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IMepirndn

H Buounyavia e€ehicoeton oe tétoto Bodud 6mou 1 avdpdmvn mapéufoon yio T Aertovpyelo
TWV CLCTNUATOY, TEIVEL VoL EEXPAVICTEL UE TO TEQUOUA TOU YPOVOU. Loy ATOTEAECUA, £GTEL XU TO
o wxpod Addog oe éva choTnUo eEAEY oL umopel Vo amofel uolpato. Luvenng, 1 avdyxn avdmTu-
ENS LoYLEWY, ACPUADY Xl AELOTICTOY CUC TNUATWY EAEYYOU EVOL ETLTAXTIXY YO TOUS UMy ovixo0g
ehéyyovu. Ipoxewévou va unopodv va eyyunbdoldy to napandve, 16oo to Aoylouxd (software) 660
xou 10 Vhopxd (hardware) mpéner vor avahudolv xan va etvan BéBono dtL mhnpolv g amopodtnTeg
npoLnoléoelc.

H mo eupéwg dradedouévn cuoxeur| ehéyyou otny Blounyoavia ovopdleton mpoypouuatilOuevos
hoywée ereyxtic (PLC). Ta PLC yenowwonolotvton 6e 6ho 10 x60U0 o€ exatopuiplol Brounyavies
X0l CUVETKC 1) €YYONOY TNG ACQIAELNG TOU TUPEYEL VO TETOL0 CUCTNUA OMOTEAEL ol moLTTIXN
TEOXANOT YLoL TOUG Unyavixolg. Aoxipéc xou Tumixéc pédodol yenoteomolodvTol TROXEWWEVOU AOLTOV
va eheyyvel n opdotnTa evog PLC mpoypdupatoc.

Ytdyoc authic g mTuytaxnc epyaciag eivan 1 Bedtiwon tng diaopdiione twv PLC npoypay-
HATOVY %o 1) UElOT TV CQUAIATWY TOU TEPLEYOVTOL GTO AOYLOUIXO TOUG UE TNV EVOWOUATWOT XAl
TNV EQOPUOYT OTATIXAC avaAuong xddxor xou Plag Tumxhg pedodou. Tavtdypova, otod0¢ NG
nruytoic ebvan yéoa and autd va e€ahewpiel xdde ToAumAoxdTNTa amd TNV TAELEA TOL YENOTN.

Ta nepduorta xou ol yedodoloyieg Tou yenowomolinxay oe auUTH TNV TTLUYLOXY EYOUV EQUp-
nooctel o PLC mpoypduupota mou avantiydnxay oto CERN xou yenowonoobvtal oTta TELpduaTa
Tou de&dyovton xonuepLVd.



Abstract

Industry processes are evolving to the point where human interventions tend to
disappear with the passage of time and as a result even a small mistake in these
control systems can have catastrophic consequences. For that reason the need of
developing robust, safe and reliable control systems is fundamental for control en-
gineers. To guarantee the above both the hardware and the software have to be
analysed to ensure that they fulfil the requirements.

The most popular control device in the process industry is the Programmable
Logical Controller (PLC). PLCs are used all over the world for millions of industrial
processes. Guaranteeing the safety of such a system is a challenging task for engineers.
Testing and formal methods are used to check the correctness of a PLC program and
ensure its safety.

The goal of this thesis is to improve the safety assurance of PLC programs and
reduce the number of flaws in the software by integrating and applying static analysis
and one formal method technique in the development process and at the same time
hide any complexity from the developer.

The experiments and the methodologies used in this thesis have been applied to
real-life PLC programs developed at CERN.



H Towrhdxn-Ennionodiou Xewotiva, dnAdve uredduva ot

1. Elgon 1 %3t0Y0¢ TV TVEURATIXWY SXUOUATOV TN TEOTOTUTNG AUTAS pyaciag
xan and 660 yvopelew 1 epyacia wou de cuxogavtel tpdowna, ovTE TEOCRAAEL To
TIVEUUOTING. SLXOLOUATO TEITWVY.

2. Anodéyopan 6t n BKII pnopel, ywplc va ahhdéet to mepleyouevo tng epyaociog pou,
vo. 1) Bardéoel oe nhextpovix pop@n uéoa and T Ynelanc BiBhodxn tne, vo ty
avtiypdder oe omoodhinote uéoo f/xa o€ omoldNNOTE POPPSTUTO XADMDE o VoL
XEAUTA TEQLOTOTERA UG EVOL AVTIYEAPA YLt AOYOUS GUVTAENONS XAl ACPIAELIG.
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1 Ewaywyn

H teyvohoyia, e€ehiocduevn pe toyels puduoic Tic Teheutaleg dexoeties, Eyel emnpedoel
oyedov xde mtuyn g xadnuepvic woc Cwhg. Metd tov 180 awchvar 1 Bropmyovixy
ENAVACTAOT O@PEdYloe oe UeYdho Bodud Ny toTtopiar xoddde anotéhece To €00pog Yia
OLXOVOUXES, TOMTIXES O XOWWVIXES ahhayéc. Axdua, 1 autoyotomolinoy €pepe xou
ouvey(lel va épvel o@éln atny avip®mvn xowvwvia.

H Buounyavixn autoyoatonoinon eEehlooeton xou anotehel €vo onuavtind mopdyovta
otnv avdntuén tou Brounyovixod topéa. Ilailel onuovtind pdho otnv Behtivon tng
xadnuepvrc pac Cwng Tedypa Tou anodexvOEToL XaL and TO YEYOVOS OTL 0 UEGOS 6POG
Cwne xou o delixtne mAnduouol dpyloav vo auidvovton yden otny avamnTtuln VEwv Te-
YYohoyiwy xou cuoxevwy. Ilo cuyxexpéva, To yeco Plotixd eninedo xou o delxtng
manduouol deyloay va auldvovtal yden oty avanTUEN VEOY TEYVOAOYLOY XoL CUCXEU-
ov. Ewdyovtag oty Blounyavia tnv avtopatonoinoy, n mapéufacn tou avipehtou
HELWINXE 1) %O OVTIXATAC TAINUE OO AUTOUATOTOUNUEVES AELTOVRYIEC OTOY ETPOXELTO
ylor ETIVOUVES Epyaaiec.

H Bounyavixy autopatonoinoy, fede va ‘cheudepmoel’ toug avipwnoug and tny
XOURUC TIXN Xl TOAVWEY) EMTAENOT ERYACLOY oL oYeTI{ovTon UE TNV oAANAETOpao
HETOEY aUTOY Xo TV cuoTnudtwy eréyyou. H undpyouco dewplor ahhd xan ov Te-
yvohoyiec yUpw and o cucThUaTA EAEYYOLU anotehoLY TN BdoT Yiot TO OYEBLIOUS CU-
CTNUTWY Ue T emYuuNTéS CUUTERLPORES Tor omola dev ypetdlovton Ty enéufocT Tou
avipMTLYOU ToEAYOVTA YIoL VO AELTOURYICOLV.

Fevixdtepa, to ouotrhuata eréyyou ywpeilovia o teelc Paoixés xatnyoplec:

1. Xvothuata enonteiog (supervision): oe autd 1o eninedo, to epyalelo enontelag Tou
ouvivwe ovoudleton SCADA mopéyel T Slenagy| UE TOV YERLOTY TWV DEQYACLOV.

2. Yvothuata ehéyyou (control): autd to eninedo amoteheiton and Tic cUOKEVES €-
Myyou (m.y. PLC) ol onoleg mepleyouv v hoyi vy vo autopotonoindel pio
Oepyoaotio.

3. Iledio eléyyou (field): outéd o eninedo cuvtdoetar and wucInNTHcES XU EvepyO-

montég oL omolol AauPdvouy Tig TAnpogopieg amo TNy diepyacia xou eXTENOLY TNV
Aoyuxn) Tou ToEEYETAL MO TS CUOXEVES EAEYYOU.
ITap" 6l autd, Tor alyypova cucsThUaTa EAEYYOL Ywellovtal o évte pépn avti
yio Tpla oupmepauBdvovtag emtong to eninedo emyelpnone (Enterprise Resource
Planning) xou o eninedo epyootaciou (Manufacturing Execution System). Ta
enineda evog olYyPOVOL GLUCTHUATOS EAEYYOU Tapoucldloviol 6To Lynua 1.

ERP

MSE

Supervision

Control
Field

Yy 1t TTupopida emmEdWY TwV GTUOTNUATWY EAEYYOU

Ané 10 1968, otay 0 TpwTog TEOYEoUATILOUEVOS AOYIXOG EAEYXTHS XeNOoLoTolUT-
XE YO VoL EAEYYEL CUCTAUUTA OE BLOUNYAVIES, TEQIOCOTEQN XPLTIXE CUC TAHUAT GOYLOAY
vor owtopatonoovvTon. Kodoe éva miavd opdhuo oc omolodnnote ano outd To ou-
othuata Ymopel vo mpoxaAéoel avenavopinteg {nwéc t6co oTto avipennivo eldog 660
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xaL 0To TePYBAAAOY xou TNV owxovould, 1 avayxn Yior TN BICQIALCT] TNG TOLOTNTSG TOUG
elvon emitoneTiny.

‘Evo amd 1o toAhd mapadelyporta etvon éva Addog 6T0 AoYLIoUXG TTOU TEOXIAESE TO
atOynuo tou  Mars Climate Orbiter [58], éva pounotind doTNUOTAOL OV EXTOZE-
OOnxe and ) NASA 1o Aexépfero tou 1998 yio va gpeuviioel o Apetovd xhipo. Mia
pordnuorter) aovupwvio x6otioe ot NASA eva Swaotnuénioo $125-exartoppvpiony. E-
VoL oXOUT TopddeLy ot Tou x6a Tioe T Lwn 6 avlpdnwy elvor To o@dApa ToU EVIOTIOTNXE
oto hoytowxd e padievepyol unyovic Therac-25 [61] 1 onola yenowonowolvTay yio
Yepaneio ao¥evdv pe xapxivo. EEoutlac evéc Addog unoloyionol 1 unyavy| yopnyovoe
TEPAOTIEC TOCOTNTES PUBLEVERYELNS OTOUG acVeVe(C.

Ytdyoc authc Tng mruytaxng epyaotac etvon n avdiuon PLC npoypapudtov xou 1
Behtinaon tng moldTNTag Toug, E0TIALOVTAS 0T YEIWON TWV CPUAUSTWY GTO AOYLOWIXO.
Ta PLC elvon ol 1o S1ade80UEVES GUOXEVES EAEYYOU IOV YENOLWOTOL0UVTAL 0TT) Blounyo-
via xou Tor TeheuTatio ypdvia yivovTtar 6ho xou o dladedopévol ota Safety Instrumented
Systems, cUCTAUATA TTOU GYEBIAT TNV TEOXEWEVOU VOL EYYUWOVTOL TNV ACPIAELN XL TNV
adlomotia Twv dlepyaolny xar xadopilovton ano Tic mpodiaypapéc Twy TeoTtiTwVIEC
61511 xou IEC 61508.

1.1 Tevixd mAalolo

Koaddde to susthpota eAéyyou yenowonoolvtal oe Yeydho Bodud oyt uévo ot Proun-
yovior ahAd xou o€ TOUEIC OTWC 1) AEEOVAUTNYLXY| XOL OL TURTVIXES EYXATAC TACELS, ELVOL
ONUAVTIXG VoL AmoTEATOUY AdUT cav o tpoavagepdévta. Ilog'dha autd povo Alyeg e-
Tonpleg xo EPELYNTIXG XEVTEO EUTAEXOVTAL GTO CLYXEXPWEVO TEdBAnua xou To CERN
(European Organization for Nuclear Research) eivot éva amo autd.

To nopdv névnua, anotehel TNV TTUYLAXT LOU epyacia TNV omolo EXTOVNON OTO Te-
Aeutalo €To¢ TwY oToLdWY pou oto XapoxoTelo Havemothuo oto tuua ITAnpogopuxrg
xa Tnhepatixrc xou 1 onola egopudotnxe ota PLC npoypdupata mou yenoiwonotodvio
oto CERN . To CERN 1o onolo 0p0dnxe to 1954, anotelel To peyohitepo epyaotrplo
owUaTOlC Quohc oty Eupdmn xou Beloxetan ota Fahho-EABetind olvopa. H xdpa
AetrToupyiot TOL APOEd TNV TUEOY Y| ETUTAYLVTOV COUATIOIY Kol GAADY LUMXOTEY VIXODY
UTOBOU®Y oL YEELLoVTaL Yiot TNV TELOUATIXT €pELVAL OTO eSO TNS PUOLXTE LYNADY
EVEQYELOV.

Etvow mavdipyano 1 oavdyxn tov avipednwy va 8koouy andvinon oto epdtnua Tlodg
onwovpyrinxe to odunay xou 1 Cwn’ xou elvar dlapxhc N TEOoTEVELL TOUG VoL oVOXo-
Aoouv 600 yivetan mepiocdtepa oTolyela mou Yo Toug emitpédouy va anavtricouv. O
LHC (Large Hadron Collider) (XyAua 2), auth ) otypr] anoteel tov ueyahlTepo
EMTAYLVTY adpoVIwY oTov X600, Beloxeton 100 pétpa UTH To EBaPOC xou ExEL OLde-
Te0 27 ywhouétpwv. O Baocixdc tou otdyog elvon va avamopdlel Tic ouvinixeg Tou
dnwovpyfidnxay apéowe Yetd v peydhn éxenin (Big Bang). O emtoyuvtfc yenot-
pomoteiton xuplwg ylor TNV €peuva gouvouévewy mou Ya tpoxdouy and TN cUyxpouon
BECUWY TEWTOVIWV-TEWTOVIWY, G TOA) UEYIAES EVEQYEIEC ENAPROS UXQPOTERES AT TNV
Ty TNt Tou Qwtos. Egtd mewpduota (CMS, ATLAS, LHCb, MoEDAL, TOTEM,
LHC-forward and ALICE) efvau Tonodetnuévo y0pw and tov emtoyuvth xat o xadévol
and oUTH PEAETA TIC CLUYXPOUCELS oo BLAPORETIXTY DLAC TUOT| XAl UE DLUPORETINES TEYVO-
Aoyiec. Avahbovtag T GUYXPOVCELS Ol ETULO THUOVES G TOYEVOLY GTO VoL ATOBEIEOLY ¥ Vot
dlapevoouy mouxileg Vewpleg Yipw and 10 Topéa TIg PUOXNG AAAG XL VAL XATAVOTICOLY
TOV XO0UO XAAUTEQAL.

ITpoxewévou va mogéyouv Ti¢ BEATIOTEG CUVINKES YIol TOUG ETUTAYUVTES, YEYOWO-
rotolvTon Prounyavixéc diepyooies (e€aepoude, POZn, xpuoyovinr). Metall dAwv 7
o dLadedopEV cuoxeur| eEAéyyou Tou yenowonolelitan oto CERN yia tig Brounyovixég
diepyaoieg xou Tic avdyxeg twv newpaudtov etvon o PLC. To PLC elvan pla toyver| ou-
oxeut] ehéyyou nou doBdler xataywehoes (inputs) ano cuoxevéc tpoodooiag ().
droahoyele, BaiBidec, aodntipec), Tic enelepydletouxon eTadidel to anotehéopata o€
SAAo oL TAHUOTA.



Iepioodtepa and 1000 PLC dwatnpodvton xou yenowonotovvtar oo CERN xon me-
pimou 10 1/3 autdv cuvtnpeiton and to yxpoun Industrial Control and Safety (ICS)
mou PBeloxetaw oto beams (BE) tufuo. Ilio ouyxexpwéva, to tufue Process Control
Systems section (PCS) avantiooel, epopudlel xou cuvtneel Tic eQupUoYES ENEYYOL.
To Yéua tne mTuytaxhc epyaoiog oyetileton YE TIC EpYUOIEC TOU TOEATAVE TUAUATOG
xaL oToyeleL Vo BEATIOOEL TNV ToLoTNTaL Tou Aoylouixou twv PLC ewwdyovtag Tic tu-
uxéc uedodoug — xou o CUYXEXELEVA TOV €AYy o povtélwy (model checking) — xou
TNV CTATIXT AVAAUCT] XOOLXA GTNY TREOYEOUUTIO TIXT dladixaaio.
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' 2016
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Figure 2: CERN accelerator complex [14]

1.2 3Yuvewogopd xou Kivntea yio Ty TTLYLOXA

H andéxtnomn evédg oyveold xou oéiémiotou PLC npoypduuatoc to onolo vo efvar tow-
TOYPOVA GUUBITO UE TIC ATULTOVUEVES TTRODLOY PUPES XAl VAL TV TERLEYEL OpdhaTaL, efvor
70 x0plo PEANUA TV avIpOTWY OV EUTAEXOVTOL TNV OAN epyacio. 2oTtdoo 1 dnuLove-
vl evog Tétolou cucTAuatog amotehel wio amoutnTxy epyocia. H mtuylond) epyaoia
OTOYEVEL VO EVOWHUATOOEL TIS TURATAVEL TEYVIXES OTNY TEOYRUUUATIOTLXY Slodixacia
PLC rnpoypauudteny Tpoxedévou va dlacaloTel 1 ocupBatétnTor Tou TeoYeduuatog
HE TIC TPOOLOYQOUPES GANL XOU 1) TOLOTNTA TOU XWOLXA UE TOV EYXUPO EVIOTIOUO TEO-
BANUATIXNOD XWBXA TNV TN QAcT, TNG AVETTLENS Tou TeoYeduuatog. Tautdypova
emiyetpel vo e€aheldel xdde mohUTAOXOTNTA TOGO UG TOV TROYEAUUUATIO T OGO Xl ATO
TOoV YenoT.
I va yiver autd, n ttuytaxr epyacio ywplletar oe 3 xuplne péen:
1. Evowudtwon tou poviéhou eréyyou otny dladasia avintuéne PLC mpoypou-
HATWV.
2. Thomoinon wog agnenuévng Texvixng mou otoyelel otny Beltivorn tng anddoong
Tou Yovtéhou eréyyou oto PLC mpoypduparo.

3. Tnv vhonoworn evéc mpwtoTUTOL pyaheiou Yo otatixh avalvor xwdxa PLC
TEOY PUUUATWY.



2 YTréBadeo

2.1 Ewaywyiq

210 xe@dAono auTé YIVETOL ULl ETLOAOTNOT TWV TEYVIXWDY, TV HEYOBOAOYLOY OANS Xou
TWV TEYVOROYLOY TOU YENOLLOTOINXAY YIa TNV EVOWUATMOOT XAl TNV EQUQUOYT TOU
EAEYYOU HOVTEAWY XoU TNE OTATIXAC avdAuone xwdixo ota npoyedupato PLC. Ta PLC
TI¢ Teheutaleg BexaeTlEC amoTENOLY Xolplag ONUACIAG XOUUATL Yol TNV AUTOUATOTOMOT
oTa €pYOOTdoLA, TOV PBlounyavixd topéo A& xou to CERN.. Xto xegdhao 2.2 da
TEELYPAPOUY To avohuTd Tor Booixd yapoxtneotnd twv PLC.

And v dAAn, taporo mou to PLC anotelel tnv mio SLadedouévn cuoxevy| eAEY-
YOU, BEV UTdEYOLY TOMAES EQUOUOYES HOVTEAWY EAEYYOU XU OTATIXNAS AVIAUCTC OTOV
ouyxexpiévo touga. Ou 800 autég teyvixée Yo yehetniolyv otic evotneg 2.3 xou 2.4
AVTLO TOLY WG,

2.2 Programmable Logic Controllers

O mpwroc PLC mapoucidotnxe mpdtn gopd ota TéAn tou 1960 cav éxguua tou PC
(mpoypoppatilopevoe eheyxtic) [53]. H avdyxn yio mo woyved, edxoha otnyv Swopde-
puan xou Lo ToL CUC THATA cLVTEAESE oTny dnwovpyia twv PLC. H etapela Bed-
ford Associates ovopace tnv mpdtn cuoxeur) 084. Ilpoxewwévou vo cuvtnericouy, va
avantOEoLY, va UTOG TNEIEOLY XaL VoL TOUANCOUY TO VEO oWTH TTEOLOVY, SNULOVEYNOAY id,
véa etoupelar Tou ovoudotnxe Modicon. O Dick Morley, elvon évag and toug mpdtoug
Tou SoVhedav oe autd to €pyo xou Thavdv Yewpeito o ‘tatépac’ twv PLC [56].

IMopd To yeYovog OTL GANEC NAEXTROVIXEC CUOXEVES Elvol O LOYUEES, TILO EUEAMXTES
xau o exAentuouéveg, to PLC, elvon tar mo dnuoguiy.

2.2.1 PLC Hardware

Ta PLC ypnowonowlv pviun 1 onolo umopel vo meoypauaTioTel xou ypnoysonoleltol
YL TNV E0WTEPXY AMOUAXEUGT] OBNYLOY XAk TNV UAOTOMNOT] EWOLXWY CUVIRTHCEWY TOU
AmooXoToVY GTO YEWPoUd moxihwy TOTWY unyavey 1 oepyaoldy. Ievixd, to PLC
AoBdvouy xatayweoels TG00 and avaloYxES 600 xat and (mgLoxéc ouoxevés ().
aonThees, BahBidec) xou petadidouy ofuata oe dAho NhexTEIXd CUCTHUATOL.

O povédee elo6dwv-e£6dwv (I/O) mapéyouv tnv obvdeor petalld tou PLC xou
tou e€omhiouol. To PLC, enelepydletar to (dlo mpdypopua cuveyns. O ypdvog mou
yeewdleton yia vo exteréoel to PLC eva mAnen xOxho Aertovpylac ovoudleton ypdvog
x0xhou(scan cycle) xou amoteleiton omd To mopaxdTey Bridortar

1. Ou xotaywenoelc oxavdpovTon and TIC GUOXEVES XAl GTY) GUVEYELN EXTEAOUVTAL OL
EVTOMEC TOU TEOYRAUUATOS TO OTOl0 TIEPLEYEL [ULOL GELRY OO NOYIXEC TIRGEELS.

2. Metd v exTtéAeoT) TOU TROYEAUUATOS Tal ATOTEAEOUATO XATOY WweoVVTAL GTNY €E0-
0o.

To Baowd eZdptnua evoc PLC givon 1 xevtpue povdda enelepyaoioc (Central Process-
ing Unit) n onola etvon umeduvn yia Ty extéleon twv napandve Brudteny. Axdua, ta
PLC eivar ouvdedepéva ye tn povdda tpogodoaciog 1 omola tpogodotel tny CPU, 1o I/0
CHUATO, TN UVAUN XU TS CUOXEVES oL elvon ouvdedepéveg ue too PLC. To mapamdve
Topovcidalovion 6To Lyrua 3.
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Figure 3: Basic PLC components

2.2.2 PLC Software

H mruytonr) epyaoio emxevipdvetar ota PLC mou xataoxeudlovtan and tn Siemens,
xadog elvol oUTd oL yeNoldonoloLYTUL TEPLOaOTEpO ot Telpduata oto CERN. -
01600, oL dlapopéc uetal twv PLC nou mapéyovto and tn Siemens xou twv PLC mou
TapéyovTol amd FANOUC XATooXEVUC TEC elvan eEAdytoTe xadws oha too PLC Paoctlovto
oto npotuno IEC 61131.

IIio cuyxexpéva to mpotuno TEC 61131-3 xodopiler Tic didgpopes ouufohixéc

YADOOES 1| To OLOYPUUUATO TTOU YENOLLOTOOUYTOL VLol TOV TROYEoUATIoNO Tewv PLC.
‘Ohkec ot PLC yA®)OGEC TROYRUUUATIONOD AXOUO XAl OV TEOERYOVTAL ATO OLUPOPETLXOUG
TpounUeuTéc TEENEL Vo TEoCupUOLOVTOL GTO TUEAUTAVG TEOTUTO Xl VoL 0XOAOUTOLY Tig
CUGTACELS %Ol TI TROOBLYPaPEG oL auTod Tapéyel. IIévte yAwooeg mpoypopuatiopo
oplCovtan and o mpoétuno IEC 61131-3:

1.

ST 7 Structured Text: elvor yia YAOOOO TEOYRUUUATIOUOD GUVTUXTIXA TOROUOLL
ue tnv Pascal.

SFC 7 Sequential Function Chart: eivar plo Siadoyiny| Aettovpyiny| YAWooA.

. IL 7 Instruction List: elvon wia youniol emmédou YAOOOA TEOYRUUUATIONOD To-

pouota pe tnv Assembly.

. FBD ¥ Function Block Diagram: efvou plo YAOooo Aoy yedpwy, etvon ypopixt

cav tn Ladder, oAAd yenowwonotel «xoutidy, 6mou xdde xouti aviunpocwrevel
xdmota em€poug Aettoupyia xat TEAXE To avTioTolyo Aoyixd xOxhwUaL.

. The Ladder Diagram 7 LD :ue tn yefion yeapwov epyoheiwy doueiton éva Ao-

Yo TEOYEAUUMA, XovO Vo axoAoVINoEL TNV Aoy cuVOECUOAOYIA EVOC XAACLXOU
U TOUATIOUOD.

INo tov mpoypoppatiopd evée Siemens PLC, n Siemens avéntuée tg dixéc e

YAOooeC mpoypouuatiopol Bactloyevn otig mopamdve mévte. [a v mruytaxy ep-
yaoio yenowwonofinxe puévo 1 yhdooa mpoypaupotiopod SCL (Structured Control
Language) n onola eivor 1oodUvaun pe v ST.
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H SCL nopéyet névte diagopetind idn blocks (OBs, FBs, FCs, DBs, UDTs) xou to
xdde éva yenoldomoleltal Yior TNV XATIAANAN AlToupYiol TOU GUVOAXOL TEOYEAUUITOC.

1. OB 7 Organization Blocks: anotelél 1 Siaclvdeon Tou Aettoupyinod GUGTAUATOS
¢ CPU xou tou npoypdupatog tou Yenot.

2. FB 1 Function Blocks: oc xd¥c FB oanooideton eva block dedopévev. Kadog
ooy ta FB mepiéyouv uviun ol Twég twv YeTABANTOY SlatneolvTon UETA TNV
eXTEAEDT) TOUC.

3. FC 7} Functions : oe avtideon pe ta FB ta FC dev mepiéyouv pvrun, nepléyouy
OUWS eEXTEAEOIUO xWOWA. 20TOC0, 0TI TAUPAUETEOUS Tou opilovTal 6E aUTd, amo-
Bl0OVTOL TEAYUATIXES TUES UOVO OTAV XAAOUVTOL A0 TO TEOY QUL

4. DB 7 Data Blocks: yenowwonootvto yia Tnv amodixeuon 1oV dedoUévwy Tou
xehoTn.

5. UDT ¥ User-defined data types: amoteholv dounuéva dedouévo mou opllovta and
TO YENOTN xa Yenowonowlvtal cav va ytay blocks.

2.2.3 UNICOS

To UNICOS (UNified Industrial COntrol System) npdxeiton yio éva framework mou
npoypappatiotnxe oto CERN. To framework auté nogdyer PLC x@8uxa yio cuo Tuo-
Ta eAéyyou ta onola Bastlovton ota PLC, ypauuévo otnv yAwooa SCL tng Siemens.
Io Tic avdyxeg Twv TElpopdtey Tou Slegdydnxoay e ouUTH TNV TTUYLAXT XPNOULOTOL-
fonxav PLC npoypdupata and tnv Bifhodnxrn tou framework.

2.3 MovTtEho eAEyyou xo JTATIXT) AVAALOT)
2.3.1 Tumixég pévodol

‘Onwg avapépdnxe TeonYOUUEVLS, T CQPIAUATO GTA CUCTAUATH EAEYYOU UTORPOLY Vol
Bdhouv oe xivduvo TNy avdponivn {wr oAAd xou To TepBahhoY xaL TNV olxovouio. Xu-
Venwe, ouvidng yeetdleton Mo TohOG Ypovog Yol TNV ENUARUEUCT] TOU GUG THUATOG
ToEd YioL TNV XaTaoxeLT] Tou software 1| tou hardware tou. Me 1 yerion Twv TUTIXGOY
HEVOBWY 1) ACPIAELL EVOG TETOLOU CUCTAUATOS UTOREL Vo SLacPaloTel €TOL (OTE VA
T oLV EUXONOTER OL AMOPACELS Yo TOV OYedoUs Tou. Alvovtal didgopol oplouol
Yo TNV TEELYRAUPY| TWV TUTIXOY HEVOBWY Xl ToRoXATw Efvon €vag amd auTtolg:
“Tumkég puédodor elvar painuatiké§ mpooeyyioes yia to AoyioHiko kar tny
avdrtuén Tov ouotniuatos Tov vrootnpiler tny avotnpn mpodiaypayr), To oxe-
daopd ka1 tov éleyxo twr ovotnudtwy tAnpopopikrs. 18]

2.3.2 Movtélo ehéyyou

To 1980 emvoninxe pioe evadhoxtixy] Texvixr enokidevone and toug Clarke, Emer-
son, Quielle xou Sifakis, Tou ovopdotnxe ypovinh Aoy éAeyyou povtélny (temporal
logic). e auth v npocéyyion ol ahydprduol xat o TEETOXOANL LOVTEROTOLOVVTAL WG
CUC TAUITA UETABAOTC XATAC THACEWY.

“ To povtélo eAéyyov elvar pna puédodos ya tny ernionun enaAndevon na-
pdAAnAwy ovotnudtwy nenepacuévwy kataotdoewy. O1 mpodiaypapés yia to
ovotnua exppdlovtar wg Xpovikn Aoyikn) o€ painuatikés gopHovAes, Kal a-
roteAcopatixor oupBolikol akyopiduor ypnoiporoovtal yia va daoxiocovy to
HovTélo mov opiletar and to oVoTnua npokeipévov va eAéyéovy av n mpodia-

ypagrj wxVe 1j ¢yr.” [13]
O «éheyyog poviéhwvy nepthaufdver tplor oTddLa
1. Formalization twv mpodiorypapov mou tpodxeital vor eheyydouv.
2. Movtelonoinon tou cucGTARATOC.

3. Extékeon tou alyopldpou tou poviéhou eAEyyou.
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Formalization twv npodiaypapwy mouv mpoxelton va eAeyydolv

ITew v enadfievon, elvon anapaitnTo vo xotoplo ToLy oL TEodlaypapés Tou To oy EdLo
npénet va xavorolel. O xadopiopd autdg diveton cuvidwe oe xdmola Lop®y| AoyLxoL
POPUOAOUOU PE TN Yphon yeovuxhc hoyiic (temporal logic), yden otnv omolo yve-
piloupe TN CLUTEPLPOEE TOU CUG THUUTOS GE CUVAETNOY We To Yedvo [60].

Movtelonoinor Tou CUCTHULATOG

Agbu ol mpodlaypapéc Tou oyediou €youv exppaoTel o HoP@PY| YEOVIXAC AOYIXAC, TO
eNOUEVO oTAdLO elvon 1) wovtehomoinoy tou cuotAuatog. To poviého evég cucTiuatog,
AVTITPOCWTEVEL XL TEPLYPAPEL TIC CUUTEQLPORES TOU 0Py iX0) CUCTAUNTOC CUVATLC UE
axplBéc TeoTO.

Extéleon tou alyoplduou Tou LovVTENOU EAEYYOL

To povtého ehéyyou mpoxelwévou va exteréoel Tov ahyoptduo enahdeuong ypetdle-
TaL oAV €L0600UG ATO TO YENOTN: TO UOVTEAO TOU CUOCTHUNTOS XUl TIC TROOLOYEAPES
EXPEUCUEVEC OE AOYLXY POPUOVAN. LTNV CUVEYELX, TO UOVTENO EAEYYOUL Vo EXTENEOEL
Tov ahybprduo xan VYo avohdoel To amoteléopato. Metd tnv avdiuon Yo enodndedoet
oV 1) TTRODLAYPAPY| IXAVOTIOLEITOL OO TO UOVTEAO TOU UG THUATOS ¥ Oyl. TNV TEAEUTHLN
TeRIMTWOoN, 0 EAEYXTHC HOVTEAWY TOREYEL OTO YPYoTY €val Topddetypa counterexample
6mou Umopel va et Tou axpeLBg Beloxetan To Adog xou va To Slopddoet.

ITAcoveEXTAUATA KO UELOVEXTARATA TOU aAYOoeiTou Tou eAeyYXTT
ROVTIEAWY

Yuvolilovtog, o éheyyoc povtéhwy (model checking) mopouotdler onuavtixd mheo-
VEXTHUOTOL

1. ITpodxerton yio o dradixacior ) onolor efvor auTOUOTY X0l OOV BEV ATOUTOVVTAL TOA-
Aéc evépyeleg and To Yo

2. Av n mpodiaypapr) dev enoknieutel, o ypRotng €xel TN SuvaTOHTNTA VoL OEL TOU
Beloxeton o Addoc.

3. Ilpoxewévou o eheyxthc poviéhou va eyyunlel yio T cLUBATOTNTA TOL HOVTEAOU
X0l TNG TEOOBLYPUPHC, EEEPEVVEL OAOUC TOUC BUVATOUS GUVBLICUOUS TWV UETOPBAN-
TWV OV EUTAEXOVTAL TNV TEOBLAYPAPY).

4. Me tn yerion ng yeovixiic Aoyixng, UTopoLY Vo EXQeacTo0Y TOAAEG amd TIG LOL-
bdtnteg nou ypeeldlovan.

Ta x0pLo YetovexTAoTa Tou LOVTEAOL EAEYYOU Efvou:

1. H éxpnin xataotdoewy (otate e€nhootov), mou unopel va cupfel av 1o cbotnua
mou enoAneletan anoteheitar and TOAAS GTOLYElN TOU XAVOLV TUEAAANAES UETA-
TEOTEG. XE AUTY| TNV NEPIMTWOT 0 EAEYXTAC LOVTEAOU UTOREL VoL UNV UTORECEL Vol
enoAndedon to anotéAeoya.

2. Auvoxola oTn yehomn xeovixic AoYIxAS Yol TIC TEOBLY QUPES.

3. Ilepimhoxdtntor ot dnuovpyiol LOVTEAWY TOU dEYLXOU CUOTAUATOC.

Mepuxd omd ta o yvwotd epyohelo emokfidevong eivan to: UPPAAL, BIP, SPIN,
KRONOS xot o NuSMV 10 onolo da yenowonoindel otnyv ntuyloxy epyoastia.

2.3.3  XToTixy] AVAAUCT] RKDOOLXA

YroTiny| avaAUoT WO 1) CTATIXT AVIAUCT| TEOYEUUATOS, EVOL 1) AVIAUGCT] EVOS TTPO-
Yedupatog Tou yiveton ywelg va exteheotel To npdypaupa. O 6pog cuvidwe avagpépeto
oty avdhuon mou YiveTo Ue %Amolo auTOUaTo epYOAElD, xou 1 avdAUCT TEOYEIUUATOS
elvan avtioTolyn ye v xoatavonor npoyeduuatog mou yivetaw and tov davdpwro. To
Baoxd TAEOVEXTNUA TNG OTATIXAC AVdAUOTE elvol 1) avlyVEUOT) CPOAUATOY GE TEMLUO
TEOYPOHUUATIO TG OTABI0 Ye oxomd TNy Behtinon Tng modtnToag Tou xwdwa. O otdyog
AUTAG TNS TEYVIXNAC EVOL O EVTOTLOUOS ADOV GTOV XWOXOL AXOUOL X0 OV UTE BEV CUY-
Bdhouv otny anotuylo Tou cuctAatog. Kadng ouyvd eivon 8Ooxolo va eheyyvel Eva
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ohOxhnpo medPAnua e€outiac tou yeyédoug tou, Ta gpyohela oTUTIXAC avdAUoNC To-
EEYOUV TNV BUVATOTNTA EAEYYOU TWV TEOYPUUUATDY XUTE TN OldEXELd UAOTOIMONE TOUg
ohAG xan PeTd amd authy. Ilap'dha autd, ta mapandve dev onualvouy OTL 1 oTUTLXY
avdhuoT and Yovn TNg elvol ETAEXNAC YLt TNV SLUCQIMOT TNG TOLOTNTUG ToL xowxa. H
OUVOLXY) AVEAUCT) TOU TEOYQEAUUATOS OEV TRETEL VoL oy VOE(To xod()¢ amoTeAEL Xa auTY
ONUAVTIXO XOUUATL TNV TEOYRUUUATIO TLXY) dladLxacta.

YTg Yépeg pag, To epyoleiat oTATIXAC AVAAUOTC YENOWOTOLO0VTAL EVREMS XAl TOA-
A& epyaheia ebvar Sradéoa yioo Tic xadiepwuévee YAdooee Tpoypaupatiopol (Java,
Python, C). Ilpoxewévou va avahuldel to hoyiopxd evos TEOYEGUUATOS UTEEYOUY Ot
dpopeg TEYVIXES Xou BOUES LAOTIOINCTNG TNE OTATIXNS AVAALONC OTWE YIAL TTEABELYUO: 1)
avdALGCT) POT|G BEBOUEVLY, 1) apnENUEVY Olepunvela, To Blarypduuata eAéyyou poric. H
CUYXEXPULEVT Epyacio ETLXEVTPWVETOL OF Wat TEY VXY ou ovopdletoan Rule-based AST
avdhuon twv npoypauudtewy PLC.

Rule-based AST
Ye authv TV TEY VXN avolleTon pE BAom xAmoloug TEoxaoploUEVOUS XAVOVES, TO
0€vopo apnenuévng cuvtaEng 1 ahhidg AST
EVOC TPOYPAUUITOC.
O xavdvee autol vhormoloUvton tdvw oto AST
X CLYADKEC UTOPOVY VO EVTOTHGOUY GTO XMOINA GPIAIATE OTIWS ToL Ttopoxdtw: [47]:
1. Ovopatixéc oupPdoeig: 6OVORO xavoVmY Tou 0pllouy TO GUVOLO YORUXTARMY TOU
Yo yenowonom oy yla Tor avory VLo Tixd Teoxelpévou va Behtiwidel 1 ovoryve-
ooTnToL XU Vo dieuxoAuviel 1 cuvTenoT Tou Tpoyeduuatoc. ‘Evo mopdderypa
unopel vo Yewpniel to dtL Ohec ot yetoBAnTéC Aoywol tonou mpénel Vo Eextvave
ue to yapaxthea B.
2. Code smells: mpoxeiton yior potifo xdduxa Tor omolot GUY VAL TEOXAAOVY TEOBAUUTA.
Mrnogel vo unv dnuloupyolv cofopd TEOBAAUATE GTOV XD ahAd Xoh6 elvon
VO AMOPELYOVTOL TEOXEWEVOU VO DLEUXONOVETAL 1) CUVTAENON TOU TEOYEAUUITOS.
Mepwxd mapodelypoto divovTon mopoxdte:
o AUTAGTUTIOC HOOLXOC.

Kdodixog o onolog dev yenotwonoteitar ¥ efvar ampdaoitog.

Médodol mou TEPIEYOUY TOANES YEUUUES HDOIXAL.

Mevydhec Motec TapopéTEmY.

Mo petofiitn Bedyou mou diafBdletar yetd to Bpdyo.

3. E&dptnomn duvouxwy npotdoewv: Tndpyouv xadoplouévol TEpLopLoUol ToU apopo-
OV TNV oelpd eEXTEAEONC OPIOUEVWY CUCYETIOUEVWY CUVaETHoEWY. T'ar Tapddetyua,
1 EVTOAY| open evog poxélou TeENEL Vo Tponyeito Tng evioirg close.

ITAcovEXTAUATA Kol AELOVEXTAUATA

H ototuxen avdhuom, omwe xou xdde teyvohoyia, EYelL TAEOVEXTAHULOTA XU UELOVEXTHUO-
o [28]. ITheovextiparto:

1. Avdhuomn tou xoOuxa ywelc Ty exTtéreon Tou.

2. AwfePardver 6TL pla oelpd amd MO TeoxodoploUuévous XavOveES Tneelton and To

AoYlouixd TOU TEOYEAUUITOC.
3. XupPdAel oty Tp®n aviyVELUCT] TEOBANUATWY CTOV XOOLXAL.
4. Yuufdielr otny SLaTHENOT XU GTNY CUVTHENOY TOU TEOYEAUUUATOS.

Melovexthpata:

1. ITopdyouv moAhd Peudmg Yetind 1) ahhide Peudelc TEoedonOoE OV GTY) TEAY-
HATIXOTNTOL OEV AmOTEAODY TROBANUA.

2. To epyahelo dev Yo aviyvevoel ta mpoPfAfuata mou oyetiCovton ye ™ plduion
TUEOETEWY XIS BEV oVATORIoTATUL GTOV XMOLXO TOL TEOYPAUUITOC.

3. To epyahelo de pnopel var eréyEel TNV 0pYoTNTA TNG CUUTERLPORAS TOU TEOY R~
poToc.
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2.4 XyeTwxn epyacia

Ye autd 10 XEPAAao TAPOUGLALETAL 1) CYETLX PEUVA XOU Ol EQYUCIEC OL OTOlEC APO-
eo0V TOV EAEYXTH HOVTEAOU Xou TNV oTatxn avdAuvor otov topea twv PLC. Ilepimou
20 ypovia e Blounyavieg ue xpttind cLoTHUAT EEXIVNOOY VoL YENOLLOTIOLOUY TUTILXES
ueVHB0UE, EVE OTIC HEPEC UAC ONO X0 TEQLOCGOTERES TIC EPAPUOLOLY YLo TNV ENoAideuoT
TV oLoTNUATLY Toug. Tlupd To yeyovog ot avdueoa otig Blounyavieg undpyouy dlapo-
PETWOL OTOYOL XAl AVTITEWOOTEDOVTOL OLUPOPETIXES LOEEC XAl EPYAOIES, 1) ahyoprduLxny
enaAfdevon Ue TEXVIXES OTWS TO LOVTEAD EAEYYOU XaL 1) OTUTIXT| AVIAUCT) ATOTEAOLY
XOWT) TEOXTIXT] VLot OAEC.

‘Evol topddelypa Tou omodetxvOEL TNV EQUPUOCLOTNTA TWY TUTIXGY UeYOdWY 0To GU-
oTAuoTa TNg xadnuepvotnTag efvan To GO TNUA EAEYYOU TNG EVAERLIG XUXAOPORLAG GTO
Hvouévo Baotielo. Ipoxewévou va dioyelptotovy tnv awovouevr xivnon ovofddut-
oav to cUoTnua dayelpnone e evaéptag xuxhogopiog avarnticovtag to CCF (Central
Control Function) to omolo unopel vo doyetptotel and modld cuo thpota. Eva and ou-
¢ éwvan to CDIS (CCF Display Information System) yio to onolo ypnoiponouidnxoy
Tuuxéc pédodot yia vo oyediaotel xou va enahndeutel [46].

2.4.1 Egoapuoyn tou poviélou eAEyyou ota npoypdupata PLC

To povtého eAéyyou amotehel TNV TO YVWO T ahyopudxr TexVIxr TuTixng emahdeu-
ONG %o TUPOAO TIOU UTHPYOLY OEXETEG TEOCEYYIOELS Yo TNV EQUPUOCLOTNTA TOU OTA
PLC npoypdupata dev yenowonoleiton axouo otny Brounyavia. ITohhéc épeuveg 6mou o
HOVTELO eAéyyou HTav 1 emheyouevn wédodoc yio Ty enokideuon PLC mpoypouudtewy
Beloxovtan atnv Bihoypapio xou umopoly vo yweloWoly ce TeelC OuddEeS:

1. ¥téyevon ot yhwooo npoypaupatiopol twv PLC tpoypopudtwy: ol nepiocdtepes
and TIC TEYVXESG Tou LovTéhou eAéYyou atoyebouy oe PLC npoypdupata yeouuéva
oty YAdooo IL [9, 33, 51, 52, 43] xau SFC [4, 27]. Mepwxol epeuvnréc epdppocoy
T0 povTélo eléyyou xou ot mpoypdupata Yeupéva oe FDB [3, 64] xau oe Ladder
Diagram (LD)[36]. Téhoc, undpyet pio npocéyyion evéc epyoheiov to onolo ena-
Andelel TpoypdupaTo YpoUUEVa 08 OAES TIC YAWooeS Tou opilovTal and To TEOTUTO
IEC 61131-3[48, 25).

2. Y1oyevon otig mpodloypagés: Tapadding, dev undpyouy ToANES TpooeyYloelg Tou
VO GTOYEVOUY GTNY avamTUEN WOLOTNTWY Yol TNV ETAAUEUsT] TOU LOVTEAOL TOU Oe-
douévou povtélov. Mia mpotevouevn tpocéyylon elvan 1 dnuoupyia yeovixic Ao-
Y €xovtac we Bdon teyvixéc UML [22, 49]. Mo dAn pooéyyion [8] €xel ooy
Bdon mtpoxadoplouéva potifo mou expedlouy Tic TEOdLUYEUPES Xou TIC HETAPEALOVY
auTOUaTH OE Wlal Lop®Y) AoYLX0) QOPUAALOUOU.

3. XTo)ELUoT OTOUG TERLOPLOKONE TNG HOVTIEAOTIOLAOTG XAl TWV TEOBLOY PUPOV: UEELXOL
EPELYNTEC EPAPUOCAV TO HOVTEAOU EAEYYOU OE POV UEYEVOUC TEOYEAUMUATO X ol
Ywele TpdTa var amhovoteloouy To poviého [35, 9, 42, 44, 50, 54, 7, 24, 31], eved
o€ GAAEC TEPLTTWOELS, UTHPYE TEPLOPLOUOS WS TEOG TNV WLOTNTA 6TV eQapUloloTay
agaipeon (abstraction) oto wovtédo [31][7]. Emniéov, oe tohhéc amd g €peUVeC,
TO TROY P DEV HOVIEAOTOLOVTOY QUTOUATO OE TUTLXO HovTéAO [3, 4, 7, 42, 63, 54].

2.4.2 E@oapuoyn otatixnc avaiuorg ota npoyedupate PLC

Apxetéc épeuvec éyouv deloyVel and pixpée xou HEYIAES £TOUPIEC TPOXEWWEVOL VAL O-
rotundel 1 oNUAVTIXOTNTA TS OTATLXNG AVAAUONG 0TI EQupUOYEC Aoyiopxol. Ta o-
TOTEAECUAT QUTWY TWV EPELVGYV Oelyvouv 6Tl amotehel plo TOAOTYY CUVELCPOES GTNY
Tpoypoppatio T xowdtna [37][2][65][23]. Xtov topéa twv PLC, o epyahein ototixic
avdluong onavilouv topdro Tou oe dGAAOUE TOoUElC YpnollomolvTaL EVpEnS. 2aT6G0
xahéc Tpoonddelec dnuiovpyiag epyaheiwy €xouy yivel 1doo and navemo A [45] oo
xou omd EPELYNTIXS XEvTpa [26] To epyadeiar dpwe dev elvan Tpog To TPV Sloéctua.
Mepwég e€aupéoeic anoteholy ta epyoleio: PLC Checker and tnyv Itris Automation
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Company, Codesys Static Analysis ané tnv CoDeSyS xa to Arcade.PLC 1o onofo e-
tvo évar oxadnuoiixd epyaheio tou avantiydnxe oto RWTH Aachen University[6]. ‘Oha
auTd Tor epyahelar Yo avaAnoly Ue TEPLOCOTERES AEMTOUEREIEC OTO XEPAALO 4.

2.5 ITapouciacy TexVoOroyYL®Y TOL YENOULOTTOLNT XY
Yo TNV EXTOVNOY TN TTLYLAXNS EpYaoiog
2.5.1 Apache Subversion

Apache Subversion 7 oA SVN npdxetton yia éva abotnua eAEyyou mou duoyelpileto
Ta apyeia, TOUg XATIAGYOUS Xal T aAAaYEG oL YivovTon o aUTd UE TNV TEEOGO TOU
xeovou. Xpnowonoelitaw oto CERN Yy ti¢ epyaoieg yopw and tov touéa twv PLC.

2.5.2 Jenkins

To Jenkins elvon evog server Aoylouxol avolytol xmdxa. Yrootnellel cuoThota -
Aéyyou 6mwe To SVN mpoxeévou va e€aopahiotel 6TL wa epyacio umopel va exywpenietl
avd ndoa oTiypr. Me cuveyr evowudtwor, to Jenkins cupfdiel oty autopatonolon
NG TEOYPOUUITIO TIXNE Blodixaaiog.

2.5.3 Spoofax

To Spoofax elvou pla mAot@dpuo yioo Ty anoteleopatixr avdntuén DSL yAwoodhy
Baowouévn oto Eclipse. Ilepihopfdver epyahelar xon ugnhod emnédov UeTo-YADCOES
vl Tov xadoplodd TOU GUVTUXTIXOU, TV TUTWY, TOUG OE0UO0UC OVOUUTWY Xl TOUG
HETACY NUATIOUOUS TWVY BEVOPWV.

2.5.4 Xtext

To Xtext elvou éva avolytol hoylopxol mhaiolo yio Ty avdmtugn DSL xou un yAwoodhy
TpoYpaupaTIopol. Xe avtideon e dAAec yevvitpleg, To Xtext mopéyetl Thren utodoun
xo0de mopéyel eniong Lovtéha xhdoewy yia ToL 5EVBpa apnenuévng cOVTAENG.
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3 Evowudtworn Tou HOVIEAOL EAEYYOL OTINV
avantuirn PLC npoypapudtwy

3.1 Ewaywyn

[Tepinou téooepa ypdvia ey éva tedtlext Eexivnoe oto CERN ue oxond va Bektidoet
v nowdtnTta 1wy PLC mpoypouudtoy xou var UEWOEL ToV dptdud TV GQUALATWY TOU
TepLEyovToL 6ToV XOoxd Toug. O xVptog atdyog Tou TedTlexT autol, elval 1 SLcPAALoT
TOU AOYIOULXOU TWV TEOYRUUUATWY TOU YENOHLOTOOUVTOL GTO CUGTAUAT EAEYYOU UE
™y Xenon tumxdy pedodwy. Ou tumixéc pédodol, dmwe mpoavapépinxe, Boacilovto
og HaINUUTIXEG TEYVIXES Yiol TNV TEQLYPUPY) TWV TEODLLY APV, TNV AVATTUEN XaL TNV
enoAfideuon Tou AoYLowxo) XaL TOU UMOULXO) TWV CUCTNUATOY.

Y10 xe@dhato auTod ToEOUCIALETOL TO TRAOTO UEROg TNG TTLY LG epyacioug To onolo
anotelel GLUVEIGPOPE GTO TEOTLEXT TOU TEPLYEAPTXE TOPATAVE. XE AUTO TO XEQPAUANO,
TEPLYPAPETAL 1) EVOWUATWOT] TOU LOVTEAOU EAEYYOU OTNV TEOYEAUUATIO TiXT| SLodixacial
TV UNyovixdy eAéyyou. Iapdhhnia, to xepdhoo anaptileton and TNV TEQLYEAPY TOU
TpofAfuaTog, TNy pevodoloyia mou axoloudfinxe, TNV CUVELCPORA Xl TO CUUTERHOUO-
Ta ou ey dInoay.

MeTol) TOAGY TUTLXGY PeVEdwY, To LoVTELD EAEYYOU Elval TO TO XUTIAANAO YiaL
TNV neplntwon pag. Autod yiatl oyt povo Sivel T dSuvaTOTNT ALTOUATNG ETahdeuoTg
tou PLC npoypdupatog ahdd xou yiotl mapéyet Tn duvatotnta va anoketpiel xdde molu-
ThoxoTNTaL amd o Yenotn. 261600, dev UTdEYOLY TOAAG epyalela TOL Vo GTOYEDOUV
oe PLC mpoypdupata ypouuéva oe yhwooo SCL. ¥to CERN, avontiydnxe éva ep-
yahelo mou ovoudletar PLCverif [16] npoxeiévou va e@apudoel 10 HoVTEAO ENEYYOU
xou v enadndevoel ta PLC npoyedupata otn yAdooa SCL and tnyv Siemens 71 onola
avtioTolyel oty yAwooa ST mou mapéyetan and to npétuno IEC 61131. Ilepioodtepeg
Thneogpoples yia To epyareio PLCverif napousidlovton oto xepdiono .1 tng ayyAwrg
exdoynic Tne mTuytaxnc 1 onola Beloxeton oto Appendix.

Xenowonowwvtag to PLCverif, o yprotng, €yel tn Suvatoétnta va lodyel 6To €p-
yahelo %o undeyovia PLC npoyeduuata, va to enelepyaotel 1 Xo Vo Onuovpyoet
xouvolpLoL HEooL amd To TpdYpauua eneiepyooiog Tou tapéyetal ond To epyoulelo (Lyhuo
4). Y ouvvéyewa, umopel va dnuovpyrioel wa ‘repintwon enakidevone’ (verification
case) onwe ovoudleton, 1 onolo Yo nepthopfBdver Ty cuvdixn Ty omola Vélel vo ena-
Andedoel (Xyhua 5). Aol exteréoel To epyaheio, To poviého ehéyyouv Va mopdiet wia
avapopd (LyAua 6) n omolo Yo nepLéyet o anotéleopo e emakfileuong xou otouyeio
OYETIXE UE TO YPOVO EXTEAEONC, TOV EAEYXTY| HOVTEAOU TIOU Yenotdonolidnxe, TNV cuv-
U1 mou eAéyyinxe xan dAla. Av to anotéheoya elvar opvnTnd, av dnhadh To chG TN
xaL 1 Teodlaypa@y) Bev CUUTITTOUY, TOTE 1) avopopd Vol TEQLEYEL Xou €V TTUPAOELY UL UE
Tic YetaBAnTéc mou 1 cuumeplpopd Toug dev auufadilel e TNV mEodioypapy| oL £BKaE
o yerotng xou mdavoy va elvor LTALTIES Yot TNV acLUPATOTNTA TNS.

Emniéov, o yeHotng €xel T SuvatdTnta Vo SLop@iael To Ypeovo mou o Eodédel
T0 epyahelo v TNV xde mepintwon emahdeuone. Autd ouufaivel mpoxeyévou va
ATOPEVYOVTOL OL TOAUWEES EMUATIEVOELC XAl OE TETOLEC MEPLNTWOELS VoL X0 oLTYOVOVTOL
OLAPORETIXES OTRATNYIXEG EMaAieuoTC.

MéypL ofjuepa xdde @opd mou o mpoypauuaTloTic Hehe va tpomonotoet évar PLC
OO, OAEC Ol MEPLMTWOELC ENaAUeuong €npene vo eheyyvolv ula mpog pla. Emi-
TAéov, Oty Tave and plo TEpITTOOELS enaAfievong Enpene vo dnpovpyntody xou va
eheyy oLy, n Swdxactia 0ev Htay auvtopatonotnuévn. ‘Evo dhho mpoBAnuo tpoépyeton
and To YEYOVOS OTL TO UOVTEAO EAEYYOL dev yYvwpellel oo ypovo yeeldleton UEypL
va mopory Vel To anotéheoua tng emahleuong xan TOAAES Qopéc 1) Sadixacia urmopel va
olapxéoel pépeg. O Aoyog eivar 6Tt cuvidwe To povtéha mou mapdyovton and to PLC
TpoYEAUMTA aVTETWTLoUY GUY VA TO TEOBANUA TNS EXENENS TWV XATAC TACEWY.

To mpdto pépog Tne TTUYLUXNG, TO OTOlO ELOAYETOL THEAXATW, ATOTEAEL GUVELGPORA
070 YEVIXO TPOTLEXT TOU TERLYPAPNXE TopAndvew. Tpoomadel vo Eemepdoel Tar Topo-
mave meolAfuata. o To xopudtt autd, epapudoTnxay Teelg teyvohoyieg: PLCverif,
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Subversion (SVN) xou Jenkins.
H Bour| avtol tou xepadaiou etvar 1 axdAouvdn:

1. ¥to xe@dhiono 3.2 mopoucldleTol 1) GUVELCPOEA YLl TO TEMTO U£P0G TNG EPYATLOC.
2. X170 xepdiouo 3.3 TopouctdlovTal To OPEAN TNG EVOWUATWONG TOU LOVTENOU EAEY-
YOV TNV TEOYEOUUATIO TIXT] dladLxacia.

=& )

lig] PLCvenf

Settings  Help
[ Project Explorer = B8 [ DemoSourcescl &2 = B8 5= outline 52 = B
BE -7 © FUNGLION 1B L0 B - Hide non-structural elements 5. |3,
4 2 DemoProject R 4 = DemoSource
[ DemoSource.scl b : BOOL; 4 I= [function_block] AndGate
Bl DemoVerifCasenc END_VAR 4 unnamed>
[ UNICOS_basetit = VAR OUTRUT Variable declarations
c : BOOL; Variable declarations
END_VAR = Statement list
BEGIN
c :=a OR b; // Oh no, a bug! This is an "AND-gate”, thus it should be AND here!

END_FUNCTION BLOCK

[E: Problems 2 T =8
0 items
Description = Resource Path Location Type
, .
Eyfuo 4: SCL editor
PLCverif
Settings  Help
B4 E
[y Project Explorer =g B Verification Case (Demo001) 3 = O [ Variables =g
(5 Project Exp
B~ A .
. = Verification case Variables
4 % DemoProject
[ DemoSource.scl ~ General Filter:
&l DemoVerifCasevc General information about the current verification case. Describe here the name of the case and explain its motivation.
[2) UNICOS basetxt Variable name
-ese D: Dermo00L -
instance.a
Name: T Ais false, € cannot be true. instance.b
If A is false, C cannot betrue. As this function block models an AND-gate, if any of the inputs (A or B) is instance.c
false, the output should be false too.
Description:  The requirement is based on the documentation of the function block and the following Jira case:
https://icecontrols.its.cem.chjira/browse/UCPC-1111
Seurce code: | DemoSource.scl - | | Refresh variables
» Requirement
» Advanced configuration
Verification
The verification can be started in this section. Also, the result can be seen here.
Tool: | nuXmv =
[£: Problems 33 T =08
0items
Description = Resource ~ Path Location Type

Yyfue 50 Ieplntwon enorfeuong
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[0 PLCverif = | B |
Settings  Help

& @ Demo001 Report &2 = 0O g

o) B o file///C/temp/ploverif_v2.0.1b29/PLCverif/workspace/DemoProject/generated/DemoVerif Case.html - [ D.=.3

()

- i - i

PLCverif — Verification report —

=]

Generated at Mon Jul 07 15:19:22 CEST 2014 | PLCverifv2.0.1 | (C) GERN EN-GE-PLC | Showhide expert details =

=

ID: Demo001 o
Name: If Ais false, C cannot be true.

Description: |If Ais false, C cannot be true. As this function block models an AND-gate, if any of the inputs (A or B) is false,
the output should be false too.

The requirement is based on the documentation of the function block and the following Jira case:
https-ticecontrols its cern chijira/browse/UCPC-1111

Source file: |DemoSource scl

Requirement:| 3. A = false & C = true is impossible at the end of the PLC cycle.

Result:

Tool: nusmv
Total runtime (until getting the verification results): 212 ms
Total runtime ({incl. visualization): 381 ms

Counterexample

Variable End of

Cycle 1
Input |a FALSE
Input b TRUE
Output © TRUE

Showlhide more details

Done

Eyfuo 6: Avagopd entoifieuong

3.2 Xuvewogpopd

Ta PLC npoypdupata mou yenotgonotovvtaw oto CERN avantiocovtan xuplwe oto
mhaioto mou mapéyetar and To UNICOS. To UNICOS nogéyel éva 6OVORO avTIXELUEVRDY
(UNICOS Baseline Function Block) ta onofo avanopiotody cuoxevéc dnwe PaBidec,
aodnthpes, avthieg xou dAia ot PLC npoypdupato. ‘Eva PLC mpdypouuo yeouuévo
otn mhatpopua tou UNICOS, cuvdéel autd ta avtixeiuevo mpoxelévou vo Teocpépel
TOV EAEYY 0 EVOC OhOXANPWUEVOLU OYEDIOL ToEAY WYY

Mepwd PLC mpoypduyota yenouwonololy otov xodixa toug blocks mou moapéyovton
and To UNoUXS, TNV (BLa TNV GUOKELT|, XU TERLEYOUV OPLOUEVES CUVORTHOELS YENOWOTN
TOC X0 XOTUOHEVUO TIXES CUVOPTNHOELS OTke Yo Tapddetypa to TON [21]. O nnyaiog
XGOS Yo QUTES TG CUVORTAHOELS OV YpdpeTon Eovd amd TOV TEOYEAUUUATIOTY ohAdL
nopéyetan oe Eeywelotd @dxeho and to PLCverif. Tautdypova, xadode 1 clvtaln-
Yeouuotixr Tou epyahelou dev elvon oxdua OAOXANEWUEVY), UTHEYOUY XATOLAL Y UEUXTT)-
PO TG oToL TIROYEAUUITA, SUVADWS EVTONES 1 exyweNoElc, Ta ool Bev avaryvepilet.
Avtd o yopoxtnelo TiXd, Tar ontolal BeV AAAOLOVOUY TNV CUUTERLPOEE TOU TEOY RS-
T0¢, TEETeL elte v Tporomolnoly eite va agaipedoly amd TO TEOYEOUUN TEOXEWEVOU
T0 epyohelo va punopel vo eneepyaoTtel Tov xWOXA.

ITpoc to mopdy, T0 epyahelo unopel va enegepydleton povo €va apyelo pe mnyoio
WO TN POEAL, OUWS Ol CUVAPTAOELC TOU TAUEEYOVTOL Omd TO LAIoUXO Bploxovion oe
EeywploTtd apyela xou emTAE0V UTdEYEL Eval oxoua apyelo Tou avTinpoowrelel éva block
10 omofo anotelel xowy| Bdon yia o umohoina.  Emouévwe, xadde puévo €va oapyelo
uropel vo avadudel xdde Qopd, TEENEL OAAL TAL AVUPEQOUEVA VO CUYYWVELTOUY OF €val
apyeto.

Me ™ xprion tou SVN xau tou Jenkins otdyoc tng mruylonic elvon vor amhonoloel
OAn auTh T Bradcacio Yo Tov yeRotn. Avantdocovtag 8o script, to apyeio cuyyw-
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veLoVTal OE €Vl XL THUTOYPOVA YIVOVTOL X0l OAEC OL TPOTOTOWNCELS OToV xOwxa. H
TPOGEYYIOT ToL axolouddnxe propel vo ywptotel oe tpio uéen (LyAua 7):
1. O yprotne teomomolel to xwdxa and éva UNICOS Baseline Function Block to
onolo avtiotolyel oe éva apyeio .SCL 1 ntpocdétel/tpononolel o tepintwon eno-
AMpdevone (verification case)xon otn cuvéyelo Ty ewodyet oto L'N.

2. Auth 1 dpdom nupodotel to Jenkins va exteréoel ta axdrovda Priwatos
o va enelepyoaotel ta .SCL apyela pe tn ypRon Python scripts.
o va exteréoel To PLCverif va eqopudoel to yovtéro ehéyyou.

3. Mol dAeg o mepintyoelg enadfieuong yio xdie tporomoinuévo UNICOS Base-
line Function Block €youv avoiudel, to Jenkins Yo otelier ot0 YprRotn v avo-
(popd avdhuong ue email. Yto Nyrua 8 galveton 6TL Sev urpye xdmolo TapdBaom
oty nepintworn enoAficuong UETd TIC TPOTOTOACELC TOU €YLVALY GTOV X(OIXO TOU
npoypduuatoc PLC. H avagopd nepthapfdver Aemtopépelec OYETIXA YUE TO OVOUL
Tou TEOTlExT, TNV Muepounvia EXTENEONS, TN OLdEXELL EXTENEONS, TO EldoC TV
oahhay @V Tou UTEGTN AANE xou T apyeior mou eEAEY YUMoy UeTd and autég. Em-
mhéov, oto Jenkins nopéyeton éva mével dmou o ypotng unopel va del T Teéyovoa
XatdoToon GAV Twv Tedtlext (UyhAua 9)

o SVN

Commit

Verification cases PLC code o
e sl &

=
User A0
B
—

Overview Verification
Panel report

UNICOS Baseline
SVN

Yo 7: Emoxdmnorn tng mpocéyyiong

BUILD SUCCESS

Build URL https://ienkins.cern.ch/pleverif-test/iob/PCO/17,
Project: PCC

Date of build: Tue, 15 Mar 2016 10:52:18 +0100

Build duration: 18 sec

CHANGES
edit svn/CPC_FB_PCO.5CL

BUILD ARTIFACTS

* results/HTMLSummary.html
* results/JUnitSummary.xml
* results/Summary.csv

* results/\VC1.html

JUnit Tests

Mame: (root) Failed: O test(s), Passed: 1 test(s), Skipped: 0 test(s), Total: 1 test(s)

Yo 8: Topdderypor avapopdc Tne avdAuong Tng TepInTwong eTaAUeVonc ToU ATOGTEAAETOL GTO
¥eYotn ue email
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UNICOS overview

- Smoke Test (Node 1) - - Smoke Test (Node 2) - - Smoke Test (Node 3) -

AA Al AIR

ANADIG ANADO

AO AOR

Creation of verifications files for
baseline objects

DO

ONOFF

Yyfua 9: UNICOS mévek emioxdmnong twv npotlext

3.3 Ilapatnerocic

H rapandve pedodoroyio egapudotnxe xan oto 19 UNICOS Baseline Function Block
TaL oTtolal AMOTEAOVVTOL UG EXATOVIADES YRAUUMUES XX Xak SLdpopa EIOY) TEQLTTOOEWY
enoAfievong emahndevtnxay. IIAéov o yprotng meénel amhd va elodyel Tov xouvolplo
teomoinuévo .SCL xohdixa Tou 1) v xawvolpla 1) Tpononoinuévn Tepintwon enahdeu-
ong oto SVN. Y1 ouvéyeta 1o Jenkins agpol nupodotniel, avaropuBdver ta utoAOLTAL.
‘Otav Yo undipyel anotéheopa yia TIC VEES TEQINTWAOELS enalleuonc ¥ av Yo tpoxhniel
xdmota mopdBacn Adyw Tpomonoinong Tou mnyalou xwdixa to Jenkins Yo evnuepdoet
ToV YeNotn anocTéAhovTag Tou évo email ye to anoteAéopota NG eNaAYEUoTC.

Me 10 ye¥ion tou script, n diadwacio eivon TAéov autopatomoinuévn xan xdde mo-
AumhoxdTnTa elval XPUUPEYY Ao TO YEHOTY. LUVETKOS To OQeNOg elvan OTL 0 YpRoTng
mhéov Eodelel Toh) Aiydtepo ypdvo atny dadixacio tne emahdevong. O yerotng uno-
el va mpociéael xar va enahndedoet TOAD Mo amodOTIXA TIC TEOBLAYPAPES YLo TO xdde
povtého evoc PLC mpoypdupatoc. Téhog, dev ypeldletar mot Voo TROTOTOLEL oL Vot
ocuyywveLel o Blog ta PLC apyeia mpoxewévou va yenowonolfoel to gpyaleio.

4  Ylormolnon plog apnenUevng TEYVIXNAS
4.1 Ewayoyiq

Y10 xepdhato 3 avapépinxe to mMEOBANua TS éxpring Twv xotootdoewmy [12] [30].
Koaddde o oprdude twv yetaBAntoy evog cuothuatog avgdvetal, ouidvovtar exdetixd
xaL oL XatooTdoels Tou cuothpatoc. H éxpenén tou ydpou xataotdoewy mpoxaleitol
oty 0 eAeYxTC povtéhou mpoonael va enoknieloel Eval cOoTNUA Ue TOAAG oTolyEla
TaL OOl XAYOUV TOUEAAANAES UETATEOTES O ETOUEVGS O OELIUOE TWV CUVOUNCUMY TOUG
elvar oA peydhrog. Ta PLC npoypdupata cuvdwe mepléyouy TOANES peTABANTES
OLAPOEMY TUTWYV. LUVETME O YOEOS TWY XATACTACEWY £Vl TEPAOTIOL.

ITpoxewévou va povteronomiel to cbotnua xou vo enaAndeutoly oL Tpodlaypapéc
tou, 0 PLC xdwoc petogppdletar oe éva evdidueco povtého (intermediate model
(IM) xou teyvixéc amhovoteuone xou opixpuvone egappolovion o autd. O Teyvixée
Tou eopuélovton oto ovtéha pag péypet Thpa etvor [15]:

1. Cone of Influence (COI): awth 1 teyvixn agapel OAe Tic HeTABANTES Xa TIG EX-
XWeNoelg mou dev oyetilovtal Ue TNV TROJLIYpaPY] TOU TUREYEL O XPNoTNG And TO
IM.

2. Rule-based reduction: auty| 1 te)vixy| TepLopllEl TIC XATAC TACELS XU TG UETABAT-
TEQ, apoupel Tor dBeLo XAAOLE XU CUYYWVEVEL UETAUBAOELS xou HETABANTES.

3. Mode selection: ye owth TNV TEYVIXY, OL TOEAPETEOL e oTodepn Ty UmopoLY va
avTixotaototoly and plo otoepd.
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Ou mopamdvey Teyvixég dev elvon mavVTa dEXETEC Yo Vo AVCOUY To TEOBANUA TN
EXENENC TWV XATUC TACEWY X0 VO TOREYOLY €VOL AMOTEAECUO Yiol TNV emahdeucT) Tng
mpodiaypapnc. o var avtipetwniotel autd 1o TEOBANUa xan v BeAtiwdel 1 anddoon
e emaAdevong, pio Vo agnenuévn Ty TeplypdpeTal ot pio SLdoxToplxn STl
[20] 1 onola buwe dev elye vhomoinel uéypl ofuepa. Xenowomoudvtoag tTov ahybprduo
NS TEYVLNC AUTAS, UTEEYOUY TeplocoTepee TavoTnTeS Vo eNaANUeUTOOY OPIOUEVES
WOLOTNTES TWV HOVTEAWY, OTIKC Yol ToEAOELYUo amAég invariants tng axdAoving popphc:
av a €ioodog elvar opiopérn, pa ovykekpiuévn éodos mpéner va opiotel erions. Mia
invariant eivan ula €xgpaon 1 omola mpEnel mavTa Vo xavomole(ton and Tov EAEYXTY| Uo-
VTENOU.

Fevixy) 8éa tng apnenuévng teyxvixng: O agnenuévoc autog ohybprduog
o omnolog Yo avagépeton we “iterative variable abstraction”, yweileton oe 5 PrApota ta
ornolo anewxoviCovtar oto Lyrfua 10. ‘Otav 1o PLCverif dev unopel vo 8woel amotéhe-
opa yior TNV emahleucT) Ylog WOLOTNTAC GTO apy o UOVTENOD, O ahyoELIUOg drutovpYel
agpnenuéva povtéra (AM) Boaotopéva oto apyixd. Me Bdon auth v teyvixh hotndy
AM dnuovpyolvTal enavaANTTIXd Xl TauTtodyeova tpocTodoly va amodeilouy Ot
T0 anotéheoya and TNy exohdeuon tne WidTnTac elvon YeTixd yio To Teéxov AM,,. To
AM anotehel wa UTEE-TEOCEYYLON TOL EY X0\ UOVTEAOU.

N
to| —~Doesp holt~_|rrue

[ —~_ InoM"? _—]

p -~

v
> 8"=8'+1 : AMn" FALSE
»| | p: AG(a—>B)

.// B
g g
FALSE | _—Doesp hold~__| true ‘
=R no =
—inAMA"? - ‘
~

e
——— ‘

v

AMn*+ Invar 8M=6"+1: AMn’
-(y&p) q: AGT’_—)—-B]

|~ Doesp hald-_| TRue
e o — |
~ “*!ll AMn S |

FALSE ‘

- FALSE

FALSE | TRUE
= .

¥
5":=5"+1 : AMn"
r: EF(y&8)

- -
FaLSE | _—Doesrhold™~_| TRUE
nAMa"?
S

e { End

Eyfua 10: Bruata tou akyopiduou variable abstraction [20]
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Anuoveyion AM: Mepiée and Tic HeTOfANTEC TOL TEPLEYOVTAL GTO dpyXd Uo-
vTého, meEnel va agatpedoly and to variable dependency graph tou poviéhou xou vo
VTt Tadoy and UN-vieTEpUIVIOTIXES TWES Tpoxeévou va dnutovpyndel to AM.
Koaddde autéc ou petoffintéc dev eloptwvtar and dhAeg YeTofBAnTéC 0To TEOYEUUUA, O
akyberdpog COI Yo unopéoet va amhouotedoel xau var uixplvel To povtélo eEaheipovtog
TEPLOCOTEREG UETABANTES.

Y10 Eyfua 11 gobveton éva mapdderyua Tou variable dependency graph yia o po-
VTEAO TOU TPOYEAUUATOS IOV TEQLY PAPETOL TUPAXATL OTO TaEddetyUa 1 xan yior Tnv Tpo-
dlarypapr) 6T "Av 1o b elvan odnég oto téhog tou PLC x0xhou, t6te xou T0 a mpénel
va etvon mdvtor akndég oto téhog tou (Bou xUxhou”. Tao xdxxva BEn ameixovilouy
Tic e€apTROELC UETAEY TV EXYWENOEWY, EVK UE YXEL elval ol YeToAnTéC Tou neptéyo-
VTl 0T Tpodtarypagr| Tou meénel va emahndeutel. Emmiéoyv, 6tav 800 petoffAnTéc elvon
ouvdedeUEveg Pe Eva xoxxwvo Béhog, 1 andotact| Toug elvon (on e 1. O anootdoelg
yernotwomoolvton and tov alyoprduo “iterative variable abstraction” npoxewévou va
XxATooXELAo TOVY Tot AM OTC TEPLYPAPETAL TOEUXATW. 2TO CUYXEXPUIEVO TOEADELY AL
ooy, pe yxpl ypwua etvan ol yetofAnteg a, b yiotl eivan autég mou mepEyovion oTNY
npodiaypapt). Eniong oto a exywpolvtar ol yetaBAnTtég d xan e YL autd xon oTo YeApT-
pot To a elvon ouvdedeuévo pe xdxxva BEAN pe autég Tic B0 petofAnTtéc. AvtioToya
070 b exyweelton 1 ueTofANTA f 2o awTo avamapio Tatan xou 6To Yedgpnua. Me tnv (Bl
AoYuxy| YlvovTow xou oL UTOAOLTES avTLOTOLY(OELS.

Listing 1: Example of SCL code
FUNCTION Test

VAR

a BOOL ;

b BOOL ;

c BOOL ;

d BOOL ;

e BOOL ;

f BOOL ;

END_VAR

VAR_INPUT

g : BOOL;

h : BOOL;
END_VAR
BEGIN

f := g AND h;

b := £f;

c := h AND NOT g;
e := f AND NOT c;
d := b AND g;

a := d AND e;

END_FUNCTION
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instance. ¢ mstance.e
BOOL BOOL "

instance.a
BOOL
instance. g ngtance.d
BOOL . BOOL
instance. h A ingtance.f A mstance.b
BOOL BOOL BOOL

Yyfuo 11: To nopayoduevo Variable dependency graph améd to mopdderypo tou Listing 5

12
A
—
[
=}

Xden og auTH TNV APENUEVT TEY VX

e 10 uéyedog Tou yheou Twv xatactdoewy 1§ PSS (Potential State Space) tou ogpr-
eNUEVOL HOVTENOU elvor UxpoTERO Xxadm TEQLEYEL AYOTERES UETABANTES,

e ouvidwe, oto AM avtinpoownedetal €vo UeyohiTERO VP0G TAVHY CUUTERLPORLY
TWV PETABANTWY TOU TEPLEYOVTOL OTT) TEOBLALYPOPT| GE CYECT UE TO 0PYLXO HOVTENO
(OM).

To PSS (Potential State Space) avtunpoownelel Tic mYovEC XUTACTACELS TOU WLatL
Olepyaoto propel va €xet. Tio mopdderyua, éva obotnua anoteholuevo and n diepyaoieg
6mou 1 xdde pio umopel vor €yer m xotactdoels, Yo el Evay yMdpo xataoTdoemy n¥m.

O ahyoprdpoc yenotwonotel dVo eldr Wwothtwy: reachability properties xau safety
properties. Ou reachability properties SiaTuT®VOLY OTL Wat CUYXEXELEVT XATACTAUON)
oev unopel va emitevyVel eved ol safety properties Slatumvouv OTL €val GUYXEXPUIEVO
ouufdy dev Tpénel ToTé var oLUPEL xdTw and cuyxexpwéves cuviixee (1 safety property
éyel  popyty: (AG(av — f))). Egapuélovtoc to povtého ehéyyou ot safety property
if p holds on AM!,, cuverdyeton 6Tl TGO TO APNENUEVO LOVTEND GO XL TO apyxd Elvar
oupPBatd Ye TNV TEodLYPUpT X TEPIOCHTERES CUUTERLPORES AVTITPOCWTEVOVTOL GTO
AM. Xty avtidetn neplntwon, émou n bty p dev elvon cupBath pe to povtéro AM,,
éva counterexample ¢ mopdyeTon amd TOV EASYXTH HOVTEAOL.

Ta counterexample pnopolv va eivan apxetd neplmioxo xoog Tepléyouy UeTofBANTéS
am6 dapopeTixoug PLC xOxhoug. T va emodndeudel 6t ) ididtnta eivon oupfBath ye to
aEy 6 LOVTENO amanTelTon TEPALTERE atvdhuoT Tou counterexample ¢ péoa and to Brigorta
3 xou 4 Tou ahyopiluou Wote Vo amocaPNVIcTEL av awTd elvon aAndég ¥ Peudéc. ‘Otay
utdpyouv Peudr aknih oto oTddlo enaldeuong 1 6Tay N WLOTNTA eV elvan cUPPBATY HE
T0 Yovtélo, ToTe To counterexample pnopel vo Yewpniel Peudéc.

H dou#| autol tou xepaiatou eivar 1 axdAovdn:

1. X¥to xepdhoo 4.2 meprypdgeTan 1 Aonolnor Tou alyopiduou variable abstraction.

2. X170 xepdiouo 4.3 napouctdlovTol To ATOTEAECUATO TWV TERAUATWY Tou BeEryUr-
oav yia vo eleyVel 1 anodotixdTnTA TOL AhYOoEiUUOL.

3. Xto xepdharo 4.4 mepLypdQOVTOL TO CUUTERAOUATO TOU TRoéXUay UeTd TN Oledo-
YOYYH TWV TELQUUATWY.

4.2 uvewocpopd

YTU¢ TopaxdTe TApAYeAPOUE TERLYRAPOVTAL TO AVAALTIXA Tor Biuoata Tou akyoplduou
xou 1 vhormolnot| Toug oe eva script. To script elvon vlomowuévo oe Python xou o
xenotne unopel va To exteléoel and TN Yeouuur evIoAody Bdloviag ooy TUpdUETEO TO
path oto omolo Bploxeton 1 neplntwon enakfievone nou Yéhel va eréyEet. To script
xahel emavoknmuxd v To command line éxdoomn tou PLCVerif line [32] xou mepiéyet
oha o Bripata Tou akyoplduou. To apyela Twv Tepimtdoewy etahideuong Eyouy TNy
xatdAnén .ve xau elvon oe poppry XML xou yio tnv enegepyasia Toug yenouomoiinxe
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XPath [62] xou xavovixéc exppdoeic.

AvTioToiyion ocuufoiwy:

e OM': 1o anotéheopa e epappoyhc Twv property preserving reductions oto no-
PUYOUEVO UOVTENO.

e OM": 1o anotéheopa g e@appoYnc Twv property preserving reductions yior Tnv
reachability property r.

e ': 1 andotoon petadd twv yetofAntdy oto variable dependency graph yia to
OM'.

e " m andotaon PeTaL) Twv YeToANTdVY oto variable dependency graph yio to
OM".

Ynv npoonddeior tou PLCverif va emoahndetoer wo wbiotnta oto OM/, o eley-
XTAG LOVTENOU UTOREl YOI UMV UTORECEL VO BOOEL AMOTEAECUA AOYw ANENG TOU YEOVOU
-4 TO (time out). Xe auth v nepintwon n extéheon touv ahyopiduou Tupodoteiton
TEOXEWEVOL Vo eEAEYEEL TNV (Blar WBLoTNTAL. AdYw auToL To opEyLxd autd Priua O cuune-
pthopfdveton oo utdholto 5 Tou akyopiduou [20]

Yhonoinon xow neplypapr] TV Prudtwy Tou alyopiduou

. 'EXeyyoc tne apywic safety property (p) oto agnenuévo povtého (AM').
. 'E)eyyoc tne safety property (¢q) ovo (dio agnenuévo povtéro (AM').

. 'E)eyyoc e reachability property (r) oto apyix6 povtého (OM").

. 'EXeyyoc tne reachability property (r) oto agnenuévo poviého (AM").

T = W NN =

. E€aywyr invariant and to counterexample av o oprdudc Tou cuvélou Twv invari-
ants elvan wxpdtepog ano 10.

Brjua 1: "EAeyyog tnc apyixyc safety property (p) oto agnenuévo
povtéro (AM') e autd to Phpa éva AM tou apyixod povtéhov OM’, nopdyeton
autépate eEdyovtoac petafBhntéc cav ewobdouc and v andotaor & = 1. Metd and
T, 0 €AYy 0C Wovtéhou tpooTotel vo enadndedoet av 1 WLOTHTA P ixavorolel To AM”
1 OxL.

YAomoinon: ond to script, dnuiovpyeitan éva apyelo oto onolo Yo amovnxeu-
tel TO mMeplEyOUEVO NG Tepintwong enakfievone v to AM v to mpdto PBriwa. To
TEPLEYOUEVO Tou elvon To (B0 e TNV meplmtwon enaAfieuong Tou dpEyLxoU UOVTEAOL.
Y1n ouvéyela ou petaPAntéc ewoddou edyovion and Ty andotoon ' mouv N wuh e
avTioTolyel oty Teéyouoa emavdindn xa. tpoctiievial oTIC YETABANTEC TOU AVTLTEO-
owNEDOLY TIC dpyxég elodouc. O akydpriuog e€dyel Ti¢ uetafBintés eloddou ue Bdon
To variable dependency graph mou nopdyetar oTo apyLxo Brivo.

Brjua 2: "EAeyyoc tng safety property (¢) ovto (8o agnenuévo po-
vtého (AM') Yo deltepo Prua, o ohydprduoc npoomodel vo eEdyel TeploobTepee
TAnpogopiec o Ty entodfdeuot) tou p oto AM;,. T vo yiver autd, eEhéyyet tnv safety
property ¢ oto (8o agnenuévo poviého AM). H biétnta g ebvan 1 (Bio ye tv p amhd
auTh TN Qopd oymuatileton dovnon otny mapdueteo B (AG(a — —f)).

YAomoinon: dnuloupyeiton éva apyelo oto onolo Yo amodnxeutel To TEPLEYOUEVO
e mepimtwong emahdeuong yia To dedtepo Priya. To apyeio €xel to (Blo Tepleyduevo
UE TO TEPLEYOUEVO TOL dpyeiou Tou dnutoveyRinxe oto mpdto Briwa. H safety property
eNéyyetan oo (B0 AM], anhd ye dpvnon ot napdueTeo .
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BAua 3: 'EAeyyoc tng reachability property (r) oto apyixé wo-
vTého (OM") Yo Brua 3 o ahydprdpoc entyetpel vo avolioet To counterexample ¢
egdyovtag and autd v reachability property r. IlpooOétovtog tny reachability prop-
erty, éva véo OM” dnuoupyeltar xou Todéc popéc eivan dapopetind and to OM'. Autd
unopel vo cupfBel yiotl 1 WOLOTNTA T UTOPEL VoL TEPLEYEL DLUPORETIXES UETUBANTES amd TNV
WBLOTNTA P X0 CLVETDG oL TEYVIXES Uelwone Vo amakeldouy didpopeg petoafAntéc and
TO UOVTENO.

YAomoinon: dnuloupyeiton éva apyelo oto onolo Yo amodnxeutel To TEPLEYOUEVO
e mepinTwong enoifievong yia o telto Briua. To mepieyduevo Tou apyeiou Yo elvon
(B0 pe To mepleyduEvo ToL apyeiov TNe apyxrc TepinTwong enahidevone (BAua 0). H
reachability property 9o eCoydei elte amd 1o Briua 1 elte amd to BrAua 5. O petofin-
Té¢ mou mepLhaUBAveL 1) WBOTNTA Vol AVTIXATAC TACOLY TG TORUUETEOUS TNG TERIMTWONG
enoArfidevonc. Av To counterexample €yel TEPLOGOTEPOUC ANd vy XOXAOUS oL OV
T0 AnMOTEAECUN IOV ToRAYEL 0 EAEYXTAS WovTélou elvon ‘AAnDéS™ , toTe GhoL oL xhxAol
TpENEL v eZeTaoToUV (eEXTOC av TO TEPLEYOUEVS TouC Eivon (Bl0) UéypL TO amoTéNEoUa
e enaAfievong va elvon SLopopeTLXO.

Brpa 4: 'EAeyyog tng reachability property (r) oto agprnenuévo
povtého (AM"). e auté to Phue, éva AM! dnuoveyeitor petd to TO nou npo-
x0mteL oto Bua 3. Auth T gopd ol yetoBAnTéc eloddou mou yeewdlovTon Yo T On-
woupyla tou AM e&dyovton and tnv andotacn §” e tpéyoucac enavdindne ue Tov
(B0 axpBig TeoTo dnwg xan oTo Priua 1.

YAormoinomn: dnuovpyeiton éva apyelo ato onolo Yo anodnxeutel To TEPIEYOUEVO
e mepintwong enadfdevong yia o tétopTo Buc To onolo €yel To (Blo mepleyduEVO
ue to opyelo tou Bruatog 3. O ahyodpwluog eldyel Ti¢ UETUBANTES E10OB0L Amd TNV
andotoon 0" ue Bdorn to variable dependency graph nou nopdyeton 6to Briua 3.

Bripa 5: E€aywyr invariant and to counterexample av o aprduoc
Tou cuVOAOL TV invariants sival wixpodTepog and 10. To tedevtaio
ot BAga efvon uredduvo vl Ty Tpootxr invariant oo AM’ xou vl Ty AMdn e
ATOPACTC OYETIXA UE TO AV O AAYOprIpOoC TEENEL VoL Tpofel oE VEo apalpeot) TOU LOVTEAOU
AM], 4+ 1 avEévovrag 10 & xatd 1 av To cvoho Twv duvatdy invariant éyel prdoet o
6pl0.

I mapddelypo, av o péytotog aplipoc twy mdavoy invariant m etvon < 10, plo
invariant Vo npootedel oto tpéyov AM'. Av 1o m eivar > 10 o odydprduoc Yo mpoPet
o€ xouvoLpLaL ETAVAANYT).

YAomoinon: dnulouvpyelton éva apyelo oto onolo Yo amodnxeutel To TEpLEYOUEVO
e mepinTtwong enahidevone yia To méunTo Brido xou To TMEPIEYOUEVO TNE elvan (8o pe
70 opyelo Tou Brpatog 1 av o m = 1 7 (Blo ye to mepLeOUEVO ToL BruaTog 5 av To
m > 1 xou m < 10.

e Y10 appendix oto xe@diono I'.2 meprypdpetan €var avaALTIXG TaEAOELYUAL Yial TNV
eQapUoYY) Tou alyopiduou.

e Y10 xepdrouo I'.3 oto appendix mepiypdpovTon avahUTIXG To TELRAUATA TOU Ole-
Efydnoay pe tov ouyxexpluévo olydplduo xodhe xou ol Aemtouépeiec twv PLC
TEOYPOUUATWY TV OTOlWY Ol TEOdLAYPAPES TEPUoUY TO GTAOW emahdeucTg.

o Télog, ato xepdharo I'.4 meplypdpovton To cuUTERdoUATA TOU TEOEXUPAY UETA TNV
BleEoy YN TWV TELROPATOV CYETIXE UE TO TAEOVEXTAUOTA TOU aAyoplduou xou TNy
AmOBOTIXOTNTA TOV.
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5 Z'ccx‘cmv‘] ocvdc)\ucm HWOLKX

5.1 Ewaywyi

270 TEONYOUUEVOL XEPAAALA, 1) TTUYLAXT| EQYACIO ETUXEVIPOVOTAY GTNV EPUOUOYT| TOU
eheyxth) poviéhou ota PLC mpoypdupoata. Xto xepdioo autd, o xoodixac PLC da
eletaoTel Ye SopopeTind tpémo. H otatxn avdhuon elvon €vag BlapopeTinds Teonog
va eheyydel To PLC mpdypauua ywels vo ypeidlovton ol mpodiaypagéc tou. Xenoylo-
TOLWVTAS OTAUTXY avdhuom x@dwa, évag mdovede Aaviaouévog xmdxag 1 Uid anpoo-
OLOEIO TN CUUTERLPORA UTopolV va Bpedolv oTto mpdypauua. ‘Onwe avagépdnxe oto
xEPAAoLo 2, undpyouv NON uepxd epyahkeia mou cToyebouv oty avdivor PLC npo-
veoupdtwy. Ta epyohela PLC Checker ané tny Itris Automation Company, Codesys
Static Analysis and tnv CoDeSyS xo o Arcade.PLC nou avantOydnxe cto RWTH
Aachen University avaibovtar oto appendix oto xepdiowo H.2 xou mapoucidlovton xou
otoug mivaxeg 1 xou 2. Emniéov, oto CERN, 800 teyvoloyieg mou yenoysonolodvton
YL 800 BlapopeTind medTtlexT anotéhecay TNy Bdon Yo TN dnuioupyio 8V0 TEWTOTUTWY
gpyahelwy otatinc avdluong Tpoxeévou va avahudoly To ogén Tng wg teog to PLC
TEOY EOUMALTAL.

ivoxag 1: Hivoxag obyxetong I v epyuielwy otatinrg avdiuong yi mpoyeduuota PLC.

Extensible

Tool License | Report rules Language Restrictions
Limited to
CoDeSyS Yes Console Yes IEC 61131-3 CoDeSys
platform
Siemens,
81\/][3Rg)N, SXngrﬁiAWL and
. oDeSys, . es are
PLC Checker | Yes PDF/e-mail | Yes Sclleinger, required to analyze
Rockwell - an SCL file.
Automation
TEC 61131 ST,
Arcade.PLC | No Console No IEC 61131 IL, | -
Siemens STL

ivoxag 2: ivoxag obyxetong I twv epyaheiwy otatinrc avdhuong yia tpoypeduuato PLC.

Tool Rule Exclude | Error
categories errors Message
coding rules,

CoDeSyS naming conventions, No info Error, warning
metrics

naming rules,comments,
PLC Checker | writing rules,structure Yes
rules
Arcade.PLC | Non-rule based tool No Fatal errors, errors, warnings

Info, warning,
error, fatal

5.2 7Ylomoinom

‘Onwe tpoavapépdnxe, 800 TEWTOTUTA EQYUAEIWY OTATIXNE AVIAUCTG avamTUYInxay Yo
npoypedupota PLC ypopuéva oe SCL. O 6tdy0¢ twv epyaleiny otn nopodo gpdor), lvou
VoL oV VeLD o0V amAég Topaf3ACELS TOCO OTY) BOUT] TOL XXX OGO X0 GTNV OVOUXTOAOY(O
wwv POU (Program organization unit) xou tov petointdv. Kodoe to npdtlext elvou
OE TELROHATIXG oxOua O0TAB0 axolovdrdnxay ol 8o axdhouwdeg Tpooeyyloelg yia TN
onuiovpyia Tou epyahelou:

H mpdtn mpocéyyion Pacileton oe éva npdtlext yia 1o omolo avantdydnxe uio
YAOooa edixol Tediou mpoxeiuévou va uetateédel to PLC npdypouua oe woppr| dév-
dpou agpnenuévne cuvtadng. Tao 8évdpa agnenuévne odvtadng eivan douée Sedouévewy
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TOU YENOWOTOOLVTAL and TOUC PETAYAWTTIOTEC. Xdpn oTnV WBLOTATO TOUG VoL ovo-
TUELG TOLY TOV XWX TOU TEOYESUUATOS, BLEUXOADYOUY TNV TEOCTEAACT) TOU ond TOV
HETAYAWTTIOTH.

Avty 1 mpdTn Tpocéyylon dnwoveyNinxe e T yenon e mAatgodpuas Spoofax.
Xdipn o7T0 5EVOp0 agnenuévne cUVTIENS TOU TORAYETAL, Ol XUVOVES TNG O TATIXAS otVaAU-
ong umopolyv vo avantuydoiv Baciloyevol oe autod. T v avdmtuln tou epyaieiov
umeav B0 unompoceyyicelg ol onoleg elvan Baclouévee oe pio diemagpr) tou Eclipse
oTNY TAATQOEU Tou Spoofax.

H 8e0tepn mpocéyyion Baciletan oto epyareio PLCverif. To PLCverif to onolo mo-
eEYEL xou auTO Lo diemapr] Tou Eclipse, ypnowomnoiel Ty teyvoloyia Xtext npoxeiuévou
va tpoonehdoetl tov xwdwa tou PLC mpoypdupatoc. Agod o xddixoc npootelao Te,
10 PLCverif tov petogppdlel oe avanopdotacn 6évipou agnenuévne cbvtaéne to ono-
fo umopel va yenowwomowniel yior TNV ovETTUEN TWV XAVOVWY CTATIXAC avdAuong. XTo
oYU 12 umopolue vor BoOUE TNV EXOVIXT] AVITOEAC TAOT) TNG SLadixaciag Tou oxohou-
Yelton and Tov mpoypaupaTio T N ontola elvan 1 (Blot xou yia Tig dVo mpooeyyloels.

- -~
-~
”
s
< A Y
PLC code !’ \
.scl / \
I Static “
I <+— Analysis \
_

I Rules I
I — '
\

1 — I
\ — !

\ AST — !

\ —
\ /
3 /
~ '
~ -~
C s 2

Analysis
Report

Yo 12: Porj gpyaoiadv yio Tic Tpooeyyioelc Tou epyaleiou oTaTXhc avdALoTS.

ITpocéyyion Baciopévn otny nhatgodppa Spoofax H npocéyyion auth
yweileton o duo vnonpooeyyioes. H mpwtn yenowonowel tnv cuvaptnotlaxy YAOooo
Tpoypoppatiogol Stratego/XT eved 1 Seltepn yenoWomolel Goy YAOCON TEOYEUUUATL-
opoL Ty Java.
‘Onwg neplypdpnre oto LU 12, 1 Sladasior yior TNy 6Tt avaAuoT Tou Wi
anoteAeiton and 3 Brivora:
1. To PLC npdypaupa mpooneladveton agpol dodel cav elcodog atny mAaTgdpua xow
OTN CUVEYELX UETAPEALETAL OE AVITORAOTACT) BEVOEOU apneNuévng cUVTUENG.
2. "Yotepa 10 BEVORO aPnENUEVNe CUVTOENS AVOADETOL XOL Ol XAVOVES O TATIXNG oVaAU-
oNe UmopolV va YeapToLy e Bdon autd.
3. Téhog, uetd TNV eXTEAEST] TOL ERYAAEIOL, TOL ATOTEAEGUATA TNG AVIAUCTG TOU XMOL-
xa mapovaldlovton 6Ty xovooha tou Eclipse 1) xou o wopgy| avapopds otny ne-
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pintwon e deltepne unonpocéyyione (Java).

H x0pta Stopopd puetal twv 8Vo autov unotpoceyyloewy, eival 0 TeOTOC UE TOV
ornolo €youyue mpodoPBacy ato BEVOPO apneNUEVNE clVTUENS Yia TNV UAOTOMOT TV Xo-
vovwv. To 8évbpo agnenuévng obvtagng mou Tapéyetol and TNV TEKOTN UTOTROGEYYLo
Stratego/XT eivon yopunhol emnédou. T napdderypor Tor ovoUaTa BLPOPETIXDY TOTWY
peTaBANTOY Yo avamoploTavTal o SlapopeTixd Yot{Ba Tou 6évdpou. Loy amoTtéAeoua,
TEOXEWEVOL VoL GUAAEY VOV Tal OVOPATA TV UETOBANTOY, OAa Ta YotiBa meénel va e-
Aeyydolv. Qotdoo, 10 BEVBPO agpnenuévng cuvtaEng avanopiotd 6o Tov PLC xhouxa
TOU TROYEAUUATOC.

IMpoxewévou va undpyel ueYaALTERT EVEAE(DL OTOV TEOTIO YPUPHS TWV XAVOVWY KOS
TEOC T YAWOOW TROYRUUUATIONOU, dnutovpyinxe xau 1 dedtepn Tpooéyyion 1) onola
BaoiCeton otny Java. To (Bio 8EVBpO apneNUEVNE AVAToEdsc TACTE UTOPOUGE VoL Y eToULo-
mounel xou vyl UTAY TNV TEOCGEYYLON ENEWY| OUKS HTAY YAUNAoL emmédou ALY VNXE
vo avtatac todel. Méypl otiyung Hovo xavoveg mou 6Toyebouy 6To PHEEOS TOU XMOLXL
TOU aPopEd TNY ONAWON TWV PETABANTGV UTOPoUV VoL YRa(pToUV XaddS TO XOPUITL TOU
APOEA TNV TEOCTEAACT) TWV EXYWENOCEWY TWWV 0TS UETOBANTES Oev €xel LAomounUel
axdpa. Emmiéov, n 8elteprn ot UTOTROCEYYION TUREYEL OTO YEHOTN TN OUVATOTNHTA
Vo ETMAEEEL TOUG XAVOVEC oL VEAEL Vou CUUTERLAABEL OTNY O TATIXY) AVIAUGCT] TOU TEO-
Yedupatog mou VYo EQUpUOTEL.

Ilepioocdtepeg Aemtouépeieg avaypdgovion 6to xepdhowo H.3 oto appendix oyetxd
UE ToV TPOTO LAOTOINGNE TNE XddE LTOTPOGEYYIONG, UE TOUS XUVOVES IO BnuLovpY -
%oy oA Xol e TOROBELYUOITAL XWOLXAL.

ITpoceyyion Paciopevr oto gpyareio PLCverif Ytny teheutoio npo-
oEYYIoN, TO EpYUAElo OTUTIXAC avdhuomg efval EVOWUATOUEVO UE To epyahelo emahideu-
one mou mopéyel o PLCverif. To 8évdpo agpnenuévne olvtaéng mou mopdyeton ond
10 PLC ymogel va unootneiel dha tar Xtext mpoypduuota Tou YenoylonolodvTal 6To
CERN xou efvon ypopuéva oe SCL. Qotéo0, 1 yeauuotixr tou epyoheiov dev elvan
TAENS xodd¢ XUAUTTEL TEOG TO ROV WoVo Tig avdyxec Twv PLC npoypouudtwy mou
yernotpomoolvton 6to CERN.

H hoyuery avdntuéng twv xovovey eivan 1 (Blor HE TNV TEMTN TEOGEYYLOY| Xl TEPLO-
0OTEPEG AEMTOUERELES TEPLYPdOVTaL 0To xe@dioto H.3 oto appendix.

Hivoxag 3: Loyxpion PETOL) TwV TPOCEYYICEWY Yid TO E0YAUAEID OTATIXNC AVAAUGTC XWOLXAL.

Approach Grammar | Implementation | Pros Cons
Stratego/XT | Spoofax Stratego Complete grammar | Low-level AST access
Java Spoofax Java Simple rules Partial AST support
p P Manual AST manipulation
PLCverif Xtext Java Simple rules Partial grammar

Télog oto xepdrowo H.4 oto appendix meplypd@povion Tol GUUTEPACUATA TOU TEO-
éxuday yio To pyakeio oTaTnAC avdAuong mou dnuoueyRinxe.

6 Xvurnepdoupato xow MeAANOVTIXES EMEXTACELS

6.1 Xvunepdopota

Avth 1 mruytoy) epyacio €xel wg oxond ) Beitiwon tne nowdtntoc twv PLC meo-
Yeouudtewy ye tn Bordeia NG oTATIXAC AVAAUOTC XODIXA Xl TOU EAEYXTY] LOVTEAMV.
Emniéov egapudlovtoc tov akyderduo tng apnenuévng texvixig emtelydnxe n uepixy
AVTLIETOTIOT TOU TROPBAUATOS EXPHEEWY XATAC TACEWY, TEOBANUO TTOU Ol TREOY QOUUILTL-
oteg AUtn N TTuyloxn epyacio dnuiovpyHinxe ye oxond va Behtiwdel n ToLOTHTA TWY
PLC mpoypopudtwy ye tn Bordeia TNg o TATIXAC AVIAUCTIS XWOXOL XL TOU EAEYXTT UO-
viéhov. Emniéov egapudélovtoc tov ahyoprduo tne agnenuévng Teyvinhc emtebydnxe
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1) HEPIXT| OVTIUETMTLOT TOU TROBAAUATOC EXPHEEWY XATUC TACEWY, TPOBANUA TOV Ol TEO-
Yeoupatiotég avtetonilovy npootaddvTag vo enaAndedoouy T TEodiaypapés Tou
cucTAUATOC 67O (Blo To cUotnua. [ v dlaopakioTel 1 eQapuoYY TV TAUPATAVE,
TEUMHaY TEELS SlopopeTixol oToyOL:

® EVOWUATWOTN TOU EAEYXTH WOVTEAWY oTov mpoypauuationd twv PLC. KedBovtag
% ToAuTAOXOTNTAL a6 TOV YENoTN TAEoV unopoly va etahndeudoly neplocdTe-
eec and ula mepintioelg enokfievone péow tou PLCverif ywplc tnv nopéufoon
Tou XEHOoTN.

o ovdntugn Tou ahyopriuou g apnenuévng TexVxhc «variable abstraction». Avti-
HETWTIOTXE PEPIXMOC TO TEOBANUA TNS EXENENC TOV XATAO TACEWY LOLUTEPA YL TIC
TEODBLAY PUPES O Ty CUUPATES UE TO HOVTEAO TOU GUGC TAUITOC.

® aVAAUOT) LTEYOVIWY epyakeiwy otatixc avdhvone PLC mpoypouudtov xou o-
VETTUEN 8V0 TEMTOTUTWY ERYUAEDY GTATIXAC OAVEAUGTC TEOXELEVOU VO EVTOTL-

otolv mapafdoelc otov x@oa twv PLC mpoypouudtwy mou yenoiwonotodvio
oto CERN.

Yuvdudlovtog Tov EAEYXTY LOVTEAOU oL TN OTATIXY AVIAUGT), UTORECE VoL EMLTEL-
Vel o o oyuen enoAieucn Tou xDOXa. LUVETKS, Ylo TV enokfdeuon tne op-
YotnTaC evog cuoTAUOTOC, elvan amapaftnTeES Xou oL BVO TeEXVIXES xadde 1 xde pLo
TapEYEL BLapopeTiXd eldog avdhuomng. e avtiVeor ue Tov eEAeYxTH HOVTEAOU, 1) OTUTLXY
avdhuon Umopel va EQoproc Tel 6TO TEOYEOUUA YwelS Vo Yeeldleton 0 YeNoTng Vo BKOOEL
cav €{0000 010 gpyahelo TIC TREOBLAYPAPES TOU CUCTAUNTOS TEOXEWEVOL Vol ETAANUE-
Ooel v opBoTNTd Tou. Toautdypova, xadde xdde mohumhoxdtnTa Exel apoupevel, To
novtého eAéyyou unopel elxola va yenotworoiniel xou cuvidwe va eyyundel tny eno-
Adevon tou povtéhou. Tlapdho mou dha To Ble&ory GUEVOL TIELRAUATOL YIOL TO TROY EGUAULOITA,
mou yenowomnowivian 6to CERN defyvouv 6tL o olydprduog “variable abstraction” oe
GUVBLOOUO HUE TO UOVTENO EAEYYOU UTOEOVY VO BOGOUY ATOTEAEGUA YL TNV ETaAdeu-
o1 Tou YovTtélou, To TEOBANUA TNE ExENENG TWV XATUC TAOEWY TUPUUEVEL Yol JPXETEG
TEQLTTWOELS.

6.2 MeAAOVTIIXEC EMEXTACELS

H pelhovtiny| epyacio anooxonel 0Tny avTUETOTICT TWV TEOBANUATOY TOU TUPUUEVOLY
dhuta. It vor avTWETWTO TEL IO AMOTEAEOUATIXG TO TROBANUO TNE EXENENG TWV XOTo-
OTACEWY VEEC BEATIWUEVES TEYVIXESG UEIWONE XU APALPECTC TIPETEL VAL EQUPUOCTOUY GTAL
HOVTERA TV cLCTNUATKY. Mia TOAAE uTtooy duevT elvon Aeyouevn predicate abstraction
TEYVIXY TIOU YPMLOUOTOLELTOL Yial VO ETUATIEVCEL LOLOTNTES MEMEPUOUEVV XATAC TACEWY
X0l U1} CUCTNUATWY. AVOVTIGC EVOL CUYXEXPLIEVO TETERACUEVNC 1 U XATAC TaoNG UG TN
ot %ot EVOL GOVORO XUTNYORNUATOY, TURAYETOL ULl APULPECT| TEMEQUOUEVV XATAUC TUACEWY
X0 UE AUTO TO TEPOTO TO BLAC TNUL TWV XATAUO TUCEWY UELWVETOL.

Emmiéov, o aiyopuuog variable abstraction Vo elvon mo amodotixdg petd amod
OPLOUEVES UXEES TEPOTIOTOWOELS GTNY LAoToinon tou. Exteldvtog nopdAAnia ta Brigota
Tou Ta ool SV oyetilovtan Yetagd Toug To anotéhecua Tng enahdeuong Yo napeyoTory
TO YpThYopa.

Télog, T0 mpotéTUTO Epyaleio TNG oTATIXAG AVAAUCTG, TEETEL Vo emexTadel Ye mo
TEPLOCOTEROUS XAVOVES oL omolot Ha aviyvebouy cofapeg nopoafdoeic otov PLC %xoouxa.
Metd ano nepattépe EpEUVES Xal €NELTAL Ao SLLATNOT UE TOUS TROYPAUUUATIOTES Vot Elvol
o eVX0Ao va e€ay o0V To oUCLHOTIXOL XOVOVES TIPOS LUhoTolNoT).

Ot x0woTNTEC TOU ACYOROUVTAL UE TNV AUTOUTOTOINCT ot TIC TUTIXESG peddBoug
Beloxovtan éva BAua mo xovTtd 6To va dlacpaiicouy tny opvotnta twv PLC npoypoy-
patwy. Ilog'dha autd yeetalopacte oaxdua YeOVo (OOTE Vo EUACTE ATOAUTA GlYOUEOL
oTL éva cUo TN EAEYYOU ebvan Loyued xou a&LOTo TO
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Appendices

Abstract

Industry processes are evolving to the point where human interventions
tend to disappear with the passage of time and as a result even a small
mistake in these control systems can have catastrophic consequences. For
that reason the need of developing robust, safe and reliable control systems
is fundamental for control engineers. To guarantee the above both the
hardware and the software have to be analysed to ensure that they fulfil the
requirements.

The most popular control device in the process industry is the Pro-
grammable Logical Controller (PLC). PLCs are used all over the world for
millions of industrial processes. Guaranteeing the safety of such a system
is a challenging task for engineers. Testing and formal methods are used to
check the correctness of a PLC program and ensure its safety.

The goal of this thesis is to improve the safety assurance of PLC pro-
grams and reduce the number of flaws in the software by integrating and
applying static analysis and one formal method technique in the develop-
ment process and at the same time hide any complexity from the developer.

The experiments and the methodologies used in this thesis have been
applied to real-life PLC programs developed at CERN.
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Appendix

A  Introduction

Technology with its rapid progress during the last decades has affected most
aspects of our life. After the eighteenth century the industrial revolution
marks a major point in history as it was the ground for significant econom-
ical, political and social changes in our society. Overall automation and
automatic controls have brought and continue to bring benefits to human
society.

Industrial automation has been evolving since its early start and rep-
resents an important element in the development of the industrial domain
nowadays. Moreover, it plays an important role in solutions of improving
our daily life. In particular, the average standard of living but also the
rate of the population started to increase due to the development of new
machines and technologies. By introducing the industrial automation hu-
man intervention has decreased and dangerous assembly operations were
replaced with automated ones.

Industrial automation came to free humans from tiresome and long mon-
itoring tasks while interacting with control systems. Control theory and
control technologies were the elements to design systems with desired be-
haviours that can perform without the need of the human intervention.

In general control systems are divided in three main categories:

1. Supervision: in this layer the supervision tool that usually called SCADA
(Supervisory Control and Data Acquisition) provides the interface with
the process operator.

2. Control: this layer contains the control devices (PLC) where one or
several input variables affect other variables.

3. Field: this layer is composed of sensors and actuators that take the
information from the process and execute the logic given by the control
devices.

However the modern control systems are divided in five parts instead
of three by including also ERP (Enterprise Resource Planning) and MSE
(Manufacturing Execution System). The thesis is focusing only in the con-
trol layer. The control system layers can be seen in Figure 13.

ERP

MSE
Supervision
Control

Field

Figure 13: Control system layers

Since 1968, when the first programmable logic units were used to con-
trol systems at industrial processes, more critical systems have become more
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automated. A potential failure or malfunction in any control system espe-
cially in a safety one, could cause severe damages. Therefore, one of the
main needs in industrial automation is the ability to design reliable con-
trol systems that offer a robust level of safety and are compliant with their
specifications. To guarantee this both hardware and software of the control
system have to be analysed. A software failure in a control system can
provoke irreparable damages not only to the human being but also to the
environment and to the economy.

One of the many examples is the software error which provoked the
accident of Mars Climate Orbiter [58], a robotic space probe launched by
NASA on December of 1998 to study the Martian climate. A mathematical
mismatch costed a $125-million spacecraft to NASA. Bugs in such software
can clearly have disastrous consequences. Another example of a software
flaw that costed the life of 6 people is the bug in the control of the radiation
therapy machine Therac-25. Due to a wrong computation the machine was
giving massive overdoses of radiation to patients suffering from cancer.[61]

The goal of this thesis is to analyse programmable logic controllers
(PLC) programs and improve their quality by focusing in the reduction
of the number of bugs in the PLC software. PLC is the most widespread
control device being used in the process industry and in the recent years is
becoming popular also in the Safety Instrumented Systems, systems which
are designed to ensure the safety and reliability of processes and are defined
by IEC 61511 and IEC 61508 standards. In particular, the thesis focuses
on the applicability of a formal method technique named model checking
and of static analysis in the PLC software.

A.1 Context

As control systems are used massively not only in the industrial process but
also in other domains such as airspace systems and nuclear installations,
it is vital to prevent mistakes like the forenamed. Only few companies
and research centres are involved in the particular problem and CERN
(European Organization for Nuclear Research) is one of them.

The thesis has been performed in terms of my degree program on Infor-
matics and Telematics in Harokopio University of Athens (Greece) and has
been applied in a real world case at CERN. CERN which was established
in 1954, is the biggest particle physics laboratory in Europe located on the
French-Swiss border. It operates a complex of particles accelerators in order
to perform the experiments.

People were always trying to discover as much as possible about the
very first start of the universe and the way it was created. The LHC (Large
Hadron Collider) (see Figure 14), currently is the biggest particle accelera-
tor in the world; it is located 100 metres underground and has circumference
of 27 km. The primary goal of this machine is to create the conditions that
existed immediately after the Big Bang. The accelerator accelerates the
particles to a very high energy and at a speed slightly less than the speed
of light. Seven experiments (CMS, ATLAS, LHCb, MoEDAL, TOTEM,
LHC-forward and ALICE) are located around the collider and each of them
studies particle collisions from a different aspect and with different technolo-
gies. By analysing the collisions scientists aim to prove or disprove various
theories of physics and understand the universe better.

In order to provide the optimised conditions for accelerators industrial
processes are being used (e.g. cryogenics, cooling and ventilation). Among
others the most widespread control device that is being used at CERN for
the industrial prcesses and the needs of the experiments is PLC [59]. A
PLC is a robust device that reads inputs from an input device (e.g. sensors,
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Figure 14: CERN accelerator complex [14]

selector, valves) process them and writes outputs to machines that can be
controlled.

More than 1000 PLCs are maintained and developed for the industrial
processes at CERN and almost 1/3 of them are maintained by the Industrial
Control and Safety (ICS) group inside the beams (BE) department. More
specific the Process Control Systems section (PCS) develops, implements
and maintains protection and process control applications. Therefore, the
topic of the thesis is related to the work of the mentioned section and it
aims to improve the quality assurance of the PLC software by introducing
formal methods which are recommended by the IEC 61508 standard and
static analysis. For that reason, for the integration and the application of
one formal method technique — model checking— and static analysis are used

A.2 Contributions of the Thesis and Motivation

Having a robust and reliable PL.C program fully compliant with the spec-
ifications, but also a program that does not contain any bugs, is the main
goal of the people who are involved in this project. However creating such a
system is a very tricky and challenging task. The thesis, by contributing to
the project, aims to bring the above techniques to the development process
of the PLC program in order to guarantee compliance of the PLC program
to the specifications but also to improve the quality of the code by detecting
problematic code constructs in the early stage of development process and
at the same time hide any complexity from the developer. To do so the
thesis is divided in three main parts:

1. The integration of model checking in the PLC program development
process by hiding the complexity fro the user and at the same time
reduce the manual preparation.

2. The implementation of an abstraction technique to improve the perfor-
mance of model checking in our PLC programs.
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3. The development of a prototype for a static analysis tool for PLC pro-
grams.
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B Background and Related Work

B.1 Introduction

This chapter overviews the techniques, the methods and the technologies
that had been used for the application and the integration of model checking
and static analysis to the PLC programs.

Some of the control devices are PCs, FPGAs (Field-Programmable Gate
Array) and PLCs. PLCs have been an integral part for decades for most
factory automation and industrial control processes and also at CERN.
Section 2.2 describes the main characteristics of PLC control systems.

On the other hand, even though PLC is the most popular control device,
there are not many applications of formal methods and static analysis yet
in the field. These two techniques, model checking from formal methods
and static analysis, which are used in this thesis are described in Section
2.3 and 2.4 respectively.

B.2 Programmable Logic Controllers

The first PLC was introduced in the late 1960s and was an outgrowth of
the programmable controller [53]. The need for better, more robust, easy
to configure and reliable control devices gave birth to the PLC. The Bed-
ford Associates company came with the wining proposal of this electronic
replacement named 084. To maintain, develop, support but also sell this
new product they started a new company named Modicon. Dick Morley, is
one of the people who were working in this project and he is probably the
“father” of the PLC [56].

Despite the fact that other electronic apparatus are more powerful, flex-
ible and sophisticated, PLCs are the most popular and widespread device
for controlling industrial processes. PLC is an operating electronic device
that continuously monitors the status of devices connected as inputs and
provides alternatives in interfacing with peripheral systems or devices.

B.2.1 PLC Hardware

PLCs use a programmable memory for the internal storage of instructions
and the implementation of specific functions to control processes or vari-
ous types of machines. Mainly the PLC receives inputs from both digital
and analog instrumentation (e.g. sensors, valves, pumps) and transmits
electronic and electronical signals to other electrical systems.

Execution schema: The I/O system provides the physical connection
between the PLC and the equipment. PLC, by being a dedicated controller,
is processing the same program over and over again. The execution schema
or scan cycle as it is called, consists of two main steps:

1. The inputs are being scanned from the devices and the logic based on
them is executed.

2. By executing the user program the outputs are triggered accordingly in
a repeated loop called operating cycle which is executed very quickly

(in the range of 1/1000th of a second).
The basic component of the PLC is the CPU (Central Processing Unit)
which is controlled by the operating system and controls all the above steps
of the operating cycle. However a scan cycle can be interrupted if an event
(e.g. timer, hardware error, handler) triggers the execution of an interrupt
handler. PLC interrupts can have different kinds and priorities. Moreover
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Figure 15: Basic PLC components

PLCs are equipped with power supply which drives the CPU, the I/0 sig-
nals, the memory unit and some peripheral devices. An overview of the
components that consist the PLC hardware can be seen above in Figure 15.

B.2.2 PLC Software

This thesis is based on Siemens PLCs, as they are the ones used for the
industrial processes at CERN. However the differences between the Siemens
PLCs and the PLCs provided by other manufacturers are minor. All the
PLCs are based on the IEC 61131 standards in order to resolve topics related
to control programming and to support the use of international standards
in this field.

The third part of the IEC 61131 standard defines the different software
resources that are required to built a PLC program. All PLC programming
languages even from different vendors are following this standard by adapt-
ing on it or develop a slightly different language following the requirements
and the recommendations that it provides. Five languages are defined by
the IEC 61131 standard :

1. ST or Structured Text is a high level language syntactically similar to
Pascal.

2. SFC or Sequential Function Chart is a graphical programming language
based on steps, transitions and directed links between them.

3. IL or Instruction List is a low level language similar to assembly.

4. FBD or Function Block Diagram is a graphical language that can de-
scribe the function between input variables and output variables and it
is based on logic gates.

5. The Ladder Diagram or LD is a graphical language based on the circuit
diagram of the relay logic hardware.
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Figure 16: Schema of the cyclic scanning mode

However to program a Siemens PLC, Siemens developed its own ver-
sions of languages based on the above five ones. For this thesis only SCL
(Structured Control Language) language is used and is the equivalent of ST
language from the standard.

SCL Language: Provides the following five block types available [1].

1. OB or Organization Blocks form the interface between the CPU oper-
ating system and the program. OBs are the entry points of the system.

2. FB or Function Blocks are logic block with static data that their pa-
rameters can be accessed at any point in the program.

3. FC or Functions are logic blocks without memory so the calculated
values must be processed after the function is called. These blocks
contain executable code.

4. DB or Data Blocks are areas responsible for the storage of the data.
There are two types of data blocks: shared ones that can be accessed by
any block type and instance data blocks that are assigned to a specific
FB call. Data blocks do not contain executable code.

5. UDT or User-defined data types are structured data defined by the user
and they are handled as if they were blocks.

Listing 2: Example of ST code

FUNCTION_BLOCK FB100

VAR_INPUT

a : BOOL;
END_VAR
VAR_TEMP

b : BOOL;
END_VAR
VAR

c : BOOL;
END_VAR
BEGIN

b NOT a;

c := b;
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END_FUNCTION_ BLOCK

DATA_BLOCK DB1 FB100
BEGIN

END_DATA_BLOCK

ORGANIZATION_BLOCK O0B1

VAR_TEMP

info : ARRAY[O..19] OF BYTE; // reserved
END_VAR
BEGIN

FB100.DB1(a := FALSE);

Q1.0 := DBl.c;

END_ORGANIZATION_BLOCK

Listing 2 above shows an example of ST code. This example code defines a
function block (FB100) with three variables (a, b, ¢). There is an instance
data block (DB1) defined for FB100. In the organization block OB1, the
FB100 is called using the instance data block DB1 with input parameter
a=false. Then the c variable of this instance is assigned to the output Q1.0.

B.2.3 UNICOS

UNICOS (UNified Industrial COntrol System) is an industrial control frame-
work developed at CERN. The UNICOS framework can generate PLC code
for PLC-based control systems written in Siemens SCL. The experiments
presented in the thesis use PLC programs from the UNICOS library.[11]

C Model Checking and Static Analysis
C.1 Formal Methods

As it was mentioned before, mistakes in the control systems can put in
danger not only the economy and the environment but also the human.
For this reason in software but also in hardware design of complex systems
usually more time is spent on the verification of the system than on the
construction. In some cases the traditional prevention techniques such as
testing are not sufficient to reach and verify the desired safety level. However
formal methods can help to assure the safety of the system. Formal methods
are defined by several authors and below is one of many definitions of them:

“Formal methods are mathematical approaches to software and sys-

tem development which support the rigorous specification, design
and verification of computer systems. The use of notations and
languages with a defined mathematical meaning enable specifica-
tions, that is statements of what the proposed system should do, to
be expressed with precision and no ambiguity.” [18].

C.1.1 Model checking

Model checking is a formal method technique which was developed by Clarke
and Emerson. Queille and Sifakis independently discovered a similar verifi-
cation technique shortly thereafter in early 1980s.

“Model checking is a method for formally verifying finite-state con-
current systems. Specifications about the system are expressed as
temporal logic formulas, and efficient symbolic algorithms are used
to traverse the model defined by the system and check if the speci-
fication holds or not.” [13]
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The model checking process consists of three steps:
1. Formalization of the requirement to be checked.
2. System modelling.

3. Execution of the model checker algorithm.

Real system
(hardware, software)

l l

Formal
specification

Specifications

Formal model

Model checker

x NV

Property fails Property OK
Trace leading to violation

Figure 17: Model checker process

Formalization of the requirement to be checked: Engineers
when design a system constantly face the problem of faulty design require-
ments. The cost of errors in requirements is often high as it will probably
lead to an incorrect system behaviour something that they do not desire
especially for a safety system.

In order to produce correct and precise requirements the use of formal
methods is mandatory. In model checking techniques the requirement or
property is expressed by using a temporal logic as a property specification
language. Temporal logic is any system of rules and symbolism for repre-
senting, and reasoning about, propositions qualified in terms of time [60].

System modelling: Once the requirements to be verified are described
in a temporal logic the construction of the formal model of the system is
another necessary step. Models of systems describe and represent the be-
haviours of the original system usually in an accurate way.

Execution of the model checker algorithm: Model checker in or-
der to execute the algorithm needs as inputs the formal characterization of
the requirement to be checked and the model of the system that was built.
Once those two inputs are provided the model checker will run the algo-
rithm and will proceed to the analysis phase. At that point is going to give
a result about whether the property is satisfied or there was a violation in
the property. In the later case scenario model checker may provide a coun-
terexample to the user that contains uncover errors in design by indicating
how the model would reach the undesired state.

Advantages and disadvantages of model checking
Summarizing the main advantages of model checking techniques are:

1. It is an automatic verification method.

2. If the requirement is not satisfied, a counterexample that shows why
the requirement does not hold on the model is produced by the model
checker.
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3. In order to guarantee that the property holds on the model, model
checking explores all the possible combinations of the state space.

4. Temporal logic can express many of the properties that are needed.
The main disadvantages of model checking techniques are:

1. State explosion - sometimes the number of the possible combinations
can be enormous and model checker is not able to give a result.

2. Difficulty in using temporal logics specifications
3. Complexity of building formal models.

To automate the verification process all the algorithms of model checking
are implemented in verification tools. Some of the most popular verification
tools are: UPPAAL, BIP, SPIN, KRONOS and NuSMV which is the one
that is going to be used in this thesis.[10]

C.1.2 Static analysis

Static code analysis is an analysis technique that examines a software pro-
gram without actually execute the program. Static analysis is performed by
an automated tool and is similar to code review or program comprehension
which is done by the developer. The main benefit of static code analysis
is the early detection of potential bugs in the development cycle and the
improvement of the program quality. The goal of static analysis is to find
potential defects even though they might not cause failures. While it can
often be difficult to test the whole programs due to the size of software
projects, static analysis tools can be used to analyse the on-going project
for violations as they are being created [29]. However, this is not to say
that static analysis can be sufficient for testing the code, therefore dynamic
analysis can not be ignored as it is also an important part of the software
testing process [17].

Nowadays static analysis tools are widely used and various of tools are
available for the established programming languages (e.g. Java, C++, C,
Python). In order to analyse source code there are several techniques and
structures such as data flow analysis, control flow graph, taint analysis, often
derived from compiler technologies. The thesis is focusing in the Rule-based
AST analysis of PLC programs.

Rule-based AST Analysis: Rule-based AST analysis works by ana-
lyzing the abstract syntax tree (AST) of a program based on some config-
ured defined rules.

The rules developed on top of the AST usually can detect in the source
code violations like the followings:

1. Naming conventions: A naming convention is a set of rules for choosing
the character sequence to be used for identifiers in order to improve the
readability and maintainability of the code. Some examples are given
below:

e Names of Boolean variables should start with B

e The length of a variable name has to be between three and fifteen
letters.

2. Code smells: Code smells are code patterns that frequently cause prob-
lems. The might not cause fatal problems to the code but still should
better be avoided in order to maintain the quality of the code and make
it understandable. Some examples are given below:

e Duplicated code
e Dead or unreachable code
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e Long method
e Long parameter list
e Loop variable read after loop

3. Problematic task interleaving and race conditions: Multiple and severe
problems can be occured due to multi-tasking issues such as for example
race conditions. An example of a race condition is the wrong usage of
the stop flag that can be overwritted by the cyclic process and as a
result the process will not stop.

4. Dynamic statement dependency: There are defined constraints on the
execution order of some related function calls. An example of a violation
like this is when a file open is not followed by a file close operation.

Advantages and Disadvantages of Static Code Analysis: Static
code analysis tools look for patterns, defined to them as rules, which can
cause code quality problems and malfunction of the program. But like every
other technology, static analysis has its set of advantages and disadvantages
[28].

Advantages:
1. Analysis of the code without its execution.

2. Ensure that certain rules already specified are respected without any
manual intervention.

3. Help in the early detection of bugs in the program.
4. Help to maintain the code quality.

Disadvantages:

1. High number of false positives; the tool will often produce warnings for
a possible violation that in reality does not represent an issue.

2. Will not detect always the configuration issues as they are not repre-
sented in the code.

3. Can not check the correctness of the behaviour of the program.

D Related Work

This section presents the related work on formal verification methods ap-
plied to PLC programs. As it was mentioned before the thesis aims to assure
the safety and the quality of the PLC programs by applying and integrating
model checking and static analysis in the development process. Around 20
years ago industries with critical systems started to use formal methods and
nowadays more and more of them apply them to verify the correctness of
the developed system. Despite the fact that different industries have dif-
ferent goals and represent different projects and ideas, static analysis and
algorithmic verification techniques such as model checking seems to be a
common practise for them.

An example that proves the applicability of formal methods in real life
system 1is the air traffic control system of UK. To handle the increasing
traffic, the UK upgrade its air-traffic management system by developing
the CCF (Central Control Function) which is handled by several systems.
One of them, the CDIS (CCF Display Information System) used formal
methods in order to be designed and verified.[46]

The usage of formal methods for PLCs has been studied for many years
and the rest of the section is divided into two parts: the related work in
model checking and the related work in static code analysis, both for PLC
programs.
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D.1 Model checking applied to PLC programs

Model checking still is not used in the industry even though it is the most
popular algorithmic formal verification technique and there are several ap-
proaches of its application in PLC programs. The lack of applicability is
mainly because all of the approaches translate the PLC program into the
input language of an existing model checker and thus suffer from certain
problems. Many studies where model checking was the selected method to
verify PLC programs can be found in literature and they can be divided
into 3 groups:
1. Targeting the PLC language: most of the model checking techniques
target to PLC programs written in IL [9, 33, 51, 52, 43] and SFC [4, 27].
A few researches have been applied also to the FDB [3, 64] ,the ST
language [5] and the Ladder Diagram (LD) language[36]. Finally there
is an aproach of a tool to verify PLC programs written in all languages
from the standard IEC 61131-3 [48, 25].

2. Targeting the specification: paradoxically, there are not many approaches
devoted in the development of accurate properties to verify the given
model. A proposed approach is the creation of temporal logic based on
UML techniques[22] [49]. Another proposed approach [8] is based on
defined patterns that express the properties of interest and are trans-
lated automatically into temporal logic formulas.

3. Targeting the modelling and the specification constraints : some au-
thors follow the approach of applying model checking to small exam-
ples without apply any reductions on the model [35, 9, 42, 44, 50, 54,
7, 24, 31] while in other cases there is a limitation in the used property
when the abstraction is applied [31][7]. Moreover in many researches
the PLC program is not transformed automatically to a formal model
(3, 4, 7, 42, 63, 54].

D.2 Static analysis applied to PLC programs

Static analyses solutions have been also proposed by some authors and the
several researches that have been made from small or medium enterprises
in order to evaluate the importance of static analysis tools for software ap-
plications show that it is a valuable contribution in the software community
[37][2][65][23].

In the PLC domain static code analysis tools are rarely available even
though such tools are widely used other domains. A great deal of research
and attempts to implement static code analysis tools have been made by
universities[45] and small companies[26] but the tools are not available. The
few exceptions are the tools PLCChecker from Itris, Codesys Static Analysis
from CoDeSys and Arcade.PLC. which is an academic tool developed in
RWTH Aachen University[6]. All of these tools, will be analysed below in
Chapter 4.

E Technologies used for this thesis

E.1 Apache Subversion

Apache Subversion (often abbreviated SVN) is a software versioning and re-
vision control system distributed as free software under the Apache License.
At CERN is the mainly used repository to maintain current and historical
versions of files such as source code and documentation for PLC programs.

43



E.2 Jenkins

Jenkins is an open source automation server written in Java. It support
revision control tools including SVN and Subversion in order to ensure that
the software of a project can be released at any time. With a continu-
ous integration, Jenkins help to automate the whole software development
process.

E.3 Spoofax

Spoofax is an Eclipse-based platform for efficient development of textual
domain-specific languages (DSL). Its language workbench includes tools
and high-level meta languages for defining syntax, name bindings, types
and tree transformations, among others [34].

E.4 Xtext

Xtext [19] is an open-source framework for developing programming lan-
guages and domain-specific languages (DSLs). Unlike standard parser gen-
erators, Xtext provides a full infrastructure as it generates not only a parser,
but also a class model for the abstract syntax tree, as well as providing a
fully featured, customizable Eclipse-based IDE.
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F  Integration of Model Checking in the
development of PLC programs

F.1 Introduction

Four years ago a project was started at CERN to improve the quality of
PLC programs and reduce the number of bugs in the code. An error in a
control software can result in loss of reputation, expenses and even injuries.
In order to avoid it, the project’s main goal is to ensure correctness of
the software used in the control systems by using formal methods. Formal
methods,are mathematically based techniques for the specification, devel-
opment and verification of software and hardware systems. This chapter
presents the first contribution of this thesis which is part of this project and
aims to fully integrate the methodology in the development process of PLC
software which is described below. The first part of the project is the inte-
gration of model checking into the development process of control engineers.
The structure followed in this chapter, consists of the problem description,
the methodology, the contribution and the conclusions from the conducted
experiments.

Among several formal verification techniques, model checking is so far
the most appropriate for our case, not only because it is possible to provide
automated verification for PLC programs but also because it has the po-
tential to hide complexities from the developer. There are not many tools
available for verification of PLC programs written in SCL language. At
CERN a tool named PLCverif [16] was developed in order to apply model
checking and do verification for PLC programs written in SCL (Siemens
language equivalent to ST from IEC61131). The tool is developed using
Xtext [19] and Eclipse Modelling Framework [55] technologies. In order to
verify PLC programs the tool generates automatically formal models out of
PLC programs, translates the user requirements to its formal characterisa-
tion and provides a report to the user with the results of model checking.

The methodology [21] implemented by the tool consists of the following
steps (see Figure 18):

1. The PLC code is translated into an intermediate model (IM) which is
based on an automata network model consisting of synchronised au-
tomata.

2. The specified requirements provided by the user are translated in tem-
poral logic formulas (e.g. LTL, CTL) [38] through a set of specification
patterns.

3. After the PLC program is translated to the IM, reduction and abstrac-
tion techniques are applied to the IM to reduce verification time.

4. The formal model of the PLC code is translated into the input language
for the model checkers. Several model checkers can be introduced in
the methodology (e.g. nuXmv).

5. The model checker is executed providing the generate specific formal
model and the temporal logic formula to verify the requirement against
IM.

6. After the verification is performed, the results of the analysis are pre-
sented in a report.
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Figure 18: Methodology overview

The user has the ability to configure the maximum time given that
the tool will spend to verify each verification case (TO) (see Figure 77?).
This feature was created to avoid too long verification times. When this
happens maybe a different requirement or verification strategy should be
applied. The user work flow consists of the following four steps [16]:

1. Write the PLC code in the provided SCL editor or import if it already
exists (see Figure 19).
Create the requirement to be verified (see Figure 20).
3. Execute the verification (see Figure 21).
. Analyse the verification report (see Figure 22).

PLCverif

=

B

Settings Help
= B8
BE -

[ Project Explorer B DemoSource.scl 52 5= Outline 52 = B
= FUNCTTON_BLOCK AndGate - Hide non-structural elements 5. |3,

= . = VAR_INPUT
4 5 DemoProject ot BOOLs

[ DemoSource.scl b

emoSource

: B00L: [function_block] AndGate
Bl DemoVerifCasenc END_VAR = <unnamed>
] UNICOS_baset = VAR OUTPUT » U= Variable declarations
€ @ BOOL; > U= Variable declarations
END_VAR + = Statement list
BEGIN
€ :=a OR b; // Oh no, a bug! This is an "AND-gate", thus it should be AND here!

END_FUNCTION BLOCK

[E: Problems 2
0 items

Description Resource Path Location Type

Figure 19: SCL editor

In Figure 19, the SCL editor is presented. The user can import an ex-
isting project and even modify the code, or create a new one by using the
editor. ON the left, in the project explorer, the user can see the existed
projects in the workspace.
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+ Requirement

The requirement to be checked should be defined in this section.

Requirement pattern: | 5. State change during a cycle: If {1} is true at the beginning of the PLC cycle, then {2} is alw -

Pattern params:

[1] | FeMoS5t_auwx = true AND AuAuMoR = true AND ManReg01[E] = false

[2] | AuMoSt = true

5. State change during a cycle: If FoMo5t_aux = true AND AuAuMoR = true AND ManReg01[8] = false is true at
the beginning of the PLC cycle, then AuMoSt = true is always true at the end of the same cycle.

Figure 20: Requirement pattern

In Figure 21, the interface to create the verification case (user-requirement)
is presented. The user can fill some general informations for the require-
ment, such as for example the ID, the name or the description. Then in the
requirement field (see Figure 20), the user specifies the requirement pattern
from a list with predefined patterns and fills the parameters which represent
the PLC program variables whose behaviour needs to be checked.

[ PLCverif (SNACE X
Settings  Help
= ok B
[ Project Explorer [ Verification Case (Demo001) 37 = [ Variables =0
. = Verification case Variables
4 5 DemoProject
[ DemoSource.scl ~ General Filter:
[ DemoVerifCasevc General information about the current verification case. Describe here the name of the case and explain its motivation.
[5) UNICOS base.txt Variable name
-ese D: DermoQ0L
instance.a
Name: T Adis false, C cannot be true. instance.b
If A is false, C cannet betrue. As this function block models an AND-gate, if any of the inputs (A or B) is SR
false, the output should be false too.
Description:  The requirement is based on the documentation of the function block and the following Jira case:
https://icecontrols.its.cemn.ch/jira/browsef/UCPC-1111
Source code: | DemoSource.scl = | | Refresh variables
» Requirement
» Advanced configuration
Verification
The verification can be started in this section. Also, the result can be seen here.
Tool: | nuXmv -
[2: Problems 53 T =0
Oitems
Description ° Resource = Path Location Type

Figure 21: Verification case

47



PLCverif = | B |t

Done

Settings  Help
& @ Demo001 Report &2 = 0O
B B o file///C/temp/ploverif_v2.0.1b29/PLCverif/workspace/DemoProject/generated/DemoVerif Case.html - [
PLCverif — Verification report
Generated at Mon Jul 07 15:19:22 CEST 2014 | PLGverif v2.0.1 | (G) CERN EN-ICE-PLC | Showhide expert details
ID: Demo001
Name: If Ais false, C cannot be true.

Description: |If Ais false, C cannot be true. As this function block models an AND-gate, if any of the inputs (A or B) is false,
the output should be false too.

The requirement is based on the documentation of the function block and the following Jira case:
https-ticecontrols its cern chijira/browse/UCPC-1111
Source file: |DemoSource scl

Requirement:| 3. A = false & C = true is impossible at the end of the PLC cycle.

Result:
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Total runtime ({incl. visualization): 381 ms
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Figure 22: Verification report

In Figure 22 the report produced by the model checker is presented. The
report contains some general information for the requirement such as for
example the description or the source file that its based on and of course
the result of the model checker. If the result is not satisfied like in this
specific example, then the counterexample is presented in the report. In
the counter example, we can see the traces that could provoke a violation
of the requirement in the PLC program. In red color are the variables that
are involved in the requirement of the verification case, while in yellow are
the input variables.

So far every time the developer wanted to make a modification on the
PLC code all the requirements needed to be checked again one by one.
Moreover when more than one verification case needs to be created and
checked, they have to be executed manually. The problem is that the time
that the model checker needs to obtain a result is not known and sometimes
it can take days until a result is produced. The reason of this, is that models
of real-life PL.C programs usually face the problem of a state space explosion.
The first task of this thesis, that it is introduced below, tries to overcome
these two problems. Three technologies are applied for this contribution:
PLCverif, Subversion (SVN) and Jenkins.

The structure of this chapter is the following:

1. In Section 3.2 the contribution for the first part of the thesis is pre-
sented.

2. In Section 3.3 the benefits of the integration of model checking in the
development process are presented.
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F.2 Contribution

PLC programs used at CERN are mainly developed in the UNICOS frame-
work. UNICOS provides a set of objects, the so called Baseline objects, that
represent physical devices (e.g. valves, sensors, pumps, etc.) in the PLC
programs. A PLC program developed with the UNICOS framework, instan-
tiates and connects these objects to provide the control of a full plant. In
order to verify the correctness of these systems they use, apart from testing,
the PLCverif tool to apply model checking.

Some PLC programs use some blocks which are provided by the PL.C de-
vice itself (hardware) and contain utility and building functions (e.g. TON
[21]). The source code for these functions is not provided by the PLC pro-
grammer but is implemented by PLCverif in a separate file. As PLCverif
currently does not have a complete grammar, it cannot handle some fea-
tures that exist in each object’s code, so some assignments and commands
which in reality do not affect the behaviour of the object have to be removed
or modified. Currently, the tool supports only one source file to be anal-
ysed at a time, however the utility functions described above and another
block which is a common base for all the objects, are placed in different
files. Therefore, as several files cannot be analysed at the same time by
PLCverif, they need to be concatenated into one file. By using SVN and
Jenkins, the thesis aims to simplify the procedure for the PLC developer.
By developing two scripts the target files are concatenated and all the nec-
essary modifications are made in the code. The approach followed can be
divided in three steps (see Figure 25):

1. The user modifies a UNICOS Baseline Function Block which corre-
sponds to a .SCL file or adds/modifies a verification case (see figure 21)
and commits it to SVN.

2. This action triggers Jenkins to perform the following sub-steps:
e pre-process of the .SCL files by using Python scripts.
e execute PLCverif to perform model checking.

3. Once all verification cases for each modified UNICOS Baseline Function
Block have been analysed, Jenkins sends a verification report via email
to the user. In Figure 23 we can see that there was no violation in the
verification cases after the modifications to the source code of the PLC
program. Details are provided regarding the name of the project, the
date of the build, the build duration, the kind of changes that were made
to the code and the files which were tested after them. Moreover in
Jenkins there is a panel where the user can see the current status for all
the projects, in Figure 24 an example of the overview panel is presented.
In green color are the projects where their build was successful, which
means that PLCverif provided a “satisfied” result, while in orange are
the projects that contain verification cases where PLCverif was not able
to provide a result for the given TO, or the verification result was “not
satisfied”.
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BUILD SUCCESS

Build URL https://ienkins.cern.ch/pleverif-test/iob/PCO/17,
Project: PCO

Date of build: Tue, 15 Mar 2016 10:52:18 +0100

Build duration: 18 sec

CHANGES

edit svn/CPC_FB_PCO.5CL

BUILD ARTIFACTS

* results/HTMLSummary.htm|
» results/JUnitSummary.xml
* results/Summary.csv

s results/VCi.html

Unit Tests

‘

MName: (root) Failed: O test(s), Passed: 1 test(s), Skipped: 0 test(s), Total: 1 test(s)

Figure 23: Example of an email report provided by Jenkins to the user after modification on the
PLC source code

UNICOS overview

- Smoke Test (Node 1) - - Smoke Test (Node 2) - - Smoke Test (Node 3) -
AA Al AIR
ANADIG ANADO ANALOG
AO AOR

Creation of verifications files for
baseline objects

DO

ONOFF

Figure 24: UNICOS overview panel
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Figure 25: High level overview of the approach

In order to implement the described approach, configuration files and
two Python scripts had to be developed.
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Configuration files:  The configuration files are being used to define
the replacements and to take care of the files that need to be concatenated
during the execution of the script. More specifically these types of con-
figuration files were created in JSON format. JSON (JavaScript Object
Notation) uses JavaScript syntax and its format is text which makes it eas-
ily be used as a data format by any other programming language. The
configuration files created are the following;:

e Configuration files for each Baseline object.

e A configuration file called “replacements” which is common for all the
Baseline objects. The replacements file contains the keywords that
should be replaced in the concatenated source code.

Each JSON file (see Listing 3) that corresponds to a Baseline object is
consisted of:

e The paths of the .SCL files in SVN to be concatenated,
e The path of the replacements.json file,

e The path of the target file where the concatenated source code with the
replacements will be placed.

Listing 3: JSON file for the ONOFF baseline object
{

"FilesToConcat": [
"../../svn/CPC_FB_ONOFF.SCL",
"../../svn/CPC_BASE Unicos.SCL",
"builtin_functions_and_unicos_workarounds.txt"

15

"ReplacementsFile": "ConfigFile/Rep/replacements. json"

"targetFile": "../ONOFF/CPC_FB_ONOFF.SCL"
}

Python scripts: The first script, has to return all the configuration
files, place them as an argument in a function and then call the second
script. The second script, once it is called, processes .json files by concate-
nating the source code of the target objects. Then it makes the necessary
replacements by using the replacements.json file and finally creates a file
which can be fed to PLCverif.

More specifically the user workflow consists of the following steps (see
Figure 26):
1. The user makes a commit to SVN.

2. That commit triggers Jenkins to pre-process the PLC code to be verified
by using the first script.

3. The script opens the .SCL files and a .txt file that contains building
functions that do not exist in the original code and had to be imple-
mented.

4. The files are concatenated through the execution of the second script
and the needed replacements, which are defined by regular expressions
in a .json file, are executed.

5. The result is stored in a new file created by the second script.
6. The file is committed to a SVN repository.

7. Finally that triggers Jenkins to execute a second step; PLCverif to
perform model checking.
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Figure 26: User workflow

F.3 Conclusions

The methodology has been applied to 19 UNICOS baseline objects consisted
of few hundred lines of source code and different kinds of requirements
have been verified. From now on the user only has to commit to the SVN
repository the new or modified .SCL file or the new created verification
case. Jenkins, by being triggered by the commit, takes care of the rest.
Once a result for the newly created verification case is obtained or once
a violation is triggered due to a modification on the source code, Jenkins
is going to inform the PLC developer by sending him an email with the
verification results. By using the script, the process is automated now and
the complexity is hidden from the developer. Therefore the benefit is that
the developer has to spent much less time in the verification process. Now
the developer can add and verify more efficiently requirements for a PLC
code. Moreover there is no need for manual preparation of the PLC source
files.
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G Implementation of an Abstraction Tech-
nique

G.1 Introduction

In chapter F the problem of the state space explosion [12] [30] was men-
tioned. As the number of state variables in the system grows, the size of
the system state space increases exponentially. The state explosion, occurs
when the model checker tries to verify a system with many components
making transitions in parallel where the number of possible combinations
is too big. PLC programs usually contain many variables of different types
including boolean, integers and float variables. Therefore, the resulting for-
mal models have a huge state space. Even though in the previous section
the methodology to automate model checking and hide complexity from the
developer was described, the problem of the state space remained unsolved.

In figure 18 it can be seen that after the PLC code is translated to
an intermediate model (IM) reduction techniques are applied to it. The
reduction techniques applied to our models so far are [15]:

1. Cone of Influence (COI) : This reduction technique removes all the
irrelevant variables, assignments and guards from the IM.

2. Rule-based reduction : This reduction technique eliminates states and
variables, removes empty branches and merges transitions and vari-
ables.

3. Mode selection: With this reduction technique parameters with a fixed
value can be replaced by a constant value.

However, these reduction techniques, are not always sufficient in order to
overcome the state space problem and have a verification result for the re-
quirement. In order to deal with this problem and improve the performance
of the verification, a new abstraction technique was described in a PhD The-
sis [20] but it has not been implemented so far. By using this algorithm,
we have more possibilities to verify certain properties, for example simple
invariants such as if an input is set, a certain output has to be set as well.
An invariant is an expression that has to always be kept satisfied by the
model checker.

High-level idea of the abstraction technique: The abstraction
algorithm, called “iterative wvariable abstraction”, is divided into 5 steps
that can be seen in figure 27. When a result can not obtained by PLCverif
while trying to verify a property in the original model, the main idea of
the algorithm, is to create abstract models (AM) out of it. By using this
technique abstract models are created iteratively while trying to prove that
the safety property is satisfied in the AM!. AM is an over-approximation
of the original model.

How to create an AM? Some of the variables included in the original
model have to be extracted from the variable dependency graph of the model
and be replaced with non-deterministic values in order to create the AM.
As these new variables have no dependencies with other variables, the COI
algorithm will be able to reduce the model by eliminating more variables.
The variable dependency graph and the concept of creating AM based on
it will be explained below in the example of appicability.
Thanks to this abstraction technique:
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e the size of the PSS (Potential State Space) of the abstract model is
smaller as it contains less variables,

e usually a bigger range of possible behaviours is represented in compar-
ison to the OM (Original Model).

The Potential State Space, represents the number of the values that a pro-
cess can take. Based on the variables of the model that are represented in
its declaration part, the number of the possible combination of these vari-
ables forms the PSS. For example in a PL.C code that consists of 3 boolean
variables the size of the PSS is 23.

The algorithm uses two kind of properties: reachability properties and
safety properties. Reachability properties (EF(7&#)) state that a particular
situation can be reached, while safety properties express that a specific event
should never occur under specific conditions (consider a safety property
(AG(aw — fB))). By applying model checking with the safety property if
p holds on AM], it implies that both the abstract model and the original
model are compliant with the specification, as a bigger range of possible
behaviours is represented with the abstract model. In the opposite case,
where the property p does not hold on AM/,, a counterexample c is generated
by the model checker.

Counterexamples can be complex as they contain variable values from
different PLC cycles. To verify that the property holds on the OM requires
analysing the counterexample ¢ through the algorithm (step 3 & step 4)
and define if it is real or spurious. When there are false positives in the
verification phase or when only one of the properties is not satisfied, then
the counterexample can be considered as spurious.

The structure of this chapter is the following:

1. In Section 4.2 the implementation of the variable abstraction algorithm
is described.

2. In Section 4.3 the results of the conducted experiments are presented.

3. In Section 5.4 the analysis of the conducted experiments and the ex-
tracted conclusions are presented.

G.2 Contribution

The following paragraphs describe in more detail the steps of variable ab-
straction and their implementation in a script. The script is implemented
in Python and the user can execute it from the command line by entering
as an argument the path of the verification case. The script calls iteratively
the command line version of PLCVerif [32] and contains all the steps of the
algorithm. The .vc files are in an XML format (see Listing 4) and in order
to parse them XPath [62] and regular expressions are used.

Listing 4: A verification case example

1 <?xml version="1.0" encoding="ASCII"?7>

9 <requirement patternString="1. If {1} is true at
the end of the PLC cycle,

3 then {2} sholud always be true at the end of the
same cycle.">

4 <settings tool="nuxmv_ic3" >

5 <inputVariableFqns>instance/g</
inputVariableFqns>

6 <inputVariableFqns>instance/h</
inputVariableFqns>

7 <inputVariableFqns>DB_DI_all/DI/*/HFPos</

inputVariableFqns>
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8 <inputVariableFqns>DB_AI_all/AI/*/HFPos</
inputVariableFqns>

9 </settings>

10 <parameters>b</parameters>
11 <parameters>a</parameters>
12 </requirement>

13 </ch.cern.en.ice.plcverif.
verifdescriptor:VerificationCase>

Symbol correspondence:

e OM’: the result of applying the property preserving reductions to
the generated model (these algorithms aim to preserve only those be-
haviours of the system that are relevant from the specification point of
view.)

e OM": the result of applying the property preserving reductions for the
reachability property r.

e ¢': distance between variables in the variable dependency graph for
OM’.

e ¢”: distance between variables in the variable dependency graph for
oM".

When verifying a property on the OM’ in PLCverif(step 0), the model
checker might not be able to give a result because a TO (time out) is ob-
tained. In this case the variable abstraction algorithm is triggered in order
to verify the same property. Due to this, the initial step is not included in
the five steps of the algorithm.[20]

Implementation and description of algorithm’s steps
Checking the original safety property (p) on an abstract model (AM’).
Checking the safety property (¢) on the same abstract model (AM’).
Checking the reachability property (r) on the original model (OM").
Checking the reachability property (r) on an abstract model (AM").

ol W=

Extracting an invariant from the counterexample to include informa-
tion about the process obtained in step 2 if the number of potential
invariants (m) iis < 10.
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Figure 27: Steps of the variable abstraction algorithm [20]

Step 1: checking the original safety property (p) on an ab-
stract model (AM’). In this step an AM’ of the OM’ is generated
automatically by extracting variables as inputs from &’ = 1. After that, the
model checker tries to verify if the property p holds on the AM’. Imple-
mentation: A verification case file is created from the Python script with
the same content as the original verification case. Then the input variables
are extracted from the §’ that corresponds to the current iteration and they
are appended right after the initial inputs variables in the verification case
of Step 1.

Step 2: checking the safety property (¢) on the same abstract
model (AM’). In the second step the algorithm tries to extract more
information about the verification of p on the AM,,. To do so it checks
the safety property ¢ in the same abstract model AM] . The g property is
the same with the p but with a negation on § parameter (AG(a — —f)).
Implementation: A verification case file for step 2 is created with the
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same content as the verification of step 1. The safety property is being
checked on the same AM] but with a negation in the 3 parameter in the
verification case of step 2.

Step 3: checking the reachability property (r) on the origi-
nal model (OM") Step 3 of the algorithm aims to analyse the provided
counterexample ¢ by extracting the reachability property r from it. By
adding the reachability property, a new OM?” is created that can be most
of the time different than OM’. This may happens because property r can
contain different variables with property p and therefore the reduction tech-
niques will eliminate different variables from the model. Implementation:
A verification case file for step 3 is created with the same content as the orig-
inal verification case of step 0. The reachability property can be extracted
either from step 1 or step 5. The variables that the property contains will
replace the parameters of the verification case. If there are more than one
cycle in the counterexample and the result of the model checker is “True”
, all of them are examined (unless they have the same content) until the
result is different or the cycles are over.

Step 4: checking the reachability property (r) on an abstract
model (AM"). 1In this step an AM/ is created after a TO is obtained
from step 3. This time the inputs for the creation of the abstract model
are taken from 6” of the current iteration by following the same procedure.
Implementation: A verification case file is created for step 4 with the
same content as the verification case of step 3. The algorithm extracts the
“input variables” from 0” from the variable dependency graph generated in
step 3.

Step 5: extracting an invariant from the counterexample
obtained in step 2 if m is < 10. This step is responsible for adding an
invariant to the AM’ or taking the decision of moving to a new abstraction
AM! + 1 by incrementing the ¢’ if the limit of the maximum invariants
number is reached.

For example if the maximum number of possible invariants (m) is < 10
an invariant is added to the current AM’. If m is > 10 the algorithm moves
to a new iteration. Implementation: A verification case file is created for
step 5 with the same content as the verification case of step 1 if m=1 or of
step 5 if m > 1 and m < 10. The algorithm extracts the invariant either
from step 1 or step 5 and adds it to the verification case of step 5.

Example of applicability Listing 5, represents an example of an SCL
PLC program. The program consists of a simple function with 6 Boolean
variables and two input variables. The requirement to be verified is the
following:
“If b is true at the end of the PLC cycle, then a should always be
true at the end of the same cycle.”

Figure 28 shows the variable dependency graph of the model from the
PLC program presented in Listing 5. The red edges are the assignment de-
pendencies, while the gray variables are part of the requirement. Moreover
when two different variables are connected by an edge then they are at a
distance which equals to 1. The concept of distance between variables is
used to build the abstract models as described below.

Listing 5: Example of SCL code
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Step 1: in the first iteration, AM is generated using § := 1. Variables e
and d are at distance 1 from « according to the variable dependency graph
so they are converted to non-deterministic or input variables.

mstance.c
BOOL

mstance.g mstance.d
BOOL ~ BOOL

instance. A instance £ ll
BOOL BOOL

Figure 28: Variable dependency graph example of Listing 5

mgtance. e

Due to this abstraction and based on the variable dependency graph,
the variables ¢, d, g and h are eliminated and the variables converted to
input variables are d and e and a. The verification result for p is false, and
the generated counterexample ¢ is shown in Table 4.
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Table 4: Counterexample for p on AM|

Variable End of

Cyclel
a FALSE
b TRUE
d FALSE
e FALSE

Step 2: the safety property ¢ is the following:(AG(8 — —«)). The veri-
fication result is false and we cannot define yet if ¢ is real or spurious. In
this case, the algorithm moves to the step 3.

Step 3: The extracted counterexample c, is transformed in a reachability
property. When verifying the reachability propery r in the new OM”, the
result is false, therefore c is spurious and the algorithm moves to the step

D.

Step 5: an invariant is added to the same abstract model (AM]) as the
number of potential invariants for AM] is 8. The invariant is represented
by the variables and their values which are contained in the counterexample
obtained in Step 3.

Step 1: pis verified again on AM] but containing the new invariant. The
verification result is false and the new counterexample c is shown in Table 5.

Table 5: Counterexample for p on AM| + 1 invariant

Variable End of

Cyclel
a FALSE
b TRUE
d TRUE
e FALSE

Step 2: the safety property g is verified again on AM] + invariant. The
verification result is false again and we cannot define yet if ¢ is real or
spurious. The algorithm moves to the step 3.

Step 3: The extracted counterexample c, is transformed in a reachability
property. When verifying the reachability r in the new OM", the result is
false, therefore c¢ is spurious and the algorithm moves to the step 5.

Step 5: as the number of potential invariants for AM] is 8, a second
invariant is added to the same abstract model (AM]).

Step 1: pis verified again on AM] but also containing the second invari-
ant. The verification result is false and the new counterexample ¢ is shown
in Table 6.
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Table 6: Counterexample for p on AM]| + 2 invariants

Variable End of

Cyclel
a FALSE
b TRUE
d FALSE
e TRUE

Step 2: the safety property q is verified again on AM] + 2 invariants. In
this case, the verification result is false again and we cannot define yet if ¢
is real or spurious. Therefore the algorithm moves to the step 3.

Step 3: The extracted counterexample c, is transformed in a reachability
property. When verifying the reachability r in the new OM”, the result is
false, therefore, ¢ is spurious and the algorithm moves to the step 5.

Step 5: as the number of potential invariants for AM] is 8, a third in-
variant is added to the same abstract model (AMj7).

Step 1: pis verified again on AM] but also containing the third invariant.
The verification result is true, the algorithm is over and we can conclude
that p holds on OM’.

G.3 Experiments

In order to test the efficiency of the algorithm several experiments were
conducted to verify the UNICOS objects. The selected objects to present
the experimental results in this section are the OnOff, Analog and PCO
UNICOS objects. All of the requirements created for each object were ver-
ified both with the nuXmv CTL (Computation Tree Logic) algorithm and
nuXmv'IC3 algorithm. nuXmv [10] is the successor of NuSMV which is a
symbolic model checker developed by FBK-IRST, Carnegie Mellon Univer-
sity, the University of Trento and the University of Genova. By using CTL
algorithm, the properties(e.g. safety properties,reachability properties) can
be expressed as a combination of path quantifiers and linear-time operators.
While IC3 is an algorithm using abstraction refinement. In order to verify
each requirement and get a faster result, different time out (T'O) had to be
checked by modifying them manually in the property file which is included
in the headless PLCverif version. Some of the created requirements check
random behaviours in the PLC code just to test the efficiency of the algo-
rithm and the rest of them represent real behaviours of the objects.

Function blocks description:

1. OnOff: This object represents a process equipment driven by digital
signals, e.g. an on-off valve, heaters or motors. The object contains
29 input variables (20 BOOL, 3 WORD, 2 ARRAY of 16 BOOL and
4 TIME), 31 output variables (27 BOOL, 2 WORD, and 2 ARRAY of
16 BOOL) and 82 Internal variables (73 BOOL, 1 TIME, 2 TP timer
instances, 1 TON timer instance, 1 REAL and 4 INT). More details
about the OnOff object can be found in the UNICOS documentation
[40].
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2. Analog: This object represents a process equipment driven by analog
signals, control valves or control heaters.The object contains 56 input
variables (40 BOOL, 2 WORD and 14FLOAT ), 46 output variables
(39 BOOL, 2 WORD and 5 FLOAT). More details about the Analog
object can be found in the UNICOS documentation [39].

3. PCO: This object represents the Process Control Object and it oper-
ates in UNICOS operation modes Auto, Manual and Forced.The object
contains 48 input variables (35 BOOL, 2 WORD, 2 FLOAT and 8
STRING), 51 output variables (47 BOOL, 2 WORD and 2 FLOAT).
More details about the PCO object can be found in the UNICOS doc-
umentation [41].

In order to extract requirements for the experiment, the schemas pre-
sented in the UNICOS documentation were analysed. In Figure 29 the
schema of a part of the OnOff object is presented. The logic gates (AND,
OR and NOT) that affect the behaviour of each parameter are presented,
as well as the switches that define their priority. Based on this schema, the
specification and at the same time based also on the PLC code, developers
extract requirements, which represent the behaviour of the variables of the
code, and then test them with PLCverif in order to verify the accuracy
of the current model. A potential requirement that we could extract for
example by looking at Figure 29 is: “ If (HFOn and PHFOn) OR (NOT
PHFOn AND instance. PHFOff AND PAnim AND NOT HFOYff) is true at
the end of the PLC cycle, then OnSt should always be true at the end of the
same cycle ”.

We tried to verify each requirement in PLCverif first without abstraction
and then by applying the abstraction technique on them. The results of the
experiments are presented below in tables. For each object and for each
technique there is a table that contains the name of the requirement, the
TO used for the algorithm, the execution time (in seconds) of the algorithm
until a result is provided, the time that PLCVerif needed to provide a result,
the Potential State Space and the result of the requirement. When the
PLCverif+VA column is marked with “-” then it means that PLCverif was
too fast so the algorithm could not be executed. Moreover, for PLCverif
tool the TO setted for the verification time was 1h. A detailed description
of the requirement for each table is presented in the Appendix II.
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Figure 29: Position calculation schema of OnOff object. [40]
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In Table 7, 18 requirements were tested for the PCO object and only 1
of them was satisfied. For the conducted experiments, variable abstraction
had the same performance with PLCVerif. Similarly in Table 8, 12 require-
ments have been tested in total and 2 of them were satisfied. In this case
variable abstraction was faster than PLCverif only for 3 of the requirements.

Table 7: PCO UNICOS object tested with nuXmv'IC3 algorithm

REQ TO(s) | PLCverif+ VA | PLCVerif | PSS RESULT
REQ1 |1 00:00:25 00:02:24 2.51x10%
REQ2 |20 00:06:26 00:18:36 2.51x10%3
REQ3 |2 00:00:05 00:00:03 | 1.00x10%*
REQ 4 |20 00:00:26 00:07:05 2.51x10%3
REQ5 |8 00:00:21 00:04:10 2.51x10%
REQ 6 | 300 00:48:26 00:04:50 | 2.51x103
REQ 7 | 50 00:43:13 00:10:25 | 2.51x103
REQ S8 |20 00:04:09 00:01:21 | 6.18x10%?
REQ9 |20 00:03:28 00:01:07 | 6.18x10%?
REQ 10 | 20 00:01:41 00:01:17 | 2.51x103
REQ 11 | 50 00:04:45 00:05:40 6.18x10%2
REQ 12 | 1 00:00:05 00:00:03 | 2.51x10%3
REQ 13 | 20 00:00:39 00:24:35 6.18x10%2
REQ 14 | 300 00:37:12 00:13:00 | 6.18x10%
REQ 15 | 200 00:18:49 00:00:57 | 6.18x10%
REQ 16 | 20 00:00:46 00:01:13 5.03x10%3
REQ 17 | 20 00:00:21 00:01:21 5.03x10%3

REQ 18 | 20 00:01:43 00:04:20 6.18x10%?

Table 8: PCO UNICOS object tested with nuXmv CTL algorithm

REQ TO(s) | PLCverif+ VA | PLCVerif | PSS RESULT
REQ1 |20 00:00:35 00:00:08 | 2.51x10%
REQ2 |5 00:01:58 00:00:11 | 6.18x10%?
REQ3 |5 00:00:21 00:00:07 | 2.51x10%3
REQ4 |5 00:08:11 00:10:47 2.10x10%*
REQ5 |5 00:00:16 00:00:08 | 2.51x10%3
REQ7 |5 00:00:27 00:04:50 2.51x10%
REQS8 |3 00:00:22 00:00:03 | 2.51x10%
REQ9 |5 00:02:19 00:01:18 | 2.51x10%
REQ 10 | 1 00:00:18 00:00:04 | 4.08x10™
REQ 11 |5 00:01:16 00:00:01 | 5.03x10%3
REQ 12 | 3 00:09:10 00:02:16 | 5.03x10%3

In Table 9, 13 requirements were tested for the ANALOG object and
10 of them were satisfied. The abstraction algorithm was faster for 11 of
them. Similarly in Table 10, 12 requirements have been tested in total and
10 of them were also satisfied. The abstraction algorithm was faster for 10
of them.

62



Table 9: ANALOG UNICOS object tested with nuXmv'IC3 algorithm
REQ TO(s) | PLCverif+VA | PLCVerif | PSS RESULT |
REQ1 [5 00:00:10 00:00:54 1.00 x 10*® | TRUE
REQ2 [0 - 00:00:01 | 1.44x10" ['FALSE
REQ3 |3 00:02:32 00:00:04 | 7.21x10" | TRUE
REQ4 |10 00:00:13 TO 5.75x10™® | TRUE
REQ5 |10 00:00:10 TO 5.75x101® | TRUE
REQ6 | 20 00:00:20 TO 5.75x10'® | TRUE
REQ 7 | 200 00:00:07 TO 5.00x10?® [ TRUE
REQ 8 | 200 00:00:06 TO 5.00x10?® [ TRUE
REQ 9 | 200 00:00:09 TO 2.15x10°"® | TRUE
REQ 10 | 200 00:00:06 TO 2.15x10°"™® [ TRUE
REQ 11 | 200 00:00:13 TO 2.15x10%® [ FALSE
REQ 12 | 200 00:00:15 TO 2.15x10%® [ FALSE
REQ 13 | 200 00:00:15 TO 5.75x10™ | TRUE

Table 10: ANALOG UNICOS object tested with nuXmv CTL algorithm

REQ TO(s) | PLCverif+ VA | PLCVerif | PSS RESULT |
REQ1 |10 00:00:19 00:00:54 1.00x10%% | TRUE
REQ2 |0 - 00:00:01 | 1.44x10"2 [ FALSE
REQ3 |0 - 27ms 7.21x10'" | TRUE
REQ 4 |20 00:00:26 TO 5.75x101%8 | TRUE
REQ5 |20 00:00:23 TO 5.75x101%8 | TRUE
REQ6 | 20 00:00:26 TO 5.75x101%8 | TRUE
REQ7 |40 00:00:21 TO 5.00x10%%® | TRUE
REQ 8 | 40 00:00:24 TO 5.00x10%%® | TRUE
REQ9 | 40 00:00:23 TO 2.15x10%'® | TRUE
REQ 10 | 40 00:00:25 TO 2.15x10%'® | TRUE
REQ 11 | 40 00:01:18 TO 2.15x10%"® [ FALSE
REQ 12 | 40 00:01:10 TO 2.15x10%® [ FALSE

In Table 11, 16 requirements were tested for the ONOFF object and
all of them were satisfied. The abstraction algorithm was faster for 12 of
them. Similarly in Table 12, 12 requirements have been tested in total and
all of them were also satisfied. The abstraction algorithm was faster for 10

of them.

Table 11: ONOFF UNICOS object tested with nuXmv'ic3 algorithm

REQ TO(s) | PLCverif+ VA | PLCverif | PSS RESULT
REQ1 |10 00:00:05 00:00:22 4.44x10"7 [ TRUE
REQ2 | 10 00:00:05 00:00:25 4.44x10"7 [ TRUE
REQ 3 | 50 00:01:24 TO 1.11x107 | TRUE
REQ4 |1 00:00:07 TO 5.50x10™6 | TRUE
REQ5 |1 00:00:06 00:00:21 1.10x10™7 | TRUE
REQ6 |0 - 28ms 5.50x10™6 | TRUE
REQ7 |0 - 2ms 5.50x10™6 | TRUE
REQS | 10 00:00:56 TO 1.11x10™7 | TRUE
REQ9 | 30 00:01:32 TO 1.11x10'% | TRUE
REQ 10 | 10 00:01:43 TO 5.50x10° | TRUE
REQ 11 | 10 00:00:10 00:01:00 4.44x10"7 [ TRUE
REQ 12 | 10 00:00:08 00:01:18 4.44x10"7 [ TRUE
REQ 13 | 10 00:00:06 00:00:07 4.44x10'°7 | TRUE
REQ 14 | 10 00:00:05 00:00:52 4.44x10'7 | TRUE
REQ 15 | 3 00:00:05 00:00:05 | 4.44x10'%7 | TRUE
REQ 16 | 10 00:00:08 00:00:07 | 3.74x10™* | TRUE
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Table 12: ONOFF UNICOS object tested with nuXmv CTL algorithm
REQ TO(s) | PLCverif+VA | PLCVerif | PSS RESULT |
REQ1 | 10 00:00:05 00:11:36 4.44x101°7 | TRUE
REQ2 | 10 00:00:05 00:25:21 4.44x10™7 | TRUE
REQ 3 | 50 00:01:17 TO 1.11x107 | TRUE
REQ4 |1 00:00:08 00:00:03 5.50x10'° | TRUE
REQ5 |1 00:00:05 00:00:08 1.10x10"7 | TRUE
REQ6 |0 - 916ms 5.50x10'° | TRUE
REQT7 |10 00:00:53 TO 5.50x10'° | TRUE
REQ 8 | 10 00:00:05 00:13:20 4.44x10™7 | TRUE
REQ9 | 10 00:00:06 00:12:33 4.44x1017 | TRUE
REQ 10 | 10 00:00:05 00:00:10 3.74x10™ | TRUE
REQ 11 | 10 00:00:06 00:21:55 3.74x10™ | TRUE
REQ 12 | 3 00:01:10 00:16:03 3.74x10™ | TRUE
REQ 13 | 10 - 00:17:13 3.74x10™* | TRUE

G.4 Analysis and Conclusions

In this chapter, we described the implementation of variable abstraction
and introduced the conducted experiments of some PLC programs. By
using variable abstraction we were able to verify various requirements for
real-life PLC programs used at CERN.

A limitation of variable abstraction is that currently we can verify only
safety properties. The reason for this is that the verification requirements
for complete UNICOS PLC programs are presently safety properties. Safety
properties are considered the properties with the following pattern: if « is
true at the end of the PLC cycle, then § should always be true at the end
of the same cycle which is translated to the following pattern: AG(a —
B). The Greek letters represent Boolean logical expressions which contain
multiple variables.

After analysing the conducted experiments some interesting results found
with this abstraction algorithm:

1. When there are a lot of “input variables” of integer type in the verifi-
cation case, then the algorithm is not always efficient due to the expo-
nential growth in the number of input bits. In this case the state space
remains huge even after the applied abstractions and model checker still
can not deal with it.

2. When it comes to FALSFE properties, the algorithm was able to extract
a result almost always from step 3. Out of the 33 FALSE requirements,
only 4 of them obtained their result from step 2.

3. When it comes to FALSE properties where the model is not compliant
with the specification the algorithm does not always provide a result.
Moreover PLCverif is usually faster than variable abstraction in obtain-
ing a result .

4. On the contrary, when it comes to TRUFE properties the algorithm in
the majority of the experiments is way faster than PLCVerif. Therefore
the performance of the verification of true properties is improved.

5. Any complexity linked with formal methos and formal verification is
hidden from the developer.
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H Static Code Analysis

H.1 Introduction

In the previous chapters, the thesis focused in the applicability of model
checking to PLC programs. In this chapter, the PLC code will be examined
in a different way. Apart from formal methods and testing, static analysis
is another way to check PLC programs without the need for specifications
supplied from the user. By using static code analysis, a potentially spurious
PLC code or an undefined behaviour can be found. As mentioned in Chapter
2, there are already a few static analysis tools for PLC programs. In this
chapter, several of these tools are analysed over their applicability to our
PLC programs. In addition, 3 prototypes based in some technologies already
made at CERN have been developed. These prototypes but also the already
existing tools were applied to some of our CERN PLC programs, allowing
to our PLC program developers to find errors and improve their programs.
The structure of this chapter is the following:

1. In Section 5.2 the existing static analysis tools are briefly evaluated.

2. In Section 5.3 the implementation and design of 2 static analysis tool
prototype is described.

3. In Section 5.4 the results of the conducted experiments are presented.

4. In Section 5.5 the analysis of the tool and the extracted conclusions are
presented.

H.2 Static analysis tools evaluation

In this section the already existed static analysis tools will be analysed. The
tools were compared and evaluatted in order to extract information for the
prototypes that were developed.

PLC Checker : The tool PLC Checker which is launched by Itris
Automation Company analyse PLC Programs written in Schneider (Unity
Pro), SIEMENS (Simatic Step7), Rockwell Automation (RSLogix5000) and
OMRON (Sysmac Studio) platforms and it contains a predefined set of rules
aiming to detect naming conventions, structure errors and bad programming
techniques such as the lack of comments in the code. PLC Checker was de-
signed to analyse complete PLC programs written in languages provided
by SIEMENS. However the PLC programs written in the SIEMENS plat-
form that are being used at CERN are not “complete”. A complete PLC
program for the tool means to provide for analysis apart from the .SCL file
also some other type of files that so far are not developed because there are
unnecessary for the control systems which are used at CERN.

Arcade.PLC: Arcade.PLC is an academic tool which was not devel-
oped for commercial purposes. Arcade.PLC, developed in RWTH Aachen
University, supports PLC programs written in ST and IL languages from
the IEC 61131 standard and also in STL from Siemens S7. Moreover, so
far, it does not support the analysis of PLC programs written in SCL. Also,
Arcade.PLC is a non-rule based analysis tool but instead it does a semantic
analysis of the code rather than matching different rules or pattern. It uses
abstract interpretation to compute sound value ranges for variables and the
warnings that are generated in the code analysis are derived from these
value-range results which is out of our scope.

65



Table 13: Comparison table I of existed static analysis tools for PLC programs.

CODESYS: CODESYS Static Analysis tool is a software tool devel-
oped by 3S-Smart Software in Kempten of Germany that contains also a
predefined set of rules and it supports PLC programs written in IL, ST,
LD, FBD and SFC languages from the IEC 61131 standard. CODESYS
static analysis tool is so far limited to the CODESYS platform. Despite
the fact that it contains a variety of static analysis rules and that by using
the Automation Platform (a platform for the extension of the CODESYS
development system) rules can be extended, currently it analyses PLC pro-
grams written only on the standard IEC 61131-3 languages.

Extensible

Tool License | Report rules Language Restrictions
Limited to
CoDeSyS Yes Console Yes IEC 61131-3 CoDeSys
platform
Siemens,
81\/][)RgN, SAOngrﬁ.lAWL and
. oDeSys, ) es are
PLC Checker | Yes PDF /e-mail | Yes Scheinder, required to analyze
Rockwell - an SCL file.
Automation
TEC 61131 ST,
Arcade.PLC | No Console No IEC 61131 IL, | -
Siemens STL

Table 14: Comparison table II of existed static analysis tools for PLC programs.

Tool Rule Exclude | Error
categories errors Message
coding rules,

CoDeSyS naming conventions, No info Error, warning

metrics

PLC Checker | writing rules,structure Yes

naming rules,comments .
8 ) ’ Info, warning,

error, fatal
rules

Arcade.PLC | Non-rule based tool No Fatal errors, errors, warnings

H.3 Contribution
H.3.1 Introduction

At CERN two technologies are used for two different projects, that could
help us to build a static analysis tool and analyse the benefits of static
analysis in PLC programs. Therefore, two prototypes of a static analysis
tool for PLC programs written in SCL were developed. The goal of the
tool in its current status, is to detect simple violations in the structure of
the code as well as naming convention errors. To do so a set of rules had
to be developed. Since the project is still in a research phase, two different
approaches were followed to develop the tool and test its effectiveness.
The first approach is based on an implemented project where a DSL
(Domain Specific Language) was developed to transform the code of the
PLC programs into an AST (Abstract Syntax Tree) representation. Ab-
stract syntax trees are data structures widely used in compilers. Due to
their property of representing the structure of program code, the code can
be parsed easily[57]. This Siemens SCL code DSL is developed using the
Spoofax platform. Thanks to the AST provided by the parser, static anal-
ysis rules were developed navigating on the AST. For the development of
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the tool both of the approaches are based on an Eclipse-based user inter-
face built on the Spoofax platform. The third approach, is based on the
PLCverif tool. PLCverif which is implemented as an Eclipse RCP applica-
tion, is using Xtext technology to parse the PLC code. After the code is
parsed, PLCverif translates it from concrete syntax to an AST representa-
tion that can be used as a base to develop the static analysis rules. In figure
30 we can see the process followed for the development of the rules, which
is the same for the two approaches

Spoofax/PLCverif @

-———

57 ~

PLC code / \
.scl 7 \
| Static

@ I <«— Analysis ‘l
_
1

I

: I

I

\ AST

Il"l g
1]
w

Analysis
Report

Figure 30: Static analysis approach workflow.

In Listing 16, the AST representation of the PLC code presented in
Listing 9, is shown as is produced by Spoofax. Different program units, are
represented by different blocks of terms in the AST. For example at lines
2-28 is the representation of the function block (FBBegin) which contains
several terms that include:

e The name of the function block (line 3).

e The title, the version, the author and other information that concerns
the function block of the code and are shown inside a list in the Block-
Attributes term (lines 4-9).

e The declaration part (lines 10-18) where the declared variables and their
types are shown.

e Finally the statement declaration part (lines 19-28) which contains all
the statements and their assigned values.

Listing 6: Generated AST for the PLC code presented in Listing 9.

SCLProgram (
[ FBBegin (
Some (RegularIdentifier ("test"))
, BlockAttributes (
[ NoSemiColon(Title (Quoted ("’DEMO’")))
, NoSemiColon(Version(Quoted("6", "6"))
)

L2 N
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53 )

H.3.2 Spoofax approach

The Spoofax approach allows us to write static analysis rules based on
Stratego/XT and Java.

Stratego/XT-based rules The first approach was developed by using
the Stratego/XT language, which is a functional programming language
provided by the Spoofax platform. The Stratego/XT language provides
rewrite rules and strategies for expressing basic transformations and con-
trolling the application of rules. Moreover, it supports domain-specific lan-
guages, compilers, program generators, and a wide range of meta-programming
tasks. This approach operates on the AST which is produced by the Spoofax
parser. The grammar is complete which makes the produced AST complete.
As a result, all of the elements of the PLC program can be represented by
nodes. By using Stratego/XT, several simple rules were implemented to
detect bugs in the source code of the PLC program. The currently im-
plemented rules in the Stratego/XT approach are divided in two groups:
naming rules and structure rules; some of them are described below.

e Detect nested if statements in the code: in Listing 7 the example code
contains four nested ifs. When there are more than three nested ifs in
the code we consider it not to be a good programming technique as this
can lead to confusions and decrease code readability.

e Define type prefixes for variables: using a variable’s name to also com-
municate other attributes can improve readability and help reducing
programming mistakes. For example boolean variables should start
with the letter b.

e Detect variables that do not have the recommended length: all variables
should have a specified acceptable length. Otherwise, the maintenance
of the code is more difficult and is not understandable.

e Detect if different variables have the same name in the code: in Listing
9 an example where different variables have the same name is shown.
Re-using the same global name for any variable type would make the
code difficult to read.

e Detect if a function was called inside itself: functions should not call
themselves directly or indirectly. This kind of violation should be de-
tected in the code, otherwise it can affect the behaviour of the model
and create severe errors.

e Detect if a function was not called in the whole program: a function
which is not called in the program can be considered as dead code.

e Detect if physical addresses are used: system depended physical ad-
dresses shall be avoided as this can lead to less portable code (see List-
ing 8).

Listing 7: Example of nested if statement in an SCL code
FUNCTION_BLOCK A

VAR
a : BOOL;
b : BOOL;

END_VAR

© 0 9 O s W N

VAR_INPUT
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10 © BOOL ;

11 d INT;

12 e : INT;

13 f : BOOL;

14 END_VA

15

16 BEGIN

17 b := NOT a;

18 c := FALSE;

19 IF ¢ THEN

20 d := 1;

21 IF b THEN

22 IF a THEN

23 b := FALSE;
24 IF f THEN
25 e := b5;
26 END_TIF;

27 END_TIF;

28 END_TIF;

29 END_TIF;

30

31 END_FUNCTION_BLOCK

Listing 8: Example of an SCL code where physical addresses are dis-
played as variables.

1 FUNCTION_BLOCK Test
2

3 VAR

4 IW12: REAL;
5 A:INT,;

6 END_VAR

7

8 BEGIN

9 IWi2:= 1.1;
10 A:= PQB9;

11

12 END_FUNCTION_BLOCK

Listing 9: Example where different element types have the same name

1 FUNCTION_BLOCK TEST_A
2 VAR

3 a : BOOL;

4 b : BOOL;

5

6 END_VAR

7

8 VAR _INPUT

9 c : BOOL;

10 END_VAR

11

12 BEGIN

13 b := NOT a;

14 c := FALSE;

15

16 END_FUNCTION_BLOCK

17

18 FUNCTION TEST_B: VOID
19 VAR

20 c : BOOL;
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21 d : BOOL;
22

23 END_VAR

24

25 VAR _INPUT

26 e : BOOL;
27 END_VAR

28

29 BEGIN

30 d := c;
31 e := TRUE;
32

33 END_FUNCTION

As described in Figure 30, our analysis process comprises three steps:

1. The PLC program is parsed as an input to Spoofax and then is trans-
lated to an AST representation.

2. After, the AST is analysed and the static analysis rules are written on
top of it in Spoofax.

3. Finally, after the execution of the tool, all the detected violations appear
in the console.

Implement a rule using Stratego/XT: Each rule is represented by
a different .str file (Stratego file). To create a rule, a top level rule has to
be created, which consists of simpler rules. A rule for Stratego is like a
function: it implements a task. Moreover, there are predefined rules but
the developer can implement more of them by defining their logic. The first
step to create a rule is to collect all the target variables. Then, additional
rules need to be created for all the tasks that have to be defined for the
collected variables.

In Listing 10 an example of a Stratego rule to detect whether an input
variable is assigned inisde the function, is presented. In line 1, the top rule
is introduced. Then, in lines 2-13, the strategy of the top rule which is
built from more simple ones, is defined. In lines 16-19, the first rule, which
collects all the input variables, is implemented. Finally, at lines 22-27, the
second rule which maps the statements over the inputs and prints the error
messages in the console, is defined.

Listing 10: Example of a stratego rule

1 variable -name-analysis = validate-input

2 validate-input:

3

4 input -> <fail>

5 where

6 <

7 ?FunctionBegin(_,_,_,Declarations (decls),
stmts) +

8 ?FunctionNoBegin(_,_,_,Declarations (decls
) ,stmts) +7ProgramBegin(_,_,
Declarations (decls) ,stmts) +

9 ?ProgramNoBegin(_,_,Declarations (decls),
stmts)

10 > input

11

12 ; inputs := <collect-all-inputs> decls

13 ; <map(try(validate-input-usage (|stmts)))>

inputs
14
15

71



16 collect-all-inputs:
17 1ist -> inputvars

18 where

19 inputvars := <collect-all-unfiltered(?
InputVarSubsection(_));collect-all-
unfiltered (?RegularIdentifier(_))> 1list

20

21

22 validate-input -usage (| stmts) :

23 pattern@RegularIdentifier (name) -> name

24

25 where

26 <collect-all-unfiltered(?ValueAssign(

VariableValue (RegularIdentifier (name))
, _J));not(?[])> stmts
27 ; <log-error (|pattern)> $[Input variable: [name
] should not been assigned inside the
function]

Java-based rules The main difference between the two approaches is
the way we access the AST and the language which is used when imple-
menting the rules. On the one hand in Stratego/XT approach, the AST
is a low-level one. For example different types of variables will be repre-
sented in different AST patterns. As a result, in order to collect all the
names of variables, all possible patterns must be checked. However, on the
other hand, the AST in this approach covers the complete grammar of the
PLC code, which means that all the units and terms of the program can be
represented.

In order to have more flexibility in writing rules, a Java interface was
developed using the Spoofax platform. Therefore, for the second approach,
still by using Spoofax, rules can be developed now in Java. For the Java
approach, the same AST that was used for the first approach can be used.
Nonetheless, because its a low level one, the creation of a new AST rep-
resentation was attempted. The reason for this, is that when it comes to
complex rules, access a low level AST can be complicated and as much
more patterns of it need to be checked, the performance of the tool can be
affected in a negative way. An SCL program consists by a list of units and
a unit can be a Function, a Function Block, a Data Block etc. Moreover,
each of them has a name, a return type, variables and statements and to
create the AST, each unit should be represented by a Java class. So far
only rules that concern the declaration part can be developed because the
part that matches the statements is still not implemented. On the contrary,
the tool now is more flexible as the rules can be activated or dis-activated
by the user according to the needs of the analysis. The rules implemented
in Java, concern so far only naming rules and are almost the same with the
ones implemented in Stratego/XT.

The procedure for the analysis is the same as in the Stratego/XT ap-
proach. The PLC code, is given to Spoofax platform as an input, then it
is translated into an AST representation and on top of this the rules are
developed. The difference between the two approaches is in the analysis
results where now, are also given as an analysis report to the user.

Implement a rule using Java: To create a new rule, a new Java class
has to be created as each rule is represented by a different class. In this
class, a method that is used to exclude or include rules from the analysis
procedure of the code according to the current needs, has to be created.
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Then the rule is divided into two parts : the traversal of the AST and
the logic that is followed to create the rule. In the traversal part, all the
needed elements have to be collected from the AST. In the logic part, these
elements are used in order to implement the behaviour of the rule.

Listing 11: Example of a Java rule

1
2
3
4
5

10
11
12
13
14
15

17

18

19
20
21

22
23

24 }

package scl_static_analysis.strategies;
public class VariableAnalyses {

public static void isUpperCase (SCLProgram program)

{
if (Exclusions.isExcluded(VariableAnalyses.class
A

return;

List<AbstractVariable> variables = program.
getSclUnits () .stream()
.filter (unit -> unit instanceof
Function)
.map (function -> function.
getVariables ())

.flatMap(list -> list.stream())
.collect(Collectors.tolList ());

for (AbstractVariable variable : variables){

if (! Character.isUpperCase (variable.getName ()
.charAt (0)))A{
run_static_analysis_O0_O.print("Warning @
Line" + (Integer.parselnt(variable.
getOriginLine () .toString ())+1)
+ " on " + variable.getOriginText ()
.toString () + ":
Variable should start with a
capital letter.");

In Listing 12, an example of a rule class is presented. Between lines

5-8 the method which is responsible for the execution of the rule is defined.
Between lines 10-14 the elements of the program will be collected from the
AST and placed in a list. Finally, in lines 16-21 is the logic of the rule
where every variable where its first letter is not upper-case will appear in
the static analysis report.

Listing 12: Example of a Java rule

1
2
3
4
5

package scl_static_analysis.strategies;
public class VariableAnalyses {

public static void isUpperCase (SCLProgram program)

{

if (Exclusions.isExcluded (VariableAnalyses.class
A

return;
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10 List<AbstractVariable> variables = program.
getSclUnits () .stream()

11 .filter (unit -> unit instanceof
Function)

12 .map (function -> function.
getVariables ())

13 .flatMap(list -> list.stream())

14 .collect(Collectors.tolList ());

15

16 for (AbstractVariable variable : variables){

17 if (! Character.isUpperCase (variable.getName ()

.charAt (0))){
18 run_static_analysis_O_O.print("Warning @

Line" + (Integer.parselnt(variable.
getOriginLine () .toString())+1)

19 + " on " + variable.getOriginText ()
.toString () +

20 ":Variable should start with a
capital letter.");

21 }

22 +

23 +

24 }

When programming PLC codes in UNICOS, there are some general abbre-
viations concern the naming conventions of the variables. To have more
maintainable and readable code, the names of the variables should be con-
structed only from the abbreviations (e.g. a variable with the name AuMoSt
corresponds to AutoModeStatus). In order to detect the variable names
that do not respect this restriction, a rule was developed. As it was men-
tioned before, the current AST does not fully support all PLC programs yet.
For this reason, in this approach, except of the rule for the abbreviations,
the rules about naming conventions that were implemented in Stratego/XT
approach were implemented also in Java.

To produce the analysis report which contains the overview of the anal-
ysis of the PLC code, a script had to be developed. More specifically, the
static analysis tool, produces a .CSV file that contains analysis informa-
tion. The script extracts these information from the generated .CSV and
generates an .html file where each rule is linked to a PDF file that contains
its documentation (see figure 31). In the current version of the tool the
user workflow is not yet fully automated. The developer, for the purpose of
checking the code, he has to provide as an input to the tool the PLC code
and execute the tool. In addition he has to also execute the script in order
to have the HTML analysis report (see Figure 32).
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Figure 31: User workflow for the Java approach.

Listing 13: Example of an SCL code

1 FUNCTION Test:void
2 VAR

3 a : BOOL;

4 b : BOOL;

5 ¢ : BOOL;
6
7
8
9

END_VAR
END_FUNCTION

FUNCTION_BLOCK Test
10 VAR_INPUT
11 a : BOOL;
12 d : BOOL;
13 END_VAR
14 END_FUNCTION_BLOCK

In figure 32 the generated analysis report is which corresponds to the anal-
ysis of the code presented in Listing 13. Each rule corresponds to a unique
id and N stands for the Naming convention rules category. Rules according
to their severity level are distinguished in three categories: info (when the
detected code does not affect the of the program), severe (when the error
might decrease the readability and the effectiveness of the code) and fatal
(when the detected error affects the logic of the program).
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Static Analysis Report

Filter by RuleiD: Al |
Rule ID RUIPT Rule Description Error Line Error Message
Severity

Né& Info [adatiesishou| dhaveaidefined Line: 4 Variable d:the name of the variable length shouldn’t be less than 3.
acceptable name length

Né Info platiables shouldihaveadelined Line: § Variable a: the name of the variable lengthshouldn’t be less than 3.
acceptable name length

Né Info rarlables shouldinavsiaidsfined Line: 10 Variable b: the name of the variable length shouldn't be less than 3.
acceptable name length

N6 Info plariabies shouldihave adefined Line: 11 Variable c: the name of the variable length shouldn't be less than 3.
acceptable name length

N9 Fatal Liffereatelement typesishould otear Linez1  |Function Test: the same name is used by FUNCTION_BLOCK at Line 7

the same name. =

N4 Info UpperCamelCase should be used Line: 3 Variable a: should be written in UpperCamelCase

N4 Info UpperCamelCase should be used Line: 4 Variable d: should be written in UpperCamelCase

N4 Info UpperCamelCase should be used Line: 9 Variable a: should be written in UpperCamelCase

N4 Info UpperCamelCase should be used Line: 10 Variable b: should be written in UpperCamelCase

N4 Info UpperCamelCase should be used Line: 11 Variable c: should be written in UpperCamelCase

Generated at 28 Nov 2016 10:50:55 | (C) CERN EN-ICS-PCS

Figure 32: Static analysis report.

H.3.3 PLCverif approach

In this last approach, the static analysis tool, is integrated with the verifi-
cation tool of PLCverif. The AST, which is produced by Xtext can support
all of our PLC programs which are written in SCL. However, the grammar
that the tool provides currently is not complete as some features of SCL are
not used in the PLC codes of CERN.

The logic to write rules is the same with the two previous approaches.
The PLC code is given as an input to PLCverif, it is transformed to an AST
representation and based on the AST the rules are written in Java. After
the static code analysis an HTML report with all the detected violations,
is provided to the user. In the HTML the user can see the error type, the
rulelD, the error message and the line number. In addition, by clicking in
the line number he has access to the code overview where the line with the
error is underlined.

In this approach, there was more flexibility in writing rules as there are
no restrictions. Three error categories were created: information, warning
and error (when the violation can actually twist the behaviour of the pro-
gram) and each rule can correspond to one of them. In order to develop
a rule, a new class has to be created; by the usage of several predefined
methods, the AST can be accessed and parsed and the logic of the rules
can be defined. Moreover, the rules created for the needs of this approach,
detect violations relevant to naming conventions, to structure issues and to
unreachable code. All the rules implemented in the Stratego/XT and Java
approach were also implemented in PLCverif with some additional rules
described below:

e Prefixes for FB and OB: Function blocks and Organization blocks should
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have a name prefix "FB” and "OB” respectively.

e Detect dead code: Rule to check unreachable code within POUs. Un-
reachable code may occur due to conditions that are always set to TRUE
or FALSe, due to never-called part of the code, due to the use of jumps
(statements like CONTINUE, RETURN, GOTO).

e Detect if an IF statement has an ELSE clause.

e Detect IF conditions where the IF body cannot be reached (See Listing
14) .

e Data types conversion should be explicit: according to the compiler the
result may differ while multiply or divide different data types.

Listing 14: Example of an SCL code where IF conditions can not be
satisfied.

FUNCTION Test:void
VAR

a : BOOL;
INT;
c : INT;

END_VAR

© W N O O A W N e
o’

BEGIN
IF b<1 AND b>20

=
(SIS )

13 a:=TRUE;

14

15 END_TIF;

16

17 IF c<1 AND c=20
18

19 a:=FALSE;

20

21 END_TIF;

22
23 END_FUNCTION

In Listing 15, a Java rule example implemented in PLCverif is pre-
sented. In the method ruleld() the ID of the rule is returned. Then in the
caseAssignmentStatement method, the types and the names of the variables
are collected and finally if the types of the multiplied variables are different
an error returns to the user in an HTML report format.

Listing 15: Example of a rule implemented in PLCverif that detects if
data types conversion are explicit.

1
2 package ch.cern.en.ice.plcverif.staticanalysis.visitorrules

H)

import java.util.Arraylist;
import java.util.List;

© 0w 9 O U ks W

public class MultiplyExrpession extends
AbstractVisitorAnalysisRule {

10

11 @0verride

12 public String ruleId() {
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13

14 return "R18";

15

16

17 @0verride

18 public AnalysisResultItem caseAssignmentStatement (
AssignmentStatement assignment) {

19 NamedElement rightSideVar;

20 NamedElement leftSideVar;

21 Expression constantVarLeft;

22 String leftSideVarName = 3

23 String leftVarType = "";

24 List<String> types new ArrayList<>();

25

26 Expression constantVarRight;

27 String rightVarType = "";

28 String rightSideVarName = "";

29 for (EObject e : Helper.iterable(assignment.eAllContents())

) {
30 if (e instanceof MultExpression) {
31 Expression leftSide = (((MultExpression) e).
getMultLeft ());

32 if (leftSide instanceof PrimaryExpression) {

33 if (((PrimaryExpression) leftSide).getValue() !=
null) {

34 leftSideVar = ((PrimaryExpression) leftSide).

getValue () .getPostfix () . getNamedElement () ;

35 if (leftSideVar instanceof SingleVariable) {

36 leftSideVarName = leftSideVar.getName () ;

37

38 leftVarType = ((SingleVariable) leftSideVar).getType

O

39 }

40

41 }else if (((PrimaryExpression) leftSide).

getUnnamedConstant () != null) {

42 constantVarLeft = ((PrimaryExpression) leftSide);

43 if (constantVarLeft instanceof SingleVariable) {

44 leftSideVarName = ((SingleVariable)
constantVarLeft) .getName () ;

45 leftVarType = ((SingleVariable) constantVarLeft).
getType () ;

46

47 }

48

49 }

50 +

51 for (Expression rightSide : ((MultExpression) e).

getMultRight ()) {

52 if (rightSide instanceof PrimaryExpression) {

53

54 if (((PrimaryExpression) rightSide).getValue() !=

null) {

55 rightSideVar = ((PrimaryExpression) rightSide).
getValue () .getPostfix () .getNamedElement () ;

56 if (rightSideVar instanceof SingleVariable) {

57 rightVarType = ((SingleVariable) rightSideVar).

getType () ;

58 rightSideVarName = rightSideVar.getName () ;

59 types.add(rightVarType) ;

60

61 }

62 } else if (((PrimaryExpression) rightSide).
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getUnnamedConstant () != null)

63 {

64 constantVarRight = ((PrimaryExpression) rightSide)

65 if (constantVarRight instanceof SingleVariable) {

66 rightVarType = ((SingleVariable) constantVarRight
) .getType O ;

67 rightSideVarName = ((SingleVariable)
constantVarRight) . getName () ;

68 types.add(rightVarType) ;

69

70 }

71

72 }

73 }

74

75 }

76

77 }}

78 for (String rightType : types) {

79 if (!(leftVarType.equals(rightType))) A

80 reportParameterizedAnalysisResultItem(assignment,

81 PlcverifSeverity.Info,

82 "Data types conversion should be explicit: ’%s,%s’
n

83 rightType, leftVarType);

84 }

85 }

86

87 return super.caseAssignmentStatement (assignment) ;

88 +

89

9 }

PLCverif =N R <= \

File Settings Help

Lgmmna;; = 8 || & testsd = = 0O ||mv|8=o = O

B SCL Source File.. B Ve FUNCTION_BLOCK Test - =4

VAR_INPUT
- test_a : BOOL; Variables
o (5 Test END_VAR
. (= generated VAR_OUTPUT Filter:
8 s 2

c : SINT; =
d : BOOL;

END_VAR
BEGIN
test_a := TRUE;
IF @ < 1 AND a » 20 THEN
b = 1;

1;
a b * c;

END_IF;
END_FUNCTION_BLOCK

« [Lm 3

= Progress | [~ Generation Log | [~ Execution Qutput | Problems| [~ Variable Dependency Explorer = O

No operations to display at this time.

14 testscl - Test

Figure 33: SLC editor in PLCverif approach of static analysis tool.

In figure 33 the editor of PLCverif is presented. The user can still use
the features of PLCverif and import a PLC code written in SCL, even
modify it or write a new code. Therefore, it can execute the tool to perform
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static code analysis to the provided code. As a result, PLCverif is going to
generate an HTML report as it can be seen in Figure 34. All the rules which
corresponds to the "Error” category are represented in the report with red
color, while “Warnings” and “Information” notifications are represented by
yellow and white respectively. In the code overview, the actual code can be
seen. Next to each line where a violation was detected, there is the rule id
of the rules that were not respected. Moreover, some general information
like the name of the analysed SCL file, the date and time of the analysis as
long as the execution time of the tool are presented in the report.

3 testscl @ Static Analysis Report for test.scl 2 -
[T} éb file:///C:f Users/ctsiplak/Ds [eclipse-dsl 1 _64/1 pl if. duct/Te /2016-12-19_17-59-27 html - B
PLCverif — Verification report
Generated on 2016-12-19 17:59:27 | PLCverif v2.0.3 | (C) CERN BE-ICS-PCS | Showshide expert details
File: test.scl
Date: Mon Dec 19 17:59:27 GET 2016

Execution time: |1 ms

Severity Rule ID Message Line
Error R11 Unused variables should not be declared: 'd' 1
Error R12 QOutput variables should always be written in the program: 'c' 9
Error R12 Output variables should always be written in the program: 'd' 9
Error R20 Variable 'a’ cannot satisfy the condition. 13
Warning R1 The variable name 'a' is too short 8
Warning R1 The variable name 'b' is too short 7
Warning R1 The variable name 'c' is too short. 8
Warning R1 The variable name 'd'is too shert 9
Warning R3 The variable name 'test_a’ contains wrong characters. 3
Warning R3 The variable name 'a' contains wrong characters. 6
Warning R3 The variable name 'b' contains wrong characters. i
Warning R3 The variable name 'c' contains wrong characters. 8
Warning R3 The variable name 'd' contains wrong characters. 9
Info R15 An if instruction should always have an Else clause 13
Info R16 Function blocks' names should start with the prefix 'FB' 1
Info R18 Data types conversion should be explicit: 'SINT REAL' 15

Code overview

@EDED ! FuNCTION BLOCK Test
2 |VAR_INPUT

3 test_a : BOOL;
4 |END VAR
VAR_CUTEUT
a : INT;
b : REAL;
c : SINT;
d : BOOL;
END_VER
11 |BEGIN
12 test_a := TRUE;
[R2o [ ra5 JRES IF a < 1 AND a > 20 THEN
14 b= 1;
@D 15 2 =b * c;
16 END_IF;

Figure 34: Static analysis report produced by PLCverif.

H.4 Analysis and conclusions

So far the rules implemented to test the UNICOS objects are: 18 in Strate-
go/XT approach, 8 in Java-Spoofax and 20 in PLCverif. Yet the tool is in a
primary stage and most of the rules are not that meaningful, which means,
that the potential violations that they can detect do not always affect the
model and its behaviour. The goal was to create the base to build more
meaningful ones that can be applied in the objects and detect violations
that so far were not detected by testing or model checking.

Out of the three approaches taken PLCverif seems to be the most ap-
propriate for our use case; this is because this approach is more flexible.
The grammar might not be complete but it covers all the PLC programs
that need to be checked and static analysis rules can be implemented for
every part of the PLC code. The implementation of the rules can be done
in Java as in the Java-Spoofax approach, but in that case the AST is not
complete and it needs to be implemented manually. On the contrary, in
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Stratego/Xt-Spoofax approach, the AST might be complete but it is a low
level one and the developer has to deal with Stratego language which is not
as widespread as Java. In addition, in PLCverif, by using the same interface
the developer can apply static analysis to the code or model checking to the
requirements that concern the code. Moreover, even for PLC code that
consists of hundreds of lines the tool has really fast execution time (usually
les than 1 second).

The advantage of the tool is that the analysis procedure is transparent
for the user. All that the user has to do is to import the PLC code to be
analysed and click in the static analysis button of the framework. There-
fore, a static analysis report will be produced and the user will be able to
see all the detected violations and fix them.

Table 15: Comparison between static analysis approaches.

Approach Grammar | Implementation | Pros Cons

Stratego/XT | Spoofax Stratego Complete grammar | Low-level AST access

Java Spoofax Java Simple rules Partial AST support
Manual AST manipulation

PLCverif Xtext Java Simple rules Partial grammar
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I Conclusions and future work

I.1 Conclusions

This thesis set out to improve the quality of PL.C code by introducing static
analysis and by integrating model checking to the development process.
Moreover, by implementing the abstraction algorithm technique it was able
to deal partially with the state space explosion challenge that developers
face while trying to guarantee that their PLC code is compliant with the
given specifications. To ensure the applicability of the above three main
goals were set:

e Integrate model checking in PLC development; by hiding any complex-
ity the user now can verify more than one requirement through PLCverif
automatically.

e By implement and develop the variable abstraction algorithm, partially
we dealed with the state space explosion problem mostly for Satisfied
requirements.

e Analysis of the existing static analysis tools, development of a prototype
of a static analysis tool and conduct experiments for the CERN PLC
programs in order to detect potential violations in the PLC code.

By connecting model checking and static analysis results, a more pow-
erful analysis was created. Therefore, to verify the correctness of a system,
both of the techniques are necessary as each of them provide different kind
of analysis. By using the implemented static analysis rules to check the
PLC code, we were able to detect in our real life PLC programs some in-
consistent use of variables and to implement specific checks. In comparison
to model checking, static analysis can be applied to the code without any
special effort from the user as there is no need to express requirements to
verify the behaviour of the code. At the same time, as any complexity is
hidden from the user, model checking can be easily used in the development
process and usually ensure the verification of the provided model. Although
the conducted experiments in real life PLC programs show good results and
for most of them we were able to extract a verification result, the state space
explosion problem still remains.

1.2 Future work

The future work is related to overcome the problems that still remain un-
solved. To deal more effectively with the state space problem new improved
reduction and abstraction techniques should applied in the current method-
ology. A promising one is the predicate abstraction technique that is used
to prove properties of finite- and infinite-state systems. By giving a concrete
finite- or infinite-state system and a set of predicates, a conservative finite
state abstraction is generated and like this the state space is reduced.

Moreover, the variable abstraction algorithm would be more effective
under some minor modifications in the implementation. By executing the
steps of the algorithm that are not related to each other in parallel a result
would be obtained faster.

Finally, the static analysis tool prototype, has to be extended with more
useful rules that would be able to detect severe violations in the PLC code.
After more research and discussion with the PLC developers it would be
easy to extract more meaningful rules to implement.

The communities developing automation and formal methods are getting
closer to achieving their goal of ensuring the correctness of PLC programs.
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However there is still a way to go until we can be completely sure that a
control system is robust and reliable.
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Appendix II
The following piece of ST code corresponds to the Siemens implementa-

tion of the OnOff UNICOS object.

Listing 16: Generated AST for the PLC code presented in Listing 9.

1

=W N

© 0w 9 O v

//UNICOS

//BY Copyright CERN 2013 all rights reserved

(* ON/OFF OBJECT FUNCTION BLOCK

********************************************)

FUNCTION_BLOCK CPC_FB_ONOFF

TITLE =
//
//
//
VERSION: ’6.6°
AUTHOR: °’EN/ICE’
NAME: ’0BJECT’
FAMILY: °’F0’

»CPC_FB_ONOFF’

ONOFF 0Object

VAR_INPUT

HFQOn:
HFOff:
HLD:
I0Error:
I0Simu:
Al1B:
ManregO1l:
ManregOlb AT ManregOl:
BOOL ;
HOnR:
HOffR:
Startl:
TStopI:
FuStopI:
Al:
AuOnR:
AuOffR:
AuAuMoR:
AuThMMo:
AulhFoMo:
AuAlAck:
ThAuMRW:
AuRstart:
POnOff:
POnOffb AT POnOff:
ParRegb:
BOOL ;
PPulseleb:
PWDtb:

END_VAR
VAR _OUTPUT
Stsreg0O1l:

StsregO1lb AT StsregO1l:
BOOL ;
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BOOL;
BOOL;
BOOL ;
BOOL ;
BOOL ;
BOOL;
WORD ;
ARRAY [0..15] OF
BOOL ;

BOOL ;

BOOL;

BOOL;

BOOL ;

BOOL ;

BOOL ;

BOOL;

BOOL;

BOOL;

BOOL ;

BOOL ;

BOOL;

BOOL;
CPC_ONOFF_PARAM;
STRUCT

ARRAY [0..15] OF

TIME;
TIME;
END_STRUCT;

WORD ;

ARRAY [0..15] OF




Stsreg02:

Stsreg02b AT Stsreg0O2:

BOOL ;
OutOnO0OV:
OQut0ffOVv:
OnSt:
0ffSt:
AuMoSt:
MMoSt :
LDSt:
SoftLDSt:
FoMoSt:
AuOnRSt:
AuOffRSt:
MOnRSt:
MOffRSt:
HOnRSt:
HOffRSt:
IO0OErrorW:
I0SimuW:
AuMRW :
AlUnAck:
PosW:
StartISt:
TStopISt:
FuStopISt:
Al1St:
A1BW:
EnRstartSt:
RdyStartSt:

g5 END_VAR

86
g7 VAR

114
115

//Internal Variables
//Variables
E_MAuMoR:
E_MMMoR:
E_MFoMoR:
E_MOnR:
E_MOffR:
E_MAI1AckR:
E_StartI:
E_TStoplIl:
E_FuStopl:
E_Al:
E_AuAuMoR:
E_AuAlAck:
E_MSoftLDR:
E_MEnRstartR:
RE_A1UnAck:
FE_AlUnAck:
RE_PulseQOn:
FE_PulseOn:
RE_PulseOff:
RE_OutOVSt_aux:
FE_Out0OVSt_aux:
FE_InterlockR:

WORD ;
ARRAY

BOOL ;
BOOL ;
BOOL ;
BOOL;
BOOL;
BOOL;
BOOL ;
BOOL ;
BOOL;
BOOL;
BOOL;
BOOL ;
BOOL ;
BOOL ;
BOOL;
BOOL;
BOOL ;
BOOL ;
BOOL ;
BOOL;
BOOL;
BOOL;
BOOL ;
BOOL ;
BOOL ;
BOOL
BOOL;

for Edge detection

BOOL ;
BOOL;
BOOL;
BOOL;
BOOL ;
BOOL ;
BOOL ;
BOOL;
BOOL;
BOOL ;
BOOL ;
BOOL ;
BOOL;
BOOL;
BOOL;
BOOL ;
BOOL ;
BOOL;
BOOL;
BOOL;
BOOL ;
BOOL ;

//Variables for old values

MAuMoR_o1ld:
MMMoR _old:
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BOOL ;
BOOL ;

[0..15] OF

TRUE ;




116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

170

171
172

174
175
176
177

MFoMoR_old:
MOnR_old:
MOffR_old:

MA1AckR _old:
AuAuMoR_old:
AuAlAck_old:
StartI_old:
TStopI_old:
FuStopI_old:

Al _olad:
AlUnAck_old:
MSoftLDR_old:
MEnRstartR_old:
RE_PulseOn_old:
FE_PulseOn_old:
RE_PulseOff_old:
RE_OutOVSt_aux_old:
FE OutOVSt_aux_old:
FE _InterlockR_old:

BOOL ;
BOOL;
BOOL;
BOOL ;
BOOL ;
BOOL ;
BOOL;
BOOL;
BOOL;
BOOL ;
BOOL ;
BOOL;
BOOL;
BOOL;
BOOL ;
BOOL ;
BOOL ;
BOOL;
BOOL;

//General internal variables

PFsPosOn:
PFsPosOn2:
PHFOn:
PHFOff:
PPulse:
PPulseCste:
PHLD:
PHLDCmd :
PAnim:
POutOff:
PEnRstart:
PRstartFS:
OutOn0OVSt:
Out0ff0VSt:
AuMoSt_aux:
MMoSt _aux:
FoMoSt_aux:
SoftLDSt_aux:
PulseOn:
PulseOff:
PosW_aux:
Out0OVSt_aux:
fullNotAcknowledged:
PulseOnR:
PulseOffR:
InterlockR:

BOOL ;
BOOL;
BOOL;
BOOL;
BOOL ;
BOOL ;
BOOL ;
BOOL;
BOOL;
BOOL ;
BOOL ;
BOOL ;
BOOL;
BOOL;
BOOL;
BOOL ;
BOOL ;
BOOL;
BOOL;
BOOL;
BOOL ;
BOOL ;
BOOL ;
BOOL;
BOOL;
BOOL;

//Variables for IEC Timers

Time_Warning:

Timer Pulse(On:
Timer_ PulseOff:
Timer _Warning:

//Variables for interlock Ststus delay

handling
PulseWidth:
FSIinc:
TSIinc:
Slinc:
Alinc:
WTStopISt:
WStartISt:
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TIME;
TP ;
TP ;
TON ;

REAL;
INT;
INT;
INT;
INT;
BOOL;
BOOL ;




178
179
180
181
182
183
184
185
186
187

188

190

191

192

193

194

195

197

198

199

200

201

202

204

205

WA1St: BOOL ;

WFuStopISt: BOOL ;
END_VAR
BEGIN

(* INPUT MANAGER x)

E_MAuMoR := R_EDGE (new:=ManRegO1b [8],
0ld:=MAuMoR_old) ; (*
Manual Auto Mode Request *)

E_MMMoR := R_EDGE (new:=ManRegO1b [9],
0ld:=MMMoR_old) ; (*
Manual Manual Mode Request *)

E_MFoMoR := R_EDGE (new:=ManRegO1b [10],
old:=MFoMoR_o0ld) ; (*
Manual Forced Mode Request *)

E_MSoftLDR := R_EDGE (new:=ManRegO1b[11],
0ld:=MSoftLDR_old) ; (*
Manual Software Local Drive Request *)

E_MOnR := R_EDGE (new:=ManRegO1b [12],
0ld:=M0OnR_old) ; (*
Manual On/Open Request *)

E_MOffR := R_EDGE (new:=ManReg0O1b [13],
0l1d:=MOffR_old); (*
Manual 0ff/close Request *)

E_MEnRstartR := R_EDGE (new:=ManRegO1b [1],
old:=MEnRstartR_old) ; (*
Manual Restart after full stop Request
*)

E_MA1lAckR := R_EDGE (new:=ManRegO1b [7],
0ld:=MA1AckR_old); (*

Manual Alarm Ack. Request *)

PFsPosOn := POn0ffb.ParRegb [8];
(*
1st Parameter bit to define Fail safe
position behaviour x)

PHFOn := POnOffb.ParRegb[9];
(*
Hardware feedback On present*)
PHFOff := POnO0ffb.ParRegb[10];
(*
Hardware feedback O0ff present*)
PPulse := POnOffb.ParRegb[11];
(*
Object is pulsed pulse duration
POnOff .Pulselex*)
PHLD := POnOffb.ParRegb[12];
(*
Local Drive mode Allowed *)
PHLDCmd := POn0ffb.ParRegb[13];
(*
Local Drive Command allowed *)
PAnim := POnOffb.ParRegb[14];
(*
Inverted Output*)
POutOff := POnOffb.ParRegb [15];
PEnRstart := POnOffb.ParRegb [0];
(*

Enable Restart after Full Stop *)
PRstartFS := POnOffb.ParRegb[1];
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206

207

208
209

210

211
212

213

214

215
216
217

218

219

220
221
222
223
224
225
226

227
228
229
230

231
232
233
234
235
236

238
239
240
241

(*
Enable Restart when Full Stop still
active x*)
PFsPos0On2 := POnOffb.ParRegb [2];
(%
2nd Parameter bit to define Fail safe
position behaviour x)
PPulseCste := POnOffb.ParRegb [3];
(* Pulse
Constant duration irrespective of the
feedback status *)

E_AuAuMoR := R_EDGE(new:=AuAuMoR,o0ld:=
AuAuMoR_o1ld) ; (* Auto
Auto Mode Request *)

E_AuAlAck := R_EDGE(new:=AulAlAck,old:=
AuAlAck_old) ; (x Auto

Alarm Ack. Request x*)

E_StartI := R_EDGE (new:=StartI,old:=
StartI_old) ;

E_TStoplI := R_EDGE (new:=TStopI,old:=
TStopIl_old);

E_FuStopI := R_EDGE(new:=FuStopI,old:=
FuStopI_old) ;

E_Al := R_EDGE (new:=A1,0ld:=A1_o01d);

StartISt := Startl;

(* Start Interlock present *)
TStopISt := TStopl;

(* Temporary Stop Interlock present x)
FuStopISt := FuStopI;

(* Full Stop Interlock present *)

(x INTERLOCK & ACKNOWLEDGE *)

IF (E_MAl1AckR OR E_AuAlAck) THEN
fullNotAcknowledged := FALSE;
AlUnAck := FALSE;

ELSIF (E_TStopI OR E_StartI OR E_FuStoplI
OR E_Al) THEN
AlUnAck := TRUE;

END_TIF;

IF ((PEnRstart AND (E_MEnRstartR OR
AuRstart) AND NOT FuStopISt) OR (
PEnRstart AND PRstartFS AND (
E_MEnRstartR OR AuRstart))) AND NOT
fullNotAcknowledged THEN

EnRstartSt := TRUE;

END_IF;

IF E_FuStopI THEN

fullNotAcknowledged := TRUE;
IF PEnRstart THEN
EnRstartSt := FALSE;
END_TIF;
END_TIF;
InterlockR := TStopISt OR FuStopISt OR
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242

243

244
245

246
247
248
249
250
251
252

253

254
255
256
257
258

260
261

262

264
265
266
267
268
269
270

271
272
273
274
275
276

277

279
280
281
282

284

285

287
288
289
290

FullNotAcknowledged OR NOT EnRstartSt OR
(StartISt AND NOT POutOff
AND NOT OutOnOV) OR
(StartISt AND POutOff AND ((
PFsPosOn AND Out0OVSt_aux)
OR (NOT PFsPosOn AND NOT
Out0VSt_aux))) ;

FE_InterlockR := F_EDGE (new:=InterlockR,
0ld:=FE_InterlockR_old);

(x MODE MANAGER x)
IF NOT (HLD AND PHLD) THEN
(* Forced Mode x*)
IF (AuMoSt_aux OR MMoSt_aux OR

SoftLDSt_aux) AND
E_MFoMoR AND NOT (AuIhFoMo)

THEN

AuMoSt_aux := FALSE;
MMoSt_aux := FALSE;
FoMoSt_aux := TRUE;
SoftLDSt_aux := FALSE;

END_IF;

(* Manual Mode *)
IF (AuMoSt_aux OR FoMoSt_aux OR
SoftLDSt_aux) AND
E_MMMoR AND NOT(AuIhMMo) THEN

AuMoSt_aux := FALSE;
MMoSt_aux := TRUE;
FoMoSt_aux := FALSE;
SoftLDSt_aux := FALSE;

END_IF;

(* Auto Mode *)

IF (MMoSt_aux AND (E_MAuMoR OR
E_AuAuMoR )) OR
(FoMoSt_aux AND E_MAuMoR) OR
(SoftLDSt_aux AND E_MAuMoR) OR
(MMoSt_aux AND AuIhMMo) OR
(FoMoSt_aux AND AuIhFoMo)OR

(SoftLDSt_aux AND AuIlhFoMo) OR
NOT (AuMoSt_aux OR MMoSt_aux OR

FoMoSt_aux OR SoftLDSt_aux

) THEN

AuMoSt_aux = TRUE;
MMoSt_aux = FALSE;
FoMoSt_aux = FALSE;
SoftLDSt_aux := FALSE;

END_IF;

(* Software Local Mode *)
IF (AuMoSt_aux OR MMoSt_aux) AND
E_MSoftLDR AND NOT AuIhFoMo

THEN
AuMoSt_aux = FALSE;
MMoSt_aux := FALSE;
FoMoSt_aux := FALSE;
SoftLDSt_aux:= TRUE;

END_IF;
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291
292
293
294
295

297
298
299
300
301
302
303
304
305
306
307
308
309

310

311

312
313
314
315
316

317

318

319
320
321
322
323
324
325
326
327
328

329
330
331
332
333
334
335

336
337
338

(* Status setting *)
LDSt := FALSE;
AuMoSt AuMoSt_aux;
MMoSt := MMoSt_aux;

FoMoSt = FoMoSt_aux;
SoftLDSt := SoftLDSt_aux;
ELSE
(* Local Drive Mode x*)
AuMoSt := FALSE;
MMoSt := FALSE;
FoMoSt := FALSE;
LDSt := TRUE;
SoftLDSt:= FALSE;
END_TIF;

(* LIMIT MANAGER x)

(* On/Open Evaluation *)
OnSt:= (HFOn AND PHFOn) OR
(*
Feedback ON presentx*)
(NOT PHFOn AND PHFOff AND PAnim
AND NOT HFOf£f) OR (*
Feedback ON not present and
PAnim = TRUEx*)
(NOT PHFOn AND NOT PHFOff AND
OQut0VSt_aux) ;

(* 0ff/Closed Evaluation *)
0ffSt:=(HFOff AND PHFOff) OR
(*
Feedback OFF presentx*)
(NOT PHFOff AND PHFOn AND PAnim
AND NOT HFOn) OR (*
Feedback OFF not present and
PAnim = TRUE*)
(NOT PHFOn AND NOT PHFOff AND
NOT OutOVSt_aux) ;

(* REQUEST MANAGER *)
(* Auto On/0ff Request*)

IF AuOffR THEN

AuOnRSt := FALSE;
ELSIF AuOnR THEN
AuOnRSt := TRUE;

ELSIF fullNotAcknowledged OR FuStopISt
OR NOT EnRstartSt THEN
AuOnRSt := PFsPosOn;
END_IF;
AuO0ffRSt:= NOT AuOnRSt;

(* Manual On/0ff Requestx*)

IF (((E_MOffR AND (MMoSt OR FoMoSt OR
SoftLDSt))
OR (AuOffRSt AND AuMoSt)
OR (LDSt AND PHLDCmd AND HOffRSt)
OR (FE_PulseOn AND PPulse AND NOT
POutOff) AND EnRstartSt)
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339

340
341
342
343

344
345

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

368

369

370
371
372
373
374

375
376
377

378
379
380
381
382
383
384
385
386

OR (E_FuStopI AND NOT PFsPosOn))
THEN

MOnRSt := FALSE;
ELSIF (((E_MOnR AND (MMoSt OR FoMoSt
OR SoftLDSt))
OR (AuOnRSt AND AuMoSt)
OR (LDSt AND PHLDCmd AND HOnRSt)
AND EnRstartSt)
OR (E_FuStopI AND PFsPosOn)) THEN

MOnRSt := TRUE;
END_IF;

MOffRSt:= NOT MOnRSt;
(* Local Drive Request *)

IF HOffR THEN

HOnRSt := FALSE;
ELSE IF HOnR THEN
HOnRSt := TRUE;
END_IF;
END_IF;
HOffRSt := NOT(HOnRSt);

(* PULSE REQUEST MANAGER*)
IF PPulse THEN

IF InterlockR THEN

PulseOnR:= (PFsPosOn AND NOT
PFsPos0On2) OR (PFsPosOn AND
PFsPos0On2) ;

Pulse0OffR:= (NOT PFsPosOn AND NOT
PFsPosOn2) OR (PFsPosOn AND
PFsPos0On2) ;

ELSIF FE_InterlockR THEN (*Clear
PulseOnR/Pulse0ffR to be sure you
get a new pulse after InterlockRx*)
PulseOnR:= FALSE;

Pulse0OffR:= FALSE;

Timer _PulseOn (IN:=FALSE,PT:=T#0s) ;

Timer PulseOff (IN:=FALSE,PT:=T#0s) ;

ELSIF (MOffRSt AND (MMoSt OR FoMoSt OR
SoftLDSt)) OR (AuOffRSt AND AuMoSt)
OR (HOffR AND LDSt AND PHLDCmd)
THEN //0ff Request
PulseOnR:= FALSE;

Pulse0ffR:= TRUE;

ELSIF (MOnRSt AND (MMoSt OR FoMoSt OR
SoftLDSt)) OR (AuOnRSt AND AuMoSt)
OR (HOnR AND LDSt AND PHLDCmd) THEN
//0n Request

PulseOnR:= TRUE;
PulseOffR:= FALSE;

ELSE
PulseOnR:= FALSE;

Pulse0ffR:= FALSE;

END_IF;

//Pulse functions

91




387

388

389
390

391

392

393
394

395
396

397
398
399
400
401
402
403

404

405

406
407

408

409
410
411
412
413
414

415
416

417
418
419
420

421

422
423

Timer_PulseOn (IN:= PulseOnR,PT:=
POn0Offb.PPulseleb) ;

Timer_PulseOff (IN:=PulseOffR,PT:=
POnOffb.PPulseleb) ;

RE_PulseOn := R_EDGE (new:=PulseOn,
0ld:=RE_PulseOn_o1ld) ;

FE_Pulse(On := F_EDGE (new:=PulseOn,
0ld:=FE_PulseOn_old) ;

RE_PulseOff := R_EDGE (new:=PulseOff,

0ld:=RE_PulseOff_old);

//The pulse functions have to be reset
when changing from On to O0ff

IF RE_PulseOn THEN
Timer_ PulseOff (IN:=FALSE,PT:=T#0s)

>

END_IF;

IF RE_PulseOff THEN
Timer PulseOn (IN:=FALSE,PT:=T#0s) ;
END_IF;

IF PPulseCste THEN (* Pulse constant
duration irrespective of feedback
status *)
PulseOn := Timer_ PulseOn.Q AND NOT
Pulse0ffR;
Pulse0ff := Timer_PulseOff.Q AND NOT
PulseOnR;
ELSE
PulseOn := Timer_ PulseOn.Q AND NOT
PulseOffR AND (NOT PHFOn OR (PHFOn
AND NOT HFOn));
Pulse0ff := Timer_PulseOff.Q AND NOT
PulseOnR AND (NOT PHFOff OR (PHFOff
AND NOT HFOff));
END_IF;
END_TIF;

(* Output On Request *)
OutOn0VSt := (PPulse AND PulseOn) OR

(NOT PPulse AND ((MOnRSt
AND (MMoSt OR FoMoSt OR
SoftLDSt)) OR

(AuOnRSt AND AuMoSt) OR

(HOnRST AND LDSt AND
PHLDCmd))) ;

(* Output O0ff Request *)
IF POutO0ff THEN
Out0ff0VSt := (PulseOff AND PPulse)
OR
(NOT (PPulse) AND ((
MOffRSt AND (MMoSt
OR FoMoSt OR
SoftLDSt)) OR (
AuO0ffRSt AND
AuMoSt) OR (
HOf£fRST AND LDSt
AND PHLDCmd)));
END_IF;
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424
425
426
427
428

429
430
431
432
433
434

435
436
437

438

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

463

464
465
466
467
468
469
470
471
472
473
474
475
476
477

(* Interlocks / FailSafe x*)

IF POutO0ff THEN
IF InterlockR THEN
IF PPulse AND NOT PFsPosOn2

THEN
IF PFsPosOn THEN
OutOn0OVSt := PulseOn;
Out0ff0VSt := FALSE;
ELSE
OutOn0OVSt := FALSE;
OQut0ff0VSt := PulseOff
END_IF;
ELSE
OutOn0VSt := (PFsPosOn AND

NOT PFsPosOn2) OR (
PFsPosOn AND PFsPos0On2);
Out0ff0VSt:= (NOT PFsPosOn
AND NOT PFsPos0On2) OR (
PFsPosOn AND PFsPosOn2);
END_IF;
END_TIF;
ELSE
IF InterlockR THEN
OutOn0OVSt:= PFsPosOn;
END_IF;
END_IF;

(* Ready to Start Status *)
RdyStartSt := NOT InterlockR;
(*Alarms*)
Al1St := Al;

(* SURVEILLANCE *)

(* I/0 Warning *)
I0OErrorW := IO0Error;
I0SimuW := I0Simu;

(* Auto<> Manual Warning *)
AuMRW := (MMoSt OR FoMoSt OR SoftLDSt)
AND
(CAuOnRSt XOR MOnRSt) OR (
Au0ffRSt XOR MOffRSt)) AND
NOT IhAuMRW;

(* OUTPUT_MANAGER AND OUTPUT REGISTER *)
IF NOT POutOff THEN
IF PFsPosOn THEN
QutOnOV := NOT OutOn0OVSt;
ELSE
OutOnOV := OutOn0OVSt;
END_IF;
ELSE

OQut0n0OV
Out0f£fOVv
END_IF;

OutOn0OVSt;
Out0f£f0VSt;
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478
479
480
481
482

483
484
485

486
487
488
489

490

491
492

493

494
495

496
497
498
499
500

501

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

522
523

524
525

(x Position warning *)

(*

(*

(x Set reset of the OutOn0VSt x*)

IF OutOn0VSt OR (PPulse AND PulseOnR)
THEN
Out0VSt_aux := TRUE;

END_IF;

IF (Out0ff0OVSt AND POutOff) OR (NOT
OutOn0OVSt AND NOT POutOff) OR (
PPulse AND PulseOffR) THEN

Out0VSt_aux := FALSE;

END_IF;

RE_Out0OVSt_aux := R_EDGE (new:=
OutOVSt_aux ,o0ld:=RE_Out0VSt_aux_old)

FE_OutOVSt_aux := F_EDGE (new:=
Out0VSt_aux ,0ld:=FE_QOut0OVSt_aux_old)

)

IF ((OutOVSt_aux AND ((PHFOn AND NOT OnSt)
OR (PHFOff AND O0ffSt)))
OR (NOT OutOVSt_aux AND ((PHFOff AND
NOT 0ffSt) OR (PHFON AND OnSt)))
OR (0ffSt AND OnSt))
AND (NOT PPulse OR (POutOff AND PPulse
AND NOT OutOnOV AND NOT OutOffO0V))
THEN
PosW_aux:= TRUE;
END_IF;

IF NOT ((OutOVSt_aux AND ((PHFOn AND NOT
OnSt) OR (PHFOff AND O0ffSt)))
OR (NOT OutOVSt_aux AND ((PHFOff AND
NOT 0ffSt) OR (PHFON AND 0OnSt)))
OR (0ffSt AND OnSt))
OR RE_Out0OVSt_aux
OR FE_QOutOVSt_aux
OR (PPulse AND POutOff AND OutOnQV)
OR (PPulse AND POutOff AND OutO0f£fO0OV)
THEN
PosW_aux := FALSE;
END_IF;

Timer_Warning (IN := PosW_aux,
PT := POnOffb.PWDtb);

PosW := Timer_Warning.Q;
Time_Warning := Timer_Warning.ET;

Alarm Blocked Warning*)
A1BW := AlB;

Maintain Interlock status 1.5s in Stsreg
for PVSS x)

PulseWidth := 1500 (* msec*) / DINT_TO_REAL(

TIME_TO_DINT(T_CYCLE)) ;

526 IF FuStopISt OR FSIinc > O THEN
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527 FSIinc := FSIinc + 1;

528 WFuStopISt := TRUE;

5290 END_TIF;

530

531 IF FSIinc > PulseWidth OR (NOT FuStopISt AND
FSIinc = 0) THEN

532 FSIinc := 0;
533 WFuStopISt := FuStopISt;
53¢ END_IF;

535
536 IF TStopISt OR TSIinc > O THEN

537 TSIinc := TSIinc + 1;
538 WIStopISt := TRUE;
539 END_TIF;

540
541 IF TSIinc > PulseWidth OR (NOT TStopISt AND
TSIinc = 0) THEN

542 TSIinc := 0;
543 WTStopISt := TStopISt;
544 END_TIF;

545
546 1f StartISt OR SIinc > O THEN

547 SIinc := SIinc + 1;
548 WStartISt:= TRUE;
540 END_TIF;

550
551 IF SIinc > PulseWidth OR (NOT StartISt AND
SIinc = 0) THEN

552 SIinc := 0;
553 WStartISt := StartISt;
554 END_TIF;

555
556 IF A1St OR Alinc > O THEN

557 Alinc := Alinc + 1;
558 WA1St := TRUE;
550 END_IF;

560
561 IF Alinc > PulseWidth OR (NOT Al1St AND Alinc =

0) THEN
562 Alinc := 0;
563 WA1St = Al1St;
564 END_TIF ;

565
566
s67 (* STATUS REGISTER *)
568

569 Stsreg01b[8] := OnSt; //
StsReg01 Bit 00

570 Stsreg01b[9] := O0ffSt; //
StsReg01 Bit 01

571 Stsreg01b [10] := AuMoSt; //
StsReg01 Bit 02

572 StsregO1b[11] := MMoSt; //
StsReg01 Bit 03

573 StsregO1b[12] := FoMoSt; //
StsReg01 Bit 04

574 Stsreg01b [13] := LDSt; //
StsReg01 Bit 05

575 StsregOlb[14] := IOErrorW; //
StsReg01 Bit 06

576 StsregO1b[15] := I0SimuW; //
StsReg01 Bit 07

577 stsreg01b[0] := AuMRW; //
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StsReg01 Bit 08

578 StsregO1lb[1] := PosW; //
StsReg01 Bit 09

579 Stsreg01b [2] := WStartISt; //
StsReg01 Bit 10

580 StsregO1b[3] := WTStopISt; //
StsReg01 Bit 11

581 StsregO1lb[4] := AlUnAck; //
StsReg01 Bit 12

582 StsregO1b [5] := AulhFoMo; //
StsReg01 Bit 13

583 StsregO1b[6] := WA1St; //
StsReg01 Bit 14

584 Stsreg01b [7] := AuIlhMMo; //

StsReg01 Bit 15
585

586 Stsreg02b[8] := OutOnOVSt; //
StsReg02 Bit 00

587 Stsreg02b [9] := AuOnRSt; //
StsReg02 Bit 01

588 Stsreg02b [10] := MOnRSt; //
StsReg02 Bit 02

589 Stsreg02b[11] := AuOffRSt; //
StsReg02 Bit 03

590 Stsreg02b [12] := MOffRSt; //
StsReg02 Bit 04

591 Stsreg02b [13] := HOnRSt; //
StsReg02 Bit 05

592 Stsreg02b [14] := HOf£fRSt; //
StsReg02 Bit 06

593 Stsreg02b[15] := 0; //
StsReg02 Bit 07

594 stsreg02b [0] := 0; //
StsReg02 Bit 08

595 Stsreg02b[1] := 0; //
StsReg02 Bit 09

596 Stsreg02b[2] := WFuStopISt ; //
StsReg02 Bit 10

597 Stsreg02b [3] := EnRstartSt; //
StsReg02 Bit 11

598 Stsreg02b [4] := SoftLDSt; //
StsReg02 Bit 12

599 Stsreg02b [5] := A1BW; //
StsReg02 Bit 13

600 Stsreg02b [6] := 0OutO0f£f0OVSt; //
StsReg02 Bit 14

601 Stsreg02b[7] := 0; //

StsReg02 Bit 15
602
603 (*x Edges x*)
604
605 DETECT_EDGE (new:=A1UnAck ,0ld:=A1UnAck_old,re:
=RE_Al1UnAck ,fe:=FE_AlUnAck) ;
606
607
608 END_FUNCTION_BLOCK
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The following tables correspond to the requirements which were created
for the need of the experiments presented in Chapter 4.

Table 16: PCO requirements tested with nuXmv'IC3.

No | Requirements
1 If RunOSt AND FOff is true at the end of the PLC cycle,
then OffSt should always be true at the end of the same cycle.
9 If RunOSt AND Fon is true at the end of the PLC cycle,
then OnSt should always be true at the end of the same cycle.
3 If OnSt is true at the end of the PLC cycle,
then NOT OffSt should always be true at the end of the same cycle.
A If CStopOSt is true at the end of the PLC cycle, then OffSt
should always be true at the end of the same cycle.
5 If CStopOSt is true at the end of the PLC cycle,
then NOT OnSt should always be true at the end of the same cycle.
6 If OnSt is true at the end of the PLC cycle, then RunOSt
should always be true at the end of the same cycle.
7 If RunOSt is true at the end of the PLC cycle, then NOT OffSt
should always be true at the end of the same cycle.
If AuRunOrder AND AuMoSt and NOT TStopl is true at the
8 end of the PLC cycle, then RunOSt
should always be true at the end of the same cycle.
9 If AuRunOrder AND AuMoSt is true at the end of the PLC
cycle, then RunOSt should always be true at the end of the same cycle.
10 If AuRunOrder AND AuMoSt is true at the end of the PLC cycle,
then OnSt should always be true,at the end of the same cycle.
1 If CStopOSt is true at the end of the PLC cycle, then
NOT RunOSt should always be true at the end of the same cycle.
12 If NOT Fon is true at the end of the PLC cycle, then NOT OnSt
shoud always be true at the end of the same cycle.
13 If NOT RunOSt is true at the end of the PLC cycle, then NOT CStopOSt
should always be true at the end of the same cycle.
14 If TStopl is true at the end of the PLC cycle, then RunOSt
should always be true at the end of the same cycle.
15 If AuMoSt AND NOT TStopl is true at the end of the PLC
cycle, then RunOSt should always be true at the end of the same cycle.
16 If NOT Fon is true at the end of the PLC cycle, then OffSt
should always be true at the end of the same cycle.
17 If NOT FOff is true at the end of the PLC cycle, then OnSt
should always be true at the end of the same cycle.
18 If TStopl is true at the end of the PLC cycle,

then NOT RunOnSt should always be true at the end of the same cycle.
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Table 17: PCO requirements tested with nuXmv.

No | Requirements
1 If RunOSt AND FOff is true at the end of the PLC cycle,
then OffSt should always be true at the end of the same cycle.
If NOT CStopFin AND AuCStopR AND AuMoSt AND
2 RunOSt is true at the end of the PLC cycle, then CStopOSt
should always be true at the end of the same cycle.
3 If OnSt is true at the end of the PLC cycle,
then NOT OffSt should always be true at the end of the same cycle.
If NOT CStopFin AND AuCStopR AND AuMoSt AND RE'RunOSt
4 is true at the end of the PLC cycle, then CStopOSt should always
be true at the end of the same cycle.
5 If CStopOSt is true at the end of the PLC cycle,
then NOT OnSt should always be true at the end of the same cycle.
6 If OnSt is true at the end of the PLC cycle,
then RunOSt should always be true at the end of the same cycle.
7 If RunOSt is true at the end of the PLC cycle,
then NOT OffSt should always be true at the end of the same cycle.
g If AuRunOrder AND AuMoSt and NOT TStopl is true at the end of the
PLC cycle, then RunOSt should always be true at the end of the same cycle.
9 If AuRunOrder AND AuMoSt is true at the end of the PLC
cycle, then OnSt should always be true at the end of the same cycle.
10 If AuMoSt is true at the end of the PLC cycle, then NOT MMoSt
should always be true at the end of the same cycle.
1 If NOT Fon is true at the end of the PLC cycle,
then OffSt should always be true at the end of the same cycle.
19 If NOT Fon is true at the end of the PLC cycle, then NOT OnSt

shoud always be true at the end of the same cycle.
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Table 18: Analog requirements tested with nuXmv and nuXmv'IC3.

No | Requirements
1 If NOT(PFsPosOn AND NOT PFEsNOut) is true at the end of the PLC cycle,
then OutOV=PosRSt should always be true at the end of the same cycle.
9 If AuMoSt is true at the end of the PLC cycle, then NOT MMoSt
should always be true at the end of the same cycle.
3 If AulhFoMo OR E'MAuMoR is true at the end of the PLC
cycle, then AuMoSt should always be true at the end of the same cycle.
4 If HFPos=10 AND PHFPos is true at the end of the PLC cycle,
then PosSt=10 should always be true at the end of the same cycle.
5 If PHFPos is true at the end of the PLC cycle,
then PosSt=HFPos should always be true at the end of the same cycle.
If PHFOff AND HFOff AND NOT( PHFOn AND HFOn) AND NOT
6 PHFPos is true at the end of the PLC cycle, then PosSt=PAnalog.PMinRan
should always be true at the end of the same cycle.
7 If PosSt=20 AND PliOn=10 is true at the end of the PLC cycle,
then OnSt should always be true at the end of the same cycle.
3 If PosSt=10 AND PILiOff=20 is true at the end of the PLC cycle,
then OffSt should always be true at the end of the same cycle.
9 If PliOff=30 AND PosSt=20 AND PliOn=10 is true at the end of the
PLC cycle, then OnSt should always be true at the end of the same cycle.
10 If PliOff=30 AND PosSt=20 AND PliOn=10 is true at the end
of the PLC cycle, then OffSt should always be true at the end of the same cycle.
1 If PliOff=20 AND PosSt=10 AND PliOn=12 is true at the end of the
PLC cycle, then OnSt should always be true at the end of the same cycle.
12 If PLiOff=20 AND PosSt=10 AND PliOn=12 is true at the end of the
PLC cycle, then NOT OffSt should always be true at the end of the same cycle.
13 If AuMoSt is true at the end of the PLC cycle, then PosR=AuPosRSt

should always be true at the end of the same cycle.
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Table 19: OnOff requirements tested with nuXmv'IC3.

Requirements

If (HFOn AND PHFOn) OR (NOT PHFOn

AND PHFOff AND PAnim,AND NOT HFOff)

is true at the end of the,PLC cycle,

then OnSt should always be true at the end of the same cycle.

If (HFOff AND PHFOff)

OR (NOT PHFOff AND PHFOn AND PAnim AND NOT HFOn) is
true at the end of the PLC cycle,

then OffSt should always be true at the end of the same cycle.

If NOT OutOnOV AND POutOft
is true at the end of the PLC cycle, then OutOffOV should
always be true at the end of the same cycle.

If NOT POutOff AND NOT PFsPosOn is true at the end
of the PLC cycle, then OutOnOV= OutOnOVSt
should always be true at the end of the same cycle.

If RdyStartSt is true at the end of the
PLC cycle, then NOT InterlockR should
always be true at the end of the same cycle.

If AuMoSt is true at the end of the PLC
cycle, then OutOnOVSt=AuOnR should always
be true at the end of the same cycle.

If OutOnOVSt is true at the end of the PLC cycle, then
OutOnOV should always be true at the end of the same cycle.

If POutOff is true at the end of the PLC cycle,
then OutOffOV should always be true at the end of the same cycle.

If NOT OutOnOV is true at the end of the PLC cycle, then
OutOffOV should always be true at the end of the same cycle.

10

If PFsPosOn is true at the end of the PLC cycle,
then OutOnOV should always be true at the end of the same cycle.

11

If HFOn AND PHFOn is true at the end of the PLC cycle, then OnSt
should always be true at the end of the same cycle.

12

If HFOff AND PHFOff is true at the end of the PLC cycle,
then OffSt should always be true at the end of the same cycle.

13

If NOT PHFOn AND PHFOff AND PAnim
AND NOT HFOff is true at the end of the PLC cycle,
then OnSt should always be true at the end of the same cycle.

14

If NOT PHFOff AND PHFOn AND PAnim
AND NOT HFOn is true at the end of the PLC cycle,
then OffSt should always be true at the end of the same cycle.

15

If NOT PHFOn AND PHFOff AND PAnim
AND NOT HFOft is true at the end of the PLC cycle,
then NOT OffSt should always be true at the end of the same cycle.

16

If NOT PHFOff AND PHFOn AND PAnim
AND NOT HFOn is true at the end of the PLC cycle, then
NOT OnSt should always be true at the end of the same cycle.
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Table 20: OnOff requirements tested with nuXmuv.

Requirements

If (HFOn AND PHFOn) OR (NOT PHFOn AND PHFOff
AND PAnim AND NOT HFOff) is true at the end of the
PLC cycle,then OnSt should always be true at the end of the same cycle.

If (HFOff AND PHFOff) OR (NOT PHFOff AND
PHFOn AND PAnim AND NOT HFOn) is true at the end of the
PLC cycle,then OffSt should always be true at the end of the same cycle.

If NOT OutOnOV AND POutOff is true at the end of the
PLC cycle,then OutOffOV should always be true at the end of the same cycle.

If NOT POutOff AND NOT PFsPosOn is true at the
end of the PLC cycle, then OutOnOV= OutOnOVSt
should always be true at the end of the same cycle.

If RdyStartSt is true at the end of the PLC cycle, then NOT InterlockR
should always be true at the end of the same cycle.

If AuMoSt is true at the end of the PLC cycle, then
OutOnOVSt=AuOnR should always be true at the end of the same cycle.

If PFsPosOn is true at the end of the PLC cycle, then OutOnOV should always
be true at the end of the same cycle.

If HFOn AND PHFOn is true at the end of the PLC cycle, then OnSt
should always be true at the end of the same cycle.

If HFOfft AND PHFOff is true at the end of the PLC cycle, then OffSt
should always be true at the end of the same cycle.

10

If NOT PHFOn AND PHFOff AND PAnim AND NOT HFOff
is true at the end of the PLC cycle,
then OnSt should always be true at the end of the same cycle.

11

If NOT PHFOff AND PHFOn AND PAnim
AND NOT HFOn is true at the end of the PLC cycle,
then OffSt should always be true at the end of the same cycle.

12

If NOT PHFOn AND PHFOff AND PAnim
AND NOT HFOft is true at the end of the PLC cycle, then
NOT OffSt should always be true at the end of the same cycle.

13

If NOT PHFOff AND PHFOn AND PAnim AND NOT
HFOn is true at the end of the PLC cycle, then
NOT OnSt should always be true at the end of the same cycle.
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