, 

especially for Cross-Subject evaluations. To verify the results, we tested the best-optimized 

pipeline, on new unseen data of the same dataset, achieving an AUROC = 0.743.  

 

Figure 16: PhysionetMI optimization steps and results 

 

Detailed results 
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From the results of the pre-processing analysis script, we found that for this dataset, 

the optimal pre-processing configuration was the use of a [0 – 3sec] time-window for the 

epoch and the absence of spectral filters. The best-performing pipelines were those that 

were using ERP or xDAWN covariances for features extraction. This is probably due to 

visual evoked potential associated with the experimental paradigm. 

Table 7: PhysionetMI – Cross-Subject classification performance for the top 5 pipelines 

using optimal pre-processing configuration 

pipeline Mean 
AUROC 

ERPCov + TS + LR 0.936 

ERPCov + TS + SVM Rbf 0.927 

XdawnCov + TS + SVM Rbf 0.922 

XdawnCov + MDM 0.919 

XdawnCov + TS + LR 0.900 

 

The following table presents the score for all the pipelines averaged over four 

different setups for the pre-processing configuration: 

• evaluations without a spectral filter over all different time-windows (column 2). 

• evaluations for the [0 – 3sec] time-window, over all filter setups (column 3). 

• evaluations without a spectral filter over the [0 -3sec] time-window. The optimal 

pre-processing setup (column 4). 

• all evaluations with all spectral and time-windows (column 5). 

Table 8: PhysionetMI - Cross validation score for all the pipelines 

Pipeline Spectral Filter None All   None  All 

epoch All 0 - 3 0 -3 All 

ERPCov + TS + LR 0.823 0.769 0.936 0.685 

ERPCov + TS + SVM Rbf 0.799 0.731 0.927 0.664 

XdawnCov + TS + SVM 

Rbf 
0.820 0.667 0.922 0.584 

XdawnCov + MDM 0.819 0.666 0.919 0.583 

XdawnCov + TS + LR 0.784 0.658 0.900 0.571 
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ERPCov + TS + LDA 0.774 0.580 0.896 0.551 

ERPCov + MDM 0.741 0.687 0.862 0.623 

XdawnCov + TS + LDA 0.708 0.610 0.827 0.547 

RG + LR 0.615 0.691 0.658 0.635 

RG + SVM Rbf 0.621 0.691 0.650 0.651 

RG + SVM Linear 0.607 0.674 0.645 0.624 

RG + LDA 0.540 0.569 0.586 0.550 

RG + SVM Poly 0.553 0.616 0.559 0.582 

CSP4 + SVM Rbf 0.518 0.547 0.547 0.539 

CSP4 + SVM Linear 0.510 0.569 0.532 0.545 

CSP6 + LDA 0.517 0.575 0.530 0.555 

CSP4 + LDA 0.509 0.572 0.529 0.546 

CSP4 + LR 0.508 0.570 0.529 0.546 

CSP6 + LR 0.518 0.575 0.529 0.555 

CSP8 + SVM Rbf 0.515 0.565 0.516 0.548 

CSP4 + SVM Poly 0.505 0.559 0.496 0.540 

CSP8 + SVM Linear 0.506 0.592 0.493 0.558 

CSP8 + LR 0.505 0.591 0.486 0.558 

CSP8 + SVM Poly 0.495 0.580 0.485 0.545 

CSP8 + LDA 0.504 0.591 0.481 0.558 

mean (all pipelines) 0.61256 0.6198 0.6576 0.57772 

 

Pipelines using xDAWN or ERP Covariances for features extraction performed 

better on raw unfiltered data.  CSP-based pipelines, on the other hand, performed relatively 

better when applied to band-passed filtered data. 

Table 9: PhysionetMI – mean score of features extraction ‘families’ 

Features 

Extraction 

filter None All None All 

epoch All 0 - 3 0 - 3 All 

xDAWN Covariances 0.783 0.650 0.892 0.571 

ERP Covariances 0.784 0.692 0.905 0.631 

Covariances (RG) 0.587 0.648 0.620 0.609 

CSP 0.509 0.574 0.513 0.549 
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Figure 17: Performance of pipelines with and without spectral filtering 

From the figure, we can observe that CSP-based pipelines performed better on band-

passed data, while Riemannian-based pipelines performed better on raw unfiltered data. 

Score per subject 

Analyzing further the results, we found that subject number 5 had significantly 

lower results for the optimal pre-processing configuration (M = 0.524, 95% CI [0.464, 

0.584]). When we excluded subject 5 from the evaluation, we got a higher cross-validation 

score of 0.958 for the optimal pre-processing configuration and the best pipeline.   
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Table 10: PhysionetMI - Cross validation score per subject 

 
All pre-processing 

configurations 

Optimal pre-
processing 

configuration 

subject 
mean 

score (all 
pipelines) 

mean 
score 
(best 

pipeline) 

mean 
score (all 
pipelines) 

score 
(best 

pipeline) 

7 0.657 0.827 0.710 0.984 

2 0.620 0.769 0.713 0.990 

8 0.586 0.618 0.623 0.870 

9 0.584 0.685 0.645 0.909 

4 0.584 0.733 0.671 0.915 

1 0.567 0.677 0.700 0.970 

3 0.534 0.611 0.678 0.988 

6 0.514 0.596 0.656 1 

5 0.554 0.649 0.524 0.796 

mean 
 (all subjects) 

0.578 0.685 0.658 0.936 

 

Figure 18: PhysionetMI dataset – Cross validation score per subject using optimal pre-

processing configuration and the best pipeline. 
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Hyper-parameters tuning 

As a last optimization step, we performed hyper-parameters tuning for the 

classifier. Our best classification pipeline is using Logistic Regression for the classification 

step. In order to choose the best hyper-parameters for the LR learner, we used grid search 

cross-validation in a finite space of possible values for the best parameters [C, penalty, 

solver]. The obtained best parameters allowed us to achieve our final best cross-validation 

score of 0.963 (AUROC).  

Table 11: PhysionetMI - Hyper-parameters optimization for Logistic Regression 

Classifier 

Parameter Best value 

C value 0.518 

penalty L2 

solver Limited-memory Broyden–Fletcher–Goldfarb–Shanno Algorithm (lbfgs) 

 

Comparison of trial types (imagined vs executed trials) 

For this dataset, we have run the pre-processing evaluation script three times. One 

using only trials of imagined movement, one using only trials of executed movement and 

one using trials of both imagined and executed movement.  The results reveal a very small 

improvement of 0.016 when using trials of executed instead of imagined movement. There 

is no further improvement if we combine trials of imagined and executed movement. 
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Figure 19: PhysionetMI - Average score per trial type for the best 5 pipelines. 

Average cross-validation score per movement type, for the best 5 pipelines using the 

optimal pre-processing configuration (before subject selection and hyper-parameters 

tuning). 

Test on completely unseen data 

To test the performance of the optimal pipeline on completely unseen data, we fit a 

model using the optimal hyperparameters on the training subjects (subjects [1 – 9]) and 

used it to predict the probabilities on a new unseen subset of subjects (subjects [10 – 19]) 

of the same dataset. The mean classification score was 0.743, indicating that our optimal 

model generalizes well and is able to make 74% correct predictions on completely unseen 

data.  
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Figure 20: PhysionetMI - Confusion matrix for the optimal model on unseen data 

 

Ensemble learning methods 

In order to evaluate if an Auto Machine Learning framework could reach the 

performance of our approach, we used TPOT (Olson et al., 2016),  a Python library that 

automatically creates and optimizes full machine learning pipelines using genetic 

programming. Automatic machine learning (AutoML) frameworks reduce the load on data 

scientists so they can spend less time on feature engineering and hyperparameter tuning. 

We tested TPOT on the PhysionetMI dataset, using 50 generations and a light configuration 

(a built-in configuration with only fast models and pre-processors). 

The best result we managed to get was 0.763 (AUROC) which is significantly lower 

than the score we got from our best performing pipeline. The main reason for this lower 

performance is that TPOT was not able to use EEG-specific features extraction algorithms.  
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The exported pipeline from TPOT is the following: 

 

Figure 21: PhysionetMI - The TPOT generated pipeline 

 

Deep learning methods 

As a final experiment, we decided to test deep learning methods on the PhysionetMI 

dataset, in order to evaluate the performance of end-to-end learning, i.e. leaning from raw 

data. For this, we used a convolutional network with shallow architecture (one temporal 

convolution, one spatial convolution, squaring and mean pooling, a softmax layer) as 

proposed by (Schirrmeister et al., 2017). For training, we used the first 8 subjects of the 

PhysionetMI dataset and for validation the last 2 subjects (subject 9 & 10). We run the 

neural network on different time-windows and spectral filters and the best cross-validation 

result we got was 0.656 (accuracy). 

  

LogisticRegression(C=0.5, dual=True, penalty="l2")

VarianceThreshold(threshold=0.005)

Normalizer(norm="max")

StackingEstimator(estimator=BernoulliNB(alpha=100.0, fit_prior=False))

SelectPercentile(score_func=f_classif, percentile=63)

MaxAbsScaler()

RobustScaler()

StackingEstimator(estimator=GaussianNB())

ZeroCount()
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Table 12: PhysionetMI - results using a shallow convolutional neural network 

filtermin filtermax tmin tmax accuracy 

1 40 0.6 3.6 0.656 

1 30 0.6 3.6 0.644 

1 35 0.4 3.4 0.644 

1 35 0.6 3.6 0.644 

1 40 0.2 3.2 0.644 

1 40 0 3.5 0.633 

1 40 0.4 3.4 0.633 

1 45 0.2 3.2 0.633 

1 50 0.2 3.2 0.633 
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Discussion  

The results of cross-subject classification for both datasets are in the upper end of 

the scale and demonstrate that our method for automatic optimization of the pre-processing 

configuration works well. Although that we trained the pipelines with a relatively small 

number of subject’s data (9 subjects) the classification algorithms generalized well, and we 

managed to get a 74% prediction score on completely unseen data using unseen subjects 

of the PhysionetMI dataset.  

The primary reason for the lower classification results of BNCI compared to 

PhysionetMI is the fact that the BNCI EEG recording was conducted using only 3 

electrodes while 64 electrodes were used for the PhysionetMI recording. Another possible 

reason for the lower performance is the high inter-subject and inter-session variability of 

this dataset. According to the description provided for the BNCI recording procedure, prior 

to the first motor imagery training, the subject executed and imagined different movements 

for each body part and selected the one, which they could imagine best (e. g., squeezing a 

ball or pulling a brake). Furthermore, the placement of the three electrodes was slightly 

different for each subject. Those design decisions probably made the decoding algorithms 

less robust to modifications of the EEG source spatial distributions that are typically 

observed across sessions and across subjects. In addition, the BNCI dataset exhibits greater 

variability because it contains 5 different sessions per subject, while on the other hand, the 

PhysionetMI dataset included a single session per subject.  

In relation to the decoding pipeline, we demonstrated the importance of the signal 

pre-processing stage and the selection of the features extraction method for the final 

classification performance. Generally, regarding classification algorithms, we discovered 

that very high performances can be obtained using simple linear classifiers such as Logistic 

Regression or SVM. The most important factor seems to be the design and selection of the 

features that describe the EEG signal. Riemannian Geometry based pipelines projecting 

the data points to a tangent space followed by a standard linear classifier performed 

unexpectedly well in both datasets. CSP methods performed much better when applied to 

band-passed trials or in datasets having a limited number of channels.  

Approaches that could not make use of EEG specific feature extraction methods 

did not perform well, compared to classical machine learning pipelines that used CSP or 
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Riemannian Geometry. The shallow Convolution Neural Network approach did not 

achieve good results compared to the traditional machine learning approaches.  

Finally, we should emphasize that the performance we got in our approaches have 

been evaluated only offline, using data acquired in lab conditions. However, an actual BCI 

application is primarily online and in an unknown environment. In the next chapter, we 

will attempt to build an online BCI system using MUSE, in order to study and validate 

these classification methods online as well.  
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Chapter 7. 

Experiments with MUSE headband 

Introduction 

In this chapter, we describe our approach to build a prototype BCI system using the 

MUSE headband. The requirements we set for our BCI system were as follows: 

• Complete: In the sense that it shall encompass all three parts of a BCI system: the 

signal acquisition from the EEG hardware, the signal processing, and classification 

part, and finally the control – feedback mechanism.  

• Active: Driven from brain activity which is directly consciously controlled by the 

user, namely based on the Motor Imagery paradigm. 

• Online: Able to analyze signals coming in real-time from the EEG hardware.  

• Asynchronous: able to continuously analyze the signals for command patterns and 

able to identify (and ignore) rest states. 

 

We started with the development of the necessary software stack that allowed the 

acquisition of EEG signals from the MUSE device in real time. Once we managed to 

connect and get the EEG signal, we performed various offline experiments with data 

recorded from the MUSE device, in order to evaluate the performance of classification 

using EEG signal from the MUSE deice. The analysis revealed that while MUSE was able 

to detect and identify ERP components phase-locked to a specific stimulus, its performance 

for the Motor Imagery paradigm was very low. The number and the location of MUSE’s 

electrodes are not suitable for the development of a reliable active BCI system based on 

the Motor Imagery paradigm. For this reason, we decided to ‘soften’ our initial 

requirements, excluding the Motor Imagery paradigm and allowing control via 

identification of eye-blinks or eye movements that are known to produce clearer signals 

with larger amplitudes. 
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The Muse Headband 

We decided to use the MUSE headband for the data acquisition in our experiments 

because it is one of the easier bands to get started with, as it requires no head preparation 

and is relatively cheap. It allows for wireless signal transport via Bluetooth and most 

importantly it broadcasts the raw EEG signal.   

 

Figure 22: The MUSE headband and the location of its electrodes 

 

The MUSE has electrodes located analogous to AF7, AF8, TP9, and TP10 of the 

10-20 International System and utilizes the electrode at FPz as the reference electrode.  It 

has a 256 Hz EEG Sampling Rate and an A/DC resolution of 12 bits.  
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Software Tools & Frameworks 

Signal capturing & decoding 

The digital processing algorithms have been written in Python 3. The main Python 

modules used were: 

• pandas for file operations 

• numpy for matrix calculations 

• mne for epoching and time-domain & spatial filtering 

• sklearn for classification algorithms 

• pyriemann for classification using Riemannian geometry of covariance matrices 

• matplotlib and seaborn for plotting. 

EEG data streaming 

For real-time streaming of EEG time series data over the network, we used a Python 

interface to the Lab Streaming Layer (LSL). The Lab Streaming Layer is a system designed 

to unify the collection of time series data for research experiments originally developed at 

the Swartz Center for Computational Neuroscience. LSL has become standard in the field 

of EEG-based brain-computer interfaces for its ability to make separate streams of data 

available on a network with time synchronization and near real-time access.  

For the need of our system, we used the Python implementation of the core transport 

library, in order to:  

• Stream real-time EEG data from the MUSE headband and synchronize them with 

the event marker data from the stimulus targets that appeared on the screen during 

the training data collection phase.  

• Stream real-time EEG data, during the actual use of the system. 

Controlling Home Automation 

For the control of lights, we have developed a Python module  responsible to 

interact with the Alexa Voice Service (“Alexa Voice Service,” n.d.) Amazon's suite of 
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services built around its voice-controlled AI assistant for the home and other environments. 

We first had to create a developer account with Amazon and then register a new product 

and create a security profile in the AVS Portal.  After that, we implemented the required 

http requests to interact with the AVS API.  

Because the AVS API accepts only requests containing speech (audio) we used a 

text to speech Python package to convert each command of the system to an audio file, 

which then we send to the AVS endpoint.  
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Offline Analysis 

Before start developing the necessary modules for our BCI system, we decided first 

to perform some offline tests using data acquired directly from the MUSE.  The rationale 

behind this was to first verify that the Motor Imagery paradigm can be supported from the 

MUSE, before proceeding with the online implementation.  

Methodology 

For the offline tests, we first prepared a Python script responsible for EEG data 

acquisition from the MUSE along with stimuli markers according to an experimental 

protocol. We then saved the acquired EEG data and the markers (as trial labels) into CSV 

files and analyzed them on an interactive python environment using Jupyter Notebooks.  

In order to capture training data for offline analysis, we first developed a Python 

script responsible for the Bluetooth communication with MUSE and the presentation of 

various stimuli to the screen. The Python script starts two background process, one for 

EEG signal acquisition and one for stimuli presentation.  

• The first process connects to the MUSE, receives EEG data using Bluetooth and 

pushes them continuously to an LSL stream. 

• The stimulus presentation process is based on PsychoPy, an open source Python 

package for the generation of experiments for neuroscience and experimental 

psychology. We designed different experiments for the Motor Imagery and ERP 

Paradigms, both of which, start by repeatedly displaying images representing the 

stimuli of the experiment (e.g. left or right hand for the Motor Imagery paradigm). 

When a stimulus is displayed on the screen, the process pushes a marker with the 

class of the stimulus (e.g. left-hand or right-hand) to the second LSL stream. 

After a predefined duration, the Python script closes the two streams, combines 

them and saves the results to a csv file. Having collected enough training trials to csv files, 

we then used the Jupyter Notebook Python environment for the analysis, pre-processing 

and classification tasks.  
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Figure 23: Data acquisition from MUSE (diagram) 

 

Figure 24: Capturing data from the MUSE using Python 
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MI Paradigm Analysis 

The purpose of our first experiment was to assess if the MUSE headband can detect 

the Motor Imagery phenomenon. For this, we first developed a Python script responsible 

for the collection of the training data. Then we analyzed the recorded data using the Python 

MNE library. Finally, we tried different feature extraction and classification pipelines on 

the captured data in order to evaluate the performance of a potential brain-computer 

interface using MUSE with the Motor Imagery Paradigm. 

Data Recording Protocol 

For the collection of the training data for the Motor Imagery Paradigm, we designed a 

training procedure in which each training session runs for a total duration of 2 minutes and 

contain multiples trials. In each trial, a fixation cross would first appear for a random time 

(less than a second), followed by the image of either a left or right fist on the screen. The 

user performed motor imagery while the image remained on screen for 4s. Each trial was 

followed by an inter-trial rest period of 2 s.  With this procedure, each session contained 

approximately 20 trials. 

 

Figure 25: MUSE – Motor Imagery data recording protocol 
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Preprocessing and Analysis 

Once we collected enough data for training (10 csv files of 2 minutes duration each) 

we proceeded with the preprocessing and the analysis of the data. For this part, we worked 

on Jupyter Notebooks in order to facilitate experimentations with various parameters and 

filters.  

For the preprocessing, we used the pandas library to read and combine the data 

from the csv files and load them into a mne Raw object.  Afterward, in order to check how 

noisy our data are, we plotted the power spectrum density (PSD). The PSD shows the signal 

power distribution along the range of frequencies. As can be seen from the PSD the data 

are noisy with a high peak on the upper frequencies. There is a large peak at 50 and 100 

Hz, representing background electrical activity from the electric power grid. 

 

Figure 26: MUSE - The PSD of the Motor Imagery task 

The peak at 50 and 100 Hz represents the line frequency from the electric power grid. 
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Because event-related desynchronization/synchronization is detected mainly in the 

µ (8- 12 Hz) and β (18 – 26 Hz) bands, we decided to filter the raw signal, in order to keep 

only frequencies between 1 and 30 Hz.   As can be seen from the next Figure (the PSD of 

frequencies between 1 and 30 Hz), the filtered signal is less noisy. The huge peak from 1 

to 3hz is largely due to the presence of eye blinks, which produce large amplitude, low-

frequency events in the EEG. 

 

Figure 27: MUSE - The filtered PSD of Motor Imagery task 

 

Next, we epoched the data into segments of 3 seconds representing the signal from 

0.5 to 3.5 sec after each stimulus. We decided to use epochs that start 0.5 seconds after cue 

onset to avoid evoked potentials that can falsely contribute to BCI classification accuracy 

independent of user-driven modulation. We then rejected epochs where the amplitude of 

the signal exceeded 100 uV, which removed most trials with eye blinks. From a total of 

120 epochs, we rejected about 1.7 % of them, remaining with 118 trials (71 for the left 

hand and 47 for right hand).  
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We used the CSP algorithm to detect components that maximize the difference 

between the 2 classes (left & right fist).  

 

Figure 28: MUSE - The CSP components of the captured data 

 

Features extraction and classification 

For the features extraction step we applied the Common Spatial Patterns algorithm 

with 4 components, while for the classification step, we used both Logistic Regression and 

LDA. In order to be able to compare the results, we tested also 2 other pipelines based on 

vectorization of the data for features extraction with Logistic regression or LDA for the 

classification. In total we run the following four pipelines over the data:  

• Vect + LR: Vectorization of the trial and Logistic Regression. This can be 

considered the standard decoding pipeline for MEG / EEG. 

• Vect + RegLDA: Vectorization of the trial, Regularization and Linear 

Discrimination Analysis.   

• CSP4 + LR: Spatial filtering using Common spatial Patterns algorithm (4 

components) and Logistic Regression.   

• CSP4 + LDA: Spatial filtering using Common spatial Patterns algorithm (4 

components) and Linear Discrimination Analysis. 

For the cross-validation, we used a Stratified Shuffle Split with 20 splits and a 75 

– 25 ratio between training and test. The stratified approach ensures the preserving of the 

percentage of samples for each class. For each pipeline, we used the sklearn’s 

cross_val_score method to evaluate a score by cross-validation. We used ROC AUC as 
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the scoring function and saved the results on a pandas data frame in order to display and 

visualize them.  
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Discussion of results 

The best classification pipeline uses the CSP algorithm for the features extraction 

and has a mean AUROC score of 0.61. This is very close to chance level and probably not 

enough to run a brain-computer interface. 

 

Table 13: MUSE - Motor Imagery Classification results 

Method AUC 

CSP4 + LDA 0.591 

CSP4 + LR 0.613 

Vect + LR 0.522 

Vect + RegLDA 0.530 

 

The poor results of the MUSE for the Motor Imagery classification task can be 

explained by the number and the location of its electrodes. The sensorimotor rhythms 

(SMRs) of motor imagery are primarily linked to the central area of the brain. Most 

researches focused on the classification of EEG signals of left / right hand motor imagery 

are proposing the use of data captured from C3 and C4 electrodes which are located on the 

top of the head. The MUSE has the minimum number of sensors and its electrodes sites 

(TP9, AF7, AF8, TP10) are not well positioned for the motor imagery task.    

 Another factor that can explain the poor performance of the MUSE decoding 

compared to the decoding of the two public datasets, is the biological, environmental and 

instrumental artifacts that had probably contaminated our raw EEG signal. These 

contaminations can better be controlled and suppressed in a laboratory as compared to a 

home environment.  

   

Figure 29: MUSE - Motor Imagery 

Classification results 
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ERP Paradigm Experiments 

The purpose of our second experiment was to assess if the muse headband is 

capable of detecting ERP components. We have chosen the N170 ERP component for this 

experiment because MUSE’s temporal electrodes (TP9 and TP10) are well positioned to 

detect the N170 which is most easily detected at lateral posterior electrodes.  

The N170 is a large negative event-related potential (ERP) component that occurs 

after the detection of faces, but not objects or other body parts such as hands. The N170 

occurs around 170ms after face perception and is most easily detected at occipital-temporal 

electrode sites such as T5 and T6 (Eimer & Williams, 2000). Although there is no 

consensus on the specific source of the N170, researchers believe it is related to activity in 

the fusiform face area, an area of the brain specialized for facial recognition.   

 

Figure 30: The N170 ERP component 
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In order to verify the N170 component, we developed a Python script responsible 

for the presentation of stimuli that include faces images and the recording of the 

corresponding brain activity. Using Jupyter Notebooks, we analyzed the recorded data and 

applied different classification pipelines in order to evaluate the performance of a potential 

brain-computer interface using the N170 ERP component. 

Data Recording Protocol 

 For the collection of the training data for the N170 ERP Paradigm, we designed a 

training procedure in which each training session runs for a total duration of 2 minutes. 

When a session starts, a series of images are displayed on the screen, some of which are 

showing faces. Each image is displayed for an interval between 0.8 and 1 sec. (iti = 0.8sec 

+ jitter).   There is also a small stimulus onset asynchrony (soa) of 0.2 seconds between 

each trial.   The user is looking at the screen and his EEG signal is recorded simultaneously 

with the stimulus markers representing the currently displayed image.  With this procedure, 

each session contained approximately 120 trials.  

 

Figure 31: MUSE - ERP data recording protocol 

 

Preprocessing and Analysis 

Once we collected enough data for training (10 csv files of 2 minutes duration each) 

we proceeded with the preprocessing and the analysis of the data in order to see if we can 
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identify the N170. For the preprocessing, we first used the MNE library to read the data 

from the csv files and load them into an MNE Raw object.   

Frequency domain analysis 

In order to check how noisy our data are, we plotted the power spectrum density of 

the dataset. As can be seen from the next figure, the PSD looks good. There is a large peak 

at 50hz, representing background electrical activity from the electric power grid. 

 

Figure 32: MUSE - The PSD of the ERP task 

The peak at 50hz represents the line frequency from the electric power grid. 

Because most ERP components are composed of lower frequency fluctuations, we 

decided to apply a band-pass filter in order to keep only frequencies between 1 and 30 Hz. 

This increased the ability to detect the underlying component in our data. 
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Figure 33: MUSE - The filtered PSD of the ERP task 

 

As can be seen from Figure 33, (the PSD of frequencies between 1 and 30 Hz) the 

difference between the temporal channels (red and black) and the frontal channels (blue 

and green) is clearly evident. The huge peak from 1 to 3hz is largely due to the presence of 

eye blinks, which produce large amplitude, low-frequency events in the EEG. 

Time domain Analysis 

After the filtering, we epoched the data into segments of 900ms representing the 

data 100ms before to 800ms after each stimulus. We also rejected epochs where the 

amplitude of the signal exceeded 100 uV, which removed most trials with eye blinks. From 

a total of 1300 epochs we rejected about 4% of them and then we averaged the remaining 

epochs over each class and plotted the corresponding waveforms over each electrode.  
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Figure 34: MUSE - averaged waveforms over each electrode for the N170 

There is an evident deflection in the temporal channels, representing the N170 

component. 

In this plot, there is a noticeable deflection in the temporal channels around 200ms 

for face stimuli. This is likely the N170, although appearing slightly later due to delay in 

receiving the data over Bluetooth. There's not much to see in the frontal channels (AF7 and 

AF8), but that is expected, as the N170 is mostly a lateral posterior brain phenomenon. 

Features extraction and classification 

We used seven pipelines to evaluate different approaches for the features extraction 

and classification of the EEG signals.  Most of them are commonly used in ERP-based 

BCIs: 

• Vect + LR: Vectorization of the trial with Logistic Regression. This can be 

considered the standard decoding pipeline for MEG / EEG. 

• Vect + RegLDA: Vectorization of the trial and Regularized Linear Discrimination 

Analysis (LDA). This adds an extra step of transforming the data such that its 

distribution will have a mean value 0 and standard deviation of 1.   

• ERPCov + TS + LR: ERP Covariances with tangent space mapping. One of the 

most reliable Riemannian geometry-based pipelines. 
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• ERPCov + TS +SVM Rbf: The same with the previous pipeline, but using SVM 

with an Rbf kernel for the classification step.  

• ERPCov + MDM: ERP Covariances with Riemann Distance to Geometric mean 

classifier. A very simple, yet effective (for low channel count), Riemannian 

geometry classifier. 

• XdawnCov + TS + LR: data are dimensionally reduced using XDawn algorithm, 

the covariance matrices for each ERP epoch are calculated and projected to Tangent 

space. Logistic Regression is used for the classification step.   

• XdawnCov + MDM:  The xDAWN algorithm is used to reduce the dimensionality 

of the data and then Riemann Distance and Geometric mean are applied to classify 

the covariance matrices. 

 

For the cross-validation, we used a Stratified Shuffle Split with 20 splits and a 75 / 

25 ratio between training and test. The stratified approach ensures the preserving of the 

percentage of samples for each class. For each pipeline, we used the sklearn’s 

cross_val_score method to evaluate a score by cross-validation. We used ROC AUC as 

the scoring function and saved the results on a pandas dataframe in order to display and 

visualize them. 

Discussion of results 

The best classifiers for this dataset appear to be the ERPCov and XdawnCov with 

tangent space projection pipelines. AUC is around .71, which is good, but on the low end 

for being able to run a brain-computer interface. The Muse's temporal electrodes (TP9 and 

TP10) are well positioned to detect the N170 and it allowed us to detect the N170 emerge 

from just a few dozen trials. The performance would be probably much better is we used 

an EEG device with more channels. 
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Table 14: MUSE - ERP Classification results 

PIPELINE AUC 

VECT + LR 0.673 

VECT + REGLDA  0.685 

ERPCOV + TS + LR 0.712 

ERPCOV + MDM 0.698 

XDAWNCOV + TS  + LR 0.712 

XDAWNCOV + MDM 0.693 

ERPCOV + TS + SVM 

RBF 

0.703 

 

 

Figure 35: MUSE - ERP Classification results 
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Experimental Online BCI using MUSE 

The accuracy level of Motor Imagery classification using MUSE is only a bit higher 

than chance. Considering that the performance we obtained using MUSE was evaluated 

only offline, we are not very optimistic about the ability of MUSE to support an online BCI 

based on the Motor Imagery paradigm.  To be able to operate an active BCI using MUSE, 

we decided to ‘soften’ our requirements replacing the Motor Imagery paradigm with 

simpler paradigms that can be detected with higher accuracy. We tried two different mental 

paradigms for the control of the smart-home environment. The first distinguished between 

the rest state, where user relaxes without performing any mental task, and another state in 

which the user performs mental calculus. The second paradigm uses eye-blinks that are 

known to produce a stronger signal which can be detected with higher accuracy. The basic 

modules of our BCI are presented below. 

 

Stream Receiver 

The base module for acquiring signals from the MUSE. The underlying data 

communication is based on Lab Streaming Layer (LSL) which provides sub-millisecond 

time synchronization accuracy. 

 

Stream Recorder 

Connects to the Stream Receiver LSL stream and records signals into csv files. It 

also receives and records stimulus events for the epoching of the EEG signals.  

 

Stimulus Presentation 

This module is responsible for the presentation of the stimulus during the collection 

of training data. We used the Python pygame library to create various visual presentation 

scenarios. When a stimulus is presented to the user, this module sends a marker to the 

Stream Recorder module with the timing and the class of the event.   

 

Offline Trainer 

Reads the data from the saved files and trains a pipeline using a specific 

combination of feautures extraction methods and classifier for each mental paradigm. The 
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signal is filtered in the range of 8 to 30 Hz and epoched based on the events captured during 

the training.  Subsequently, it runs a 10-Fold cross-validation on the epoched data in order 

to calculate the mean performance of the classifier. The best pipeline is serialized and saved 

for later use using the pickle Python module.    

 

Online Decoder 

This is the module that runs our BCI during actual use. The decoder first loads the 

best saved pipeline from the disk and then connects and acquires EEG raw data from the 

Stream Receiver module. The raw data are then buffered and send (in chunks) to the trained 

model to extract probabilities about each class. We use a 65% threshold filter on the output 

probability in order to decrease false positives. This module makes use of multi-processing 

parallel execution to achieve high-frequency decoding.  

 

Amazon Alexa Agent 

When a control signal is detected, the Online Decoder module forwards the 

predicted command to the Amazon Alexa Agent module.  This module communicates with 

the Amazon Voice Service asking it to perform a specific action. Because the Alexa Voice 

Service API accepts only requests containing speech (audio) we used the Windows SAPI 

programming interface to convert each command of the system to an audio file, which then 

we upload to the AVS endpoint. The Amazon Voice Service interprets the command and 

communicates with the Amazon echo device which in turn sends the requested command 

to the smart light bulbs.  
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Figure 36: The basic architecture of the implemented BCI system 

The user thoughts are translated to control signals  

After multiple experiments with the online decoder, we trained two different 

families of pipelines. The first distinguishes 2 states; a mental rest state where the user 

stays calm without thinking and a mental intense calculus state during which, the user is 

performing internal arithmetic calculations. The second pipeline detects 3 states; rest, left 

eye blink and right eye blink. 

 The first pipeline uses feautures based on the signal power on the alpha, theta and 

delta bands, as well as, a constructed feature based on the Alpha/Theta Protocol, a popular 

neurofeedback metric for stress reduction.  The second pipeline uses an averaging time-

window and detects the eye blinks using the maximum voltage in this window. Because 

the eye blinking mostly affects the frontal electrodes, we decided to use data only from the 

electrodes AF7 and AF8 that are located on the forehead. After testing both pipelines, we 

concluded that the one based on eye-blinks is more suitable for our scenario because it can 

express two control commands and it allows better control and shorter feedback times. 
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Chapter 8. 

Summary and Future Work 

Summary 

The purpose of this thesis was to study Brain-Computer Interfaces both 

theoretically and in practice. We started the thesis with an introduction into brain-computer 

interfaces and gave an overview of types and applications for BCI. We discussed the 

emerging commercialization of EEG equipment and the trends in this field. We then 

divided the rest of this thesis into three parts. 

In the first part, we presented the workflow for brain signal classification and 

reviewed the current trends and algorithms for extracting features and classifying EEG 

signals. We also presented the main supervised classification approaches and made a brief 

introduction to deep learning and neural networks. 

In the second part, we conducted a comparative empirical study of various EEG 

classification pipelines on two public Motor Imagery datasets. We presented the results of 

a series of offline experiments and pointed out the importance of the signal pre-processing 

stage. For this part, we developed and presented a methodology for improved classification 

results by automatic optimization of the pre-processing configuration, via the search in a 

space of possible pre-processing parameters. Using this approach, we got good results for 

cross-subject classification of Motor Imagery trials on both public datasets. Although the 

good results, we would like to emphasize that both datasets had been gathered from 

synchronized tasks, allowing to know the exact onset and offset time of imagery events. 

This bypasses many of the difficulties in signal cleaning and normalization. However, in 

real applications, the MI-based BCI needs to be asynchronous. This raises the need to 

explore other approaches for the signal classification. 

Moving forward, in the third and final part, we experimented with the MUSE 

headband and built a prototype home-control BCI, supporting 1) real-time communication 

and acquisition of EEG signal from MUSE, 2) online decoding and classification of the 

captured signal, and 3) home-automation control via the Amazon Alexa Voice Service.   
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All three parts of our BCI system are written in Python, which allows our system 

to run independently on most modern operating systems.  
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Future Work 

This research proposed a system that uses a commercial EEG headband (MUSE) 

to interact with a smart-home environment.  The performance of the prototype BCI system 

was severely reduced, mainly because of the limitations of the EEG headset. Furthermore, 

many initial ideas, adaptations, tests, and experiments, were left for the future due to lack 

of time or resources (i.e. the experiments with deep learning methods was very time 

consuming, requiring even days to finish on our laptop). 

 In a future work, we would opt for a better (and more expensive) EEG device with 

more channels and improved signal acquisition capabilities. Having access to more raw 

data, we would then focus on developing more robust and consistently efficient algorithms 

that can be used easily and online and are able to work with small training samples, noisy 

signals, high-dimensional and non-stationary data. A promising approach in this direction 

would be the adoption of Reinforcement learning methods for the signal classification. 

Future work may also be done on multi-class classification methods, allowing the detection 

of more commands from the system and thus a better control experience for the user. 

An initial idea we had little time to test and maybe a possible extension of this work 

is the use of the emerging technology of Web Bluetooth for the physical Web. Web 

Bluetooth is an API that enables interaction with Bluetooth devices through web browsers. 

Interaction through browsers is a key part of the physical web that adds many possibilities 

for device interaction. In the case of BCI systems, a possible use could be the 

crowdification of the training data acquisition.  Users owning EEG headbands could simply 

open a URL and record their EEG signal under different experimental protocols. This 

would allow the collection of massive amounts of data that could be fed to train data 

‘hungry’ deep learning models. Such a system could also allow for an automatic signal 

screening process, rejecting sessions where the recorded signal does not satisfy specific 

criteria.  Web Bluetooth can also be used to simplify and decentralize the architecture of a 

BCI system that will control a smart-home. It will allow zero-configuration deployments 

and instant use of the system, eliminating the need for a dedicated computer acting as a 

middleware between the headset and the smart-home devices. Finally, cloud-based 

intelligence could be used to adapt and improve the system’s performance, by exploiting 

reinforcement learning methods on new training data from multiple users.  
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A different possible future extension of the work presented in this thesis could be 

the combination of an EEG device with a Virtual Reality (VR) Headset in order to build a 

brain-controlled AR/ VR environment with increased channels of input.  Such an 

environment could be both responsive and adaptive to user behavior combining an active 

and a passive BCI.  An active BCI would explicitly allow users to issue commands or to 

enter text in order to interact with the VR environment, while the passive BCIs could 

monitor the user's state (e.g. workload level, attentional state) and adapt the VR/AR 

interface.   

Connecting human minds to various technological devices and applications through 

brain-computer interfaces (BCIs), will allow intriguingly novel ways for humans to engage 

and interact with the world and with each other.  In the following decades, BCI systems 

that only a few years ago might have been considered science fiction, will be realized and 

become part of our lives. The only limit is our imagination.  
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