

Master Thesis: Building a Database and Interface for analyzing

systems and processes, by using specific data in a case study from the

maritime domain field

Author: Vasiliki Gantzoudi

Supervisor: Professor Pericles Loucopoulos

 HAROKOPEIO UNIVERSITY OF ATHENS

 DEPARTMENT OF INFORMATICS & TELEMATICS

 MSc in Advanced Information Systems in Business

Athens 2016

1

TABLE OF CONTENTS

CHAPTER 1: Introduction ... 5

1.1 Dissertation goals .. 6

1.2 Description of the Problem ... 8

1.3 Approach ... 9

1.4 Describing the Maritime Application .. 11

1.5 Dissertation Structure ... 14

1.6 Chapter Summary .. 15

CHAPTER 2: State of Art .. 17

2.1 Capability Related Work .. 18

2.1.1 The beginning of Capabilities .. 18

2.1.2 Business Capability .. 22

2.1.3 Capability as Service .. 31

2.2 Conceptual Modeling .. 37

2.2.1 Database Design .. 37

2.2.2 Data Modeling Approaches & Techniques .. 38

2.3 Discussion – Result of Research .. 51

CHAPTER 3: Object Role Modeling (ORM) .. 55

3.1 Background to Meta – Modeling ... 56

3.2 The Conceptual Schema Design Procedure ... 58

3.3 The Relational Mapping Procedure ... 61

3.3.1 Definitions – Notation ... 61

3.3.2 Rules & Strategies of Mapping .. 63

3.3.3 Main Steps of Mapping ... 72

3.4 Chapter Summary .. 74

CHAPTER 4: The Capability Meta – Model .. 76

4.1 An Initial Version of the Business Capability Meta – Model 77

4.2 Need for Change towards a New Business Capability Meta – Model 85

4.3 Chapter Summary .. 99

CHAPTER 5: Mapping the Capability Meta – Model to Relational Schema 101

5.1 Followed Procedure of Mapping in Detail ... 102

5.2 Chapter Summary .. 117

CHAPTER 6: Physical Database .. 118

6.1 DBMS Architecture .. 119

2

6.2 “BC” Physical Tables .. 121

6.3 Database Testing or Back-End Testing .. 137

6.4 Chapter Summary .. 161

CHAPTER 7: User Interface Design & Implementation .. 163

7.1 User Interface Design Process & Quality Characteristics 164

7.2 Use Case Diagram as a Description of the Main Windows 166

7.3 Hierarchy of Forms .. 168

7.4 Basic Flow Chart for Data Entry ... 170

7.5 Application Screens ... 175

7.6 Chapter Summary .. 196

CHAPTER 8: Case Study from the Maritime Field .. 198

8.1 DMC Data Description ... 199

8.2 Inform the Application about a New Business Capability 211

8.3 Executing Queries .. 234

8.4 Removing Current Records in Specific Forms.. 240

8.5 Chapter Summary .. 243

CHAPTER 9: Conclusions .. 244

CHAPTER 10: Appendix .. 249

10.1 Table 1: Literature review for Business Capabilities ... 250

10.2 Table 2: ORM 2 Graphical Notation .. 256

10.3 SQL Script of BC Tables ... 262

10.4 SQL Script of Total View ... 269

CHAPTER 11: Bibliography ... 273

3

Table of Figures

Figure 1: Database modeling in context (Halpin, Evans, Hallock, & Maclean, 2003) 10

Figure 2: The four dimensions of core capabilities (Barton, 1992) ... 19

Figure 3: Definition of core capabilities (Long & Vickers-Koch, 1995) 20

Figure 4: Capability – driven strategy (Tallman & Fladmoe-Lindquist, 2002) 21

Figure 5: Business capability model taxonomy (Holman, 2006) ... 22

Figure 6: Level 1 Foundation Capability Model – Operational and Environmental Capabilities

(Holman, 2006) .. 23

Figure 7: The conceptual framework for modeling Business Capabilities (Brits, Botha, &

Herselman, 2007) .. 24

Figure 8: Capability Construction Feedback Loop (Brits, Botha, & Herselman, 2007) 24

Figure 9: Business Capability Components (Greski, 2009-B) ... 25

Figure 10: Value Streams leads to identification of Business Capabilities (Rosen, 2010) 26

Figure 11: Business Capabilities Centric Extension (BCCE): Changes to Meta-model (Barroero,

Motta, & Pign, 2010) ... 27

Figure 12: Capability Dependency Analysis Method (Freitag, Matthes, Schu, & Nowobilska,

2011) .. 27

Figure 13: Capability relation of business aspects (Bakhtiyari & Adel, 2012) 28

Figure 14: Example Level 1 Capability map (Ulrich & Rosen, 2011) .. 28

Figure 15: The Role of Business Capabilities in EA (Ulrich & Rosen, 2011) 29

Figure 16: Top – down approach for Capability – Based Service Identification (Frey, Hentrich,

& Zdun, 2013) .. 30

Figure 17: The capability meta-model (Stirna, Grabis, Henkel, & Zdravkovic, 2012).............. 32

Figure 18: CaaS upon the existing information technologies services (FP7 Collabotative

Project with No 611351 , 2014) ... 33

Figure 19: Meta – model for capability design and deployment in cloud (Zdravkovic, Stirna, &

Henkel, 2013) .. 34

Figure 20: Capability driven development environment (Zdravkovic, Stirna, & Henkel, 2013)

 ... 34

Figure 21: Goal Model of the project (Espana, Gonzalez, Grabis, Jokste, Juanes, & Valverde,

2014) .. 35

Figure 22: CDD Methodology (Berzisa, et al., 2015) ... 36

Figure 23: Data Modeling Techniques, Methods & Languages ... 39

Figure 24: An example of Bachman Diagrams (Bachman, 1969) .. 40

4

Figure 25: An example of ER Model (Ponniah, 2007) .. 40

Figure 26: IDEF Methods (Mayer, Painter, & deWitte, 1992) ... 41

Figure 27: IDEF1X Origins (Mayer, Painter, & deWitte, 1992) .. 42

Figure 28: IDEF1X Notation (Ponniah, 2007) ... 42

Figure 29: IDEF1X – An example model (Ponniah, 2007) .. 43

Figure 30: Information Engineering Notation (Wambler, 2015) ... 44

Figure 31: Information Engineering – An example model (Ponniah, 2007) 44

Figure 32: Barker’s Notation (Wambler, 2015) ... 45

Figure 33: Barker’s Notation – An example model (Ponniah, 2007) 45

Figure 34: ORM – An example model (Ponniah, 2007) ... 47

Figure 35: Graphic Symbols of FCO-IM (Bakema, Zwart, & Lek, 2002) 48

Figure 36: An example of FCO-IM (Bakema, Zwart, & Lek, 2002) ... 48

Figure 37: UML Class Diagram (Ponniah, 2007) .. 50

Figure 38: The four levels hierarchy of a model (Hinkelmann, 2015) 57

Figure 39: Examples of relational schema in (a) horizontal layout and (b) vertical layout

(Halpin & Morgan, 2008) ... 62

Figure 40: Business Capability Meta-Model (Loucopoulos, Bravos, Stratigaki, & Vavlis, 2013)

 ... 77

Figure 41: A new Conceptual Model for Business Capability .. 98

Figure 42: Most popular DBMS according to DB-Engines ranking (www.db-engines.com) . 119

Figure 43: Popularity trend in DBMS (www.db-engines.com) .. 120

Figure 44: Database Testing Process (www.softwaretestinghelp.com) 137

Figure 45: The elements of User Interface Design (Mandel, 2002) 164

Figure 46: User Interface Design Principles (Sommerville, 2007) ... 164

Figure 47: Software Quality Characteristics (Bevan, 1999) ... 165

Figure 48: Quality Criteria for User/System Interface (Oren & Çetin, 1999) 165

5

CHAPTER 1: Introduction

Structure of this Chapter

1.1 Dissertation Goals

1.2 Description of the Problem

1.3 Approach

1.4 Dissertation Structure

1.5 Describing the Maritime Application

1.6 Chapter Summary

This chapter is an

introduction into the scope

of this dissertation. In

Section 1.1 we present the

specific goal of this

dissertation which is the

creation of a maritime

application that refers to a

DBMS for Business

Capability, and also some

of sub goals that deals

with how we engaged with

this application. In Section

1.2 a brief description of

the problem is presented

and in Section 1.3 the

approach that will be used

in order to achieve the

main goal. Then in Section

1.4 a description of the

application is presented in

relation with a real case

company from the

maritime domain field, the

Danaos Management

Consultant. Finally in

Section 1.5 a structure for

the rest of this dissertation

is presented and in Section

1.6 a brief summary of this

Chapter.

6

1.1 Dissertation goals

In modern times maritime organizations operate in dynamic business environments

where competition is order of the day. Also the international and global environment

consists of factors that have a significant impact on their operation (e.g. global or local laws,

global strategies etc).

The main objectives of those organizations are to achieve growth, to be success, to

survive in these conditions, and thereafter to be leaders in the maritime marketplace. In

order to fulfill the previous they must be able to gain competitive advance and to provide a

business value. Also it is imperative for those organizations to increase the demand of their

provided services, to increase their profits, to hold a significant market share and to have a

good reputation.

On the other hand organizations themselves are very complex systems with a large

number of business process, followed by rules, goals, a changing context, etc. Because of

this complexity, managing those organizations is fundamentally difficult than it was in the

past. A solution to that was given by identifying what an organization actually does and

aligning this with the Information Technology (IT), who is the application of computers and

telecommunication equipment to store, retrieve, transmit and manipulate data often in the

context of a business or other enterprise (Wikipedia: The Free Encyclopedia).

Recently a Business Capability definition has being used for describing what a Business

does (Holman, 2006) and this definition become the Rosetta Stone for the communication

between two separate Worlds those of Business and IT (Ulrich & Rosen, 2011). More lately

Business Capability became the centric idea for the development of the digital enterprises of

tomorrow (European Commision, 2013).

Thus in order to be comprehensive for a reader the notion of Business Capability, one

first subject of concern in this dissertation is to answer the questions of:

� What is the Capability of an organization in general;

� Why is important for an organization to focus in Business Capability;

� Why Business Capability must be used for the development of software in digital

enterprises of tomorrow;

� How Capability must be used for the development of software for digital

enterprises of tomorrow;

7

Also databases and database management systems have become an emergency

component for the operation of modern organizations. More especially organizations

success depends on its ability to acquire accurate and timely data about its operation, to

manage this data effectively and to use them to analyze and guide its activities

(Rapakrishnan & Gehrke, 2003). Those systems are putted under the framework of

Information Technology (IT) and are an important part of software engineering.

Thus the main goal of this dissertation is to provide in practice a real case of alignment

between Business and IT, by creating a specific maritime application that will combine the

previous two. This maritime application will be a Maritime Database Management System

for Business Capability, meaning a software system for maintaining the information about

Business Capability and answering queries about that.

However in the framework of IT and more specific in software engineering an

important area is Information Modeling, who concerned with the constructions of computer

– based symbols structures, which capture the meaning of information and organize it in a

ways that make it understandable and useful to people (Mylopoulos, 1998). In the area of

database design Information Modeling refered as Data Modeling and provides the necessary

methodologies, techniques and languages for supply data modelers in their work. So one

another concern of this dissertation is the presentation of the data modeling

methodologies, techniques and language for designing a database, and the proposition of

the most suitable for Business Capability Maritime Database Management System.

After choosing the most suitable methology or technique or lanquage, then the sub

goals of this dissertation will be:

� To follow the specific modeling procedure for designing this applicaton, that is

indicated according to the choosen data modeling methology or technique or

lanquage.

� To choose a specific architecture for our DBMS and the most suitable supporting

program systems that can be used for creating this application.

� To carry out the necessary checks in the database of our application.

� To create a User Interface according to a specific quality criteria and to describe it

in a way that will be undersantable even for nont-techical persons by using a Use

Cases Diagrams, a hierachy diagram and a flow chart for data entry.

� Finally to provide a real Use Case of data for a specific maritime company, the

Danaos Management Consultant, in order to manage data (actions fo insert, delete

and update) and to export queries about that in a real enviroment.

8

1.2 Description of the Problem

Nowadays modern organizations are facing a dynamic business environment which

characterized by change. Crucial role in the adaption of the organization in these conditions

is the development of new solutions that will fill the gap between the business and IT

alignment and will make more predicable the context of use and the circumstances in which

an Information System operates.

In those circumstances in order organizations to achieve a competitive advance and

provide business value they must focus on what they really do. Business Capability describes

the following and according to that recently a new approach has been proposed, the

Capability Driven Development (CDD). This approach is going to be the foundation for the

development of software for the digital enterprises of tomorrow and has as centric idea the

Business Capability modeling. Although the essential tools and methodologies have being

given for the CDD approach, lacks from empirical experience of application.

Thereafter we have taken a case study from the domain field of a maritime company

and the purpose of this dissertation is the development of a Database Management System

(DBMS) for Business Capability. By creating this Database Management System we intend to

help modern organizations to gain a competitive advance and therefor to achieve growth.

That’s because when the information about Business Capability are stored, related and

viewed in a database, managers have an overall view of what the organization does and

thereafter can increase control, achieve better planning and taking decisions more efficient.

Finally in order to capture the business complexity and to remain easy to change the

modeling language and querying in DBMD must be clear and efficient communicating. Thus

we have chosen the ORM data modeling technique for the development of the DBMS.

Keywords: Business Capability, Data Modeling, Capability Driven Development, Object –

Role Modeling (ORM), Conceptual modeling.

9

1.3 Approach

Describing a Business Capability in a Database is something new. Thus the research

approach taken in this dissertation is firstly to create a collection of papers and articles from

the bibliography in order to achieve the goals deals with understanding of what the

Capability of an organization is in general, why is important for an organization to focus in

Business Capability, why Business Capability must be used for the development of software

in digital enterprises of tomorrow and how.

According to Merson (2009) data modeling is a common activity in the software

development process of information systems, which usually use a Database Management

System (DBMS) to store information. Also a data model is commonly created to describe the

structure of the data handle in information systems and persisted in DBMS. Thus the

research approach of this dissertation is secondly to review in bibliography in order to

present the data modeling techniques that exists to describe the structures of data.

The implementation approach for describing the structures of the DBMS, that has

being chosen in this dissertation is a fact-oriented data modeling technique the ORM

(Object Role Modeling). This data modeling technique began in the early 1970s as a

semantic modeling approach which views the word as objects playing roles (Halpin T. , 1995-

A). As discussed by Halpin, Evans, Hallock, & Maclean (2003), this technique deals with four

levels for working with data: external, conceptual, logical and physical (Figure 1); that

consist of different database modeling tasks. As they discussed in the Business Analysis task

we create a semantically accurate conceptual model of an application domain in terms easily

understood. In the Logical data design we create a normalized data model that accurately

represents the conceptual model with tables and columns uniquely named, key (primary,

foreign) relationships, constraints and derivation rules. In the physical database design we

create a SQL schema for a specific database management system, including physical data

types and indexes. In the performance database design we tune a physical model for

optimum performance on the specific software and hardware platform.

10

Figure 1: Database modeling in context (Halpin, Evans, Hallock, & Maclean, 2003)

For the purpose of this dissertation we have taken a conceptual model of Business

Capability definition by previous work of Loucopoulos et all (2013) and we have adapted to a

new conceptual model that can be used for describing in detail the ontologies (e.g. object

types, relationships etc.) of the database. Next we create the logical schema (logical data

model) for our DBMS by using Halpin (1995-A) mapping procedure that extents and refines

an older mapping procedure known as the ONF (Optimal Normal Form) algorithm. Then the

logical schema is used with a specific relational database management system (RDBMS), the

Oracle DBMS, which in that period is the most popular commercial RDBMS. For this system

we use the Oracle Database 11 g as the physical database (as a server) and the Oracle

PL/SQL (as a client) an IDE (Integrated Development Environment) in order to store, relate

(queried) and determine which kind of data will be accessible to which user groups in the

database. Finally we create an external design, which is implemented with the Oracle Forms

6i, and involves the designing appropriate interface for the users.

11

1.4 Describing the Maritime Application

As we have already stated in a previous section, the result of this dissertation will be

the implementation of a maritime application for Business Capability. This application will be

used to describe all the related information about Business Capability in a case study of a

company from the maritime domain field, the Danaos Management Consultant, who is a

part of Danaos Corporation.

Danaos Maritime Consultant (DMC) specializes in software services in the maritime

industry and is a leader in this field over the past 30 years. This company in order to be able

to provide his services to other shipping companies has developed specific Capabilities

which are owned by her (internal capabilities) and related with:

1. The provision of a specific integrated software solution, the Danaos Enterprise

Maritime Solution (DEMS), which contains different platforms, that automates all

the types of operations or functions of a shipping company (e.g. financial

operations, HR management operations etc).

2. The provision of the previous software solution in a web-enable version,

maintaining at the same time an ERP, in which the company is able to retain

control and security on transactions and communications, and also to advertise its

clientele and their actions. This version also provides social-networking services

such as web-conferences and a forum.

3. The provision of information and storage management in their client’s data, by

offering a high level of security and privacy in the previous web-enable version of

software and also by keeping a single unified database.

4. The provision of an application, the Port of Calls, in which the essential conforms

to all required regulations and rules in each port are achieved.

Also this company has developed some other Capabilities that are owned by some

other companies (external capability) and related with:

1. The provision of web-conference management in the web-enable version that

offers, which owned by Microsorg Lync.

2. The provision of technical assistance in the web-conference services that provides,

which owned by ComSys.

3. The provision of long-term business process outsourcing solutions to owners and

managers, who are searching for cost-effective methods for updating and

maintaining back-end software, which offered in India by Danaos Services

Company.

12

These Capabilities are interrelated with some other elements of the company, which

concerns the high level Strategic and low level Operational goals that must be achieved for

each of them, the context in which they exists, the kind of collaborations that exist between

of them, the ability they use that is made of specific skills, the capacity they use that is made

of a specific set of resources and the Business Process they followed for these services,

which leads to specific tasks.

From the above we can understand that the related information about Business

Capabilities of this company is complex enough in order to facilitate the managers of the

company to be able to handle this kind of information in a property way. On the other hand

managers of this company consider that it is important to be able informed at any time

about what Capabilities exists in the environment of this company and which elements are

interrelated with those. That’s because by this way they are able to know at any time what

the company actually does, and thereafter they are able analyze their weakness and

strengths related to the operational activity of the company.

The previous concerns of managers can be achieved by implementing the Maritime

Application of DBMS for Business Capability, since this application provides different

functions according to the previous described. Thus by using this Maritime Application we

are be able to:

A. Manage all the related information about Business Capabilities: In this function

different sub-functions may exists. In more detail a user of this application is

able to:

1. Create a New Capability. This sub - function concerns the creation of a New

Business Capability either internal of external, and also to management of

the hierarchies of them, meaning the management of relationship between

the main and sub capabilities.

2. View Total Capability. This concerns the ability of having the total picture for

those Business Capabilities or the information about a specific Business

Capability. In more detail a user is able to see a general information about

those capabilities (e.g code, description, type etc), the kind of ownership,

the kind of hierarchies about them, the outputs that is delivered by them,

the goals that achieved by them, the context in which they exists, the

collaborations between them, the ability they use for delivering a service,

the capacity they use for delivering a service, the ability in relation with

capacity and service they use, in order to be able to operate.

13

3. Manage Owners: This concern managing the information about the owners

that exist in the company.

4. Manage Context: This concerns the management of all the available

information about the relation between the Business Capabilities and the

context in which they exists, and also the management separately of all the

available information about context.

5. Manage Outputs: This concerns the management of all the available

information about the outputs the company delivers to other companies,

the relation of this information with a specific Business Capability and finally

the management of the hierarchies about those outputs.

6. Manage Collaborations Between Capabilities: This concerns the

management of all the kind of collaborations that exists between capabilities

and also the management of the kind of collaborator connector that is used

in orders these collaborations to take place.

7. Manage Goals: This concerns the management of all the available

information about the relation between Business Capabilities and goals, also

the management of the information about goals and the management of the

hierarchies about them.

B. Manage all the related information about Ability: This concerns the

management of the information about either Internal Ability or External Ability

that the company uses for creating a service and is defined by a specific skills.

C. Manage all the related information about Capacity: This concerns the

management of the information about either Internal Capacity or External

Capacity that the company uses for creating a service and is defined by a

specific resources.

D. Manage all the related information about Services: This concerns the

management of the information about the services that the company delivers

and also the management of the information about the business process

follows for those services. Thus this function is divided into two different sub-

functions, who include:

1. Manage Services: Here a user may insert all the available information about

the services and also relate this service with a specific Business Process.

2. Manage Business Process: This concerns the management of the information

about Business Process.

14

1.5 Dissertation Structure

We have already discussed the dissertation goals, the description of the problem and

the approach that has been used. The rest of this dissertation is structured as follows.

In Chapter 2 first section discusses the related work in bibliography about Capabilities,

starting with the beginning of Capabilities in Strategic Management theories and then the

adoption of the concept of Business Capability in the Business Informatics and in more

especially in Enterprise Architecture, in Service – Orientation, in Business – IT alignment and

in software development. Finally it discusses the Capability Driven Development as the

foundation of the Capability as Service project. The second section of this chapter deals with

Conceptual Modeling and more especially discuss the Database Design Process, the Data

Modeling approaches and techniques, and concluding by proposing the Object Role

Modeling as the most suitable method for creating the Database Management System for

Business Capability.

In Chapter 3 a previous work of an ORM model for Business Capability definition is

issued as a background to meta – modeling, and then the Relational Mapping Procedure

according to ORM are presented. This procedure will be the guide for designing the logical

data model for our Database Management System. More especially for this procedure are

discussed the main definition and notation, the rules and strategies of mapping, and the

main steps of mapping.

In Chapter 4 a new version of Capability Conceptual Model is presented, which is an

extension of a previous definition Business Capability model. In this model we have added

the essential reference modes and value types that are needed for describing object types,

also the necessary subtype constraints for describing subtypes and in some cases some

value constraints and some ring constraints.

In Chapter 5 we describe in detail the relational mapping procedure has followed, in

order to design the relational schema (logical schema) for our Database Management

System, according to the conceptual meta-model. Finally this Relational Schema is given.

Chapter 6 deals with physical database. In more detail the DBMS architecture is

discussed and also the reasons for adopting this kind of system. Then a view of physical

tables are presented, including a description of the implementation of constraints where

needed. Also a created View is given and the sequences, by which we have generated for

some tables unique primary keys. Finally a Database Testing is discussed for a specific

Functional Group of tables.

15

Chapter 7 deals with User Interface design and implementation. The user interface

Design Process and quality characteristics are presented. Then a Use Case Diagram, a

description of the main windows of the Application, a hierarchy of forms, a basic flow chart

for data entry and the application screens are given.

Chapter 8 deals with a Case Study from the Maritime domain field, the Danaos

Management Consultant. In more detail firstly a data description of the Case Study is

presented. Then we are discussing the way in cases of inserting data, in cases of querying

and finally in cases of removing specific records in our Application.

Finally in the end of this dissertation the conclusions of the total work are given.

1.6 Chapter Summary

In this Chapter we have concerned with the introductory concepts of this dissertation.

Thus we have presented the basic goals of this dissertation, a description of the problem,

the followed approach, the description of the application and finally how this dissertation is

organized for the rest of the Chapters.

In more detail by identifying the Business Capability of an organization, and aligning

this with the Information Technology (IT), is the key for success and growth in modern

organizations, since by this way those organizations are able to manage their complexity

(Holman, 2006; Ulrich & Rosen, 2011). During the goal specification of this dissertation one

first concern was presented, and related with answering the questions of: What is the

Capability of an organization in general; Why is important for an organization to focus in

Business Capability; Why Business Capability must be used for the development of software

in digital enterprises of tomorrow; How Capability must be used for the development of

software for digital enterprises of tomorrow. Then the specific goal of this dissertation was

presented, which referred in providing in practice a real case of alignment between Business

and IT, by creating a Maritime Database Management System for Business Capability. This

DBMS will be used for managing the information about Business Capability and answering

queries about that. Since the designing process of this application requires the knowledge of

Data Modeling principles, another concern of this dissertation was stated as the

presentation of the data modeling methodologies, techniques and language, that exists, and

the proposition of the most suitable for Business Capability Maritime Database Management

System. Finally some sub goals were presented and related with how we enganged with the

implementation of the aplication.

16

Thereafter a desciption of a problem is presented, by which the creation of the DBMS

will be a solution not only in order to facilitate the work of managers of an organization, but

also by providing a real case of example for feeding up the Capability Driven Development,

which has being used for the development of software for the digital enterprises of

tomorrow.

Then a researching and also an implementing approaches was presented. In the

researching approach one firstly concern was the collection of papers and articles from the

bibliography, in order to be able answer the previous queries about capabilities and to

present the data modeling methods that exists. For the implementations approach was

choosen that of (Halpin, Evans, Hallock, & Maclean, 2003), in which the under development

system is examined under four levels of analysis: external, conceptual, logical and physical.

Finally the software components of this DBMS was presented and referred in the Oracle 11G

for database, in the Oracle PL/SQL for IDE and in the Oracle Forms & Reports 6i for the

interface development.

Continuing a brief description of the maritime was presented. In this part the main

functionality of the application was presented in relation with a case study from the

maritime domain field, the Danaos Management Consultant Company.

Finally the structure for the rest of the Chapters was presented in order the reader to

facilitate with the context of this dissertation

17

CHAPTER 2: State of Art

Structure of this Chapter

2.1 Capability Related Work

2.1.1 The beginning of Capabilities

2.1.2 Business Capability

2.1.3 Capability as Service

2.2 Conceptual Modeling

2.2.1 Database Design

2.2.2 Data Modeling Approaches &

Techniques

2.3 Discussion – Result of Research

This chapter briefly reviews

the state of art of this

dissertation. Thus Section

2.1 deals by presenting the

Capability Related Work

and it began by presenting

the different research

areas that Capabilities has

being used during the

time. Then the Section

2.1.1 presents how

Capabilities began from

the Management Theories

and the Section 2.1.2 how

become an important

research concern with the

notion Business

Capabilities in the area of

Business Informatics and

more especially in Business

and IT alignment, in the

area of Enterprise

Architecture, in Service

Orientation and in

transformations of

software systems. In the

section 2.2.3 Business

Capabilities has become a

centric idea for creating

software for the digital

Enterprises of tomorrow,

by being a part of the CDD

method. The second part

of this chapter, Section 2.1,

deals with Conceptual

Modeling. In more detail in

Section 2.2.1 the database

design procedure is

presented and in Section

2.2.2 a brief review of the

most known Data

Modeling Approaches,

Techniques & Languages.

Finally in Section 2.3 a

brief summary, a

discussion and the result of

research are presented.

18

2.1 Capability Related Work

The notion capability has being used in different research areas during the time. In

bibliography we meet the term Capabilities in the Management Science (Barton, 1992; Stalk

et al, 1992; Long & Vickers-Koch, 1995; Teece et al, 1997; Tallman & Fladmoe-Lindquist,

2002), in Social Sciences and more especially in the field of Sociology (Nussbaum, 2000), in

the field of Psychology (Anand, Hunter, & Smith, 2005), in the field of Political (Deneulin &

McGregor, 2010) and in the field of Economics (Duhs, 2008). Also it has being used in the

Engineering Science and more especially in the interdisciplinary field of the Systems

Engineering (Cusick, 1997). Finally we meet the term capability in Computer Science and

more especially in the field of Artificial Intelligence (Zhang, Sreedharan, & Kambhampati,

2015), in Software Development (Frey, Hentrich, & Zdun, 2013) and in the field of Business

Informatics (Zdravkovic, Pastor, & Loucopoulos, 2014).

For the purpose of this dissertation we will see how the term capability began as a

core component in the Strategic Management, then became an important research concern

in Business Informatics and especially in the area of Business – IT alignment, in the area of

Enterprise Architecture, in Service – Orientation and also in Software development and

especially in transformations of software systems, and finally is used as a centric idea for

making software for the digital dynamic enterprises of tomorrow.

2.1.1 The beginning of Capabilities

The term capability had being first used in 1965, in the field of Corporate Strategy by

Ansoff, who spoke about managerial and functional capabilities, meaning the firm’s skills

levels in functions such as R&D, purchasing and marketing. However Ansoff did not describe

capabilities as components of strategy (Long & Vickers-Koch, 1995).

But it was not until 1980’s and 1990’s that in the field of Strategic Management

managers firstly began talking about resources (Wernerfelt, 1984; Barney, 1991), then

competences (Phahalad & Hamel, 1990) and finally capabilities (Barton, 1992; Stalk et all,

1992; Long & Vickers-Koch, 1995; Teece et all, 1997; Tallman & Fladmoe-Lindquist, 2002), as

a core component that leads an organization in achieving and maintaining a competitive

advance.

First Wernerfelt (1984) attempted to look firms in term of resources (e.g. brand

names, in-house knowledge of technology, employment of skilled personnel, trade

contracts, machinery, efficient procedures, capital etc) and issued a resourced – based view

of a firm. Following this approach Barney (1991) attempted to provide a resource – based

19

framework and mentioned that firm resources include assets, capabilities, organizational

processes, firm attributes, information, knowledge etc and finally classified them in three

types: a) physical capital resources, b) human capital resources and c) organizational capital

resources. Prahaland & Hamel (1990) issued a new strategy, which was an extension of the

resource – based view, the Competence – based view of a corporation. According to them

core competencies derived from the consolidation of corporate wide technologies and

production skills and are corporate resources.

Simultaneously in 1990 Teece, Pisano and Shuen began talking about capabilities and

defined them as “a set of differentiate skills, complementary assets, and routines that

provide the basis for a firm’s competitive capacities and sustainable advantage in a

particular business” (Barton, 1992).

Barton (1992) taking into account the competence – based view of a firm (Phahalad &

Hamel, 1990) examined the nature of core capabilities of a firm, focusing on their interaction

with new product and process development projects. Her research was important in that

period because she issues the four dimensions of core capabilities (Figure 2). Those where a)

employee knowledge and skills, embedded in b) technical systems, b) managerial systems

and c) the values and norms associated with the various types of embodied and embedded

knowledge and with the process of knowledge.

Figure 2: The four dimensions of core capabilities (Barton, 1992)

At the same time capabilities-based competition became a new concept in

corporation strategy (Stalk, Evans, & Shulman, 1992). According to this, business processes

are the building blocks of the corporate strategy and competitive success depends on

transforming a company’s key processes into strategic capabilities that consistently provide

superior value to customer. Also companies create these capabilities by making strategic

investments in a support infrastructure and finally CEO is responsible for this strategy, since

capabilities necessarily cross functions.

20

Some years after managers started talking about a new type of organizations, the

capability-based organizations (Long & Vickers-Koch, 1995). These organizations were

placing core capabilities at the center of their strategic resources. The main question was

“What capabilities do they need to develop and nurture to take full advantage of those

changes” and the main components of their leadership agenda were vision, opportunity

identification and capability assessment. Also Long & Vickers-Koch (1995) gave a definition

of core capabilities illustrated in Figure 3.

Figure 3: Definition of core capabilities (Long & Vickers-Koch, 1995)

Thereafter the notion of capability has been extended into that of Dynamic

Capabilities, meaning the firm’s ability to integrate, build, and reconfigure internal and

external competences to address rapidly changing environments (Teece, Pisano, & Shuen,

1997).

In the next dedicates the internationalization and globalization led organizations and

researchers to looking for new strategies, in order to gain a sustained competitive advantage

in the global marketplace. This strategies adapted models driven by the search of the

competitive advantage from the internal knowledge resources and capabilities of an

organization (Tallman & Fladmoe-Lindquist, 2002).

Tallman & Fladmoe-Lindquist (2002) presented the Capability-driven Strategy

framework (Figure 4). This strategy considers the key factors to determine performance

levels and the key forces to drive firms into international and global strategies, by the

building, protection and exploitation of a set of unique capabilities. The framework suggests

that the competitive advantage of an organization results from the possession of unique

internal resources and capabilities and his ability to apply them in the marketplace. Also if it

can continue develop new capabilities. Those capabilities called “resource-related

capabilities” and were in two general types: a) business levels component capabilities and b)

corporate level architectural capabilities.

21

Figure 4: Capability – driven strategy (Tallman & Fladmoe-Lindquist, 2002)

Years after in order to empowered managers to make strategic decisions a capability-

based modeling paradigm was introduced for representing business functions and

processes, from the theories of the resource based view and competence – based view of a

firm (Beimborn, Martin, & Holman, 2005). Beimborm et all (2005) talked about the

Capability Map concept, which were a nested hierarchy of capabilities and a taxonomy

diagram that describe the interplay of capabilities while doing business. As they stated “the

concept of capability modeling was designed from the need to get a more steady picture of a

firm (compared to existing methods of process and organization modeling), which enables

managers to evaluate consequences of strategic decisions (which affect synchronously

process, data flows and the firm’s size in terms of vertical integration)”.

Taking into account Capability Map concept (Beimborn, Martin, & Holman, 2005), a

year after Ulrich Holman (2006) issue the Business Capability concept. By this way

Capabilities start becoming a concern not only in Strategic Management theories but in

Enterprise Architecture, in Service – Orientation, in Business – IT alignment and in software

development, as we will discuss in more detail in the next section.

22

2.1.2 Business Capability

Business Capability is an abstraction that had first been discussed by Ulrich Holman in

2006 and applied in the field of Enterprise Architecture and Service Oriented Architecture

(SOA). Ulrich Holman (2006) in order to prevent from following architecture mistakes of the

past, to ensure that the chosen implementation architecture relates to the actual desired

state of the business and to prolong the life expectancy of the implementation in ever-

changing environment, introduced a more stable foundation focusing on “what a business

actually does that create values for customers and not how it does it”.

He defined Business Capability as “the particular ability or capacity that business

may possess or exchange to achieve a specific purpose or outcome”. He mentions that

“Business Capability abstracts and encapsulates the people, process/procedures, technology

and information into the essential blocks needed to facilitate performance improvement and

redesign analysis”. He also talked about the use of a taxonomic diagram to describe the

network of capabilities used in business, the business capability model (Figure 5). This

model describes capabilities by a Capability map, which is a hierarchical description, where

each level is decomposition of one or more capabilities at a higher level. According to him in

the business capability model the Level 1: Foundation Capabilities address the entire

ecosystem of the business and represent two categories of capabilities: the operational and

the environmental capabilities as shown in Figure 6.

Figure 5: Business capability model taxonomy (Holman, 2006)

23

Figure 6: Level 1 Foundation Capability Model – Operational and Environmental Capabilities (Holman,

2006)

By this way Cook (2007) being a part of examination a real case study of a Phone

Company, highlight that this new process of modeling a business, the Business – Capability

mapping, has main goal to model the business on its most stable elements.

Since then there have been numerous publications in the literature, within the field of

Information Systems, originating from different resources, with specific research aim/

objectives, theoretical perspective/ framework and findings, as shown in Appendix: Table 1.

Some of the publications introduce frameworks and roadmaps for constructing and

modeling Business Capabilities in the field of Enterprise Architecture in order to help

organizations to achieve a competitive advance (Brits, Botha, & Herselman, 2007), other to

make them have profit and to make Enterprise Architectures more effective (Keller, 2009).

Brits et al (2007) introduced a conceptual framework for Business Capabilities modeling

consisting of a matrix for analysis (Figure 7) and feedback loops for development (Figure 8).

Additionally Keller (2009) explained the basic idea of capability – based modeling and

provide examples for the use of capabilities in Enterprise Architecture Management. Those

were the “Heat Mapping”, the “Footprinting” and the “Mix the Models”. Also he adopted

the Forrester Search definition of Business Capabilities in which capabilities relating to IT

planning and were the building blocks of a business, represent stable business functions,

were unique and independent from each other, were abstracted for the organizational

model and capture the business interests (Keller, 2009).

24

Figure 7: The conceptual framework for modeling Business Capabilities (Brits, Botha, & Herselman,

2007)

Figure 8: Capability Construction Feedback Loop (Brits, Botha, & Herselman, 2007)

25

Other publications introduce techniques for constructing Business Capabilities in the

fields of Business Strategy and Business Architecture with main issue to help an organization

to make decisions (Greski, 2009-A; Greski, 2009-B). Worth mentioning that Greski (2009-B)

refers that “business capabilities represent the next level of detail, beneath the business

strategy”. He defined them as “an ability or capacity for a company to deliver a value,

either to customers or to shareholders”. Also he categorized them to customer – facing

capabilities and operational capabilities, and referred that the first one deliver directly value

to customers (e.g. a network of retail stores, a product or service offering or a transportation

service) while the second one deliver value to shareholders (e.g. strategic planning, mergers

and acquisitions, and financial planning). He also said that Business Capabilities consists of

three major components as shown in Figure 9.

Figure 9: Business Capability Components (Greski, 2009-B)

Then some authors investigated Business Capabilities on the side of its strategic

impact. Especially Bakhtiyari & Adel (2012) during their research about the strategic impact

of business capabilities, they refer that capabilities endow competitive advance, enable an

organization to perform at level that required to success and finally are one of the most

strategically relevant artefacts of an organization.

Thereafter some other publications began discussing about the importance of

Business Capabilities in the alignment and communication between Information

Technology and Business. Scott (2009) referred that capability models provide the “Rosetta

Stone” through which business needs aligned IT action, provide a focal point for strategic

dialogue and they are the core components of the overall business architecture framework.

Also he mentions that companies using capability maps to create value and IT architects and

planners can take capabilities as the starting point for discussion about IT investments.

Rosen (2010) mentioned that business capabilities provide the link between two complex

and disparate environments: The Business and IT Architectures. He also mentioned that

26

analysis of the values streams leads to identification of business capabilities, while Capability

Maps link the capabilities up to the strategies, goals, objectives, products and services. Also

he support and down to the process, application, systems, services and sourcing that

implement them (Figure 10). Finally he categorize hierarchical the level 1 of capabilities as

Strategic, Value Added and Commodity. Thereafter Rosen (2012) discussed the difference

between Business Capabilities, Value Streams and Processes. He refers that Processes and

Values Streams require Business Capabilities and describe how those are used. He then

mentions that Processes describe how something is done and Value Streams how value is

delivered to a stakeholder, while Business Capability describes what is done.

Figure 10: Value Streams leads to identification of Business Capabilities (Rosen, 2010)

Continuing in literature about the Business and IT alignment, Business Capabilities had

been considered as a core component and centric idea in enterprise models the following

years. Especially Barroero et al (2010) provide the Business Capability Centric Extension

(BCCE), in the TOFAG core structure, which introduces a Business Component concept,

including people, processes and technology (Figure 11). By this extension they achieved the

linking between the business strategy and IT strategy, the linking between business

component concept and the related information architecture, and the modularization of IT

architecture by the Business Component.

27

Figure 11: Business Capabilities Centric Extension (BCCE): Changes to Meta-model (Barroero, Motta,

& Pign, 2010)

Freitag et al (2011) highlighted the importance of business capabilities as an essential

element of the Enterprise Architecture Management (EAM) approach and provide a

Capability Dependency Analysis Method (Figure 12) between capabilities and the other

elements of the Enterprise Architecture. They defined them as “a functional building block

of the business which supports the business models and the business strategy, i.e. it

defines the organization’s capacity to successfully perform a unique business activity”.

Figure 12: Capability Dependency Analysis Method (Freitag, Matthes, Schu, & Nowobilska, 2011)

At the same time Ulrich & Rosen (2011) introduced a capability mapping framework, a

method of incorporating capability into Business Architecture and generally in Enterprise

Architecture, a method for Business/IT roadmap development and by that prove that

Business Capability provide the high-level foundation for alignment and bridges the

Business/IT Chasm. They refer that “a business capability or a simple capability defines

what a business does. It does not communicate or expose where, why or how something is

28

done – only what is done. According to them capability relates with other aspect of business

as shown in Figure 13.

Figure 13: Capability relation of business aspects (Bakhtiyari & Adel, 2012)

In their work they provide a more clear decomposition of the level 1 of Capability

Map, by an example as shown in Figure 14. According to that they refer that the “strategic”

layer include capabilities that reflect executive properties, the “value-added” tier goes to the

heart of what a business does to ensure viability and thrive in the market place, and finally

the “Support” layer represents certain abilities that an organization may have to function as

business (Ulrich & Rosen, 2011).

Figure 14: Example Level 1 Capability map (Ulrich & Rosen, 2011)

Also they provide a clear picture of the role of Business Capabilities in Enterprise

Architecture (Figure 15), meaning the linking between business requirements and the IT

solutions (Ulrich & Rosen, 2011).

29

Figure 15: The Role of Business Capabilities in EA (Ulrich & Rosen, 2011)

Finally they talk about the importance of a Business Architecture Knowledgebase in

which information about business, including organizational structure, capabilities, value

streams, information assets, project initiatives, customers and partners, and related IT

assets, are stored, related and viewed in a database (Ulrich & Rosen, 2011).

Despite the previous worth mentioning that the term of capability had cause

confusion for long time from managerial theories to Informatics. That’s because during the

time different definitions came into light in different fields. For that purpose Vaughan (2011)

held a review of bibliography in order to give a definition of Business Capability, according to

business strategy, operations and Informatics. He defined Business as “the potential of a

business resource (or groups of resources to produce customer value by acting on their

environment via a process (P) using other tangible (Rt) and intangible Resources (Ri)”. He

also talked about two types of capability that may be internal of external to business.

External capability occurs where the potential output is of core importance to customer

benefit. Internal capability is where the potential output is delivered within the business

(Vaughan , 2011). Relevant Tell (2014) in order to make comprehensible the meaning of

capability, held a reached with observations of capability definitions, theories and

approaches and asked the question what capability is not.

Two years before Tell’s work Stirna et all (2012) defined capability as “the ability to

continuously deliver a certain business value in dynamically changing circumstances” and

30

introduce a meta – model that integrate organization development with IS development,

taking into account changes in the application context of a solution. This was the Capability

Driven Development (CDD), which will be discussed in more detail in the next section.

In some cases Business Capabilities has being used in the area of software

development during the transformation of systems, as a design and development pattern in

Software Architecture. Frey et all (2013) described the Capability – Based Service

Identification pattern that had been used in the moving from legacy applications to SOA –

based Architectures. This pattern identified services and defined the service model based on

a model of Business Capabilities. The most important achievement of this pattern is that it

facilitates a durable alignment between business and IT in a SOA by using a top-down

solution (Figure 16).

Figure 16: Top – down approach for Capability – Based Service Identification (Frey, Hentrich, & Zdun,

2013)

From so on we have seen that Business Capabilities had been an important research

concern in Enterprise Architecture, in Service – Orientation design paradigm of building

software (i.e. SOA patterns), in Business – IT alignment, in transformation of software

systems and in Business Strategy. Next section deals with a new trend that combines

enterprise modeling, context modeling and capability modeling in order to help an

organization to deal with changes in the dynamic environment that operates.

31

2.1.3 Capability as Service

So far we have seen that Business Capabilities has being used during the alignment

between Business and Information Technology (Scott, 2009; Rosen, 2010; Barroero, Motta,

& Pign, 2010; Freitag, Matthes, Schu, & Nowobilska, 2011; Ulrich & Rosen, 2011; Stirna,

Grabis, Henkel, & Zdravkovic, 2012) and sometimes as a centric idea and core component of

Enterprise Architecture (Barroero, Motta, & Pign, 2010; Freitag, Matthes, Schu, &

Nowobilska, 2011; Ulrich & Rosen, 2011). Business Capability also leads to competitive

advance (Brits, Botha, & Herselman, 2007; Bakhtiyari & Adel, 2012) and provide business

value (Scott, 2009; Greski, 2009-B). Thus it is clear that enterprises should focus on their

Business Capabilities in order to archive growth.

But the extensive use of Internet and its variability has made modern organizations to

operate in dynamically changing environments, where the circumstances in which

Information Systems (IS) operates and the context of use was not always predictable (Stirna,

Grabis, Henkel, & Zdravkovic, 2012). As Strirna et all (2012) states “context is any

information that can be used to characterize the situation. It describes circumstances such

as geographical location, platforms and devices used, and as well as business conditions and

environment“. This definitions shows that context cannot be stable.

From the previous began the need for adopting new solutions in Information Systems

and Software development that can help for rapid response to chances in the business

context, for the development of new capabilities and for run-time configuration and

adjustment of applications (Stirna, Grabis, Henkel, & Zdravkovic, 2012).

Thus Stirna et al (2012) develop a new method named Capability Driven Development

(CDD) that integrates organizational with IS development taking into account changes in the

application context of a solution. The foundation of the CDD approach was a meta-model

that consists of goals, key performance indicators, capabilities, context and capability

delivery patterns, and make uses of enterprise modeling (EM) techniques as a starting point

of the development process (Figure 17). This meta-model has three sections the Enterprise

and Capability modeling, the Capability Delivery Context modeling and the Capability

Delivery Patterns.

32

Figure 17: The capability meta-model (Stirna, Grabis, Henkel, & Zdravkovic, 2012)

A year after European Commission announced the project “Capability as Service in

digital enterprises - CaaS” and aimed to facilitate configuration of business services and

development of executable software to monitor the changes arising from the business

context. By this project they supported the idea that business capabilities deliver needs to

be based on the application context and the main goal were to bring about a shift from the

service – oriented paradigm to a capability delivery paradigm (European Commision, 2013).

The result of CaaS project were the delivery of CDD methodology, for making software

for the digital enterprises of tomorrow which is situated upon the existing information

technologies services (Figure 18), in form of:

1) Modeling languages for representing enterprises designs, context models and

patterns,

2) A methodology for detailing how capabilities may be specified and how these

may be used for designing new services,

3) Reusable best practices and capability delivery patterns,

4) Algorithms for dealing with business context awareness and service re-

configuration,

5) A tool environment for modeling design and delivery and

6) A set of case studies demonstrating the applicability of the CDD (European

Commision, 2013).

33

Figure 18: CaaS upon the existing information technologies services (FP7 Collabotative Project with

No 611351 , 2014)

Also the project CaaS was driven by three empirical use cases from different business

domains namely energy, compliance and e-government (European Commision, 2013). The

first one was the FP7 project EnRiMa – Energy Efficiency and Risk Management in Public

Building, with main scenario the exchange of data between the grid operator and the energy

supplier. The second one referred to a case study of provision services for regulatory

compliance in the maritime industry by Flesh TL Company to Danaos maritime company.

Finally the third referred to a case study of improving a Service – Oriented Architecture

(SOA) platform for e-government by the Everis Company, with emphasis to put on electronic

services provided to municipalities and used by citizens and companies.

Within the FP7 project of CaaS a methodology areas relevant to CDD was given by

Berzisa et all (2013) in order to give an input to defining the CaaS base methodology. Those

were the Capability design and development, the pattern elicitation, the context modeling,

the runtime adjustments, the identification of best practices and the Enterprise modeling.

Since then several researchers focused in giving the essential tools, methodologies and

empirical experience for the application of CDD approach, according to the Caas Project

(Zdravkovic et al, 2013; Espana et al; Bravos, Loucopoulos, Stratigaki & Vavlis, 2014; Bravos,

Gonzslez, Grabis, Henkel & Jokster, 2014; Bravos, Grabis, Henkel, Jokste & Kampars, 2014;

Stratigaki et al, 2014; Berzisa et al , 2015).

Firstly Zdravkovic et all (2013) extent Stirna’ s work by proposing a meta-model for

capability design and delivery, with the consideration to delivering as cloud services (Figure

19). To exemplified his proposed approached he used the EnRiMa use case. The aim of their

research as stated by them was to contribute to the business-driven application

development and the emergence of new kinds of interoperable cloud-based services, and to

set the tools that would support the CDD approach.

34

Figure 19: Meta – model for capability design and deployment in cloud (Zdravkovic, Stirna, & Henkel,

2013)

Also Zdravkovic et all (2013) describe the main components of the CDD environment

(Figure 20), which were the capability design tool for the capability design, cloud services for

the capability delivery and the context platform for capturing context data.

Figure 20: Capability driven development environment (Zdravkovic, Stirna, & Henkel, 2013)

35

In the meantime Loucopoulos et all (2013) working with the use case of provision

services for regulatory compliance in the maritime industry by Flesh TL Company to Danaos

maritime company, they provide a delivarable of Capability models for Business Compliance

Controlling and Auditing, in order to apply the CaaS methology and its support tool

enviroment. In their work they define Business Capability by providing a conceptual meta-

model which will be discussed in more detail in chapter 3.

Then Espana et all (2014) report a case study that focuses on capability modeling

within a service oriented architecture development project, in order to mention the lessons

learned and the open challenges to feedback the improvement of the CDD approach. They

use the case study of EVERIS Company with unit of analysis the project to improve a Service

– Oriented Architecture (SOA) platform for e-government. They approached CDD by creating

a goal model (Figure 21) in the first place so that the rest of the models (e.g stakeholders,

context) to be reasoned taking this model as input.

Figure 21: Goal Model of the project (Espana, Gonzalez, Grabis, Jokste, Juanes, & Valverde, 2014)

Thereafter Bravos, Loucopoulos, Stratigaki & Vavlis (2014) being supported by

European Commission Project CaaS (611351), investigate the utility of modeling Business

Capabilities in the Zdravkovic et all (2013) initial version of CaaS meta-model, by answering

whether such a meta-model could provide the sufficient guidance for repeatable design

activities by different designs working on the same problem, when using design rationale

techniques. They provide two cases for representations of goals by two different modelers

and the rationale behind the instantiations, in which resulting in different capability

definition and thus differences in the implementation of the same meta-model to the same

use case scenario. According to this they propose that future work would include accurate

36

and thorough definition of all supportive modeling languages required, toward a complete

capability meta-model able to support CDD.

Within the same year Bravos, Gonzslez, Grabis, Henkel & Jokster (2014) discusses the

initial Capability modeling experiences with main emphasis on the capability design phase of

CDD approach. Their main objective is to evaluate the expressiveness of capability meta-

model in the three different empirical cases (Everis, Flesh TL and MSCONS). By their research

they conclude that capability meta-model is sufficient for modeling business cases because it

is flexible enough to represent different business cases and to adjust to the varying needs of

the various partners.

Also Bravos, Grabis, Henkel, Jokste & Kampars (2014), defined a set of concrete key

goals to be achieved in order to have a methodological support (a goal graph) to CDD

approach for creating software systems that can adapt to changes, taking account three

different empirical cases (Everis, Flesh TL and MSCONS).

At the same year Stratigaki et all (2014) designed a meta-model as a foundation for

compliance capability, in order to support a compliance development methodology that

would help in achieving that certain business processes comply with the regulations during

the capability modeling of CDD approach.

 Finally Berzisa et all (2015) taking into consideration the previous researches that

presented in this section, provide a final CDD approach as shown in Figure 22 which include

three phases. The Enterprise Modeling, the design and the delivery. Also mentions that the

main challenges to be addressed are the availability of patterns and the implementation of

algorithms for dynamic adjustment of the capability delivery application.

Figure 22: CDD Methodology (Berzisa, et al., 2015)

37

2.2 Conceptual Modeling

2.2.1 Database Design

Conceptual modeling is a widely applied practice that aims to create an abstract of

representation of a situation, using models for that purpose (Thalheim, 2011). These models

are means by which we can capture the universe of discourse (UoD) in an abstract way and

communication tools among stakeholders (designers, programmers, users, managers etc).

The term of conceptual modeling was consolidated in 1984 by Mylopoulos and

Schmidt in Brodie (Roussopoulos & Karagiannis, 2009). As defined by Mylopoulos (1992)

“Conceptual modeling is the activity of formally describing some aspects of the physical and

social world around as for purpose of understanding and communication”. This modeling

practice plays an important role in a variety of area in Computer Science. More specifically

as mentioned by Roussopoulos & Karagiannis (2009), “it has found applications in a variety

of fields, including information system design, knowledge representation for Artificial

Intelligence, modeling of organizational environments, business processes, software

development processes, software requirements, or just plain modeling some part of the word

for purpose of human communication an understanding”.

A Database has become the necessary mean for information storage and retrieval and

is one of the most important components of an Information System. Thus conceptual

modeling has also application during the building of a database. In particular databases the

same as Information Systems has a specific lifecycle with the following key stages (Jackson,

1996):

1. Requirement Analysis

2. Design (comprises conceptual, logical and physical)

3. Implementation

4. Testing

5. Operation

6. Maintenance

During the stage 2 of “Design” a conceptual modeling practice is used for creating

specific data models in three levels of abstraction (conceptual design, logical design and

physical design). Those data models are a conceptual representation of the data structures

that are required by a database (Windows Enterprise Support Database Servises, 2015). The

‘Design’ stage in general follows five steps (Windows Enterprise Support Database Servises,

2015):

1. Planning and analysis

38

2. Conceptual design

3. Logical design

4. Physical design

5. Implementation

However professionals that have the responsibility to design and implement database

systems must have special skills which are related to data modeling. In other words they

must be well skilled in the methodologies, techniques and practices to data modeling. Next

section provides a brief review about them.

2.2.2 Data Modeling Approaches & Techniques

Data Modeling is a technique for exploring the data structures needed to support an

organization, and provides a method and means for describing the real-word information

requirements in a manner understandable to stakeholders (Ponniah, 2007). The production

of data modeling is data models which according to Ponniah (2007):

1. help the users or stakeholders understand clearly the database system that is

being implemented based on the information requirements of an organization

and

2. enables the database practitioners to implement the database system exactly

conforming to the information requirements.

Professionals that design and implement database systems may choose between of

different data modeling approaches, each of which may have different data modeling

methods, techniques and languages. According to (Ponniah, 2007) those are:

1. Semantic modeling

2. Relational modeling

3. Binary modeling

4. Entity – Relationship modeling

5. Fact – oriented modeling

6. Object – oriented modeling

For the purpose of this dissertation we will limited our research to the most popular

approaches for data modelers (Ponniah, 2007) which are the Entity – Relationship Modeling,

the Fact – Oriented Modeling and the Object – Oriented Modeling. According to this the

approaches, techniques, methods and languages that will be discusses are shown in Figure

23.

39

Information Engineering (IE)

Integration Definition for

Information Modeling (IDEF1X)

Natural Information Analysis

Method (NIAM)

Object Role Modeling (ORM)

Fully Communication Information

Modeling (FCO-IM)

Data Structure Diagrams (DSD) or

Bachman’s Diagrams

Entity Relationship (ER) Model

UML Class Diagrams
Object – Oriented

Modeling Approach

Fact – Oriented Modeling

Approach

Entity – Relationship

Modeling Approach

Data Modeling for Database Design

Barkers Notation

Figure 23: Data Modeling Techniques, Methods & Languages

Entity – Relationship Modeling Approach

Initially databases were designed on the basis the developer’s intuitive understanding

of the subject domain, which were usually represented in graphical form (Kogalovsky &

Kalinichenko, 2009). The most popular technique for this graphical form was in 1969 the

Bachman’s Data Structure Diagrams (DSD), which were based on a type of notation dealing

with classes of entities and the classes of sets that relate them (Bachman, 1969). According

to Bachman (1969) the DSD were consisting of two kind of graphic symbols: the block to

represent an entity class, and the arrow to represent a set class of and the roles of

owner/member established by that set class. An example of two classes of entities in this

technique is shown in Figure 24.

40

Figure 24: An example of Bachman Diagrams (Bachman, 1969)

The Data Structure Diagrams were a predecessor of the Entity Relationship (ER)

Model technique for designing database, which were introduced in 1976 by Peter Chen

(Chen, 1976) for logical design of data. The Entity Relationship Model depicts the data

structures in terms of entities, relationships and attributes. A detailed description,

understanding and graphical syntax or notation of ER Model can be found in several books

such as (Sharron & Evan, 2006; Teorey, Lightstone, & Nadeau, 2006). The ER Model has been

the most popular and influential model in the database community and because of that we

can find a numerous of publications in bibliography from 1976 as shown (Chen, Song, & Zhu,

2007). By this technique Chen issued an Entity – Relationship Modeling Approach for

designing databases. An example of ER Model is shown in Figure 25.

Figure 25: An example of ER Model (Ponniah, 2007)

During the time the ER Model has being found in various versions such as the

Extended ER Model or Enhanced ER Model – EER (Teorey, Yang, & Fry, 1986), the E
2
R Model

(Embley & Ling, 1989), the Higher-Order Entity Relationship Model – HERM (Thalheim,

1991), Temporal ER Models for capturing temporal aspects of data (Gregersen & Jensen,

1999) and the Star ER Model for data warehouse design (Tryfona, Busborg, & Borch, 1999).

The Extended ER Model issued additional semantics such as ternary relationships, optional

41

relationships and the generalization abstraction (Teorey, Yang, & Fry, 1986). The E
2
R Model

solved two main limitations and problems that had the ER and EER Models. Those where the

distinction between attributes and entities, that can cause downstream redesign and the use

of two different types of abstraction which may not support normalization (Embley & Ling,

1989). By the E
2
R Model Embley & Ling (1989) helped designers not to have distinguished

between attributes and entities, and also support the normalization at the model level. The

Higher-Order Entity Relationship Model issued the nesting of attributes and the procedure

of mapping automatically the model to relational database schemata (Thalheim, 1991).

Since then the Entity Relationship Modeling Approach became the basis for the

development of other techniques and languages for designing databases. Those were the

Integration Definition for Information Modeling – IDEF1X (National Institute of Standards &

Technology, 1993), the Information Engineering – IE (Finkelstein, 2006) and the Barker’s

Notation (Mamayev, 2013; Ponniah, 2007).

In more detail during the 1970s the U.S. Air Force Program for Integrated Computer

Aided Manufacturing (ICAM) developed the IDEF technique, in order to increase

manufacturing productivity through the systematic application of computer technology

(National Institute of Standards & Technology, 1993). The IDEF technique has a list of

methods being developed as shown in Figure 26:

Figure 26: IDEF Methods (Mayer, Painter, & deWitte, 1992)

 One of them is the IDEF1X which is an extended version of IDEF1 and deals with data

modeling. The IDEF1X is most useful for logical database design after the information

requirements are known and the decision to implement using a relational database has been

made (Mayer, Painter, & deWitte, 1992). The IDEF1X was influenced by various methods,

techniques and theories as shown in Figure 27. The IDEF1X uses a graphical form for

representing the real world, the terms entities, attributes and relationships between

42

entities, and has being described in more detail in (National Institute of Standards &

Technology, 1993) “Method Report”. The IDEF1X uses specific notations as shown in Figure

28. A detailed description, understanding and graphical syntax of IDEF1X can be found in

the book (Sharron & Evan, 2005). Finally an example of IDEF1X is shown in Figure 29.

Figure 27: IDEF1X Origins (Mayer, Painter, & deWitte, 1992)

Figure 28: IDEF1X Notation (Ponniah, 2007)

43

Figure 29: IDEF1X – An example model (Ponniah, 2007)

From 1976 – 1980 Clive Finkelstein and James Martin was working together in order

to determine data and information that are required by business users in order to carry out

their job responsibilities, and also they try to determine and analyze the processes that are

relevant with that data. By this work they developed a series of methods which were: the

Data Analysis (the rules of normalization was used in order to interview business users at

operational levels), the Data Base Design (was used to identify the data and the information

that was needed), the Information Analysis (was used to identify information needed by

managers), the Procedure Formation (was used to derive processes from data), and the

Distributed Analysis (was used to analyze and design remote distribution of data and

processing). Combining all those methods they realized that they had developed a

methodology for identification of Information and for the development of Information

Systems which they called Information Engineering (IE) (Finkelstein, 2006). Information

Engineering was first published in 1981 in a series of articles in the magazine Computer

World USA (Finkelstein, 1981-A; Finkelstein, 1981-B; Finkelstein, 1981-C; Finkelstein,1981-

D). From 1982 – 1986 Information Engineering began to involve two distinct variants: the

DP-drinven IE Variant and the Business – driven IE Variant (Finkelstein, 2006). According to

Finkelstein (2006) the first one deals with the development phases of an Information System

and the second one with separate phases which were the Strategic Business Planning, the

Data Modeling, the Process Modeling and the Systems Design & Implementation. For data

modeling the Information Engineering methodology is using a specific notation that is shown

in Figure 30. A detailed description, understanding and graphical syntax of IE can be found in

the book (Sharron & Evan, 2005). An example of this notation is shown in Figure 31.

44

Figure 30: Information Engineering Notation (Wambler, 2015)

Figure 31: Information Engineering – An example model (Ponniah, 2007)

Finally in 1990 Richard Barker and Harry Ellis developed an Entity – Relationship

Diagram (ERD) notation, which is described in more detail in the book “Richard Barker,

CASE Method: Entity Relationship Modelling, Addision-Wesley Longman, 1990” (Mamayev,

2013). This notation was then developed and extended by Richard Barker as being a part of

the Oracle Corpotation, and marked as the Oracle Customer Development Method (CDM)

(Mamayev, 2013). The ERD notation is a method for describing Entity Relationship Model

and so it uses the terms of entities, relationships and attributes. The syntax of Barker’s

notation is shown in Figure 32 and an example of Barker’s notation is shown in Figure 33. A

detailed description, understanding and graphical syntax of ERD can be found in the book

(Sharron & Evan, 2005)

45

Figure 32: Barker’s Notation (Wambler, 2015)

Figure 33: Barker’s Notation – An example model (Ponniah, 2007)

46

Fact – Oriented Modeling Approach

Except from the Entity – Relationship Modeling Approach that described in the

previous paragraphs, data modelers may adopt another approach to data modeling for

designing a database. This is a Fact – Oriented Modeling Approach that began during the

1970s by describing the information domain in terms of objects playing roles (Ponniah,

2007) and the attributes and relationships as elementary facts (Halpin T. , 1991). In fact this

approach enables data modelers to model, transform and query information in terms of the

underlying facts of interest and has being designed to promote correctness, clarity and

adaptability to Information Modeling and Information Systems Engineering (Halpin T. ,

2007).

Object Role Modeling (ORM) is a technique of a Fact – Oriented Modeling Approach

(Halpin, 1991; Halpin & Orlowska, 1992) that was formulated in 1989 by Terry Halpin in his

PhD thesis (Halpin T. , 1989). A brief historical review about the methods, techniques and

theories that lead to Object – Role Modeling can be found in chapter 3 of the book (Halpin T.

, 2001), in (Halpin T. , 2006), in (Halpin T. , 2007) and in chapter 3 of the book (Halpin &

Morgan, 2008).

An Initial version of Object – Role Modeling can be found in (Nijssen & Leunc, 1988;

Wintraecken, 1990; Rasdorf & Abudayyeh, 1992; Darke & Shanks, 1995) with the name

NIAM (Natural Information Analysis Method). This method was then extended into the

version of the Predicator Model (PM) (Bommel, Hofstede, & Weide, 1993) which became

the Predicator Set Model (PSM) (Hofstede & Weide, 1993). Also some others versions of

ORM are the MOON (Normalized Object – Oriented Method) and the NORM (Natural

Object Relationship Model) (Halpin & Proper, 1995). One more initial version of ORM can be

found in (Shoval & Zohn, 1991) known as BRM (Binary Relationship Modeling) (Halpin T. ,

1995-A). A new version of ORM is the Formal ORM (FORM) which is described in the book

(Halpin T. , 1995-A) and is supported by the software of Microsoft Visio for Enterprise

Architects (VEA), which is a part of Visual Studio.NET Enterprise Architect. Finally the most

recent version of ORM is that of ORM2 (Halpin T. , 2005-A), which is supported by the

NORMA tool (Curland & Halpin, 2010).

An example of ORM is shown in Figure 34. A more detailed description, understanding

and graphical syntax or notation can be found in the books (Halpin, 1995-A; Halpin, 2001;

Halpin & Morgan, 2008). Also a number of technical papers and articles on ORM, as well as a

comparison of ORM with other approaches can be found in (Halpin T. , 2015).

47

Figure 34: ORM – An example model (Ponniah, 2007)

The Object Role Modeling and more specific his version of Natural Information

Analysis Method (NIAM) became the basis for another Fact – Oriented Modeling technique.

This is the Fully Communication Oriented Information Modeling (FCO-IM) (Bakema, Zwart,

& Lek, 2002). The Fully Communication Oriented Information Modeling (FCO-IM) is a

technique for building conceptual information models that can be automatically

transformed into ERM, UML, Relational of Dimensional Models (FCO-IM: Fully

Communication Oriented Information Modeling, 2015). This technique uses diagrams that

called Information Grammar Diagrams (IGDs) that show fact types, label types, object

types, fact type expressions and object type expressions in their mutual relationships

(Bakema, Zwart, & Lek, 2002). A detailed description, understanding, examples and graphical

notation of FCO-IM can be found in the book (Bakema, Zwart, & Lek, 2002). Indicatively

some graphical symbols are given in Figure 35. Also a chronological overview of publishing

book, articles and papers on FCO-IM can be found in the (FCO-IM: Fully Communication

Oriented Information Modeling, 2015). Finally FCO-IM supported by the CaseTalk and

Infagon software tools (FCO-IM: Fully Communication Oriented Information Modeling,

2015). An example of FCO-IM is shown in Figure 36.

48

Figure 35: Graphic Symbols of FCO-IM (Bakema, Zwart, & Lek, 2002)

Figure 36: An example of FCO-IM (Bakema, Zwart, & Lek, 2002)

49

Object – Oriented Modeling Approach

As we referred at the beginning of this section the last most popular approach to data

modeling for designing a database is that of Object – Oriented Approach. The Object –

Oriented Approach focuses on building a model around objects (Hoffer, Prescott, &

McFadden, 2007). More especially the building blocks of that model are object classes,

attributes, operation and associations (relationships) (Lee, 1999).

The main standard that is used for designing a database in this approach is the Unified

Modeling Language (UML). The development of UML started in 1994 by Grady Booch and

Jim Rumbaugh, in their effort on unifying the Booch and OMT (Object Modeling Technique)

methods, and continued in 1995 with her unification in the Object – Oriented Software

Method (OOSE) of Ivan Jacobson (UML Summary: Version 1.1, 1997). Then in 1977 UML was

adopted by the Object Management Group (OMG) for object – oriented analysis and design

(Rumbaugh, Jacobson, & Booch, 1999). A more detailed description about the creation of

UML can be found in (Rumbaugh, Jacobson, & Booch, 1999).

According to (Connoly & Begg, 2005; Elmasri & Navathe, 2004) UML uses a graphical

representation and defines a number of diagrams which can be categorized as:

• Structural Diagrams which describe the static relationships between

components. These include:

� Class Diagrams: They show classes, interfaces, collaborations, dependencies,

generalizations, associations and other relationships

� Object Diagrams: They used to test Class Diagrams for accuracy and they

show a set of individual objects and their relationships.

� Component Diagrams: They show the organizations and dependencies

among software components.

� Deployment Diagrams: They represent the distribution of components

(tables, files, libraries, executables) across the hardware topology.

• Behavioral Diagrams, which describe the dynamic relationship between

Components. These include:

� Use Case Diagrams: They show the functional interactions between users

and the system.

� Sequence Diagrams: They show the interactions between various objects

over time.

� Collaboration Diagrams: They represent interactions among objects as a

series of sequenced messages.

50

� Statechart Diagrams: They describe how an object’s state changes in

response to external events.

� Activity Diagrams: They present a dynamic view of the system by modeling

the flow of control from activity to activity.

Elmasri & Navathe (2004) refer that from the above diagrams the Class Diagrams are

the most useful for modeling a conceptual database schema. An example of UML Class

Diagram is shown in Figure 37. A detailed description, understanding, examples and

graphical notation of UML Class Diagrams can be found in several books such as (Fowler &

Scott, 1999; Elmasri & Navathe, 2004; Connoly & Begg, 2005; Sharron & Evan, 2005; Teorey,

Lightstone & Nadeau, 2006). Also in (Object Management Group, 2015) we can find

numerous publications and reports on UML different versions.

Figure 37: UML Class Diagram (Ponniah, 2007)

From the above data modeling techniques that described, we propose Object – Role

Modeling (ORM) as the most suitable for designing a database for Business Capability.

That’s because Object – Role modeling is the most versatile and the most descriptive

technique than Entity Relationship (ER) Model, IE, Barker’s Notation, IDEF1X and Class

Diagrams of UML (Hay, 1999) and is clear and detailed enough to capture the Business

Complexity than other data modeling methods (Halpin T. , 1996).In ORM a validated

conceptual schema can be easily then mapped to logical/physical/external schema either

automated or manually (Cuyler & Halpin, 2003). Also ORM is more stable and provide

validation than the others, since it is attribute free because all facts are represented in terms

of objects playing roles (Cuyler & Halpin, 2003). In ORM we can find association of any arity

(unary, binary, ternary), instead of Entity Relational Approaches (e.g ER) that allows binary

associations and Object – Oriented Approaches (e.g UML) that has no unary associations

(Cuyler & Halpin, 2003). Also constraints in ORM than the other techniques, methodologies

51

and languages work properly with n-ary associations (Cuyler & Halpin, 2003). ORM uses a

natural language and its schemas can be represented in either diagrammatic or textual form,

which mean that can be easily understood and validated by experts (Cuyler & Halpin, 2003).

Finally ORM models can be manually or automatically be transformed to the other modeling

techniques, methodologies and languages (Cuyler & Halpin, 2003).

2.3 Discussion – Result of Research

We have presented a brief literature review about Capability. We have conducted a

thoughtful research in bibliography in order to understand what the Capability of an

organization is in general, why is it important for an organization to focus in Business

Capability, why Business Capability must be used for the software development in digital

enterprises of tomorrow, and how.

The Capability notion began from the Management Science in the field of Corporate

Strategy taking the form of managerial and functional capabilities (Long & Vickers-Koch,

1995). Then Capabilities became the main component in the field of Strategic Management

in order an organization to achieve and maintain a competitive advance (Wernerfelt, 1984;

Phahalad & Hamel, 1990; Barney, 1991; Barton, 1992; Stalk, Evans, & Shulman, 1992; Long &

Vickers-Koch, 1995; Teece et all, 1997; Tallman & Fladmoe-Lindquist, 2002;). In this field two

main strategies took place during the time the resource – based view of a firm (Wernerfelt,

1984; Barney, 1991) where capabilities or resources classified as physical capital resources,

human capital resources and organizational capital resources, and the competence – based

view of a firm (Phahalad & Hamel, 1990; Barton, 1992) an extension of the previous where

capabilities referred as Core Capabilities with four dimension, which was a) skills and

knowledge base, b) values and norms, c) managerial systems and d) technical systems. In the

meantime Capabilities – based Competition (Stalk, Evans, & Shulman, 1992) took place in

the Corporate Strategy which then led to Capabilities – based Organizations (Long & Vickers-

Koch, 1995). The rapidly changing environments led to the extension of capabilities into that

of Dynamic Capabilities (Teece, Pisano, & Shuen, 1997) and the Internationalization and

Globalization led to a Capability – driven Strategy Framework (Tallman & Fladmoe-Lindquist,

2002). Finally a Capability – based Modeling Paradigm (Beimborn, Martin, & Holman, 2005)

introduced for representing business functions and processes, in order to empowered

managers to make decisions, by adopting a Capability map concept. From the previous

researches it is understandable that capabilities played an important role in Management

Science in order an organization to gain a competitive advance. The evolution of Capabilities

52

into global strategies and into a notion for describing an organization reinforces its

importance.

In the meantime by adopting the Capability map concept capabilities start becoming a

concern not only in Strategic Management and Corporate Strategy theories but in some

areas in Computer Science. More especially enterprise and system architects start talking

about Business Capability as the particular ability or capacity that business may possess or

exchange to achieve a specific purpose or outcome (Holman, 2006) with basic components:

Process, People and Physical Assets (Greski, 2009-B). Also Business Capability or a simple

capability defines what a business does; it does not communicate or expose where, why or

how something is done – only what is done (Ulrich & Rosen, 2011). Thus Business Capability

has being used during the alignment between Business and Information Technology (Scott,

2009; Rosen, Business Processes Start with Capabilities, 2010; Barroero, Motta, & Pign,

2010; Freitag, Matthes, Schu, & Nowobilska, 2011; Ulrich & Rosen, 2011; Stirna, Grabis,

Henkel, & Zdravkovic, 2012), as a centric idea and core component of Enterprise

Architecture (Barroero, Motta, & Pign, 2010; Freitag, Matthes, Schu, & Nowobilska, 2011;

Ulrich & Rosen, 2011) and in the moving from legacy applications to SOA – based

Architectures (Frey, Hentrich, & Zdun, 2013). Also Business Capability leads to competitive

advance (Brits, Botha, & Herselman, 2007; Bakhtiyari & Adel, 2012) and provide business

value (Scott, 2009; Greski, 2009-B).

According to the previous different approaches for modeling Business Capabilities

took place in the areas of Enterprise Architecture, Service Oriented Architecture and in

alignment between Business and IT. The most known were the hierarchical description by a

Capability map (Holman, 2006), a matrix analysis with a feedback loop (Brits, Botha, &

Herselman, 2007), this of “Heat Mapping”, “Footprinting” and “Mix the Models” (Keller,

2009), the Capability Dependency Analysis Method (Freitag, Matthes, Schu, & Nowobilska,

2011) and the Capability Mapping Framework (Ulrich & Rosen, 2011). From all this

approaches the most complete is that of (Ulrich & Rosen, 2011), since they provide a clear

decomposition of Capability map hierarchy and a clear picture of the role of Business

Capabilities in Enterprise Architecture. By this way they achieve the alignment between

Business and IT, and the information about what a Business does is more specific.

 In the meantime the extensive use of Internet and its variability led to the

development of Capability Driven Development (CDD) method (Stirna, Grabis, Henkel, &

Zdravkovic, 2012) that integrates organizational with IS development taking into account

changes in the application context of a solution and also uses a Meta – model of Capability

53

with three sections: Enterprise and Capability modeling, the Capability Delivery Context

modeling and the Capability Delivery Patterns. This method has being used as a centric idea

for the development of software for the digital enterprises of tomorrow by European

Commission, who announced the project “Capability as Service in digital enterprises - CaaS”

(European Commision, 2013). Since now several researchers focused in giving the essential

tools, methodologies and empirical experience for the application of CDD approach

according to the Caas Project (Zdravkovic et al, 2013; Espana et al; Bravos, Loucopoulos,

Stratigaki & Vavlis, 2014; Bravos, Gonzslez, Grabis, Henkel & Jokster, 2014; Bravos, Grabis,

Henkel, Jokste & Kampars, 2014; Stratigaki et al, 2014; Berzisa et al , 2015). This researches

worked in defining the CaaS base methodology (Berzisa, et al., 2013), in providing a meta-

model for capability design and delivery (Zdravkovic, Pastor, & Loucopoulos, 2014), in

providing a delivarable of Capability models for Business Compliance Controlling and

Auditing (Loucopoulos, Bravos, Stratigaki, & Vavlis, 2013), in providing a capability modeling

within a service oriented architecture development project (Espana, Gonzalez, Grabis,

Jokste, Juanes, & Valverde, 2014), in investigating the utility of modeling Business

Capabilities by using design rational (Bravos, Loucopoulos, Stratigaki, & Valvis, 2014), in

discussing the initial Capability modeling experiences with main emphasis on the capability

design phase of CDD approach (Bravos, Gonzslez, Grabis, Henkel, & Jokste, 2014), in defining

a set of concrete key goals to be achieved in order to have a methodological support (a goal

graph) to CDD approach (Bravos, Grabis, Henkel, Jokste, & Kampars, 2014), in designing a

meta-model as a foundation for compliance capability (Stratigaki, Loucopoulos, &

Nikolaidou, 2014) and in providing a final CDD approach (Berzisa, et al., 2015). However the

CDD method lacks from empirical experience with practical examples and none of the

previous researches focuses in describing the Business Capability in a database in order this

kind of information to be stored and classified and thus to be possible for all kind of analysis.

Thus in this dissertation we will respond to the question of how Capability must be

used for the development of software for digital enterprises of tomorrow and so the

purpose of this is the development of a Database Management System for Business

Capability in a case study from the maritime domain field. By creating this Database

Management System we intend to help modern organizations to gain a competitive advance

and thereafter to achieve growth. That’s because when the information about Business

Capability are stored, related and viewed in a database, managers have an overall view of

what the organization does and thereafter can increase control, achieve better planning and

taking decisions more efficient.

54

However in order to design this Database Management System we may use different

data modeling approaches with the most popular the Entity – Relationship Modeling

Approach, the Fact – Oriented Modeling Approach and the Object – Oriented Modeling

Approach and each of them has specific methodologies or techniques or languages. In the

Entity – Relationship Modeling Approach we can find (Bachman, 1969; Chen, 1976; National

Institute of Standards & Technology, 1993; Finkelstein, 2006; Mamayev, 2013), in the Fact –

Oriented Modeling Approach we can find (Halpin T., 1995-A; Bakema, Zwart, & Lek, 2002),

and in the Object – Oriented Modeling Approach we can find (Rumbaugh, Jacobson, &

Booch, 1999).

The DBMS that we will create deals with data and information that describes

processes, services, policies, goals, resources etc. This means that we need to use a more

versatile, descriptive enough and detailed methodology or language to capture this Business

Complexity. Object Role Modeling meets the previous criteria in comparison with other data

modeling techniques, methodologies and languages (Hay, 1999). In ORM a validated

conceptual schema can be easily then mapped to logical/physical/external schema either

automated or manually. Also ORM is more stable and provide validation than the others,

since it is attribute free because all facts are represented in terms of objects playing roles. In

ORM we can find association of any arity (unary, binary, ternary), instead of Entity Relational

Approaches (e.g ER) that allows binary associations and Object – Oriented Approaches (e.g

UML) that has no unary associations. Also constraints in ORM than the other techniques,

methodologies and languages work properly with n-ary associations. ORM uses a natural

language and its schemas can be represented in either diagrammatic or textual form, which

mean that can be easily understood and validated by experts. Finally ORM models can be

manually or automatically be transformed to the other modeling techniques, methodologies

and languages (Cuyler & Halpin, 2003).

55

CHAPTER 3: Object Role

Modeling (ORM)

Structure of this Chapter

3.1 Background to Meta – Modeling

3.2 The Conceptual Schema Design

Procedure

3.3 The Relational Mapping Procedure

3.3.1 Definitions – Notations

3.3.2 Rules & Strategies of Mapping

3.3.3 Main Steps of Mapping

3.4 Chapter Summary

This chapter deals with

Object Role Modeling

(ORM). Since ORM is a

technique that is used for

creating specific data

models in different levels

of abstraction and also in

those levels uses a specific

syntax, semantic and

notation, this Chapter in

Section 3.1 discusses a

background to Meta-

Modeling. Then in Section

3.2 the first level of data

abstraction in ORM is

presented, meaning the

Conceptual Schema Design

Procedure (CSDP). In more

detail this section discusses

the graphical notation is

used in this level and the

main steps of the CSDP.

The Section 3.3 deals with

the second level of data

abstraction in ORM and

more specific with the

Relational Mapping

Procedure. Here it

discusses the definitions &

the notation is used, the

rules & Strategies of

mapping and the main

steps of mapping. Finally in

Section 3.4 a summary of

the chapter is presented.

56

3.1 Background to Meta – Modeling

As we referred in a previous chapter during the designing stages of a DBMS a

conceptual modeling practice is used for creating specific data models in four levels of

abstraction: conceptual design, logical design and external physical design.

According to Leppanen (2006) a model can be defined as a think that is used to help or

enable the understanding, communication, analysis design and implementation of some

other thinks (Teleological Viewpoint)” or a perception and an abstraction of relevant thinks

in reality (Semantic Viewpoint)” or in one of three forms, namely as a conceptual construct,

as a linguistic expression, or as physical construct (Semiotic Viewpoint)”.

Also a model can be described by a modeling language, which itself is described by a

syntax, semantics and notation (Karagiannis & Kühn, 2002). According to Karagiannis & Kuhn

(2002):

� The syntax is described by a grammar and deals with the elements and rules for

creating models in forms of graph grammars and meta-models. The syntax is

consisting of two parts (Leppanen, 2006) abstract syntax (which leaves out the

representational details) and concrete syntax (which gives notational elements,

called the symbols in the vocabulary of a language, and rules for connecting them

with one another and with the concepts).

� The semantics describes the meaning of a modeling language and consists of a

semantic domain (it describes the meaning by using ontologies, mathematical

expressions etc) and the semantic mapping (the procedure for connecting the

syntactical constructs with their meaning defined in the semantic domain).

� The notation describes the visualization of a modeling language (e.g. symbols for

visualizing the syntactical constructs).

Thus to be able to manipulate models, their language needs to be specified as model

of these models: Meta – models (Sprinkle, Rumpe, & Vangheluwe, 2010). A Meta – model is

a model about the information being expressed during the modeling procedure and basically

a Meta model is a model of model (Geisler, Klar, & Pons, 1998). Thus Meta-modeling is the

procedure of modeling models and therefore a Meta – model describes the syntax of models

and also helps to define semantics (Sprinkle, Rumpe, & Vangheluwe, 2010). A more clear

definition about Meta – model is given in Figure 38. According to that a model is a simplified

representation of reality, while the Meta – model defines a modeling language in which a

model can be expressed. This model level hierarchy is according to the Meta Object Facility

(MOF) meta – modeling standard of Object Management Group (OMG) which is based in

57

UML. According to (Hinkelmann, 2011) the M0 level describes the basic data while M1

model level describes the meta – data, meaning the schemas and interfaces for describing

the structure of the data. The M2 level is the meta – model or the language for specifying

the concepts of the modeling language. Finally the M3 level is the MOF specification itself

which allows us to draw the model (e.g. boxes, arrows etc).

Figure 38: The four levels hierarchy of a model (Hinkelmann, 2015)

Although for other modeling languages there are official standards for Meta –

modeling like the previous we describe, according to (Cuyler & Halpin, Metamodels for

Object-Role Modeling, 2003) for Object Role Modeling (ORM) there is no official standard for

meta – model. Thus Cuyler & Halpin (2003) in their work tried to pave a way for a standard

ORM Meta – model, in which they discuss how ORM components (object types, roles,

predicates) may be metamodeled in ORM including component reuse, examines ways to

metamodel business rules in ORM and metamodels instance data in ORM. Also they

referred Meta – modeling in ORM is important because:

� It is the better way for conceptual information analysis than ER and UML.

� It is a possible standard for business rules expression and for use in ontology

standards.

� It would facilitate the interchange of ORM model data between software tools.

� It aims to specify the grammar of a syntactically valid ORM model, which means

that a Meta – model allows models to be checked for syntactic correctness.

58

3.2 The Conceptual Schema Design Procedure

 As we have already discussed in section 1.3 for creating a DBMS according to ORM, it

is necessary to working with data for four different levels. The first level of this procedure is

the conceptual level, which will be discussed in more detail in this section.

In this level the Universe of Discource of the application, is decribed in human

concepts and depicted in an Conceptual Schema. This schema describes the structure or

grammar of the Universe of Discourse, which refers to object types, the roles between

objects types and constraints. Also it specifies the structure for all the permitted states and

transitions of the conceptual database (Halpin T., 2001).

When designing this schema a modeler may use a specific graphical notation as set

out in Appendix: Table 2 (Halpin, 2010-B).

In more detail taking into account (Halpin T., 2001; Halpin T., 2005-B; Halpin T.,2005-

A) we could say that:

� A fact type consists of relevant object types, associated with roles, with the

predicates and the reference schema. Also a fact type can consist of one or more

roles, meaning a unary fact type (that depicts one role), a binary fact type (that

depicts two roles), a ternary fact type (that depicts three roles) etc. Actually a fact

type is a candidate table in the physical database and by which we can derive in a

second level of analysis (in relational schema procedure of ORM) all the

information about the name of the table, the name of the columns, the primary

keys, the foreign keys, the unique columns, the nullable columns and also all the

other constraints that this table will have.

� The object types or entity types are depicted as a named soft rectangle rounded

corners, while the value types as ellipse soft rectangle rounded corners.

� The roles played by entities in a fact type are depicted as boxes connected to the

object types by solid lines. In fact the roles represent the relationships between

object types and they show the part played by the object types in this relationship.

Also each role is associated with a corresponding column of the fact table.

� Predicates are depicted as text upon or under the boxes of roles. For binary fact

types, a forward predicate reading is left-to right or top-to-bottom, and an inverse

predicate reading is right-to-left or bottom-to-top. For a binary fact type forward

and inverse reading may be displayed together, separated by a slash.

� Objectified Associations are depicted as a soft rectangle rounded corners, with

the name of them out of the rectangle and included in “…”.

59

� Internal uniqueness constraints are depicted with a line upon the box of roles,

whereas a preferred uniqueness constraint is indicated by a double line

(corresponding to one common practice of doubly underlining primary keys when

alternate keys exist).

� External uniqueness constraints are depicted as circled underline for unique ()

and as circled double underline for primary (), meaning when the constraint

provides the preferred identification scheme.

� Simple Mandatory constraints are depicted by a solid line, while disjunctive

mandatory constraints (includive-or) by placing the solid dot in a cycle ()

connected by dotted ling to the roles it applies to.

� Subset, Exclusion and Equality Constraints are depicted by cycle containing

and connected to the associated roles with dashes lines.

� Frequency and Value Constraints are enclosed in round brackets, with the value

separated in comma and enclosed in ‘…’.

� Ring Constraints are depicted with a cycle symbol (which differs according the

type e.g. reflexive, asymmetric etc) connected with a dashed line with the role

associated.

� A relation that deals with sets as a subset of another’s is implemented by

Subtyping. A Subtype is depicted as object type (parent) with an arrow pointing

from it to its proper Supertype (child).

� Textual Constraints are depicted by a footnote number, with a textual reading of

the constraint. This constrains may describe derivation rules.

In order to design a conceptual schema a specific procedure is followed by the

modelers. This is the CSDP procedure (Conceptual Schema Design Procedure). In fact this

procedure focuses on analyzing and designing of data, and consisting of 7 steps. The first

three of these steps deals with identifying the fact types, and the other four by adding

constraints and derivation rules to the fact types (Halpin T. , 1995-A). Those steps are:

1. Transform familiar information examples into elementary facts, and apply quality

checks.

2. Draw the fact types, and apply a population check.

3. Check for entity types that should be combined, and note any arithmetic

derivations.

4. Add uniqueness constraints, and check arity of fact types.

60

5. Add mandatory role constraints, and check for logical derivations.

6. Add value, set comparison and subtyping constraints.

7. Add other constraints and perform final checks.

As referred by (Halpin T. , 2007; Halpin T., 2006) the first step is the most critical

during this procedure, since examples of required data are verbalized in natural Language. In

more detail in this step a modeler takes real use cases of data for this UoD by the

organization and clarifies the meaning of their terms. Then he transforms the use cases by

using a natural language in terms of elementary facts. Elementary facts assert that a

particular object has a property or that one or more objects participate in relationship,

where that relationship cannot be expressed as a conjunction of simpler facts without

introduction object types. Then for this kind of elementary facts the way of reading it

(reading from different directions) is specified. Then the modeler applies a specific quality

check. First he insures that the objects are well defined, values are identified by constraints,

and entities are real word object that are identified by a definite description. Finally a

modeler use familiarity with the UoD to see if some facts should be split or recombined.

In second step of this procedure a modeler uses the notation of ORM that described

previously, in order to draw a graph that represents the fact types. During this procedure he

also applies a population check, by matching each fact column in this schema with the real

data.

In third step the entity types that should be combined are checked and the notes for

arithmetic derivations are added. In other words if a modeler has drawn two entity types

which have a common instance, he must combine them. Also if the same kind of information

is to be recorded by different entity types, he also must combine them. Finally he adds the

appropriate derivation rules for the fact types that arithmetically are derivable from other

fact types.

Finally all the other steps, meaning 4,5,6 & 7, are dealing with how a modeler may

implements all the type of constrains that exists.

As we have already said, the result of the CDSP procedure is a model that will be uses

as a background for creating a second model, a Relational Schema. Thus the procedure for

that is described in more detail in the next section.

61

3.3 The Relational Mapping Procedure

In this section we will discuss the relational mapping procedure (Rmap procedure),

that refers to the procedure for mapping the ORM meta-model of Business Capability onto a

relational schema. More generally we will present the procedure followed, in order to

design the logical data model for our Database Management System.

In order to achieve this, firstly there is a need to identify the notion of “relational

schema” and then to give the necessary generic notation and terminology that is used due

to designing stages of this schema.

Secondly we discuss about the rules of mapping from the ORM meta-model to logical

data model, and finally we conclude with the results of mapping, that concerns the

constitution of the logical schema.

3.3.1 Definitions – Notation

According to Halpin (Halpin, 1995-A; Halpin, 2001; Halpin & Morgan, 2008) a

relational schema (or relational database schema) is a set of relational table definitions,

constraints and perhaps derivation rules.

In order to depict a relational schema, we will use the Formal Object – Role Modeling

(FORM) methodology, that extent and refines an older mapping procedure known as the

ONF (Optimal Normal Form) algorithm. Following this approach a relational schema

appears as a schematic form, consists of relational tables each row of them expresses one or

more elementary facts. The structures of those tables are called “table schemes”. Basically

those tables are names of columns (attributes), which draw their values from domains

(Halpin, 1995-A; Halpin 2001; Halpin & Morgan, 2008).

There is a use of two main layouts for table schemes. The first one is the horizontal

layout (abstract), where the table name precedes a parenthesize list of columns separate by

commas (Halpin T. , 2001). The second one is the vertical layout (Visio-like), where the

tables depicts diagrammatically and supplemented by textual rules stored in property sheets

of code (Halpin 2001; Halpin & Morgan, 2008). Examples of these layouts are shown in

Figure 39. However for the purpose of this dissertation we use the horizontal layout.

62

Figure 39: Examples of relational schema in (a) horizontal layout and (b) vertical layout (Halpin &

Morgan, 2008)

Before we design the horizontal layout, it is necessary to take into consideration the

notation used for specifying names of tables and columns, constraints and derivation rules.

Particularly according to Halpin (Halpin, 1995-A; Halpin, 2001; Halpin & Morgan, 2008) the

main notation we use is:

� The names of tables are written in italics and starting with capital letters. Also

all tables must have meaningful and different names.

� The names of columns must be meaningful and different in every table, and are

represented with lower-case letters, parenthesized and separated by commas.

If we desire to display the domain names inside the parenthesis, then we use at

starting capital letters and a colon separator after the column names.

� A column that allows null values is said to be optional. Optional columns are

enclosed in square brackets ([]).

� A column that does not allow null values is said to be mandatory. A column is

mandatory unless it is marked optional.

� The uniqueness constraints (internal or external) on relational columns are

shown by underlining.

� Each unique column or unique column combination provides a candidate key

for identifying rows in the table. In other words a key is minimal set or uniquely

constrained attributes. A primary key is doubly underlined if an alternate key

or secondary key exists, but if there is only one key, this is automatically the

primary key.

63

� Moreover if columns in a composite key are not listed consecutively,

arrowheads (←, →) must be added to the underlines, to show that a single

composite uniqueness constraint applies, rather than a multiple single

constraint.

� A referential integrity constraint between two tables is depicted as a dotted

arrow (---->). We use this jargon and notation in order to express different facts

about the same object, which have to be stored in different tables and

referenced each other. The name of the column (attribute) in the first table

where the dotted arrow starts is a foreign key, that reference to the name of

the column on the second table. The last one is the primary key of the second

table.

� Relevant a referential equality constraint is depicted as a double dotted arrow

(<---->).

� A value constraint is depicted using braces ({}), separated by commas and

quotes. We usually place them up to the name of the column.

� A frequency constraint is depicted place the number of frequency down of the

column’s name.

� All the other types of constrains (external uniqueness constraints, ring

constraints, subset constraints, join subset constraints, exclusion constraints,

exclusive-or constraints, inclusive-or constraints, equality constraints etc.), are

depicted as a dashed or dotted lines between the attributes, enclosed by the

symbols that represent every kind of constraint we want to include.

� Finally derivation rules are specified in an appropriate language, and depicted

using numeric superscripts on the names of columns that reference to a

footnote in the end of the relational scheme. These rules provide a list of

functions, operators and rules that may be used to derive information. These

may involve mathematical calculations and logical inferences. Any derived fact

type should be included on the schema and marked “*S” with the derivation

rule also declared. Then we map the derivation rule in the table marked “*”.

3.3.2 Rules & Strategies of Mapping

So far, we introduce some basic definitions and notations are used during the

modeling stages of the relational schema. This section deals with the basic rules of mapping

64

a conceptual schema onto a relational schema. More generally we will see how to group fact

types into table schemes and how to map constraints and rules in more detail.

According to Halpin (Halpin, 1995-A; Halpin, 2001; Halpin & Morgan, 2008) the main

criteria must meet a relational schema should be correctness, efficiency and clarity. As he

explains a relational schema must be equivalent to the conceptual schema, must have good

response times to updates and queries (with reasonable demands on storage space) and it

should be relatively easy to understand and work with. He also explains that correctness of

data is more important and the only way ensures this is by avoiding redundancy. Although

the last one may lead to more tables in design, which can slow down queries and updates by

the requirement of extra table joins, he refers that it is important to keep the number of

tables down to an acceptable limit. That’s why he insures that the Rmap procedure

guarantees a redundancy-free relational design and includes strategies to restrict the

number of the tables.

In order to avoid redundancy in tables, Halpin reported in (Halpin, 1995-A; Halpin,

2001; Halpin & Morgan, 2008) that we must ensure that each fact type maps to only one

table, in such a way that its instances appears only once. To achieve this, he introduces two

basic rules to group fact types into table schemes as follows:

Rule 1: Fact types with compound uniqueness constraints

map to separate tables. That means every

predicate other than an objectified, which has a uniqueness constraint

spanning two or more of its roles, meaning m:n binaries and all n-aries

(n≥3), must map to a separate table. If there is only one uniqueness

constraint on the predicate the primary key of the table is based on this;

otherwise one is picked as a primary.

Rule 2: Fact types with functional roles attached to the same object type

 or are

grouped into the same table, keyed on the object type’s identifier as primary

key. Examples of tables for the first and the second picture are: R (a, b, c)

and R (a, b, [c]).

65

Except the main rules for grouping fact types, he mentions that in a relational model

there are two basic integrity rules. The first one is the entity integrity rule who demands a

primary key to contain no null values, which means that all its constitutive columns are

mandatory. The second one is the referential integrity rule who basically says that every

non-null value of a foreign key must match the value of some primary key (Halpin, 1995-A;

Halpin, 2001; Halpin & Morgan, 2008 ; Montali, 2011-2012).

Thereafter Halpin (Halpin, 1995-A; Halpin, 2001; Halpin & Morgan, 2008) uses

particular strategies for grouping fact types into tables concerning 1:1 associations,

external uniqueness constraints, nested object types, independent (lazy) object types and

subtypes.

In the case of 1:1 associations it is important to determine in which side (table) this

association will be grouped. The choice of grouping depends on criteria whether exists

symmetric (both fact types optional or mandatory) or asymmetric situations (one fact type

optional and the other mandatory and vice versa) and whether the roles are functional or

non-functional. According to those the basic strategy for grouping 1:1 associations is (Halpin,

1995-A; Halpin, 2001; Halpin & Morgan, 2008):

� If only one object type in the 1:1 predicate has another functional role then

group on its side.

For example:

� Else if both object types have other functional roles and only one role in the 1:1

is explicitly mandatory then group on its

side. For example:

66

� Else if no object type has another functional role, then map the 1:1 to a

separate table.

For example:

� Else the grouping choice is completely delegated to the modeler. This refers to

cases whether both roles of the 1:1 fact types are mandatory or optional

(symmetric situations), and each of them is attached to an entity type with

another functional role. In such cases we

can group on either side or we can try a

simple table approach.

For example:

67

In the case of external uniqueness constrains the standard mapping strategy is used

to visualize mapping is as follows (Halpin, 1995-A; Halpin, 2001; Halpin & Morgan, 2008;

Montali, 2011-2012):

� Firstly, we do not consider the identification scheme of object type.

� Then, we group fact type into tables, using compact surrogates (e.g [e,s]) as

columns.

� Finally, we restore the full tables replacing surrogates with the attributes used

for preferred identification.

Here we may have four situations in cases like this as follows:

1. Firstly a functional fact type with a composite primary identifier. This means that

an external uniqueness constraint is the preferred identification scheme for an

object type attached to other functional roles. The strategy we use is grouping on

the object type using surrogates, without considering the predicates involved in

the external uniqueness constraint. Then expand the primary key using the object

types involved in the external uniqueness constraint. For example:

2. Secondly a non-functional fact type with a composite primary identifier. This

means that an external uniqueness constraint is the preferred identification

scheme for an object type attached to other non-functional roles. The strategy

we use is mapping m:n association to a separate table, using surrogates. Then

expand the primary key using the object types involved in the external

uniqueness constraint. For example:

68

3. Thirdly a functional fact type with a composite secondary identifier. This means

that the external uniqueness constraint is not the preferred identification scheme

for an object type attached to other functional roles. The strategy we use is

standard mapping and modeling the external uniqueness constraint as a key. For

example:

4. Finally a functional fact type with a composite secondary identifier. This means

that an external uniqueness constraint is the preferred identification scheme for

an object type attached to other non-functional roles. The strategy we use is

standard mapping without considering the external uniqueness constraint. Then

you add the external uniqueness constrain in the relational schema as an inter-

table constraint. For example:

69

In the case of nested (objectified) object types the strategy is used for mapping is as

follows (Halpin, 1995-A; Halpin, 2001; Montali, 2011-2012):

� Firstly, we do not consider the identification scheme of the objectified

association.

� Then we consider the objectified association as a black box.

� Next we group fact types in the standard way.

� We unpack the black box into its component attributes.

� Finally we deal fine-grained constraints involving component roles of the

objectified association if they exist.

For example:

In this example the associaton “worked on” is objectified as “Work”. So

� We do not consider the identification scheme and we intially treat the nested

object type “Work” as a “black box”: Work (, startdate, [enddate]).

� We unpack the black box into its components attributes and giving:

Work (empNr, projectname, startdate, [enddate]).

� The key is the combination of “empNr, projectname”, because a uniqueness

constraint is assumed to span any objestified predicate.

In the case of independent object types, nested of not, the strategy is used for

mapping is as follows (Halpin, 1995-A; Montali, 2011-2012):

� If it has functional roles attached, then it must mapped to a separate table with

its preferred identifier as primary key, together with all fact types in which it

plays a functional role (if any) and all other attributes optional.

For example:

70

� If it has non-functional roles attached, then it must map to a table by itself and

have a foreign key pointing in this table, using a subset constraint.

Finally in the case of subtyping there are three main ways in which the fact types may

be grouped into tables. Those are absorption, partition and separation as follows. Recall that

subtyping constraints are mutually exclusive (): there is a distinction between of them;

collectively exhaustive (): subtypes equals the union of the supertype; and the

combination of the previous two (): where subtypes partition the supertype (Halpin,

1995-A; Halpin, 1995-B; Halpin, 2001; Montali, 2011-

2012).

� Absorption: In this option subtypes are

absorbed back into their top supertype

before grouping. Then we group fact types as

usual and add the subtyping constraints as

textual qualifications. Especially a discriminator column reflects the presence of

a classification type to distinguish supertypes, with a fixed domain, whose

71

possible values correspond to different subtypes. All fact types attached to

subtypes are moved to the supertype making the participation of the supertype

optional. When such participation is mandatory, we add the textual constraints

“exists only if” and “exist iff”, pointing to the discriminator column. The m:n fact

types that involves subtypes are mapped to separate tables, with the foreing

key pointing to the supertype table and combined with the “only where”

constraint, pointing to the discriminator column. We use this approach when

all the roles played by supertype and syptypes are functional, meaning they

have a simple uniqueness constraint: . So any

non-functional roles of the subtypes maps to separate table anyway. The

advantage of this approach is that it maps all the functional predicates of a

subtype family into a simple table. This makes queries and updates more

efficient. The main disadvantage is that generates null values. Also it is difficult

to pose queries regarding only subtypes. Finally the functional table of the

supertype is larger (more columns).

� Separation: In this option each object type is

mapped to a separate table. The fuctional roles

grouped directly to each object type. Then

foreign keys are added from the subtypes to

the supertype table, meaning that primary

keys of each subtype refer to (FK) the primary

key of the supertype. Also in this case we can use a discriminator column in the

supertype, but this requires the presence of suitable constraints in the foreign

keys. Depending on the existence of a mandatory role in the supertype,

constrains used are the “exactly where” and the “only where”. The main

advantage of this approach is that it minimizes nulls and queries about each

subtype are fast. The main disadvantage is that queries are slower, because

joins are needed. Also subtype constraints are specified as qualified subset

constraints, so access to a supertable is required to enforce them. This cause

slower insertions subtybe tables.

� Partition: Here supertype is removed,

replicating the attached information for each

subtype. Especially roles attached to the

72

supertype are virtually replicated and pushed down to each subtype. Also we

use unions to reconstructive the supertype. Then an exclusion constraint

between the primary keys of the subtype tables ensures that each supertype

individual is maintained only in one table. Actually this approach is used when

subtypes form a partition of their supertype, which means that subtypes must

be exclusive and exhaustive (Halpin, 1995-B). The exclusive means that they

cannot have a common instance (B ∩ C = {}) and the exhaustive means that

they equals the union of the subtypes	(B ∪ C = A). However, If subtypes do not

exhaust supertype, then is needed a separate table (A - (B ∪ C)), which is not

recommended (Montali, 2011-2012). The main advantage of this approach is

that minimizes nulls and queries about all properties of the subtypes are fast.

The main disadvantage is that union needed to for querying the superclass.

3.3.3 Main Steps of Mapping

Further to the two previous sections, we are now ready to discuss the basic steps we

follow, in order to design a relational schema. This procedure has actually six main steps

(Halpin, 1995-A; Halpin, 2001), which are the following:

1. Step 0: This is a preparatory step where we absorb subtypes into their

supertype and erase mentally all explicit primary identification schemes, in

which we treat compositely identified object types as “black boxes”. A

compositely identified object type is either a nested object type or a co-

referenced object type (one that is primarily identified with an external

uniqueness constraint). For steps 1-3 we treat compositely identified object

types just like any other object type. In more detail this step has seven substeps

as follows:

0.1 Mentally binarize any unaries, and cater for any relative closure.

0.2 Mentally erase all and treat compositely identified object types as “black

boxes”.

0.3 Indicate any non-absorption choices for subtypes.

0.4 Identity any derived fact types that must be stored.

0.5 Indicate mapping choices for symmetric 1:1 cases.

0.6 Consider replacing any disjunctive reference scheme (meaning

identification by a mandatory disjunction of two or more roles, at least

73

one of which is optional), by using an artificial or concatenated identifier

or mandatory defaults.

0.7 Indicate mapping choices where required for any objectified predicate

without a spanning uniqueness constraint.

2. Step 1: in this step we follow the Rule 1 of grouping fact types into a table

scheme. This is mapping each fact type with a compound uniqueness constraint

to a separate table.

3. Step 2: Here firstly we follow the Rule 2 of grouping fact types into a table

scheme. This is grouping into the same table, fact types with functional roles

attached to the same object type, keying on the object type’s identifier.

Secondly we map 1:1 cases to a single table, generally favoring fewer nulls.

4. Step 3: In this step we map independent object types (lazy object types) with no

functional roles to a separate table.

5. Step 4: Here we unpack each “black box column” into its component attributes.

6. Step 5: In this finally step we map all other constraints and derivation rules.

Also subtype constraints on functional roles map to qualified optional columns,

and on non-functional roles map to qualified subset constraints.

74

3.4 Chapter Summary

The main scope of this Chapter was to provide a part of theory for Object Role

Modeling (ORM). Thus have already discussed that during the designing stages of a DBMS

according to ORM specific models are created in four different levels of abstraction:

conceptual design, logical design, external design and physical design (Halpin, Evans, Hallock,

& Maclean, 2003).

We have also referred that the modeling language for those models is described by

syntax, semantics and notation (Karagiannis & Kühn, 2002). In order to be able to

manipulate models, this language needs to be specified as model of these models, meaning

Meta-models (Sprinkle, Rumpe, & Vangheluwe, 2010). Thus a Meta-model is basically a

model about the information being expressed during the modeling procedure, a meta-model

is a model of a model, and also describes syntax and defines semantics (Geisler, Klar, & Pons,

1998; Sprinkle, Rumpe, & Vangheluwe, 2010). Meta Object Facility (MOF) standard of Object

Management Group (OMG) provides a four hierarchy for meta-modeling in which the M0

level describes the basic data, the M1 level describes the meta-data, the M2 level is the

meta-model and the M3 level is the MOF specification itself (Hinkelmann, 2011). ORM has

no official standard for meta-modeling, thus an effort for this has taken place by Cuyler &

Halpin (2003), in which they discuss how ORM components (object types, roles, predicates)

may be metamodeled in ORM including component reuse, and also examines ways to

metamodel business rules in ORM and metamodels instance data in ORM. According to

them meta-modeling in ORM is important since is a better way for conceptual information

analysis than ER and UML, is a possible standard for business rules expression and for use in

ontology standards, it would facilitate the interchange of ORM model data between

software tools and finally it aims to specify the grammar of a syntactically valid ORM model,

which means that a Meta – model allows models to be checked for syntactic correctness.

Then we have described in detail the first level of analysis in ORM, meaning the

Conceptual Schema Design Procedure. In this level we have described the concrete syntax of

that is used in this modeling language, meaning how the fact types, object types, the roles

played by entities in fact types, predicates, objectified associations, constraints (internal

uniqueness constraints, external uniqueness, mandatory role constraints, subset constraints,

exclusion constraints, equality constraints, frequency constraints, value constraints, ring

constraints, subtyping constraints an textual constraints) are depicted, and we are also

referred to the main steps are followed in this procedure (Halpin T. , Conceptual Schema &

Relational Database Desing, 1995-A).

75

After that we concerned with the Relational Mapping Procedure, in which as previous

we describe the different layout options, the definitions & notation, the Rules of mapping

and the strategies of mapping. Finally the main steps of mapping were presented.

Thus taking into account the previous, although there is no official standard for meta-

modeling in ORM, in my opinion it uses a meta-modeling standard like this of OMG. In more

detail as we have already described in this chapter the first two levels of this technique

refers to the production of specific models, which are implemented taking into account a

specific notation, rules, strategies and steps.

In the first level of ORM technique, meaning the Conceptual Schema Design

Procedure, the information about the real word (UoD), can be considered as the M0 level in

meta-modeling. Then this information, is depicted in a Conceptual Schema (in a drawing, in a

conceptual model), which in turn can be considered as the M1 level in meta-modeling.

Thereafter the building blocks or the meta-data that can be used to make this model are

defined, meaning the abstract syntax of this modeling language. These blocks concerns the

object types that can be used to present the model, the relations between the object types,

the identifiers of the object types, the meaning of the object types (semantics) and the rules

to combine the object types. Thus the previous level can be considered are the M2 level in

meta-modeling. Finally the ORM is using a specific graphical notation, meaning the concrete

syntax of this modeling language, which can be considered to be the M3 level. The same

analysis as previous can be considered for the second level of analysis in ORM, meaning the

Relational Schema Procedure, in which a second model is produced, which can be though as

a meta-model since is a model that has being produced according to some other model.

76

CHAPTER 4: The Capability

Meta – Model

Structure of this Chapter

4.1 An Initial Version of the Business

Capability Meta – Model

4.2 Need for Change towards a New

Business Capability Meta – Model

4.3 Chapter Summary

This chapter deals with

working in the first level of

our Approach according to

ORM, by using an early

version or redesigning a

specific Conceptual

Schema for Business

Capability. Thus Section

4.1 discusses the initial

version of this Business

Capability meta-model.

Then in Section 4.2 we

redesign the previous

meta-model by following

the CSDP procedure of

ORM and by this way we

intend to use an accurate

and correctly enough

model for the

development of the

maritime application of

Danaos Management

Consultant Company.

Finally in Section 4.3 a

summary of this chapter is

presented.

77

4.1 An Initial Version of the Business Capability Meta – Model

As we referred in a previous chapter the first stage in the designing process of a DBMS

includes a conceptual schema design. This schema describes the structure or grammar of a

specific Universe of Discourse, meaning ontologies such as object types, the roles between

objects types and constraints.

For describing through a specific conceptual schema, the Universe of Discourse of the

maritime application for Business Capability, we have taken into account an early work of

Loucopoulos et all (2013). This work has set the scene for the definition of a meta-model

that focuses on Business Capability as a concept, according to ORM2 (Halpin T. , 2005-A;

Halpin T. , 2005-B). An initial version of this Capability meta-model is graphically shown in

Figure 23.

Figure 40: Business Capability Meta-Model (Loucopoulos, Bravos, Stratigaki, & Vavlis, 2013)

In general the Capability meta-model focuses on describing what a business can do

and depicts the main components that characterize it from different viewpoints. Those are a

Teleological View (goals, rules), an Operational View (Information, processes, transactions

and roles), a Service View (service processes, atomic services and software services), a

Contextual View (user context, business context, situation and variation) and a Capability

78

View (capacity, ability, ownership and value) (Loucopoulos, Bravos, Stratigaki, & Vavlis,

2013).

In fact if we use this Capability meta-model for creating the database of the maritime

application, by reading it, we can understand in a first level what kind of information about

Business Capability is required, and thereafter must be stored in our database. Also we can

understand though the implemented constraints, the way this information must be stored in

the database (e.g. relations, mandatory fields of tables, unique fields of tables etc).

In more detail, in this Universe of Discourse, a Business Capability is a notion that is

used to describe the essential functions of an enterprise. However some of

these functions may either owned by the enterprise or by some other

enterprises. Thus there is a need for distinction the Business Capability into

Internal Capability or External Capability. In that case the meta-model

depicts a rule that says that there is a differentiation about the information that is stored in

the database and this rule is related with the kind of Business Capability. If we verbalize this

rule with the help of NORMA Tool of Visual Studio 2013 for Enterprise Architects we can say

that:

Each Internal Capability is an instance of Business Capability.

Each External Capability is an instance of Business Capability.

Continuing with the description about the Capability meta-model, a Business

Capability is part of or is decomposed to a Business Capability. In

that case the meta-model depicts the information about the

hierarchies of Business Capabilities, meaning the information

about a relationship similar to a parent and child. Here the

constraint indicates that the information that is stored for the

combination of parent and child of Business Capability must be unique, meaning that it is

not allowed duplicates for each instance of this combination. Also this kind of relationship is

said to be many to many (m:n). If we verbalize this rule we can say that:

It is possible that some Business Capability is part of more than one Business Capability

and that some Business Capability is decomposed to more than one Business Capability.

In each population of Business Capability is part of Business Capability, each Business Capability,

Business Capability combination occurs at most once.

Considering that a Business Capability has a Business Owner, from

the meta-model we can understand for this UoD, the way that this

information about ownership is maintained. Here the Business Capability

column must be unique (meaning that no duplicates allowed) and also

79

mandatory (which means that this kind of data cannot be null). If we verbalize the

constraints, we can say that:

Each Business Capability is owned by exactly one Owner.

It is possible that some Owner owns more than one Business Capability.

For this kind of information in the first case of verbalization we have a many to one

(n:1) relationship and for the second case a one to many (1:n) relationship.

Since Business Capability describes what a business does, then maintaining the

information about her relation with the Business Goals is important for this UoD.

Business Goals is a part of the planning process and describes what an

organization expects to accomplish over a specific period of time. Thus for an

organization it is important to establish goals for a specific Business Capability

and have available the information about it, in order to be able to measure

success and performance. Thereafter by reading the Capability meta-model we

can understand the way this information will be maintained in the database of

our application. Here the constraint indicates that the information that is stored for the

combination of Business Capability and Business Goal must be unique, meaning that it is not

allowed duplicates for each instance of this combination. Also this kind of relationship is said

to be many to many (m:n). Finally if we verbalize the constraints of this meta-model, we can

say that:

It is possible that some Business Capability meets more than one Business Goal

and that some Business Goal is achieved by more than one Business Capability.

In each population of Business Capability meets Business Goal, each Business Capability, Business

Goal combination occurs at most once.

Also for this kind of UoD it is important to maintain the information

about the relation between a Business Capability and the Context, meaning

the environment within an organization operates. Changes in the Context

may be affecting in a catastrophic way the operation of an organization.

Thereafter maintaining this kind of information is crucial for the survival of

an organization. Thus by reading the Capability meta-model we can

understand how this kind of information can be maintained in the database of our

application. Here the constraint indicates that the information that is stored for the

combination of Business Capability and Context must be unique, meaning that it is not

allowed duplicates for each instance of this combination. Also this kind of relationship is said

to be many to many (m:n). Finally if we verbalize the constraints, we can say that:

It is possible that some Business Capability is in more than one Context

and that some Context bounds more than one Business Capability.

80

In each population of Business Capability is in Context, each Business Capability, Context

combination occurs at most once

Moreover in this UoD it is important to be described the information related to the

Business Output that a Business Capability produces. When we are talking about Business

Output we referred to the produced services that an

organization delivers in order to increase his incomes.

Thereafter maintaining this information is also important for

an organization. Thus by reading the meta-model we can see that the information about

Business Capability is mandatory, which means that this kind of data cannot be null, and also

the information about Business Capability must be unique (meaning that no duplicates

allowed). If we verbalize the constraints, we can say that:

Each Business Capability delivers some Business Output.

Each Business Output delivered by at most one Business Capability.

It is possible that some Business Capability delivers more than one Business Output.

For this kind of information in the third case of verbalization we have a one to may

(1:n) relationship and for the second case a many to one (n:1) relationship.

Since Business Output referred to the produced services that an organization delivers,

then these services are having an economic value and received by

specific Recipients, meaning that this actions results in an financial

transaction. Thus in the meta-model we can see how this kind of

information is maintained. Here the constraints says that for

combination of Business Output and Economic Value is not allowed

duplicates, and also that it is not allowed null records for the information about Recipient.

Also we have a ternary relationship that is said to be many to many to one (m:m:1). If we

verbalize the previous constraints we can say that:

For each Business Output and Economic Value,

that Business Output is of that Economic Value to at most one Recipient.

For each Recipient,

some Business Output is of some Economic Value to that Recipient.

In this under research UoD, maintaining the information about collaborations

between Business Capabilities, is the same important

as previous. That’s because these collaborations

affect the economic outputs of an organization. When reading the meta-model we can see

that a Business Capability collaborates with a Business Capability through a Collaborator

Connector. Here the constraint says that for the combination of the three of them (Business

Capability, Business Capability, Collaborator Connector) the information must be unique.

81

Also we have a ternary relationship which is said to be many to many to many (m:m:n). If we

verbalize the constraints we can say that:

It is possible that for some Business Capability1 and Business Capability2, that Business

Capability1 collaborates with that Business Capability2 through more than one Collaborator

Connector.

and that for some Business Capability1 and Collaborator Connector, that Business Capability1

collaborates with more than one Business Capability2 through that Collaborator Connector.

and that for some Business Capability1 and Collaborator Connector, more than one Business

Capability2 collaborates with that Business Capability1 through that Collaborator Connector.

In each population of Business Capability collaborates with Business Capability through

Collaborator Connector,

each Business Capability, Business Capability, Collaborator Connector combination occurs at

most once.

For this kind of collaborations a further analysis for the

Collaborator Connector is depicted in the meta-model. A Collaborator

Connector may be either Procedure or Information or Policy. This

means that there is a distinction about the information that is stored

according to the type of Collaborator Connector. If we verbalize the previous we can say

that:

Each Procedure is an instance of Collaborator Connector.

Each Information is an instance of Collaborator Connector.

Each Policy is an instance of Collaborator Connector.

Also a Collaborator Connector has an Economic Value and via versa meaning an

Economic Value is for a Collaborator Connector. This describes the involving of a financial

transaction in that case. Here the constraints say that the Collaborator Connector

information must be unique and also mandatory. If we verbalize the

previous we can say that:

Each Collaborator Connector has exactly one Economic Value.

It is possible that some Economic Value is for more than one

Collaborator Connector.

For this kind of information in the first case of verbalization we have a many to one

(n:1) relationship and for the second case a one to many (1:n) relationship.

For the rest of the UoD, the meta-model focuses in describing in more detail all the

facts that related with Internal Business Capability.

Thus an Internal Capability in order to produce its services it

uses a Capacity. In fact the notion Capacity refers to the competence

82

of an organization in having the essential resources. Here the constraint says that for

combination of Internal Capability and Capacity is not allowed duplicates. Also we have a

ternary relationship that is said to be many to many to one (m:m:1). If we verbalize the

constraints we can say that:

For each Internal Capability and Capacity,

that Internal Capability uses that Capacity for at most one Service.

Then a further analysis to Capacity is depicted in the meta-model. More especially a

Capacity may be either an External Resource Set or an Internal Resource

Set, meaning the resources that owned by the organization or by other

organizations. Here we have a rule that says that there is a distinction

about the information that is stored according to the type of Capacity. If

we verbalize the previous we can say that:

Each External Resource Set is an instance of Capacity.

Each Internal Resource Set is an instance of Capacity.

Also a Capacity has an Economic Value and via versa meaning an Economic Value is for

a Capacity. This describes the involving of a financial transaction in that case. Here the

constraints say that the Capacity information must be unique and also

mandatory. If we verbalize the previous we can say that:

Each Capacity has exactly one Economic Value.

It is possible that some Economic Value is for more than one Capacity.

For this kind of information in the first case of verbalization we have a

many to one (n:1) relationship and for the second case a one to many (1:n) relationship.

Finally Capacity is made of a Resource Type and via versa meaning a

Resource Type defines Capacity. Here the constraints say that the information

about the Resource Type must be unique. If we verbalize the previous we can

say that:

Each Resources defines at most one Capacity.

It is possible that some Capacity is made of more than one Resource Type.

For this kind of information in the first case of verbalization we have a one to may

(1:m) relationship and for the second case a many to one (n:1) relationship.

Different kind of Resources may be used by an

organization in order to produce a service. Since Capacity uses

a Resource Type, there was a need for depicting this

distinction of Resources in the meta-model. In more detail a

Resource Type may be either Datalogical or Financial or

83

Technological or Human or Procedural or Legal or Physical. If we verbalize the previous we

can say that:

Each Datalogical is an instance of Resource Type.

Each Financial is an instance of Resource Type.

Each Technological is an instance of Resource Type.

Each Human is an instance of Resource Type.

Each Procedural is an instance of Resource Type.

Each Legal is an instance of Resource Type.

Each Physical is an instance of Resource Type.

Except from Capacity an Internal Capability in order to produce its services it uses

Ability. The notion Ability refers to the efficiency of an

organization in having the knowledge of how to produce a

Service. Here the constraint says that for combination of Internal

Capability and Ability is not allowed duplicates. Also the ternary

relationship is said to be many to many to one (m:m:1). If we

verbalize the constraints we can say that:

For each Internal Capability and Ability,

that Internal Capability uses that Ability for at most one Service.

Then a further analysis to Ability is depicted in the meta-model. More especially an

Ability may be either External Ability or Internal Ability. That’s because an

organization may use the knowledge that has or may use a knowledge that

some other organization has. Here we have a rule that says that there is a

distinction about the information that is stored according to the type of Ability. If we

verbalize the previous we can say that:

Each External Ability is an instance of Ability.

Each Internal Ability is an instance of Ability.

Also Ability has an Economic Value and via versa meaning an Economic

Value is for Ability. This describes the involving of a financial transaction in

that case. Here the constraints say that the Ability information must be

unique and also mandatory. If we verbalize the previous we can say that:

Each Ability has exactly one Economic Value.

It is possible that some Economic Value is for more than one Ability.

For this kind of information in the first case of verbalization we have a many to one

(n:1) relationship and for the second case a one to many (1:n) relationship.

Finally Abiilty is made of a Skill Type and via versa meaning a Skill Type

defines Ability. Here the constraints say that the information about the Skill

Type must be unique. If we verbalize the previous we can say that:

84

Each Skill Type defines at most one Ability,

It is possible that some Ability is made of more than one Skill Type.

For this kind of information in the first case of verbalization we have a one to may

(1:m) relationship and for the second case a many to one (n:1) relationship.

As we have already said an Internal Capability uses a Capacity or an

Ability to produce a Service. However an important think is the way this

Service is delivered by the organization. Thus an organization in order to

deliver this Service may use a specific Business Process. Here the

constraints say that the Service information must be unique. If we

verbalize the previous we can say that:

Each Service is delived by at most one Business Process.

It is possible that some Business Process delivers more than one Service.

For this kind of information in the first case of verbalization we have a many to one

(n:1) relationship and for the second case a one to many (1:n) relationship.

Finally as we see in the meta-model an Internal Capability uses the combination of

Capacity-Ability-Service in order to be able to operate.

 If we want to verbalize the relation between Internal Capability and Capacity-Ability-

Service we can say that:

Each AbilityUsesCapacityWithservice is used by at most one Internal Capability.

It is possible that some Internal Capability uses more than one AbilityUsesCapacityWithService.

For this kind of information in the first case of verbalization we have a many to one

(n:1) relationship and for the second case a one to many (1:n) relationship. Also in that case

the combination of Capacity-Ability-Service must be unique.

On the other hand if we verbalize only the combination Capacity-Ability-Service, then

we can say that:

It is possible that for some Ability and Capacity, that Ability uses that Capacity with more than one

Service

and that for some Ability and Service, that Ability uses more than one Capacity with that Service

and that for some Capacity and Service, more than one Ability uses that Capacity with that Service.

In each population of Ability uses Capacity with Service, each Ability, Capacity, Service combination

occurs at most once.

85

For this kind of information the relationship is said to be many to many to many

(m:m:n) and also the data for each record must be unique.

This meta-model is complete enough and accurate in order to provide a good

definition about Business Capability and describe all the concepts for this UoD. However in

order to be used for the first level of the maritime application there is a need for change

towards a new meta-model which will be a matter of discussed in the next Section.

4.2 Need for Change towards a New Business Capability Meta – Model

In the previous Section we discussed about a Capability Meta-Model, which was given

in order to define the Business Capability ontology considerations of an organization in

general. This is an accurate and complete meta-model for the purpose it has being designed;

however it is not detailed and analytical enough in order to support the decryption of all the

required by the specifications information for the maritime application, that will be used for

the use case of data for Danaos Management Consultant company. This data is described in

more detail in a next chapter (Chapter 8).

Thus there is a need for extended the Loucopoulos et all (2013) Capability meta –

model into a new meta-model, that will be used for working with data in this first level of

abstraction, for this UoD. In order to redesign this new conceptual model we will use the

graphical notation of ORM 2 (Halpin T. , 2005-B) and the NORMA software based conceptual

modeling tool for Object Role Modeling, which is an open source plug-in to Microsoft Visual

Studio of Enterprise Architectures.

 One first aspect during this redesigning procedure is to depict the model in a way that

it will be clear for the reader where it starts and where it finishes. Thus we will use a top-

down description of the ontologies, meaning we will depicted the different facts types in a

vertically way. We will begin by following the CSDP procedure (Conceptual Schema Design

Procedure) and by this way we intent to specify which information is missing from the initial

meta-model.

In the first step of this procedure we begin by using the examples of data and

expressed it in terms of elementary facts. Then in order to check on the quality of our work

we ask ourselves the questions: Are the objects well defined? Can the facts be split into

smaller ones without losing information? In this step for facilitate the reader we will use a

sample of data that will be described in more detail in chapter 8.

86

Thus as we observe in the initial meta-model for the fact type that contains Business

Capability and Owner (meaning Business Capability and Owner relation), according to the

data we may have the elementary facts:

a. The Internal Business Capability ‘INCAP1’ is owned by the Owner ‘OWN1’

b. The Owner ‘OWN1’ owns the Internal Business Capability ‘INCAP1’

c. The Internal Business Capability ‘INCAP4’ is owned by the Owner ‘OWN1’

d. The Owner ‘OWN1’ owns the Internal Business Capability ‘INCAP4’

e. The External Business Capability ‘EXCAP1’ is owned by the Owner ‘OWN2s’

f. The Owner ‘OWN2’ owns the External Business Capability ‘EXCAP1’

Or

a. The Internal Business Capability ‘Maritime Management Capability’ is owned by the Owner ‘DMC’

b. The Owner ‘DMC’ owns the Internal Business Capability ‘Maritime Management Capability’

c. The Internal Business Capability ‘Maritime Compliance Capability’ is owned by the Owner ‘DMC’

d. The Owner ‘DMC’ owns the Internal Business Capability ‘Maritime Compliance Capability’

e. The External Business Capability ‘Technical Assistance Management Capability’ is owned by the

Owner ‘ComSys’

f. The Owner ‘ComSys’ owns the External Business Capability ‘Technical Assistance Management

Capability’

Or

a. ‘INCAP1: The Internal Business Capability ‘Maritime Management Capability’ is owned by the Owner

‘OWN1: DMC’

b. The Owner ‘OWN1: DMC’ owns the Internal Business Capability ‘INCAP1: Maritime Management

Capability’

c. The Internal Business Capability ‘INCAP4: Maritime Compliance Capability’ is owned by the Owner

‘OWN1: DMC’

d. The Owner ‘OWN1: DMC’ owns the Internal Business Capability ‘INCAP4: Maritime Compliance

Capability’

e. The External Business Capability ‘EXCAP1: Technical Assistance Management Capability’ is owned by

the Owner ‘OWN2: ComSys’

f. The Owner ‘OWN2: ComSys’ owns the External Business Capability ‘EXCAP1: Technical Assistance

Management Capability’

And so on

Thus it is confused which values of data referred on the two of them, meaning the

code or the description or the combination of them, and thus must be stored in the

87

database. That’s because are missing the essential reference modes and values types,

meaning the manner in which the values referred to the Business Capability and Owner.

A more wright way to describe those elementary facts is by firstly identifying the

wright reference modes for Business Capability and Owner. Since both of them have a code,

we choose that for referred them. Thus the elementary facts will be:

a. The Internal Business Capability with code ‘INCAP1’ is owned by the Owner with code ‘OWN1’

b. The Owner with code ‘OWN1’ owns the Internal Business Capability with ‘INCAP1’

c. The Internal Business Capability with code ‘INCAP4’ is owned by the Owner with code ‘OWN1’

d. The Owner with code ‘OWN1’ owns the Internal Business Capability with code ‘INCAP4’

e. The External Business Capability with code ‘EXCAP1’ is owned by the Owner with code ‘OWN2s’

f. The Owner with code ‘OWN2’ owns the External Business Capability with code ‘EXCAP1’

Continuing a Business Capability for example ‘INCAP4’ has a specific description,

meaning the ‘Maritime Compliance Capability’, and also an Owner for example ‘OWN1’ has

a specific name, meaning ‘DMC’. Thus for this cases we have a different properties for each

object, which in fact identify those object types. Thus for this kind of information we

transform it into two different elementary facts which will be:

a. The Internal Business Capability with code ‘INCAP1’ has the Capability Description ‘Maritime

Management Capability’

b. The Owner with code ‘OWN1’ has the Owner Name ‘DMC’

and so on..

For this step of the CSDP procedure, the same as previous exists for the other

relations of the Capability meta-model. In more detail by using a ‘Code’ reference mode, we

identify: The Goals, The Context, The Business Outputs, The Collaborator Connector, The

Ability, The Skill Type, The Services, The Business Process and The Capacity. As far for

Recipient we are using a ‘Name’ reference mode and for Economic Value a currency ‘EUR:’.

Finally for the previous information, in some cases an extra identification is needed in a form

of ‘Name’ or ‘Description’. If we transform those cases of data in elementary facts we can

say:

a. The Goal with code ‘INCAP4_GOAL1’ has the Goal Name ‘Goal9: To participate in research projects’

and so on…

b. The Context with code ‘CONT1’ has the Context Description ‘Local Legislations’ and so on...

c. The Output with code ‘INCAP4_OUTPUT1’ has the Output Name ‘Rule Compliance Service’ and so on...

d. The Ability with code ‘INCAP4_INAB1’ has the Ability Description ‘The Ability to ease the transmission

procedures of required compliance documents for the Port of Calls Application’ and so on...

e. The Skill Type with code ‘SK6’ has the Skill Name ‘Master Degree in Project Management’ and so on...

f. The Service with code ‘SERV5’ has the Service Name ‘E-Compliance System’ and so on...

g. The Business Process with code ‘BP1’ has the Process Name ‘Business Process for Service Request and

Quality Control’ and so on...

88

h. The Capacity with code ‘INCAP4_INRES1’ has the Capacity Description ‘The Capacity to ease the

transmission procedures of required compliance documents for the Port of Calls Application’ and so

on...

Except from the previous cases described, then we are wondering if the facts type can

split into a smaller one without losing the information. For those cases we can say that some

extra information about the ontologies must be described, which is not depicted in the initial

Capability meta-model and by that we can spilt some facts into a smaller one, in order this

information to be described.

In more detail for Collaborator Connector except from the information about the

hierarchies of them and the Economic Value that has, some extra information about the kind

of code for the inserted values must be described. This can be specified by creating a new

relation of this with a new entity the Connector Type. Thus if we transform this information

in elementary facts we can say that:

a. The Collaborator Connector with code ‘PO1’ has the Connector Type with code ‘POLICY’ and so on…

b. The Code with code ‘Polity’ has the Collaborator Connector with code ‘PO1’ and so on...

The same exists for Business Process. When a Business Process is used by the

company then specific tasks are executed by the administrator of this process. This kind of

information is missing from the initial Capability meta-model. For identifying this task a

‘name’ is used as a reference mode. Thus if we transform this information in elementary

facts we can say that:

a. The Business Process with code ‘BP2’ leads to the Task with the name ‘Tasks (manual and user tasks):

a) Collect forms with vessel’s status b) Collect forms with cargo status etc.’ and so on…

b. The Task with the name ‘Tasks (manual and user tasks): a) Collect forms with vessel’s status b) Collect

forms with cargo status etc.’ is executed for the Business Process with the code ‘BP2’ and so on...

Also for the case of Resources that defines Capacity, in the real examples of data that

we have from the DMC Company, a Resource may have a code, a description and also is

categorized in different types. The initial Capability meta-model missing a lot of this

information, thus in that case we consider that we have the elementary facts:

a. The Capacity with code ‘INCAP4_INRES1’ is made of the Resources with code ‘HU_INRES4.1’ and so

on…

b. The Resources with code ‘HU_INRES1’ defines Capacity with the code INCAP4_INRES1‘’ and so on…

c. The Resources with code ‘HU_INRES1’ has a Resource Type with code ‘HU’ and so on….

d. The Resources with code ‘HU_INRES1’ has the Resources Description ‘2 Software engineers from the IT

department and 1 Project Manager’ and so on…

 In the second step of the CSDP procedure we draw the additional corrections in a

new Capability meta-model and apply a population check. Then in the third step of this

procedure we check for object types that should be combined, and note any arithmetic

89

derivations. In this last step although there are no arithmetic derivations that must be noted,

there is in some cases some object types that can be combined. For example in the

Capability meta-model a Collaborator Connector has an Economic Value and the same exists

for the Capacity, the Ability and the Business Output. In this model the modeler has chosen

to depict twice the ontology of Economic Value. Thus in the new Capability meta-model, we

have described the Economic Value in one object type that related with the others.

Next for the other two following steps of the CSCP procedure (step 5 & 6) we

implement the changes at the same time. More specific in the new Capability meta-model

we will add the uniqueness constrains, we will check the arity of the fact types, we will we

add the mandatory roles constraints and if is needed we will check for logical derivations.

In that point for the cases of the initial Capability meta-model that has being kept as is

was, the uniqueness constraints, the arity of fact types and the mandatory role constraints

maintain the same, since they describes correctively the way the data will be stored in the

database for the maritime application. Thus we will only discuss the previous for the fact

types that we have added.

In more detail when we describing the information about the Owner of the company,

a code is needed to identify him and also a Name. In that case an Owner has exactly one

code and also an exactly one name, meaning it cannot be identified by a more than one

codes or more than one names or to have none of this identifiers. Thus we will add a

uniqueness constraint in the role of Owner, which mean that Owner code in this table must

be unique, and also a mandatory role constraint which

says that this value it cannot be null. If we verbalize this

rule with the help of NORMA Tool of Visual Studio 2013 for Enterprise Architects we can say

that:

Each Owner has exactly one Owner Name.

It is possible that more than one Owner has the same Owner Name.

For this kind of information in the first case of verbalization we have a many to one

(n:1) relationship and for the second case a one to many (1:n) relationship.

The same as the previous example of Owner exist for:

a. The identification of Business Capability:

90

In this case we say:

Each Business Capability has exactly one Capability Description.

It is possible that more than one Business Capability has the same Capability Description.

b. The identification of Business Goal:

In this case we say:

Each Business Goal has exactly one Goal Name.

It is possible that more than one Business Goal has the same Goal Name

c. The identification of Context:

In this case we say:

Each Context has exactly one Context Description.

It is possible that more than one Context has the same Context Description.

d. The identification of Business Output:

In this case we say:

Each Business Output has exactly one Output Name.

It is possible that more than one Business Output has the same Output Name.

e. The identification of Skill Type:

In this case we say:

91

Each Skill Type has exactly one Skill Name.

It is possible that more than one Skill Type has the same Skill Name

f. The identification of Ability:

In this case we say:

Each Ability has exactly one Ability Description.

It is possible that more than one Ability has the same Ability Description.

g. The identification of Business Process:

In this case we say:

Each Business Process has exactly one Process Name.

It is possible that more than one Business Process has the same Process Name.

h. The identification of Service:

In this case we say:

Each Service has exactly one Service Name.

It is possible that more than one Service has the same Service Name.

i. The identification of Capacity:

92

In this case we say:

Each Capacity has exactly one Capacity Description.

It is possible that more than one Capacity has the same Capacity Description.

j. The identification of Resources:

Finally in this case we say:

Each Resources has exactly one Resources Description.

It is possible that more than one Resources has the same Resources Description.

Then we continue with the relation between the Business Process and Task. Here we

have a fact that is says that a Business Process with a specific code leads to a Task with

specific name and another that says Tasks with a specific name are executed by Business

Process with a specific code. For this combination of data the information about Business

Process must be unique, which means that it is not allowed duplicates when entering the

Business Process Code. Thus in this case we have added a uniqueness constraint in the role

that plays the Business Process as follows:

In this case if we verbalize this constraint we can say:

Each Business Process leads to at most one Task.

It is possible that some Task are executed for more than one Business Process.

Also for this kind of information in the first case of verbalization we have a many to

one (n:1) relationship and for the second case a one to many (1:n) relationship.

The same as previous exists for:

a. The relation between the Collaborator Connector and the Connector Type.

In this case if we verbalize this constraint we can say:

Each Collaborator Connector has at most one Connector Type.

It is possible that more than one Collaborator Connector has more than one Connector Type.

b. The relation between the Capacity and the Resources.

93

In this case if we verbalize this constraint we can say:

Each Resources defines at most one Capacity.

It is possible that some Capacity is made of more than one Resources.

c. The relation between the Resources and the Resource Type.

In this case if we verbalize this constraint we can say:

Each Resources has at most one Resource Type.

It is possible that some Resources has more than one Resource Type.

Finally there are no cases for checking for logical derivations in this model.

We then continue with the Step 7 of the CSCP procedure. We remind that in this

step we add value, set comparison and subtyping constrains. We also mention that cases for

the second option of the previous are not implemented in our model.

Thus we will start with the value constraints. Here for the Connector Type, we have

already said that is identified by a specific code. This code referred to specific values which

are ‘Procedure’, ‘Information’ and ‘Policy’ and nothing else except from the three of them.

Thus for this type of values we have added a value constraint in the Connector Type as

follows:

If we verbalize this we can say that:

The possible value of Connector Type_code in Connector Type has Connector Type_code is

'PROCEDURE', 'INFORMATION', 'POLICY'.

The adding of this constraint change the way we verbalize the fact type. Now we

can say that:

Each Collaborator Connector has at most one Connector Type.

It is possible that more than one Collaborator Connector has the same Connector Type.

The same exists for the Resource Type. Here the code takes specific values as

follows:

If we verbalize this we can say that:

94

The possible value of Resource Type_code in Resource Type has Resource Type_code is 'PH', 'LE',

'PR', 'HU', 'TE', 'FI', 'DA'.

The adding of this constraint change the way we verbalize the fact type. Now we

can say that:

Each Resources has at most one Resource Type.

It is possible that some Resources has the same Resource Type

We now continue with the subtype constraints. We reminding that subtyping

constraints are mutually exclusive (): there is a distinction between the subtypes;

collectively exhaustive (): subtypes equals the union of the supertype; and the

combination of the previous two (): where subtypes partition the supertype.

As we have already described Business Capability is divided into Internal Capability

and External Capability. The last two subtypes equal the union of the supertype Business

Capability. That’s because Internal Capability is a Business Capability and the same exists for

External Capability and thereafter if you take the union of them, then we have the total

Business Capability. Also there is a distinction between them since Internal Capability refers

to Capabilities that owned by the company, but External Capability describes the Capabilities

that owned by some other companies. Thus in that case an exclusive and exhaustive

constraint () is added between of them as follows:

In this case if we verbalize the subtype constraint we can say:

For each Business Capability, exactly one of the following holds:

that Business Capability is some External Capability;

that Business Capability is some Internal Capability.

95

The same as Business Capability exists for:

a. The Ability, who is divided into Internal Ability and External Ability.

In this case if we verbalize the subtype constraint we can say:

For each Ability, exactly one of the following holds:

that Ability is some External Ability;

that Ability is some Internal Ability.

b. The Capacity, who is divided into Internal Resource Set and External Resource Set.

In this case if we verbalize the subtype constraint we can say:

For each Capacity, exactly one of the following holds:

that Capacity is some External Resource Set;

that Capacity is some Internal Resource Set.

c. The Resource, who is divided into Phycical, Legal, Procedural, Human,

Technological, Financial and Datalogical.

In this case if we verbalize the subtype constraint we can say:

For each Resources, exactly one of the following holds:

that Resources is some Phycical;

that Resources is some Legal;

that Resources is some Procedural;

that Resources is some Human;

that Resources is some Technological;

that Resources is some Financial;

that Resources is some Datalogical.

96

As far for Collaborator Connector, there is difference compared with previous cases.

Here the is a distinction between subtypes Procedure, Information and Policy, since each of

them describes a different kind that is used a connector for the collaborations between

capability, but we are not sure if the total of them equals to this Collaborator Connector.

Thus in that case an exclusive constraint () is added between of them as follows:

 In this case if we verbalize the subtype constraint we can say:

For each Collaborator Connector, at most one of the following holds:

that Collaborator Connector is some Policy;

that Collaborator Connector is some Information;

that Collaborator Connector is some Procedure.

Finally in the Step 8 of the CSCP procedure we add other constraints and we perform

final checks. In more detail we will add some ring constrains in the ring fact types and also

some textual constraints for every derived fact type.

 In the initial Capability meta-model a hierarchy of Business Capability is depicted,

meaning a parent-child relationship. This relationship indicates a table that contains all the

information about a Main Business Capability (parent) and it’s Sub Business Capabilities

(child). For example in the DMC Company, the Main Capability ‘INCAP4: Maritime

Compliance Capability’ is decomposed into the Sub Capabilities ‘INCAP4.1: Vessel

Monitoring Capability, INCAP4.2: Port Regulation Monitoring Capability and INCAP4.3:

Regulation Inconsistences Reporting Capability. However in this model there is no check for

identifying how these two ontologies (Main Capability and its Sub Capability) will be

maintained in every instance of this table. This has to do with ring constraints.

In more detail for the previous example we say that the Main Business Capability

cannot bear a relationship with itself meaning that we cannot have a table with an instance

in this form:

Main Capability Sub Capability

INCAP4 INCAP4

This type of relationship is said to be irreflexive for each of them and is depicted with

the symbol . Thus for Business Capability this constraint is implemented as follows:

97

In this case if we verbalize the ring constraint we can say:

No Business Capability is decomposed to the same Business Capability.

The same as Business Capability exists for:

a. Business Goals.

In this case if we verbalize the ring constraint we can say:

No Business Goal is decomposed to the same Business Goal.

b. Business Output.

In this case if we verbalize the ring constraint we can say:

No Business Output is decomposed to the same Business Output.

c. Service.

In this case if we verbalize the ring constraint we can say:

No Service is decomposed to the same Service.

Finally we have added some textual constraints in order to specify every derived fact

type exists, meaning note that contains a rules who says how one fact type may be derived

from others. For example an External Business Capability is a Business Capability who is

decomposed to some Business Capability etc.

All of the previous corrections that described in this section are depicted in the new

Capability meta-model, which follows in Figure 41. This meta-models will be used in the next

Chapter for designing a Relational Schema.

98

Figure 41: A new Conceptual Model for Business Capability

99

4.3 Chapter Summary

Summarizing, in this chapter we have worked in a first level of the ORM technique,

meaning we have tried to design a specific conceptual schema, which will be used for the

maritime application of Business Capability. As we have already stated, this schema

describes the structure or grammar of a specific Universe of Discourse, meaning ontologies

such as object types, the roles between objects types and constraints.

Thus firstly we have taken an initial version of a Capability meta-model, which defines

Business Capability and has being designed according to ORM (Loucopoulos, Bravos,

Stratigaki, & Vavlis, 2013), in order to examine if it is a capable model for using it during the

designing of the maritime application.

This meta-model has being focused on describing what a business can do and

characterize that from a Teleological View (goals, rules), an Operational View (Information,

processes, transactions and roles), a Service View (service processes, atomic services and

software services), a Contextual View (user context, business context, situation and

variation) and a Capability View (capacity, ability, ownership and value) (Loucopoulos,

Bravos, Stratigaki, & Vavlis, 2013). By reading this meta-model a modeler can understand in

a first level what kind of information about Business Capability is required, and thereafter

must be stored in a database, and also though the implemented constraints, he can

understand the way this information must be stored in the database (e.g. relations,

mandatory fields of tables, unique fields of tables etc). For that reason we have described in

natural language all the ontologies of this meta-model, meaning we explain all objects in

detail, we verbalized in natural language all the implemented constraints and finally we have

provide a description about the kind of relationships (cardinalities) it depicts.

By this description we have concluded that this meta-model is accurate and competed

enough for the purpose it has being designed, however it is not detailed and analytical

enough in order to support the decryption of all the required by the specifications

information for the maritime application, that will be used for the use case of data for

Danaos Management Consultant company.

Thus in the second part of this chapter we redesign this meta-model, by using the

graphical notation of ORM 2 (Halpin T. , 2005-B) and the NORMA tool of Microsoft Visual

Studio of Enterprise Architectures, and by this way we were intended to describe all the

missing information from the initial meta-model. To achieve the previous we follow from the

beginning the CSDP procedure (Conceptual Schema Design Procedure), and described in

detail his steps for our UoD. The result of this work was an accurate and complete

100

Conceptual Model for Business Capability description of the Maritime Application, which will

then be used in the next chapter for creating the Relational Schema for our application.

From the above we can understand that an important factor when designing a

Conceptual Schema is the purpose of designing. This purpose usually specifies what kind of

information must be depicted and the way is depicted. On the other hand when describing a

specific UoD by a Conceptual Schema different patterns may be produced according to the

way of thinking of the modeler. For example taking the previous initial of Conceptual

Schema for Business Capability was an important help for producing an accurate and

complete model for our Application. That’s because this model became the basis for the

designing of our model, since it has describe correctively the way most of the data required

to be stored in the maritime application. On the other hand in the new Business Capability

meta-model, some fact types have being depicted in a different way than the initial meta-

model. The previous has to do with the way of thinking of the modeling. However, the most

important in both cases is not the way of depicting the different models by the modelers,

but the prevention of missing important information about the under description of UoD.

That’ why we are also agree that in the CSPD procedure the most important part is the first

step, where examples of data are express in term of elementary facts. This is a step where if

the information about the UoD is not expressed in detail, then there is a big possibility to

lead into a missing of data. Thus in this step it is important for the modeler to have a full

access and permission by the company to the all available information about it.

101

CHAPTER 5: Mapping the

Capability Meta – Model to

Relational Schema

Structure of this Chapter

5.1 Followed Procedure of Mapping in

Detail

5.2 Chapter Summary

This chapter deals with

working in a second level

of our Approach according

to ORM, meaning by

designing the Relational

Schema that will be used

for the maritime

application of Danaos

Management Consultant

Company. Thereafter we

have taken into account

the Business Capability

meta-model that was

designed in a previous

chapter and in this chapter

we follow a specific

procedure of mapping in

order to produce a

Relational Schema. Thus

Section 5.1 describes this

procedure in detail and

finally in Section 5.2 a

summary of this chapter is

presented.

102

5.1 Followed Procedure of Mapping in Detail

Taking into account the Relational Mapping Procedure that discussed in unit 3.3 of

this dissertation, we consider how to implement this on the new Capability Meta-Model

discussed in Chapter 4.

Following Step 0 we can see that in the Capability meta-model are no unaries and any

relative closure (sub-step 0.1). However there are enough reference (primary identification)

predicates (eg. Capability Description etc) and one compositely identified object type. Thus,

we mentally erase all of them and we are concerning the compositely identified object types

as “black boxes” and treat them as simple object types. We have only one nested object

type. We will call this nested object type as “Abilityusescapacitywithservice” (sub-step 0.2).

Thus, we generate the table named “Abilityusescapacitywithservice” and treated the

objectified object type as “black box”. Thus we have the table:

We then indicate any non-absorption choices for subtypes (sub-step 0.3). The main

criterion about this is whether the supertype and its subtypes play non-functional roles. If

they play functional roles then we choose the absorption option. So, the Capability meta-

model has five supertypes. Those are the “Business Capability”, the “Collaboration

Connector”, the “Capacity”, the “Resources” and the “Ability”.

Starting with “Business Capability” supertype, we can see that the roles played by that

and its supertypes “External Capability” and “Internal Capability”, are not functional.

Actually the subtype “Internal Capability” has non-functional roles. In case like this the

option of absorption is unfeasible, because any non-functional roles of the subtypes map to

separate tables anyway. So, let’s see the option of partition, examining whether supertypes

are exclusive and exhaustive. This means that a) “Internal Capability” ∩ “External

Capability”= { } and also b) “Internal Capability” ∪ “External Capability”= Business Capability.

The first one is true, as there is distinction between the two of them (meaning that they

cannot have common instances). That’s because Internal Capability refers to the capabilities

owned by the business and External Capability refers to the capability owned by some other

enterprises. The second one is also true because the totally of Internal and External

Capability is Business Capability. According to them we will choose partition approach for

supertypes. Noted, if supertypes were not exhaustive, then we would choose the separation

approach, because in a non-exhaustive situation a separate table is needed anyway. Thus,

we generate two tables named “Incapability” and “Excapability”. The Business Capability

Abilityusescapacitywithservice (,

103

object type has the reference mode “code”, thus we generate the primary keys that

identify those tables as “incapcode” and “excapcode”. The union of those primary keys is

the totality of Business Capability code named in our schema “capcode”. We are underlying

primary keys of each table, since it has to be unique. Also the primary keys cannot be null

according to the Entity Integrity Rule. Thus we have the tables:

Following the same procedure with the previous paragraph, we see that

“Collaboration Connector” supertype has no-functional roles, while its subtypes

“Procedure”, “Information” and “Policy” has functional roles. In case like this the option of

absorption is unfeasible. Also subtypes Procedure”, “Information” and “Policy are exclusive

(“Procedure” ∩ “Information”	∩ “Policy”= { }), but are not exhaustive. This is because

collaborations with capabilities (internal or external) may exist for now, but a new

collaborator connector might be introduced in the future. This means that a capability may

provide some other connector to another capability in the future. Whether the subtypes are

not both exclusive and exhaustive then the option of partition is not chosen. Thus we will

choose the option of separation for the subtype. This option indicates each object type to

be mapped to a separate table. Thus, we generate a hierarchy of tables named

“Collaborator”, “Procedures”, “Information” and “Policy”. Also in this case the reference

mode “code” will be the primary key for the table “Collaborator” and the foreign key for the

other tables “Procedures”, “Information” and “Policy”. Thus for the table Collaborator we

have the primary key “collabcode”, which will be a foreign key for the other tables. The

union of those foreign keys is the totality of the primary key “collabcode”. Also the foreign

keys are also and primary keys for the tables “Procedures”, “Information” and “Policy”.

Finally we are underlying primary and foreign keys, since it has to be unique. Thus we have

the tables:

Incapability (incapcode, …)

Excapabiliy (excapcode, …)

Collaboratorconnector (collabcode, …)

Procedures (collabcode)

Information (collabcode)

Policy (collabcode)

104

Thereafter we see that “Capacity” supertype has non-functional roles, while its

subtypes “External Resource Set” and “Internal Resource Set” has functional roles. Same as

previous the option of absorption is unfeasible. On the other hand subtypes “External

Resource Set” and “Internal Resource Set” are both exclusive and exhaustive. This means

that a) “Internal Resource Set” ∩ “External Resource Set”= { } and also b) “Internal Resource

Set” ∪ “External Resource Set”= Capacity. A capacity refers to all kind of resources business

has and also to resources that business buys from other enterprises. This mean that there is

a distinction between the two subtypes and the total of them equals to Capacity.

Considering the previous we will choose partition approach for supertypes. Thus, we

generate two tables named “Incapacity” and “Excapacity”. The Capacity supertype has the

reference mode “code”, thus we generate the primary keys that identify those tables as

“incapaccode” and “excapaccode”. The union of those primary keys is the totality of

Capacity code named in our schema “capaccode”. Thus we have the tables:

As far as “Resources” supertype we will choose an absorption approach. That’s

because the supertype and its subtypes “Datalogical”, “Financial”, “Technological”,

“Human”, “Procedural”, “Legal” and “Physical”, play functional roles. In this case we

generate just one table named “Resources”. The other two approaches separation and

partition would result us to more tables and this is not efficient. The Resources supertype

has the reference mode “code”, thus we generate the primary key “rescode” for that table.

Thus we have the table:

Finally the “Ability” supertype has non-functional roles, while its subtypes “External

Ability” and “Internal Ability” has functional roles. This means that we cannot use the

absorption approach. Both subtypes equals the total ability (Internal Ability” ∪ “External

Ability”= Capacity), which means that subtypes are exhaustive. Also “Internal Ability”

referred to the ability that the business has, but “External Ability” referred to the ability that

have some other enterprises. So, both of them are exclusive. According to previous we will

choose a partition approach. We then generate two tables named “Inability” and

“Exability”. Since there is the reference mode ”code” in “Ability” object type, we generate

the “inabcode” and the “exabcode” as the primary keys that identify those tables. The

Incapacity (incapaccode, …)

Excapacity (excapaccode, …)

Resources (rescode, …)

105

union of those primary keys is the totality of Ability code named in our schema “abcode”.

Thus we have the tables:

Next step concerns the indication of the derived fact types that must be stored (sub-

step 0.4). In our case we have no derived fact types that must be stored.

Also in Capability meta-model there are no symmetric 1:1 cases (sub-step 0.5), no

disjunctive reference schemes (sub-step 0.6) and no cases where an objectified predicate is

not spanned by a uniqueness constraint (sub-step 0.7). We then continue to the next step.

In Step 1 we look around for a predicate with a compound uniqueness constraint.

Those are m:n binaries and n-aries (n≥3) predicates. Those predicates are:

a) The m:n binaries:

 …meets…/… is achieved by …

…is in…/…bounds…

…is decomposed to…/…is part of… (that refers to Business Capability)

…is decomposed to…/…is part of… (that refers to Business Goal)

…is decomposed to…/…is part of… (that refers to Business Output)

…is decomposed to…/…is part of… (that refers to Service)

b) The n-aries predicates (m:m:n & m:m:1):

…collaborates with…through…

…is of…to…

...uses…for… (that refers to Capacity)

…uses…for… (that refers to Ability)

To help visualize we place a lasso to them, indicating that each of them goes to a table

by itself as follows:

Inability (inabcode, …)

Exability (exabcode, …)

106

So we will have ten tables on the relational schema. In more detail for the predicate

“…meets…/… is achieved by…”, we generate the table named “Capabilitymeetsgoal”, putting

the object types “Business Capability” and “Business Goal” as column names. Since the

totality of Business Capability code is the “capcode”, we use this as primary key of that table

and also we create the “goalcode” for identify Business Goal, since the object type “Goal”

has reference mode “code”. The “goalcode” also will be a primary key for that table. The

107

uniqueness constraint provides the candidate key for identifying rows and this unique

column combination is shown by underling in this table. Thus the combination “capcode-

goalcode” is the candidate key for that table. However the “goalcode” will also be a foreign

key for that table. Thus we have the final table:

The same as previous exits for the predicate “…is in…/…bounds”. Here we generate

the table named “Capabilityisincontext”. The Business Capability object type is identified by

“capcode” and we generate “contcode” to identify the object type Context. Both “capcode”

and “contcode” are primary keys for that table and the last one is also a foreign key. Also the

combination “capcode-contcode” is the candidate key for that table. Thus we have the final

table:

As far for the ring predicate “…is decomposed to…/…is part of…” of Business

Capability, we generate the table “Capabilityispartof”. This predicate shows the hierarchy of

Business Capability into sub capabilities. In that case we distinguish “capabilitycode” into

“mcapcode” for describing the main Business Capability and into “subcapcode” for

describing the sub capabilities. Both “mcapcode” and “subcapcode” are primary keys for

that table and so the combination “mcapcode-subcapcode” is the candidate key for that

table. Thus we have the final table:

The same as previous exists in the ring predicate “…is decomposed to…/…is part of…”

of Business Goal, “…is decomposed to…/…is part of…” of Business Output and “is

decomposed to…/…is part of…” of Service. In that case we generate the tables

“Goalispartof”, “Outputispartof” and “Serviceispartof”. Thus we have the final tables:

For the ternary predicate “…collaborates with…through…”, we generate the table

named “Collaborations”. Since this predicate describe collaborations with external

Capabilitymeetsgoal (capcode, goalcode)

Capabilityisincontext (capcode, contcode)

Capabilityispartof (mcapcode, subcapcode)

Goalispartof (mgoalcode, subgoalcode)

Outputispartof (moutputcode, suboutputcode)

Serviceispartof (mservcode, subservcode)

108

capabilities and indeed between internal capabilities, which may also be and subcapabilities,

we will use as primary keys the “capcode1” and “capcode2” to identify “Business Capability”

and their sub capabilities, and the “collabcode” as a primary key to identify the

“Collaborator Connector” object type. The “collabcode” will be also and a foreign key for

that table. Thus the combination “capcode1-capcode2-collabcode” is the candidate key for

that table. Thereafter we have the final table:

For the predicate “…is of…to…”, we generate the table named “Outputisofvalue”. Here

we will use the “outputcode” as a primary and foreign key for identifying the object type

“Business Output”. The candidate key is the unique column combination of outputcode-

evalue. Also the column “recipientname” is mandatory. Thus we have the final table:

For the predicate “...uses…for…”, that refers to Capacity, we generate the table named

“Usescapacityforservice”. Here we will use the “incapcode” to identify “Business Capability”

as a primary and a foreign key. As far for “Capacity” we will use the “capaccode” as a

primary key. The unique columns combination of capcode-capaccode is the candidate key.

Thus we have the table:

For the predicate “…uses…for…”, that refers to Ability, we generate the table named

“Usesabilityforservice”. Here we will use the “incapcode” to identify “Business Capability” as

a primary and a foreign key. As far for “Ability” we will use the “abcode” as a primary key.

The unique columns combination of capcode-abcode is the candidate key. Thus we have the

table:

In Step 2 we group functional fact types (fact types with functional roles) of the

same object type together. In the Capability meta-model there no 1:1 cases so we are

limited to the first procedure of step 2. According to that we are looking for object types

that have at least one simple uniqueness constraint. To help visualize we place a lasso to

them as follows:

Collaborations (capcode1, capcode2, collabcode)

Outputisofvalue (outputcode, evalue, recipientname)

Usescapacityforservice (incapcode, capaccode, …)

Usesabilityforservice (incapcode, abcode, …)

109

110

Continuing the procedure of mapping, the object type “Owner” has a functional role

with the value type “Owner Name”. Thus we generate the table named “Owner”, in which

we group the value type “Owner Name” as column named “ownername”, which is

mandatory. The object type “Business Owner” has reference mode “code”, so the primary

key for this table will be the “ownercode”. Thus we have the final table:

As we see in the meta-model the object type “Business Capability” has a functional

role with the object type “Owner” and the value type “Capability Description”. Thus we

group the object type “Owner” as name of column (attribute) named “ownercode” both to

tables “Incapability” and “Excapability”, since the last two shares a partition of “Business

Capability” object type. The same exists in value type “Capability Description”, where we

group it as a name of column named “capdesc” for both tables “Incapability” and

“Excapability”. The column “ownercode” is mandatory since there is a foreign key although

there is no mandatory constraint applied. Thus we do not enclose it in in square brackets

([]). We have already referred to “incapcode” and “excapcode” as primary keys, we just

shown uniqueness constraint by doubly underlying, since there is a foreign key in that table.

So the final tables will be as follows:

The same as previous exists in object types “Business Goal” and “Context”. Thus we

generate the tables “Businessgoal” and “Context” which will be in final forms:

As well the object type “Business Output” has a functional role with the object type

“Business Capability” and with the value type “Output Name”. So we generate a table

named “Output” and group the object type “Business Capability” with a name of column

“capcode” to that table. Also we will use the reference mode “code” to identify “Business

Output” as a primary key named “outputcode”. Here the primary key is doubly underlined

because a foreign key exists. So we have the final table:

Owner (ownercode, ownername)

Incapability (incapcode, capdesc, ownercode)

Excapabiliy (excapcode, capdesc, ownercode)

Businessgoal (goalcode, goalname)

Context (contcode, contdesc)

111

The supertype “Collaborator Connector” has a functional role with the object type

“Economic Value” and with the object type “Connector Type”. Thus we group the object

type “Economic Value” as name of column named “evalue” and the object type “Connector

Type” as a name of column named “connectortype” with the values {“POLICY”,

“INFORMATION”, “PROCEDURE”} to table “Collaborator”. Thus the final table will be as

follows:

The supertype “Ability” has a functional role with the object type “Economic Value”

and the value type “Ability Description”. Thus we group the object type “Economic Value” as

name of column named “evalue” and the value type “Ability Description” as name of column

named “abdescr” both to tables “Inability” and “Exability”, since the last two shares a

partition of “Ability” object type. Thus the final tables will be as follows:

The object type “Skill Type” has a functional role with the supertype “Ability” and the

value type “Skill Name”. Thus we generate a table named “Skilltype” and group the

supertype “Ability” and the value type “Skill Name” as columns to that table. Since there is

the reference mode “code” in the “Skill Type” object type, we generate the “skillcode” as

the primary key that identify it. Thus we have the final table:

The object type “Business Process” has a functional role with the object type “Tasks”

and the value type “Process Name”. Thus, we generate a new table named “Process” and we

group on him the object type “Tasks” as taskname and the value type “Process Name” as

processname. Since there is the reference mode “code” in “Business Process” object type,

we generate the “processcode” as the primary key that identify it and shown by underlying

uniqueness constraints. The column task name is optional, thus we enclosed it in []. Thus we

have the final table:

Output (outputcode, outputname, capcode)

 {POLICY,

INFORMATION,

PROCEDURE}

Collaborator (collabcode, connectortype, evalue)

Inability (inabcode, abdescr, evalue)

Exability (exabcode, abdescr, evalue)

Skilltype (skillcode, skillname, abcode)

112

Also the object type “Service” has a functional role with the object type “Business

Process” and the value type “Service Name”. Thus, we generate a new table named

“Service” and we group on him as a foreign key the “processcode” of the object type

“Business Process” and as attribute name “servname” the value type “Service Name”. Since

there is the reference mode “code” in “Service” object type, we generate the “servcode” as

the primary key that identify it and shown by underlying uniqueness constraints. The

“servcode” primary key will be a foreign key for the tables “Usescapacityforservice” and

“Usesabilityforservice”. Thus we have the following final tables:

The object type “Capacity” has a functional role with the object type “Economic

Value” and the value type “Capacity Description”. Thus we group the object type “Economic

Value” as name of column named “evalue” and the value type “Capacity Description” as

name of column named “capacdescr” both to tables “Incapacity” and “Excapacity”, since the

last two shares a partition of “Capacity” object type. Thus the final tables will be as follows:

The supertype “Resources” has a functional role with the supertype “Capacity”, with

the value type “Resources Description” and the object type “Resource Type”. Thus we group

the supertype “Capacity” named “capaccode” to table “Resources”, the value type

“Resources Description” as name of column named “resdescription” and the object type

“Resource Type” as a name of column named “restype”, which takes the values with the

values {“PH”, “LE”, “PR”, “HU”, “TE”, “FI”, “DA”}. Since there is the reference mode “code” in

“Resources” supertype, we generate the “rescode” as the primary key that identify it and

shown by underlying uniqueness constraints. Thus the final table will be as follows:

Process (processcode, processname, [taskname])

Service (servcode, servname, processcode)

Usescapacityforservice (incapcode, capaccode, servcode)

Usesabilityforservice (incapcode, abcode, servcode)

Incapacity (incapaccode, capacdescr, evalue)

Excapacity (excapaccode, capacdescr, evalue)

113

Finally the objectified object type “Abilityusescapacitywithservice” has a functional

role with the subtype “Internal Capability”. Thus we group the subtype “Internal Capability”

as name of column named “incapcode” to table “Abilityusescapacityswithservice”. Thus we

have the table:

Following Step 3 in the Capability meta-model there are no lazy objects types. So we

left behind Step 3 and proceed to the next step. In step 4 we unpack each “black box

column” into its component attributes. Thus in the table “Abilityusescapacitywithservice” we

do the following:

In Step 5 we map all other constraints and derivation rules. Also subtype constraints

on functional roles map to qualified optional columns, and on non-functional roles map to

qualified subset constraints.

In more detail let’s start with the referential integrity constraints. According to the

Referential Integrity Rule each non-null vale of a foreign key must match one of the values of

the referred primary key. As we referred to a previous section a dotted arrow (---->) is used

to depict that starting from the foreign key to the primary key. Thus we depict the

referential integrity constraints in our model for every foreign and primary key that we have

already describe previously. In some case in our mode the referential integrity constraint

followed by a text qualifications. Those text qualifications are shown in the relational

schema with numbers 1, 2, 3, 4, 5, 6, 7, 8 and 9 and the “exactly where” clause means that is

a mandatory role constraint and not an optional.

Next in cases of partition for subtypes we are reconstructing the supertype using

unions and add the subtyping constraints. Thus for supertype “Business Capability” we add

the partition constraint (meaning that subtypes are mutually exclusive and collectively

exhaustive), connecting with dotes lines between the primary keys “incapcode” &

 {“PH”,”LE”,

 “PR”, “HU”,

 “TE”, “FI”,

 “DA”}

Resources (rescode, restype, resdescr, capaccode)

Abilityusescapacitywithservice (, incapcode)

From Abilityusescapacitywithservice (, incapcode)

To Abilityusescapacitywithservice (abcode, capaccode, servcode, incapcode)

114

“excapcode” that exists in the tables “Excapability” and “Incapability”. This constraint

ensures that each supertype individual is maintained only in one table. We are also using the

union “BusinessCapability (capcode)= InternalCapability (incapcode) union External

Capability (excapcode)”, as textual qualification for reconstructing the supertype “Business

Capability”. The same exists to “Capacity” and “Ability” supertypes. We are adding a

partition constraint between the primary keys “incapaccode” & “excapaccode” to the tables

“Incapacity” and “Exrcapacity”, and also between the primary keys “inabcode” &

“exabcode” to the tables “Inability” and “Exability”. Here the textual qualifications are

“Capacity (capaccode)= InternalResourceSet (incapaccode) union ExternalResourceSet

(excapaccode)” and “Ability (abcode)= InternalAbility (inabcode) union ExternalAbility

(exabcode)”.

We also depicting the ring constraints by adding the symbol connecting it with

dotes lines between the column names. This ring constraint is irreflexive, which means that

the object type cannot bear a relationship with itself.

However in order the relational schema to be accurate and correct will we use the

Normalization technique for fulfill that schema.

Firstly in the table Incapability, in the column incapcode there is confusion about the

data that will be inserted. That’s because in this column we are inserting a hierarchy of

Business Capability Codes, which include the Main Internal Business Capability Code and the

Sub Internal Business Capability Code. So for that table we will create a new column named

incaptype, in which we will separate, by using the values {0,1} the two of them. Thus for the

Main Internal Business Capability the incaptype will take the value 1 and for the Sub Internal

Business Capability the incaptype will take the value 0.

The same as previous exists for the tables Excapability, Goal, Output and Service. For

the Table Excapability we in the column excapcode we are inserting a hierarchy of Business

Capability Codes, which include the Main External Business Capability Code and the Sub

External Business Capability Code. So for that table we will create a new column named

excaptype, which we take the values {0,1}. For the Main External Business Capability the

excaptype will take the value 1 and for the Sub External Business Capability the excaptype

will take the value 0. For the table Goals in the column goalcode we are inserting a hierarchy

of Goal Codes, which include the Main Goal Code and the Sub Goal Code. So for that table

we will create a new column named goaltype, which we take the values {0,1}. For the Main

Goal the goaltype will take the value 1 and for the Sub Goal the goaltype will take the value

0. For the table Output in the column outputcode we are inserting a hierarchy of Output

115

Codes, which include the Main Output Code and the Sub Output Code. So for that table we

will create a new column named outputtype, which we take the values {0,1}. For the Main

Output the outputtype will take the value 1 and for the Sub Output the outputtype will take

the value 0. Finally for the table Service in the column servcode we are inserting a hierarchy

of Output Codes, which include the Main Service Code and the Sub Service Code. So for that

table we will create a new column named servtype, which we take the values {0,1}. For the

Main Service the servtype will take the value 1 and for the Sub Service the servtype will take

the value 0.

Also in order to be more clear the distinction about Internal Resource Set of Capacity

and External Resource Set of Capacity, we have created in the table Incapacity a column

named incaptype which will take the value {1} and in the table Excapacity a column named

excaptype which will take the value {0}. We have done the same for the Internal Ability and

External Ability. Here in the first case we have created a column named inabtype which will

take the value {1} and in the second case a column named exabtype which will take the

value {0}.

The previous actions are depicted in the following relational schema.

116

Relational Schema for Business Capability Database Management System

1

2

3

* Capacity (capaccode) = InternalResourceSet (incapaccode)

union ExternalResourceSet (excapaccode)

* Ability (abcode) = InternalAbility (inabcode) union ExternalAbility (exabcode)

1. exactly where connectortype= “PROCEDURE”

2. exactly where connectortype= “INFORMATION”

3. exactly where connectortype= “POLICY”

Excapability (excapcode, capdescr, ownercode, excaptype)

Incapability (incapcode, capdescr, ownercode, incaptype)

Abilityusescapacitywithservice (abcode, capaccode, servcode, incapcode)

Collaborator (collabcode, connectortype, evalue)

Procedures (collabcode)

Information (collabcode)

Policy (collabcode)

{“PROCEDURE”,

“INFORMATION”,

“POLICY”}

* BusinessCapability (capcode) = InternalCapability (incapcode)

 union ExternalCapability (excapcode)

Excapacity (excapaccode, capacdescr, evalue)

Incapacity (incapaccode, capacdescr, evalue)

Resources (rescode, restype, rescdescr, capaccode)

{“PH”, “LE”,

“PR”, “HU”, “TE”,

“FI”, “DA”}

Inability (inabcode, abdescr, evalue)

Exability (exabcode, abdescr, evalue)

Capabilitymeetsgoal (capcode, goalcode)

Capabilityisincontext (capcode, contcode)

Capabilityispartof (mcapcode, subcapcode)

Goalispartof (mgoalcode, subgoalcode)

Outputispartof (moutputcode, suboutputcode)

Collaborations (capcode1, capcode2, collabcode)

Outputisofvalue (outputcode, evalue, recipientname)

Usescapacityforservice (incapcode, capaccode, servcode)

Usesabilityforservice (incapcode, abcode, servcode)

Owner (ownercode, ownername)

Goal (goalcode, goalname, goaltype)

Contexts (contcode, contdescr)

Output (outputcode, outputname, capcode, outputtype)

Skill (skillcode, skillname, abcode)

Service (servcode, servname, processcode, servtype)

Process (processcode, processname, taskscode)

Tasks (taskscode, taskssteps)

Serviceispartof (mservcode, subservcode)

{“0”, “1”}

{“0”, “1”}

{“0”, “1”}

{“0”, “1”}

{“0”, “1”}

4 5
4. exactly where outputtype= “1”

5. exactly where outputtype= “0”

6. exactly where goaltype= “1”

7. exacltly where goaltype= “0”6
7

8. exactly where servtype= “1”

9. exactly where servtype= “0”8 9

117

5.2 Chapter Summary

In this Chapter we have a taken a Conceptual Schema of Business Capability as a

background and then we have worked in a second level of analysis according to ORM, for

designing a specific Relational Schema. This Schema is used for the designing of the maritime

application, for the case study of the Danaos Management Consultant Company and will also

be the basis for the creation of the physical database in the next Chapter.

Thus in this Chapter the specific procedure of mapping into a Relational Schema

according ORM is described in detail, for this case of the new Conceptual Model about

Business Capability. In more detail we have used a horizontal layout for depicting the

schema and the graphical notation that is used according to ORM in this level. Then we have

followed the specific procedure of mapping according to (Halpin, 1995-A; Halpin, 2001;

Halpin & Morgan, 2008), in which have taking into account specific rules and strategies. The

result of this procedure was the production of a Relational Schema that contains all the

tables and the information about them. In other words we have a picture of the under

development elements of the database for our application. In more detail in this schema we

have depicted the name of the tables, the name of columns that contains, the candidate

keys (primary keys, foreign keys) and the constraints that must implemented according to

the Conceptual Schema (relationships between columns, unique columns, mandatory

column, value constraints, subtyping constraints, ring constraints, textual constraints).

During the mapping procedure we have observed that some kind of information is not

depicted accurate and correct for this UoD. This has leaded us to use the Normalization

method in order to fulfill the schema. By this method we have inserted specific columns in

some of the tables, which specify some extra information that must be stored in the

database.

Taking into account all the work that has being done in this Chapter we can say that

the procedure of Relational mapping is easily understood and standardized. This means that

if we have created an accurate and complete model in the first level of ORM, then the

procedure of mapping into a Relational Schema is easily implemented. Otherwise, if from

the Conceptual Schema we are missing some of the required information, then the

procedure of mapping is flexible enough to express this information in a wright way, by the

Normalization method.

118

Structure of this Chapter

6.1 DBMS Architecture

6.2 “BC” Physical Tables

6.3 Database Testing or Back-End

Testing

6.4 Chapter Summary

CHAPTER 6: Physical

Database

This chapter deals with

working in a third level of

our Approach according to

ORM, meaning the

creation of the Physical

Database that will be used

for the maritime

application of Danaos

Management Consultant

Company. Thus in Section

6.1 we present the reasons

for choosing a specific

DBMS, the Oracle, and also

the Architecture that will

be used. In Section 6.2 we

presented all the objects

that this database will

have, meaning tables,

sequences, views etc. and

in Section 6.3 a database

testing is implemented.

Finally in Section 6.4 a

summary of this chapter is

presented.

119

6.1 DBMS Architecture

Since we have already created the relational schema for our DBMS, according to that

in this chapter we will create the physical database design, meaning an SQL schema which

includes the physical data types, keys, checks, indexes etc.

SQL (Structure Query Language) is a database computer language designed for

managing data in relational database management systems. SQL is consisting of three other

programming languages which are (www.zentut.com):

� The Data Manipulation Language (DML), by which we can query and modify

data.

� The Data Definition Language (DDL), by which we can manage database

objects such as tables, views, indexes etc.

� The Data Control Language (DCL), by which we can grant or revoke privileges

to users.

There are a lot of different databases Management Systems that use the SQL language

with the most popular according to a DB-Engine ranking (www.db-engines.com) being:

Oracle, MySQL, Microsoft SQL Server, MongoDB, PostgreSQL, DB2, Microsoft Access,

Cassandra, SQLite, Redis and SAP Adaptive Server.

Figure 42: Most popular DBMS according to DB-Engines ranking (www.db-engines.com)

120

Some of the previous DBMS are commercial (e.g. Oracle, Microsoft SQL Server, DB2,

Microsoft Access, SAP Adaptive Server etc.) and some other are open source (e.g MySQL,

MongoDB, PostgreSQL, Cassandra, SQLite etc.), meaning that the source code is freely

available and can be used and modified according to respective licenses (www.db-

engines.com). Historically commercial DBMS are used widely as shown in the following

diagram:

 Figure 43: Popularity trend in DBMS (www.db-engines.com)

Since commercial DBMS are widely used instead of open-source DBMS, and also

Oracle is the most popular database management system in this period, we will use it in

order to create the physical database in this chapter and the interface in the next chapter.

Many oracle applications are built by using a client – server architecture or a multitier

architecture. In the client – server application a database and its applications is divided into

two parts: front – end or client side and back – end or server side, whereas the multitier is

divided into three parts: the client, the application servers and the database servers (Tickoo

& Raina, 2010).

 For creating the Oracle database application for Business Capability we will use a

multitier architecture (three-tier architecture) according to (Tickoo & Raina, 2010). In more

detail we will have a database server, the Oracle Database 11g, in which the entire data will

be stored. More especially it will contains the oracle data server files that will store tables,

indexes and other database objects, and also the processes for request data of the

application server for the client. Secondly we will have a client, the Oracle PL/SQL, who

submit requests for an operation to be processed on the database server and interacts with

the database server through one or more application servers. Worth mentioning that PL/SQL

121

is an Integrated Development Environment (IDE) for developing and storing programs in

units in an Oracle Database (Oracle Corporation, April 2011). Finally we will have an

Application Server, the Oracle Forms 6i, who is responsible for providing data access to the

client, and it processes some queries and removes some of the loads from the database

server. Also it serves as an interface between the client application and the database server.

6.2 “BC” Physical Tables

Taking into guidance from the relational schema designed in the previous chapter, we

have created in the Oracle PL/SQL environment, a database for Business Capability named

“BC”, which include the physical tables that depicted in that schema. Those tables contain

the physical data types, keys, checks, indexes etc.

For creating the tables in the Oracle PL/SQL environment we have use specific

statements of SQL. An SQL statement script of this work in given in Appendix: SQL Script of

BC Tables.

A view of these tables follows thereafter:

� Table INCAPABITY:

This table describes the Internal Business Capability of the Company. The

incapcode is the primary key for that table. Except from the primary key constraint

the table has one value constraint which says that the incaptype takes the values

‘0’ or ‘1’. As referred in (Halpin T. , 2001) check clauses are used to declare value

constraints. Thus the SQL syntax for this kind of constraint will be:

Also in the incaptype column we have given the default value 1, which means that

when inserting data, the system automatically appear that value.

A view of this table follows thereafter:

constraint Incaptype_Value_Constraint

check (incaptype in (‘0’, ‘1’));

122

� Table EXCAPABITY:

This table describes the External Business Capability of the Company. Here the

excapcode is the primary key for that table. Except from the primary key constraint

the table has also one value constraint which says that the excaptype takes the

values ‘0’ or ‘1’. As referred in (Halpin T. , 2001) check clauses are used to declare

value constraints. Thus the SQL syntax for this kind of constraint will be:

Also in the excaptype column we have given the default value 1, which means that

when inserting data, the system automatically appear that value.

A view of this table follows thereafter:

� Table CAPABILITYISPARTOF:

The table Capabilityispartof describes a hierarchy of capabilities into sub-

capabilities. In order the population of data to be described correctly it is necessary

to discuss the way we have implemented some of the constraints. In more detail

except from the primary key constraint this table has an irreflexive ring constraint.

As referred in (Halpin T. , UML data models from an ORM perspective: Part 7,

1999) irreflexivity maps to simple check clause which says that an object cannot

bear a relationship with itself. Thus the SQL syntax for this kind of constraint will

be:

A view of this table follows thereafter:

constraint Excaptype_Value_Constraint

check (excaptype in (‘0’, ‘1’));

constraint Capabilityispartof_RC

check (mcapcode<>subcapcode);

123

� Table OWNER:

This table describes the Owners of the Company. The ownercode is the primary

key for that table. Thus a view of this table follows thereafter:

� Table GOAL:

This table describes the Goals of the Company. The goalcode is the primary key for

that table. However except from the primary key constraint the table has one

value constraint which says that the goaltype takes the values ‘0’ or ‘1’. As referred

in (Halpin T. , 2001) check clauses are used to declare value constraints. Thus the

SQL syntax for this kind of constraint will be:

Also in the goaltype column we have given the default value 1, which means that

when inserting data, the system automatically appear that value.

A view of this table follows thereafter:

� Table GOALISPARTOF:

The table Goalispartof describes a hierarchy of goals into sub-goals. This table

except from the primary and foreign keys constraints has also an irreflexive ring

constraint. Thus the SQL syntax for this kind of constraint will be:

constraint Goaltype_Value_Constraint

check (goaltype in (‘0’, ‘1’));

124

A view of this table follows thereafter:

� Table CAPABILITYMEETSGOAL:

This table describes the relationship between Business Capabilities and Goals. The

combination of capcode and goalcode is the primary key for that table. Thus a view

of this table follows thereafter:

� Table CONTEXTS:

This table describes the Context of the Company. The contcode is the primary key

for that table. Thus a view of this table follows thereafter:

� Table CAPABILITYISINCONTEXT:

This table describes the relationship between Business Capabilities and Context.

The combination of capcode and contcode is the primary key for that table. Thus a

view of this table follows thereafter:

constraint Goalispartof_RC

check (mgoalcode<>subgoalcode);

125

� Table OUTPUT:

This table describes the Output of the Company. The outputcode is the primary key

for that table. However except from the primary key constraint the table has one

value constraint which says that the outputtype takes the values ‘0’ or ‘1’. As

referred in (Halpin T. , 2001) check clauses are used to declare value constraints.

Thus the SQL syntax for this kind of constraint will be:

Also in the outputtype column we have given the default value 1, which means

that when inserting data, the system automatically appear that value.

Thus a view of this table follows thereafter:

� Table OUTPUTISPARTOF:

The table Outputispartof describes a hierarchy of outputs into sub-outputs. This

table except from the primary key constraint has also an irreflexive ring constraint.

Thus the SQL syntax for this kind of constraint will be:

Thus a view of this table follows thereafter:

constraint Outputtype_Value_Constraint

check (outputtype in (‘0’, ‘1’));

constraint Outputispartof_RC

check (moutputcode<>suboutputcode);

126

� Table OUTPUTISOFVALUE:

This table describes the economic transactions according to the output of the

company. The combination of outputcode and evalue is the primary key for that

table. Thus a view of this table follows thereafter:

� Table COLLABORATOR:

This table describes the top element (supertype) in a structure of a hierarchy for

subtyping. The collabcode is a primary key for that table and also a foreign key for

the table Policy, Information and Procedure. Except from the primary key

constraint that table has one value constraint and three qualification constraints.

The value constraint says that the connectortype has the value ‘POLICY’ or

‘INFORMATION’ or ‘PROCEDURE’. As referred in (Halpin T. , 2001) check clauses are

used to declare value constraints. Thus the SQL syntax for this kind of constraint

will be:

On the other hand the three qualifications declare:

a) Qualification 1 declares that each value in the collabcode for Policy

(policy.collabcode) must be a value of collabcode for Collaborator

(collaborator.collabcode) for which the value of connectortype is ‘POLICY’.

b) Qualification 2 that each value in the collabcode for Information

(information.collabcode) must be a value of collabcode for Collaborator

constraint Collaborator_Value_Constraint

check (connectortype in (‘POLICY’, ‘INFORMATION’, ‘PROCEDURE’));

127

(collaborator.collabcode) for which the value of connectortype is

‘INFORMATION’.

c) Qualification 3 declares that each value in the collabcode for Procedures

(procedures.collabcode) must be a value of collabcode for Collaborator

(collaborator.collabcode) for which the value of connectortype is

‘PROCEDURE’.

As referred in (Halpin T. , 1995-B; Halpin T. , 2002) those qualification implemented

with specific assertations instead of declaring a foreign key. Since assertations is

not yet supported by the SQL system that we use, we will implemented those

qualifications by generate alternative code. Thus in order the population of data to

be inserting and deleting correctly for all those tables we have created the

following trigger named ‘collaborator_TRG’:

The trigger ‘collaborator_TRG’ is a procedure that runs automatically when a

certain event occurs in the DBMS. Here we have the events of inserting and

deleting, in a specific time (after the event) and a granularity which says that the

event executed for each row. The action says that if inserting the system fill in

create or replace trigger collaborator_TRG

 after insert or delete on collaborator

 for each row

declare

begin

 if INSERTING then

 if :new.connectortype = 'POLICY' then

 insert into POLICY (Collabcode) values (:new.collabcode);

 elsif :new.connectortype = 'INFORMATION' then

 insert into INFORMATION (Collabcode) values (:new.collabcode);

 elsif :new.connectortype = 'PROCEDURE' then

 insert into PROCEDURES (Collabcode) values (:new.collabcode);

 end if;

 else

 if :old.connectortype = 'POLICY' then

 delete POLICY where Collabcode = :old.collabcode;

 elsif :old.connectortype = 'INFORMATION' then

 delete INFORMATION where Collabcode = :old.collabcode;

 elsif :old.connectortype = 'PROCEDURE' then

 delete PROCEDURES where Collabcode = :old.collabcode;

 end if;

 end if;

end collaborator_TRG;

128

some values automatically referenced as new values (:new) and if deleting the

system deleting some values automatically referenced as old values (:old). In

practice this trigger do the following:

a. If the user inserts connectortype ‘POLICY’ in the table Collaborator, then the

system automatically inserts in the table Policy the value that has the

collabcode in the table Collaborator. The same exists for tables Information

and Procedures.

b. If the user deletes connectortype ‘POLICY’ in the table Collaborator, then the

system automatically deletes in the table Policy the value that has the

collabcode in the table Collaborator. The same exists for tables Information

and Procedures.

Thus a view of this table follows thereafter:

� Table POLICY:

This table describes the Connector Type Policy. The collabcode is the primary key

for that table. Thus a view of this table follows thereafter:

� Table INFORMATION:

This table describes the Connector Type Information. The collabcode is the primary

key for that table. Thus a view of this table follows thereafter:

129

� Table PROCEDURES:

This table describes the Connector Type Procedures. The collabcode is the primary

key for that table. Thus a view of this table follows thereafter:

� Table COLLABORATIONS:

This table describes the relationship between Business Capabilities according to a

Collaborator Connector. The combination of capcode1, capcode2 and collabcode is

the primary key for that table. Thus a view of this table follows thereafter:

� Table INABILITY:

This table describes the Internal Ability of the Company. The inabcode is the

primary key for that table. Except from the primary key constraint this table has a

value constraint. This value constraint says that the inabtype takes only the value

‘1’. The SQL syntax for this kind of constraint will be:

Also in the inabtype column we have given the default value 1, which means that

when inserting data, the system automatically appear that value. Thus a view of

this table follows thereafter:

constraint Inabtype_Value_Constraint

check (inabtype= ‘1’);

130

� Table EXABILITY:

This table describes the External Ability of the Company. The exabcode is the

primary key for that table. Except from the primary key constraint this table has a

value constraint. This value constraint says that the exabtype takes only the value

‘0’. The SQL syntax for this kind of constraint will be:

Also in the exabtype column we have given the default value 0, which means that

when inserting data, the system automatically appear that value. Thus a view of

this table follows thereafter:

� Table SKILL:

This table describes the Skills that define External and Internal Ability. The skillcode

is the primary key for that table. Thus a view of this table follows thereafter:

� Table INCAPACITY:

This table describes the Internal Resource Set for Capacity of the Company. The

incapaccode is the primary key for that table. Except from the primary key

constraint this table has a value constraint. This value constraint says that the

incapactype takes only the value ‘1’. The SQL syntax for this kind of constraint will

be:

constraint Exabtype_Value_Constraint

check (excaptype =‘0’);

constraint Incapactype_Value_Constraint

check (incapactype = ‘1’);

131

Also in the incapactype column we have given the default value 1, which means

that when inserting data, the system automatically appear that value. Thus a view

of this table follows thereafter:

� Table EXCAPACITY:

This table describes the External Resource Set for Capacity of the Company. The

excapaccode is the primary key for that table. Except from the primary key

constraint this table has a value constraint. This value constraint says that the

excapactype takes only the value ‘0’. The SQL syntax for this kind of constraint will

be:

Also in the incapactype column we have given the default value 0, which means

that when inserting data, the system automatically appear that value. Thus a view

of this table follows thereafter:

� Table SERVICE:

This table describes the Services of the Company. The servcode is the primary key

for that table. However except from the primary key constraint the table has one

value constraint which says that the servtype takes the values ‘0’ or ‘1’. As referred

in (Halpin T. , 2001) check clauses are used to declare value constraints. Thus the

SQL syntax for this kind of constraint will be:

constraint Excapactype_Value_Constraint

check (excapactype = ‘0’);

132

Also in the servtype column we have given the default value 1, which means that

when inserting data, the system automatically appear that value.

Thus a view of this table follows thereafter:

� Table SERVICEISPARTOF:

The table Serviceispartof describes a hierarchy of services into sub-services. This

table except from the primary key constraint has also an irreflexive ring constraint.

Thus the SQL syntax for this kind of constraint will be:

Thus a view of this table follows thereafter:

� Table PROCESS:

This table describes the Business Processes of the Company. The processcode is

the primary key for that table. Thus a view of this table follows thereafter:

constraint Servtype_Value_Constraint

check (servtype in (‘0’, ‘1’));

constraint Serviceispartof_RC

check (mservcode<>subservcode);

133

� Table RESOURCES:

Before giving the view of table Resources, it is necessary to discuss the way we

have implemented some of the constraints. In more detail except from the primary

key constraint this table has one value constraint.

The value constraint says that the resource type code has the value ‘PH’ or ‘LE or

‘PR’ or ‘HU’ or ‘TE’ or ‘FI’ or ‘DA’. As referred in (Halpin T. , 2001) check clauses are

used to declare value constraints. Thus the SQL syntax for this kind of constraint

will be:

Thus a view of this table follows thereafter:

� Table USESCAPACITYFORSERVICE:

This table describes the relationship between Internal Business Capability and

Capacity in order to deliver a Service. The combination of incapcode and

capaccode is the primary key for that table. Thus a view of this table follows

thereafter:

� Table USESABILITYFORSERVICE:

This table describes the relationship between Internal Business Capability and

Ability in order to deliver a Service. The combination of incapcode and abcode is

the primary key for that table. Thus a view of this table follows thereafter:

constraint Resources_Value_Constraint

check (restype in (‘PH’, ‘LE’, ‘PR’, ‘HU’, ‘TE’, ‘FI’ ,’DA’));

134

� Table ABILITYUSESCAPACITYWITHSERVICE:

This table describes the relationship between Internal Business Capability in

combination with Capacity and Ability in order to deliver a Service. The

combination of abcode, capaccode and servcode is the primary key for that table.

Thus a view of this table follows thereafter:

� Table MENU:

Except from the previous tables we have created a table for helping us creating a

tree hierarchy, in the Main Page of our Application. This will be the Page for navigating

between the different pages of the Application. Thus a view of this table follows thereafter:

Except from the previous tables we have also created a VIEW named “FINAL_VIEW”

to be used at the Application Level, in order to be able to execute queries for specific data

about Business Capability. An SQL statement script of this VIEW in given in Appendix: SQL

Script of Total View.

Finally we have created some database sequences in order to help us to generate

automatically unique primary keys in some cases of tables. Thus:

� For the table Owner we have created the sequence:

135

� For the table Skill we have created the sequence:

� For the table Process we have created the sequence:

� For the table Contexts we have created the sequence:

� For the table Procedures we have created the sequence:

create sequence OWNER_SEQ

minvalue 1

maxvalue 99999

start with 1

increment by 1

cache 20;

create sequence SKILL_SEQ

minvalue 1

maxvalue 99999

start with 1

increment by 1

cache 20;

create sequence PROCESS_SEQ

minvalue 1

maxvalue 99999

start with 1

increment by 1

cache 20;

create sequence CONTEXTS_SEQ

minvalue 1

maxvalue 99999

start with 1

increment by 1

cache 20;

create sequence PROCEDURE_SEQ

minvalue 1

maxvalue 99999

start with 1

increment by 1

cache 20;

136

� For the table Information we have created the sequence:

� For the table Policy we have created the sequence:

create sequence INFORMATION_SEQ

minvalue 1

maxvalue 99999

start with 1

increment by 1

cache 20;

create sequence SKILL_SEQ

minvalue 1

maxvalue 99999

start with 1

increment by 1

cache 20;

137

6.3 Database Testing or Back-End Testing

Now that we have created the physical database it is important to test it. As stated by

Chang & Cheung (1999) “testing of database application is of great importance in both the

development production phase, since undetected faults in this application may result in

incorrect modification or accidental removal of crucial data”.

By Database Testing we are testing the back-end components, which are not visible to

users and by that, we intent to insure (www.tutorialspoint.com):

� Data validation

� Data integrity

� Performance check to database

� Testing of Procedures, Triggers and Functions

Also in order to guarantee that the database transactions are processed concurrently,

we must satisfy all the ACID properties which are (www.softwaretestinghelp.com):

� Atomicity: Describes that a transaction either falls or passes. In other words if a

single part of transaction fails then the entire transaction has failed

� Consistence: Describes that a transaction will always result in a valid state o

database.

� Isolation: Describes that if there are

multiple transactions and they are

executed all at once, the result of

database should be the same as if they

were executed one after the other.

� Durability: Describes that once a transaction is done and committed, no external

factor like power loss or crash should be able to chance it.

The Process of Database Testing has specific steps which are shown in the following

Figure:

Figure 44: Database Testing Process (www.softwaretestinghelp.com)

138

In first step we insert in our database a sample of data in order the testing to be

achieved. For the purpose of this testing we will use examples of data by a real company

from the maritime domain field, the Danaos Maritime Consultant (DMC), which will be

described in more detail in chapter 8.

The next step deals with the implementation of a specific category for Database

Testing. In general Database Testing can be categorized into three categories

(www.tutorialspoint.com):

� Structural Database Testing: This category deals with the procedure of testing

tables and columns, of testing the schema, of testing stored procedures, views and

triggers etc.

� Functional Testing: This category involves checking functionality of database from

user point of view, with the most common types the White Box and the Black Box

testing

� Nonfunctional Testing: This final category deals with the performance of the

database and involves load-testing, risk testing, stress testing and minimum system

requirements.

According to (www.onestopsoftwaretesting.com) the most effective methods are

those of Structural testing and Functional testing. Thus taking into account the directions

that are given for those methods by (www.onestopsoftwaretesting.com), we will follow the

same for our database system.

We will first begin by implementing the Structural Testing Method. By this method

the tests will verify each and every object in a type of structure. Thus we will make a

Database Schema Testing and a Trigger Testing, since there is no stored Procedure in our

database.

i. The Database Schema Testing contains:

a) Tests in Databases and Devices and more especially in:

• Database Name

• Data device, log device and dump device

• The existence of enough space allocated for the database

• Database option setting (i.e. trunc option)

From the above four we will test the first and the third. Thus if we take the

following view:

139

We can see that in the option General the Name is written correctly,

meaning “BC”. Also there is enough storage allocated for the database. Thus

we continue with the next step.

b) Tests in Tables, Columns, Columns Types, Defaults and Rules. In this step we will

try to find out differences between the relational schema and the actual tables.

First guiding by the relational schema we will check at least once all the Table

Names and the Column Names for each table. Then we will do the same for the

Column Types and we will also test whether the column is null or not.

An example of the described test is given for the table Incapability. Thus in the

relational schema we have the table:

Taking a view of this table from the physical database we check as shown in the

following picture if there is a difference with the relational schema in the Name.

Since it is correct we then proceed in checking the column names. As we see in

the view of Columns, the column names is the same with those of relational

 {‘0’,‘1’}

Incapability (incapcode, capdescr, ownercode, incaptype)

140

schema. Also there is small enough to describe a query. So we then proceed on

checking the value types. In more detail the column name incapcode is a

varchar2(50) data type, meaning a variable length string with maximum size 50.

This is an efficient length for describing the Internal Capability Code and the

appropriate data type since a code may contain number and characters. The

same exists for the other column names, meaning capdescr, ownercode and

incaptype. Finally we are checking whether the column names are null or not. In

the relational schema all columns are mandatory (they are not enclosed in []).

This means that the columns must be null. Thus as we seeing in the view none

of them is chosen as nullable, meaning that are mandatory.

Thus if we go to the table Incapability, we will see that it contains those four

column names: incapcode, capdescr, ownercode and incaptype:

Thus the check in columns is done. Then the same test is continuing for the

other tables.

Now we are going to test rules definition and whether a rule is bound to

correct table columns. This rules deals with testing the checks constraints that

has implemented and concerns value constraints and ring constraints.

141

In our database we have five value constraints in the tables Collaborator,

Resources, Incapability, Excapability, Goal, Output and Service. Thus we are

going to check these value constraints.

Firstly we are going to the table Collaborator and we are checking the name of

the check, if the condition is written correctly and if it is enabled or not as

follows:

Here the condition says that connectortype column must have the values Policy

or Information of Procedure, which is correct. We then go to edit data in that

table and during the inserting of a new instance we can see that when choosing

the column connectortype the three values appear as follows:

Thus the value check for that table is done.

We are now doing the same in the table Resources. We are going in the Check

Page and checking the name of the check, if the condition is written correctly

and if it is enabled or not as follows:

Here the condition says that restype column must have the values PH or LE or

PR or HU or TE or FI or DA, which is correct. We then go to edit data in that

table during the inserting of a new instance we can we see that when choosing

the column restype the seven values appear as follows:

142

Thus the value check for that table is done.

We continue with the table Incapability. We are going in the Check Page and

checking the name of the check, if the condition is written correctly and if it is

enabled or not as follows:

Here the condition says that the incaptype column must have the values 0 or 1,

which is correct. We then go to edit data in that table during the inserting of a

new instance we can see that when choosing the column incaptype the two

values appear as follows:

Thus the value check for that table is done. The same results of testing exist for

the tables Excapability, Goal, Output and Service.

We then continue to test the ring constraints. In our database we have some

ring constraints in the tables Capabilityispartof, Goalispartof, Outputispartof

and Serviceispartof.

143

We begin with the table Capabilityispartof and we are going in the Check Page

to check the name of the ring constraint, if the condition is correct or not and if

is enabled or not as follows:

The condition says that the values of an instance with the columns mcapcode

and subcapcode is not equal, which is correct. We then go to edit data in that

table and we observe that if we try to insert an instance in which the values of

mcapcode and subcapcode is the same, then an error message appears as

follows:

We then continue with the table Goalispartof and we are going in the Check

Page to check the name of the ring constraint, if the condition is correct or not

and if is enabled or not as follows:

The condition says that the values of an instance with columns mgoalcode and

subgoalcode is not equal, which is correct. We then go to edit data in that table

and we observe that if we try to insert an instance in which the values of

mgoalcode and subgoalcode is the same, then an error message appears as

follows:

144

We then continue with the table Outputispartof. Thus we are going in the Check

Page to check the name of the ring constraint, if the condition is correct or not

and if is enabled or not as follows:

The condition says that the values of an instance with columns moutputcode

and suboutputcode is not equal, which is correct. We then go to edit data in

that table and we observe that if we try to insert an instance in which the

values of moutputcode and suboutputcode is the same, then an error message

appears as follows:

Finally we are doing the same for the table Serviceispartof. Thus we are going in

the Check Page to check the name of the ring constraint, if the condition is

correct or not and if is enabled or not as follows:

145

The condition says that the values of an instance with columns mservcode and

subservcode is not equal, which is correct. We then go to edit data in that table

and we observe that if we try to insert an instance in which the values of

mservcode and subservcode is the same, then an error message appears as

follows:

Worth mentioning that in this step we also checking:

� Default Definitions

� Whether a default is bound to correct table columns

� Whether access privileges are granted to correct groups.

However in our database we have none of the three of them to be tested.

c) Tests in Keys and Indexes. In this step we are checking:

� Primary keys for each table (every table must have a primary key)

� Foreign keys

� Column data types between a foreign key column and a column in other

table

� Indices, clustered or nonclustered; unique or not unique

Thus taking the example of table Incapability from the relational schema;

Incapability (incapcode, capdescr, ownercode), we observing that the incapcode

is the primary key in that table (since is doubly underlying) and the ownercode

is a foreign key. Now taking the following view of that table from the physical

146

database as follows, we see that we have created a primary key named

Incapability_PK which refers to column incapcode and is enabled.

The primary key must be unique in each and every row in that table. Thus if we

go to the table Incapability and execute a query, from the results we observe

that the incapcode for each and every column is unique:

If we try to insert a data that is the same with some other in that column, for

example INCAP4.3 code twice, then the following error appears, which is

correct:

Thus the check for primary keys is done.

147

Also in that view we observe that we have created a foreign key name

Incapability_FK which refers to the column ownercode and references in the

table owner, and more specific in the column ownercode of that table.

Thereafter we check if the column data types between the foreign key

Incapability_FK and the column ownercode in the table Owner are the same.

The column ownercode in the table Incapability is varchar2(50). The same exist

in the column ownercode in the table Owner as we see in the following view:

If we go to insert data in the table Incapability, we will see that when choosing

the column ownercode then the data comes up automatically:

Thus the check for the foreign keys is done.

Finally we check the indexes for that table. For every primary key that we have

created the PL/SQL creates automatically indexes for that key, since the values

must be retrieval more speeder in a query. As we see in the following view in

the tab indexes the system has created a unique index for the column

incapcode. Thus the check of indexes is done.

The previous procedure continues for all the tables which are in relationship.

148

ii. The Trigger Testing includes a procedure in which we are checking the actions

of updating triggers, inserting triggers and deleting triggers. In our database

system we have created a trigger named Collaborator_TRG which runs

automatically when an event of inserting and deleting occurs. In that case we

will check only the actions of inserting trigger and deleting trigger. The

Collaborator_TRG trigger has being generated for a specific table column and

more especially for the column “collabcode” of the table Collaborator and the

actions of inserting and deleting references the columns “collabcode” on the

tables Policy, Information and Procedure.

If we insert connectortype ‘POLICY’ in the table Collaborator, then the system

automatically inserts in the table Policy the value that has the collabcode in the

table Collaborator. Thus if we go to the table Collaborator and insert value

“PO1” for collabcode, choose the value “Policy” for connectortype, insert value

“5.000” for evalue and commit the current transaction,

we will see that in the table Policy the value “PO1” of collabcode has

automatically inserted.

The same test exists for tables Information and Procedures. We now go to the

table Collaborator and insert the value “PR1” for collabcode, we choose the

value “Procedure” for connectortype, we insert the value “10.000” for evalue.

Finally we insert the value “IN1” for collabcode, choose the value “Information”

149

for connectortype and insert value “15.000” for evalue as shown in the

following view:

So if we go to the table Procedures, we will see that the value “PR1” of

collabcode has automatically inserted:

Finally if we go to the table Information, we will see that the value “IN1” of

collabcode has automatically inserted:

Thus the inserting test of trigger is done.

Now let’ see the case of deleting. In that case if we delete a row in the table

Collaborator, then according to the connector type the system goes to a specific

table and automatically deletes that collabcode value. For example if we delete

the row 1 that has connectortype “Policy” then the system automatically

deletes the collabcode from the table Policy, meaning the value “PO1”. Thus if

commit the action of delete, then we will see that in the table Policy there is no

row with the value PO1:

150

The same testing has being done for the tables Information and Procedure.

Thus the Trigger Test is done.

We then continue with the Functional Testing Method. By this method we test the

functionality and the features of a back – end. In practice in this method we are doing a

Database Testing in Data. Thus we will create specific functional groups and we will test it

together. The Functional Groups will be:

� Functional Group 1: It will contain the tables Incapability, Excapability,

Capabilityispartof and Owner.

� Functional Group 2: It will contain the tables Goal, Goalispartof and

Capabilitymeetsgoal.

� Functional Group 3: It will contain the tables Contexts and Capabilityisincontext.

� Functional Group 4: It will contain the tables Output, Outputispartof and

Outputisofvalue.

� Functional Group 5: It will contain the tables Collaborations, Collaborator,

Procedures, Information and Policy.

� Functional Group 6: It will contain the tables Incapacity, Excapacity and

Resources.

� Functional Group 7: It will contain the tables Service, Serviceispartof, Process

and Tasks.

� Functional Group 8: It will contain the tables Inability, Exability and Skills.

� Functional Group 9: It will contain the tables Usescapacityforservice,

Usesabilityforservice, Abilityusescapacitywithservice.

151

Since the Functional Testing in all the tables of database, requires a big

description and analysis, in this dissertation we will present the full process of testing

the Functional Group 1.

Functional Group 1: This functional group contains the tables Incapability,

Excapability, Capabilityispartof and Owner. In this functional group we may

answer questions referring to Ownership for Business Capability, to hierarchy of

Business Capability etc. However initially we have to test its table of this

functional group separately.

We begin with the table that refers to Internal Business Capability and we run

a query for bringing all the kind of information that describes. We use the select

statement as follows:

The results for that table are correct. Also the speed of the system for bringing

this kind of query is fast (0,016 seconds), which means that runs speedily.

Now we will run a query in order to see if the system brings correct data

according to some rules, concerning column names. One rule is to bring only

the data for Business Capability Code and Business Capability Description for a

specific Internal Business Capability for example the one that has incapcode=

INCAP1. In that case we have the query:

152

The result is correct and the speed for executing the query very fast (0 seconds).

However in order to insure that the system bring the correct data in that table

we may ask a negative query. In the data we can see that for this kind of

Business Capability there is only one owner with code OWN1. Thus we will

make a query in which we will ask whether Internal Capability has an owner

with ownercode “OWN2” and “OWN3” as follows:

In that case it doesn’t bring any information, which is correct. Also the speed for

executing this query is fast enough, since it is only 0,016 seconds.

Finally we will check for duplicates in that table according to the primary key

(incapcode). By that we want to ensure that there are no duplicates since the

primary key is unique. Thus we will run the query:

From the results we observe that there are no duplicates, which are correct,

and the speed of executing the query very fast (0,016 seconds). Thus the check

for table Incapability is done.

153

We now continue with the table for External Business Capability and

implement the same queries as we did previous in the Internal Business

Capability table. Thus we run a query for bringing all the data for that table as

follows:

The results is correct and the speed of executing very fast (0,016 seconds).

Now let’s implement a specific data test, for example we want to see the

External Capability Description for the External Capability with code “EXCAP1”.

We run a query as follows:

The result is correct and the speed of executing the query is very fast (0,016

seconds).

Now we may ask a negative query in that table. In the data we can see that

External Business Capability owned by three kind of owners: OWN2, OWN3 and

OWN4. Thus we will make a query in which we will ask whether External

Capability has an owner with ownercode “OWN1”as follows:

In that case is doesn’t bring any data, which is correct, and the speed of

executing the query is very fast (0,016 seconds). Finally we check for duplicates

in that table according to the primary key (incapcode). Thus we will run the

query:

154

From the results we see that there are no duplicates, which is correct, and the

speed of executing the query very fast (0,016 seconds). Thus the check for table

Excapability is done.

We now continue with the table Owner. First we run a query to bring all the

data as follows:

The result is correct and the speed of executing the query is very fast (0,031

seconds). We create a scenario by executing a query that will bring all the

information for the owner with ownername= “DMC” as follows:

The result is correct and the speed of executing the query is very fast (0,015

seconds). Then we run a negative query for bringing the data that are not exist

in the database. For example bring all the information for the owner with

ownercode= “DMC” as follows:

155

The result is correct since there is no owner with ownercode= “DMC”, and also

the speed of executing the query is very fast (0 seconds). Finally we check for

duplicates according to the primary key as follows:

The result is correct, since there are no duplicates, and also the speed of

executing the query is very fast (0,031 seconds). Thus the check for table Owner

is done.

We now continue with the table Capabilityispartof. For that table we first run a

query for bringing all the kind of information that describes. We use the select

statement as follows:

The result is correct and the speed of executing the query is very fast (0,016

seconds).

We then continue by checking the results of a query that refers to a specific

column value. For example we want to see the INCAP1 Internal Business

Capability into which sub-capabilities is decomposed to. Thus we run a query as

follows:

156

The result is correct and the speed of executing the query is very fast (0,016

seconds).

Then we run a negative query for bringing the data that are not exist in the

database. For example bring all the information for the Business Capability

hierarchies with mcapcode= “GOAL1” as follows:

The result is correct since there is no Business Capability hierarchies with

mcapcode= “GOAL1”, and also the speed of executing the query is very fast (0

seconds)

Finally we check for duplicates according the primary key. Here the primary key

is a combination between two column; mcapcode and subcapcode. Thus we run

a query as follows:

157

The result is correct, since there are no duplicates, and also the speed of

executing the query is very fast (0,016 seconds).

Since we have already checked the data for each table separately, we now

continue by verifying if the tables have their relationships correct, by checking

if their keys matching.

Firstly we will run a query by which we will check if there is any value that exists

in the foreign key of a table and it does not exist in the reference primary key of

the other table. For example we will check the values from the tables

Incapability and Owner, according to the ownercode. The ownercode is a

foreign key for the first table and a primary key for the second table. Thus we

run a query as follows:

The result is correct, since every value of a primary key must match with the

value of a foreign key. Also the speed of executing the query is very fast (0

seconds). We are doing the same for the tables Excapability and Owner as

follows:

The result is also correct and the speed of executing the query is very fast (0

seconds).

Another test for checking if the keys between two tables are matching is by

using an example of join between those tables with the WHERE SQL condition.

For example we want all the information about Internal Capability but instead

of ownercode, we want the system to bring as for each value in the instance the

ownername from the Owner table. This is implemented as follows:

158

The result is also correct and the speed of executing the query is very fast

(0,032 seconds).

We are doing the same for the tables External Capability and Owner by using a

column-list joins condition as follows:

The result is also correct and the speed of executing the query is very fast

(0,015 seconds).

In that case, since we have already known that there is no External Business

Capability that is owned by DMC, we run a negative query as follows, and

expecting that no instance will appear. Thus:

The result is also correct and the speed of executing the query is very fast (0

seconds).

159

Finally another test is for checking whether in a case of union between two

tables, the system brings the correct data. Thus we will run a query in order to

see the totally information about Business Capability, meaning both External

Business Capability and both Internal Business Capability as follows:

The result is correct the speed of executing the query is very fast (0,031

seconds). Now if in the same query we want to see and the ownername instead

of ownercode, we run a query as follows:

 The result is correct the speed of executing the query is very fast (0,031

seconds).

160

We also run a query in order to see the composition of Business Capability into

Sub-Capabilities and their description. Thus we run a query as follows:

The result is correct the speed of executing the query is very fast (0,031

seconds).

Finally we will run a query to see the total information for all the tables of that

functional group, meaning to see what Business Capability the organizations

has, who is the owner of that Business Capability and which of them are Main

or Sub Business Capabilities. Thus we run a query as follows:

The result is also correct the speed of executing the query is very fast (0,031

seconds).

161

6.4 Chapter Summary

The concern of this Chapter was the physical database of under development

maritime application. More specific in this chapter we have worked in a third level of

analysis according to ORM, with the main objective to create a physical database for our

application. As we have already discussed in this Chapter this database has being guided by

the Relational Schema that has being created in the previous chapter.

Before we provide a presentation of the physical tables of this database, we thought

that it was important to give a brief description of the reasons why we have chosen a

specific software DBMS for implemented the database for our Application. Thus we have

chosen the Oracle commercial DBMS for this purpose, since it is the most popular in that

period (www.db-engines.com).

Then we have presented the basic Architecture for our application. More specific we

have use a three-tier architecture (Tickoo & Raina, 2010) of client-server (client, application

and database server), in which the first level refers to a specific database server (the Oracle

Database 11g), the second level to a specific Integrated Development Environment – IDE

(the Oracle PL/SQL 6i) and the third to a specific application server (the Oracle Forms &

Reports 6i).

Thereafter the physical tables of this database were presented, with a brief

description whenever required, of the implemented constraints or triggers in the SQL

language. Except from the physical tables we have also presented some other objects of this

database, meaning the created sequences and views.

Finally in order to insure data validation, data integrity, performance checks to

database, testing of the triggers and that the database transactions are processed

concurrently, meaning that they satisfy the ACID properties (Atomicity, Consistence,

Isolation and Durability), we have followed a specific process of Database Testing. The steps

of this process was first the preparation of the environment, second the procedure of

running the test, third the checking of the test results, fourth the validation of this process

and fifth the reporting of the findings. Thus firstly we have taken real examples of data from

the use case of the Danaos Management Consultant and we use it for preparing the

environment. Then we followed specific procedures of Database Testing and more specific

Structural Database Testing and Functional Database Testing as described by

(www.tutorialspoint.com). Worth mentioning that during these procedures the other four

steps of the Process of Testing the Database are overlapped, meaning that some of these

steps are implemented at the same time.

162

For implementing the Structural Database Testing firstly we are executing a Database

Schema Testing and then a Trigger testing. For the first of this option, in the first step we are

executing test in Database name and we are looking if there is enough existence of space in

the database. Then in the second step we continue with tests in tables, columns, columns

types, default values and rules. Thus we are checking at least once for the entire tables the

Table Names and the Columns Names in relation with the Relational Schema. Also we are

testing if the values types are the appropriate to describe this kind of data and if the length

of those values is the efficient enough. Thereafter we are testing whether a rule is bound to

correct table columns, meaning we are testing if check, value and ring constraints are

implemented correctly. In the third step we are executing test in keys and indexes, meaning

we are checking if for the implemented primary keys when inserted a data in the database is

violated the rule that this key must be unique and also if the foreign keys values are

automatically appeared from the primary keys values. Finally if for every candidate key it has

being created by the system a specific index. Finally we are executing a Trigger Testing and

more detail we check if all the actions that have being defined by the trigger work properly.

Then we are implementing a Functional Testing, in which we have divided all the

database tables in nine functional groups. For each group we are testing with the help of the

SQL language if the system brings the correct results in a query according to specific rules

and the speed of executing the queries. Also we execute negative queries like checking for

duplicates in primary keys. Finally we execute queries in order to verifying if their tables

have their relationship correct, by checking if their keys matching.

From the above that described in this Chapter we can say that it is important how we

have designed the Relational Schema in order to create the physical database of our system.

That’s because everything is depicted in this schema, must then take the form of an object in

the database and sometimes this is not feasible at once. This means we have to implement

some extra procedural code like triggers, sequences etc, in order the information to be

maintained with the right way. The last one presupposes a good knowledge of SQL language

by the developer of this system. However in this stage as we observe some of the textual

constraints that refers to unions of specific object (e.g. Business Capability (capcode) =

IntenalCapabilty (incapcode) union ExternalCapability (excapcode)), has not being

implemented yet. Although in this stage it is possible to miss some of the required

implemented constraints, however as we will see we can implemented them in the

application level.

163

CHAPTER 7: User Interface

Design & Implementation

Structure of this Chapter

7.1 User Interface Design Process &

Quality Characteristics

7.2 Use Case Diagram as a Description of

the Main Windows

7.3 Hierarchy of Forms

7.4 Basic Flow Chart for Data Entry

7.5 Application Screens

7.6 Chapter Summary

This chapter deals with

working in a fourth level of

our Approach according to

ORM, meaning the

designing and

implementation of a User

Interface that will be used

for the maritime

application of Danaos

Management Consultant

Company. Thus in Section

7.1 a User Interface

designing process is

presented and the quality

characteristics that a User

Interface must have. Then

in Section 7.2 we present a

Use Case Diagram for

describing the Main

Windows of this

application. Also in Section

7.3 a diagram of the

hierarchies of forms is

given in order to help the

developer creating the

main menu for navigating

between the forms. Then in

Section 7.4 a basic flow

chart for data entry in a

case of a new Business

Capability is presented, in

order to facilitate a user in

how he works with the

application and also the

developer in the creation

of this User Interface.

Finally in Section 7.5 the

application screens are

presented and in 7.6 a

brief summary of this

chapter.

164

7.1 User Interface Design Process & Quality Characteristics

Since we have created the physical database schema, in this chapter we will create an

external schema, which involves the designing of an appropriate interface for users.

As referred by (Mandel, 2002) an Interface is “the presentation, communication and

interaction between the user and the system”. However a user interface design is “the

process of designing the way in which systems user can access system functionality, and the

way that information produced by the system is displayed” (Sommerville, 2007).

The process of developing a User’s Interface has four major phases (Mandel, 2002) as

shown in Figure 44. The first phase deals with gathering/ analyzing user’s information, the

second deals with the designing of user’s interface, the third with constructing the user’s

interface and finally the fifth with validating the user’s interface.

Figure 45: The elements of User Interface Design (Mandel, 2002)

 Sommerville (2007) refers that the process of designing an effective interface is

crucial for the application development since users often judge a system by its interface

rather than is functionality. Also he mentions that a poorly designed interface can cause a

user to make catastrophic errors and is the main reason why many software systems are

never used. Thus Sommerville (2007) taking into account the previous mentioned that it is

important to take into account specifics principles when we are making user interface design

decisions. Those are:

Figure 46: User Interface Design Principles (Sommerville, 2007)

165

In general in order to create a quality software system from user perspective

according ISO/IEC 9126, this system must have the characteristics that shown in Figure 46.

Figure 47: Software Quality Characteristics (Bevan, 1999)

However a user interface is an essential component of any software system, thus

while design it is necessary to taking into account some specific quality criteria. According to

(Oren & Çetin, 1999) twenty seven quality criteria are identified for user/system interfaces

which are grouped in four areas namely, convenience (or usability), communicativeness,

reliability and evolvability. Those criteria are shown in the following graph:

1. Convenience of the language

2. Convenience of the terminology

3. Convenience of the metaphor

4. Convenience of the inputs

5. Functionality

6. Simplicity

7. Consistency

8. Minimum memory load

9. Navigability

10. Least training

Quality Criteria for User Interface

Convenience Communicativeness Reliability Evolvability

1. Informativeness

2. Guidance

3. Perceptiveness

4. Explanation ability

5. Expressiveness

6. Esthetic/cultural acceptance

7. Types of relationship

1. Error prevention (3.1)

2. Error tolerance (3.2)

3. Caution (3.3)

4. Predictability (3.4)

5. Access reliability (3.5

1. Adaptability

2. Customizability

3. Learning ability

4. Maintainability

5. Portability

Figure 48: Quality Criteria for User/System Interface (Oren & Çetin, 1999)

166

The rest of this chapter deals with giving a Use Case Diagram as a description of the

Main Windows of our Application, also in giving a hierarchy of Forms, and by giving a basic

flow chart which describes the steps that a user follows in a case of a data entry. Finally it

presents the Final Screens of our Application, detailed by the basic characteristics of their

fields, in order a user to have the knowledge about the fields that fill in.

7.2 Use Case Diagram as a Description of the Main Windows

In the previous section we discuss about the interface development process and the

quality criteria during this process. In this section we will describe how a user interacts with

the Application in order to achieve the goals of this application, by using a Use Case

Diagram.

This Use Case Diagram will be a mean for designing the User’s Interface of our

Application and not a mean for describing the functional or non-functional requirement of

the Application. This means that this Use Case Diagram can be seen as a description of the

main windows of the Application.

Users that may interact with the Application are represented by “actors”. In our

system different actors may interact with the system, for example an Owner User may have

the ability to see only the information about the Total Business Capability or a Senior

Manager User may have the ability to manage all the information about Business Capability.

However in this Use Case Diagram we will only represent only one actor, the Senior

Manager. Also the “use cases” will represent the set of tasks that the actor carry out, have

“include” and “extension” relationships, and can also be related with “generalization”

relationships that compare more particular tasks.

Thus the Use Case Diagram is following thereafter:

167

Login

Senior

Manager

Manage

Capability

<<extend>>

Enter Password

<<include>>

Enter Usermane

<<include>>

Internal

Capability

External

Capability

Main Sub

Associate with

Ability for Service

Manage

Hierachies of

Capabilities

<<include>>
Associate with

Capacity for

Service
<<include>>

Associate with

Ability uses

Capacity with

Service

<<include>>

View Total

Capability

<<extend>>

Associate

Capability with

Context

<<extend>>

Manage Context

Manage Owners

<<extend>>

Manage Output

Main

Sub

<<extend>>

Accociate Output

with Capability

Manage Output

Sales

Manage Output

Hierarchies

<<include>>

<<include>>

Manage Goals

Main Sub

Manage

Hierarchies of

Goals

<<include>>

Associate

Capability with

Goal

<<extend>>

<<extend>>

<<extend>>

Manage

Collaborations

between

Capabilities

<<extend>>

Create New

Collaborator

Connector
Information

Procedure

<<extend>>

Policy

<<extend>>

Manage Ability

Manage Services

<<extend>>

<<extend>>

<<extend>>

Internal Ability

External Ability

Define Skills<<include>>

Manage Capacity

Internal Capacity

External Capacity

Define Resources<<include>>

Main Sub

Manage Business

Process

<<extend>>

Accociate Service

with Business

Process

Manage

Hierarchies of

Services

<<extend>><<include>>

<<extend>>

168

7.3 Hierarchy of Forms

In the previous section we discuss some a Use Case Diagram as a description of the

main windows of our Application. However before we give the final Pages (Screens) for the

totality of Forms of our Application, it is important to discuss the hierarchy of them.

Our Application contains twelve Forms, which in some cases includes more than Tab

Pages. Those Forms are the following:

� Main: This Form concerns the action of login the system and then navigating

between the different Pages of our Application by a main menu. Thus it contains

two Sub Pages:

a) The Sub Page “Login”

b) The Sub Page “Main Menu”.

� Create New Capability: This Form concerns the action of Inserting a New Business

Capability. However except of the inserting the system allows the actions of

deleting, updating, querying and printing. It contains three Tab Pages:

a) The Tab Page “Internal Capability”

b) The Tab Page “External Capability”

c) The Tab Page “Hierarchies of Capabilities”.

� View Total Capability: This Form concerns the action of Viewing Total Business

Capability. Thus in this Form we can view for each Business Capability, his Type

(meaning External or Internal), his hierarchies Type (meaning Main or Sub), his

owner, its Sub Capabilities, the outputs that delivers, the associated goals, the

context in which it exists, the collaborations, what ability uses for delivering a

specific service, what capacity uses for delivering a specific Service and finally what

Ability and Capacity uses in association with Service.

� Manage Owners: This Form concerns the actions for management the

information about Owners (inserting, deleting, updating, querying and printing).

� Manage Context: This Page concerns the actions for management the information

about Context (inserting, deleting, updating, querying and printing) and contains

two Tab Pages:

a) The Tab Page “Capability is in Context”

b) The Tab Page “Context”.

� Manage Goals: This Form concerns the actions for management the information

about Goals and the hierarchies of them (inserting, deleting, updating, querying

and printing) contains two Tab Pages:

169

a) The Tab Page “Capability Meets Goal”

b) The Tab Page “Goals”.

� Manage Outputs: This Form concerns the actions for management the

information about Output and the hierarchies of them (inserting, deleting,

updating, querying and printing) contains two Tab Pages:

a) The Tab Page “Outputs”

b) The Tab Page “Hierarchies of Outputs”.

� Manage Collaborations Between Capabilities: This Form concerns the actions for

management the information about Collaborations between Business Capabilities

through a Collaborator Connector (inserting, deleting, updating, querying and

printing) and contains two Tab Pages:

a) The Tab Page “Capabilities Collaborations”

b) The Tab Page “Collaborator Connector”.

� Manage Ability: This Form concerns the actions for management the information

about Ability in relation with Skills (inserting, deleting, updating, querying and

printing) and contains two Tab Pages:

a) The Tab Page “Internal Ability”

b) The Tab Page “External Ability”.

� Manage Capacity: This Form concerns the actions for management the

information about Capacity in relation with Resources (inserting, deleting,

updating, querying and printing) and contains two Tab Pages:

a) The Tab Page “Internal Capacity”

b) The Tab Page “External Capacity”

� Manage Services: This Form concerns the actions for management the

information about Services and the hierarchies of them (inserting, deleting,

updating, querying and printing), and contains two Tab Pages:

a) The Tab Page “Services”

b) The Tab Page “Hierarchies of Services”

� Manage Business Process: This Form concerns the actions for management the

information about Process in relation with Tasks (inserting, deleting, updating,

querying and printing).

170

Thus according to the previous we now specify a hierarchy of the Forms, which will

also be used for the development of Main Menu, that will help us in navigation between the

Pages in our application. Thus this hierarchy is given in the following diagram:

Page: Login

Page: Main Menu

Main

Create New

Capability

View Total Capability

Manage

Owners

Manage

Context

Manage

Outputs

Manage

Collaborations

Between

Capabilities

Manage

Goals

Manage

Ability
Manage

Capacity

Manage

Services

Manage

Business

Process

Tab Page: Internal Capability

Tab Page: External Capability

Tab Page: Hierarchies of Capability

Page: View Total Capability

Page: Manage Owners

Page: Capability is in Context

Page: Context

Page: Output

Page: Hierarchies of Outputs

Page: Capabilities Collaborations

Page: Collaborator Connector

Tab Page: Capability Meets Goals

Tab Page: Goals

Tab Page: Internal Ability

Tab Page: External Ability

Tab Page: Internal Capacity

Tab Page: External Capacity

Page: Services

Page: Hierarchies of Services

Page: Manage Business Process

7.4 Basic Flow Chart for Data Entry

We now continue by describing the main flows in a case of data entry a New

Business Capability. When a new Business Capability exists, then the user of the application

deals with specific questions, who results to specific processes or sub-processes. In this

procedure there are specific steps. Those steps are:

Step 1: Go to the Page “Login” and fill in User Name and Password. If the User

Name and Password is Correct, then go to the Page “Main Menu” and

continue with the next Steps. Otherwise re fill in the same fields.

Step 2: The user questions whether this new Business Capability has a new owner. If

a new owner exists then the user goes to the Page “Manage Owners” and

171

inserts the new owner. Then he continues with the Step 3. Otherwise if

there is no New Owner he continues with the Step 3.

Step 3: In this Step the user questions whether this New Business Capability is

Internal. If not (which means that the Business Capability is External) then

the user questions whether this Capability is a Sub Capability. If the External

Business Capability is a Sub Capability then the user goes to the Tab Page

“Hierarchies of Capabilities” in Form “Create New Capability” and inserts the

Information about the hierarchy of Capabilities. Thereafter he goes to the

Tab Page “External Capability” in the same Form and inserts the information

concerning External Capability. Then he continues with the STEPS 10, 11, 12,

13 & 14. Finally If the New Business Capability is Internal then the user

continues with Step 4.

Step 4: In this Step the user questions whether this New Business Capability has a

New Ability. If it hasn’t then he proceeds to Step 5. Otherwise question

whether the New Ability is Internal. If this exist then goes to the Tab Page

“Internal Ability” in the Form “Manage Ability” and inserts the associated

information. At the same Tab Page the user also inserts the information

about the Skills that defines Internal Ability. Finally he continues with the

next Step.

 If the New Ability is not Internal (which means that is External) then the user

goes to the Tab Page “External Ability” in the same Form and insert the

associated information. In this Layout the user also inserts the information

about the Skills that defines External Ability. Finally he continues with the

next Step.

Step 5: In this Step the user questions whether this New Business Capability has a

New Capacity. If it hasn’t then he proceeds to Step 6. Otherwise question

whether the New Capacity is Internal. If this exist then goes to the Tab Page

“Internal Capacity” in the Form “Manage Capacity” and inserts the

associated information. At the same Tab Page the user also inserts the

information about the Resources that defines Internal Capacity. Finally he

continues with the next Step.

 If the New Capacity is not Internal (which means that is External) then the

user goes to the Tab Page “External Capacity” in the same Form and insert

the associated information. In this Tab Page the user also inserts the

172

information about the Resources that defines External Capacity. Finally he

continues with the next Step.

Step 6: In this Step the user questions whether this New Business Capability has a

New Service. If this not exists then continues with the Step 9. Otherwise he

questions whether this Service has a specific Business Process. If it has then

the user goes to the Page “Manage Business Process” and inserts the

information about it. Also in the same Page he associates Business Process

with specific Tasks. Finally he continues with the next step.

 If the Service is not delivered by a Specific Business Process, then the user

continues with the next Step.

Step 7: In this Step the user questions whether this New Service is a Sub Service. If

the Service is a Sub Service, then the user goes to the Page “Hierarchies of

Services” in the Form “Manage Services” and inserts the Information about

the hierarchy of Services. Thereafter he goes in the same Form to the Page

“Services” and inserts the information about it.

If the Service is not a Sub Service, then the user goes to the Page “Services”,

inserts the information about it and continues with the next Step.

Step 8: In this Step the user questions whether the New Internal Capability is a Sub

Capability. If the Internal Capability is a Sub Capability, then the user goes to

the Tab Page “Hierarchies of Capabilities” in the Form “Create New

Capability” and inserts the Information about the hierarchy of Capabilities.

Thereafter he goes in the same Form to the Tab Page “Internal Capability”

and inserts the information about it.

If the Internal Capability is not a Sub Capability, then the user goes in the

same Form to the Tab Page “Internal Capability”, inserts the information

about it and continues with the next Step.

NOTE: The next steps concern either Internal Business Capability of External

Business Capability.

Step 9: In this Step the user questions whether this New Business Capability is in a

New Context. If this not exists then the user goes to the Page “Capability is

in Context”, in the Form “Manage Context” and associate the Business

Capability with a specific context. Finally he continues with the next Step.

If the Business Capability is in a New Context, then the user goes in the same

Form to the Page “Context” and inserts the information about the New

173

Context. Then goes to the Page “Capability is in Context”, associate the

Business Capability with a specific context and continues with the next Step.

Step 10: In this Step the user questions whether the Output is delivered by Business

Capability is a Sub Output. If the Output is a Sub Output, then the user goes

in the Form “Manage Outputs” to the Page “Hierarchies of Outputs” and

inserts the Information about the hierarchy of Outputs. Thereafter he goes

to the in the same Form to the Page “Output” and inserts the information

about it.

If the Output is not a Sub Output, then the user goes to the Page “Output”,

inserts the information about it and continues with the next Step.

Step 11: In this Step the user questions whether this New Business Capability

collaborates with some other Business Capability through a Collaborator

Connector. If this not exists then the user goes to the Next Step. Otherwise

he questions if in this type of Collaboration, there is a New Collaborator

Connector. If this exists then the user goes to the Form “Manage

Collaborations between Capabilities” to the Page “Collaborator Connector”

and inserts the information about the Collaborator Connector. Then the user

goes in the same Form to the Page “Capabilities Collaborations”, and

correlates the Business Capabilities with the New Collaborator Connector.

If there is not a New Collaborator Connector, then the user goes to the Page

“Capabilities Collaborations”, correlates the Business Capabilities with the

New Collaborator Connector and continues with the next Step.

Step 12: In this Step the user questions whether this New Business Capability meet a

New Business Goal. If this not exists then the user goes in the Form “Manage

Goals” to the Tab Page “Capability Meets Goal” and correlate the Business

Capability with a pre-existing Goal. Otherwise he questions whether the new

Goal is a Sub Goal. If this goal is a Sub Goal, then the user goes in the same

Form to the Tab Page “Goals” first inserts the information about the main

goal and then inserts the sub goal and the hierarchy of him. Otherwise in the

same Tab Page he inserts only the information about the main goal and the

goes to the Tab Page “Capability Meets Goal”, to correlate the Business

Capability with the new Goal.

Step 13: In this Step the user exits the Application

The previous steps are shown in the following Flow Chart:

174

Does the Business

Capability has a New

Owner?
Yes

Go to the Form “Manage

Owners”, open the page

and insert the new Owner

No

Is the Business

Capability Internal?
No

Yes

Does the Internal

Business Capability

has a New Ability

Basic Flow Chart of Navigation Between Pages of Application in a Case of A New Business Capability Existence.

No

Is the Ability

Internal?

Yes

Go to the Form “Manage

Ability”, choose the Tab

Page “External Ability”

and insert the New

External Ability

No

Does the Internal

Business Capability

has a New

 Capacity?

Go to the Form “Manage

Ability”, choose the Tab

Page “Internal Ability”

and insert the New

Internal Ability

Yes

No

Yes

Go to the Form “Manage

Capacity”, choose the Tab

Page “Internal Capacity”

and insert the New

Internal Capacity

Is the Capacity

Internal?
Yes

No

Go to the Form “Manage

Capacity”, choose the Tab

Page “External Capacity”

and insert the New

External Capacity

Does the

 Internal Business

Capability delivers a

New

Service?

At the same Tab Page

insert the information

about Skills that defines

this Ability

At the same Tab Page

insert the information

about Skills that defines

this Ability

At the same Tab Page

insert the information

about Resources that

defines this Capacity

At the same Tab Page

insert the information

about Resources that

defines this Capacity

Go to Form “Manage

Business Process”, open

the Page and insert the

information about

Business Process

Is this Service

Delivered by a

Specific Business

Process?

Yes

Yes

Go to the Form “Manage

Services”, choose the Tab

Page “Hierarchies of

Services” and insert the

information about

Hierarchy of Services

Is this Service a Sub

Service?
No

 A New Business Capability Exists

Yes

Go to the Form “Manage

Services”, choose the Tab

Page “Services” and insert

the information about the

New Service

No

Is the Output that is

delivered a Sub

Outputl?

No

Go to the Form “Manage

Output”, choose the Tab

Page “Hierarchies of

Outputs” and insert the

information about

Hierarchy of Outputs

Yes

Go to the Form “Manage

Output”, choose the Tab

Page “Output” and insert

the information about the

New Output

No

Go to the Form “Manage

Context”, choose the Tab

Page “Context” and insert

the information about

Context

Is Capability

(either internal or

external) in a

New Context?

Yes

Does the

 Business Capability

(either External or

Internal) meets a New

Business

Goal?

Is this Business Goal

 a Sub Goal?
Yes

No

Yes

Go to the Form “Manage

Goals”, choose the Tab

Page “Capability Meets

Goals” and insert the

information about the

association between

Capability and Goal

No

Does the New

 Business Capability

Collaborates with another

Business Capability

though a Collaborator

Connector?

Yes

Go to the Form “Manage

Collaborations Between

Capabilities”, choose the

Tab Page “Collaborator

Connector” and insert the

information about him

Is there a New

Collaborator

Connector?

Yes

Go to the Form “Manage

Collaborations Between

Capabilities”, choose the

Tab Page “Capabilities

Collaborations” and insert

the information about

those

No

No

Exit Application

Go to Page “Main Menu”

At the same Page insert

the information about

Taks

Go to the Form “Manage

Context”, choose the Tab

Page “Capability is in

Context” and associate

Capability with a Context

Is this Internal

Capability a Sub

Capability?

Go to the Form “Create New

Capability”, choose the Tab

Page “Hierarchies of

Capabilities” and insert the

information about Hierarchy

of Capabilities

Go to the Form “Create New

Capability”, choose Tab

Page “Internal Capability”

and insert the information

about the New Internal

Capability

Yes

No

Is the this External

Capability a Sub

Capability?

Go to the Form “Create New

Capability”, choose the Tab

Page “Hierarchies of

Capabilities” and insert the

information about Hierarchy

of Capabilities

Go to the Form “Create

New Capability”, choose

the Tab Page “External

Capability” and insert the

information about the

New External Capability

Yes

No

No

Is the Password and

User Name Correct?

Go to Page “Login” and fill

in User Name and

Password

Yes

No

Go to the Form “Manage

Goals”, choose the Tab

Page “Goals” and insert

the information about the

Main Goal that Contains

this Sub Goal

Then at the same Tab

Page “Goals” insert the

information about the

Sub Goal

At the same Page

associate the Sub Goal

with the Main Goal

Go to the Form “Manage

Goals”, choose the Tab

Page “Goals” and insert

the information about the

Main Goal

175

7.5 Application Screens

In this section we present the final Screens for our Application. Also in the bottom of

every Screen we provide a brief description of the fields they contain, in order the user to be

familiar with the way they fill in it.

Thus the Main Screens of our Application follows thereafter:

1. Main:

This Screen contains the Sub Pages:

Login:

The main characteristics of the fields for “Login” Page are shown in the following

table:

Characteristics of fields

FIELD NAME Required Data

Type/Length

Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

User Name Yes Character (10) Upper No By the User

Password Yes Character (10) Upper –

Concealed Data

No By the User

Main Menu:

176

2. Create New Capability:

This Screen contains the Tab Pages:

Internal Capability

The main characteristics of the fields for “Internal Capability” Tab Page are shown

in the following table:

Characteristics of fields

FIELD NAME Required Data Type/Length Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

Internal Capability

Code

Yes Character (50) Upper No By the

User

Internal Capability

Description

Yes Character (250) Mixed No By the

User

Internal Capability

Owner

Yes Character (50)

List of Values - LOV

(Validated from List)

− Returns Owner Code

and Owner

Description Values.

By the

User

Internal Capability

Type

Yes Number(1)

List Item

− Main (=1) or Sub (=0) By the

User

Capacity Description Yes Character (50)

List of Values - LOV

(Validated from List)

− Returns Capability

Description Values.

By the

User

Service Name Yes Character (50)

List of Values - LOV

(Validated from List)

− Returns Service

Name Values.

By the

User

Ability Description Yes Character (50)

List of Values - LOV

(Validated from List)

− Returns Ability

Description Values.

By the

User

177

External Capability

The main characteristics of the fields for “Internal Capability” Tab Page are shown

in the following table:

Characteristics of fields

FIELD NAME Required Data Type/Length Case Restriction

when the user

fill in the field

Visible Default

Values

Filled

in

External Capability

Code

Yes Character (50) Upper No By the

User

External Capability

Description

Yes Character (250) Mixed No By the

User

External Capability

Owner

Yes Character (50)

List of Values - LOV

(Validated from List)

− Returns Owner

Code and Owner

Description Values.

By the

User

External Capability

Type

Yes Number(1)

List Item

− Main (=1) or Sub

(=0)

By the

User

Hierarchies of Capabilities

The main characteristics of the fields for “Internal Capability” Tab Page are shown

in the following table:

178

Characteristics of fields

FIELD NAME Required Data

Type/Length

Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

Main Capability Yes Character (50)

List of Values -

LOV (Validated

from List)

− Returns Main

Capability Code and

Main Capability

Description Values.

By the

User

Sub Capability Yes Character (50)

List of Values -

LOV (Validated

from List)

− Returns Sub

Capability Code and

Sub Capability

Description Values.

By the

User

3. View Total Capability:

This Page contains all the information about Business Capability. A user may

execute a query by inserting the “Capability Code” field or the “Capability

Description field” and then the system brings all the other fields that associated

with the inserted value.

The main characteristics of the top fields for “View Total Capability” Page are

shown in the following table:

Characteristics of fields

FIELD NAME Required Data

Type/Length

Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

Capability

Code

Yes Character (50)

List of Values -

LOV (Validated

from List)

− Returns Capability

Code and Capability

Description Values.

By the User

Capability

Description

Yes Character (250)

− Returns Capability

Description Values.

Automatic by

the System

179

Capability

Type

Yes Character (8) − External or Internal Automatic by

the System

Owner Name Yes − − Automatic by

the System

The main characteristic of the fields that included in each Tab Page are given

thereafter.

Characteristics of fields

FIELD NAME Required Data

Type/Length

Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

Sub Capability Code Yes Character (50)

− − Automatic by

the System

Sub Capability

Description

Yes Character (250)

− − Automatic by

the System

Characteristics of fields

FIELD NAME Required Data

Type/Length

Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

Output Code Yes Character (50)

− − Automatic by

the System

Output Name Yes Character (250)

− − Automatic by

the System

Output Type Yes Number(1) − Main (=1) or

Sub (=2)

Automatic by

the System

180

Characteristics of fields

FIELD NAME Required Data

Type/Length

Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

Goal Code Yes Character (50)

− − Automatic by

the System

Goal Name Yes Character (250)

− − Automatic by

the System

Goal Type Yes Number(1) − Main (=1) or

Sub (=2)

Automatic by

the System

Characteristics of fields

FIELD NAME Required Data

Type/Length

Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

Context Code Yes Character (50)

− − Automatic by

the System

Context Description Yes Character (150)

− − Automatic by

the System

181

Characteristics of fields

FIELD NAME Required Data

Type/Length

Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

Capability Code Yes Character (50)

− − Automatic by

the System

Capability

Description

Yes Character (250)

− − Automatic by

the System

Collaborator Code Yes Character (50)

− − Automatic by

the System

Collaborator Type Yes Character (20) − Policy or

Information or

Procedure

Automatic by

the System

Characteristics of fields

FIELD NAME Required Data

Type/Length

Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

Ability Code Yes Character (50)

− − Automatic by

the System

Ability Description Yes Character (250)

− − Automatic by

the System

Service Code Yes Character (50)

− − Automatic by

the System

Service Name Yes Character (250) − − Automatic by

the System

182

Characteristics of fields

FIELD NAME Required Data

Type/Length

Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

Capacity Code Yes Character (50)

− − Automatic by

the System

Capacity Description Yes Character (250)

− − Automatic by

the System

Service Code Yes Character (50)

− − Automatic by

the System

Service Name Yes Character (250) − − Automatic by

the System

Characteristics of fields

FIELD NAME Required Data

Type/Length

Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

Ability Code Yes Character (50)

− − Automatic by

the System

Ability Description Yes Character (250)

− − Automatic by

the System

Capacity Code Yes Character (50)

− − Automatic by

the System

Capacity Description Yes Character (250)

− − Automatic by

the System

Service Code Yes Character (50)

− − Automatic by

the System

Service Name Yes Character (250) − − Automatic by

the System

4. Manage Ability:

This Screen contains the Tab Pages:

183

Internal Ability

The main characteristics of the fields for “Internal Ability” Tab Page are shown in

the following table:

Characteristics of fields

FIELD NAME Required Data Type/Length Case Restriction

when the user

fill in the field

Visible

Default

Values

Filled in

Internal Ability Code Yes Character (50) Upper No By the User

Internal Ability Description Yes Character (250) Mixed No By the User

Economic Value Yes Number (22) with

Format Mask

“999,999.00”

Mixed No By the User

Internal Ability Type Yes Number(1)

List Item

− Internal

(=1)

By the User

Skill Code Yes Character (50) − No Automatic by

the System

Skill Name Yes Character (250) Mixed No By the User

184

External Ability

The main characteristics of the fields for “External Ability” Tab Page are shown in

the following table:

Characteristics of fields

FIELD NAME Required Data Type/Length Case

Restriction

when the user

fill in the field

Visible

Default

Values

Filled in

External Ability Code Yes Character (50) Upper No By the User

External Ability Description Yes Character (250) Mixed No By the User

Economic Value Yes Number (22) with

Format Mask

“999,999.00”

− No By the User

External Ability Type Yes Number(1)

List Item

− External

(=0)

By the User

Skill Code Yes Character (50) − No Automatic by

the System

Skill Name Yes Character (250) Mixed No By the User

5. Manage Capacity:

This Screen contains the Tab Pages:

185

Internal Capacity

The main characteristics of the fields for “Internal Capacity” Tab Page are shown in

the following table

Characteristics of fields

FIELD NAME Required Data Type/Length Case

Restriction

when the

user fill in

the field

Visible Default

Values

Filled in

Internal Capacity Code Yes Character (50) Upper No By the User

Internal Capacity

Description

Yes Character (250) Mixed No By the User

Economic Value Yes Number (22) with

Format Mask

“999,999.00”

− No By the User

Internal Capacity Type Yes Number(1)

List Item

− Internal (=1) By the User

Resource Code Yes Character (50) − No Automatic by

the System

Resource Type Yes Character (10)

List Item

− Physical or Legal

or Procedural or

Human or

Technological or

Financial or

Datalogical

By the User

Resource Description Yes Character (1000) Mixed No By the User

186

External Capacity

The main characteristics of the fields for “External Capacity” Tab Page are shown

in the following table

Characteristics of fields

FIELD NAME Required Data Type/Length Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

External Capacity

Code

Yes Character (50) Upper No By the User

External Capacity

Description

Yes Character (250) Mixed No By the User

Economic Value Yes Number (22) with

Format Mask

“999,999.00”

− No By the User

External Capacity

Type

Yes Number(1)

List Item

− External (=0) By the User

Resource Code Yes Character (50) − No Automatic by

the System

Resource Type Yes Character (10)

List Item

− Physical or Legal

or Procedural or

Human or

Technological or

Financial or

Datalogical

By the User

Resource

Description

Yes Character (1000) Mixed No By the User

187

6. Manage Businesss Process:

The main characteristics of the fields for “Manage Business Process” Page are

shown in the following table:

Characteristics of fields

FIELD NAME Required Data Type/Length Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

Process Code Yes Character (50) Upper No Automatic by

the System

Process Name Yes Character (250) Mixed No By the User

Task Name No Character (1.000) Mixed No By the User

7. Manage Services:

This Screen contains the Tab Pages:

188

Services

The main characteristics of the fields for “Services” Tab Page are shown in the

following table:

Characteristics of fields

FIELD NAME Required Data Type/Length Case Restriction

when the user fill

in the field

Visible Default

Values

Filled in

Service Code Yes Character (50) Upper No Automatic

by the

System

Service Name Yes Character (250) Mixed No By the User

Process Code No Character (50)

List of Values - LOV

(Validated from List)

− Returns Process

Code Values

By the User

Service Type Yes Number(1)

List Item

− Main (=1) or Sub

(=0)

By the User

Process Name No Character (250) − Returns Process

Name Values

according to

Process Code

Automatic

by the

System

Tasks No Character (1.000) − Returns Tasks

Name Values

according to

Process Code

Automatic

by the

System

189

Hierarchies of Services

The main characteristics of the fields for “Hierarchies of Services” Tab Page are

shown in the following table:

Characteristics of fields

FIELD NAME Required Data Type/Length Case Restriction

when the user

fill in the field

Visible Default Values Filled in

Main Service Yes Character (50)

List of Values - LOV

(Validated from List)

− Returns Main Service

Code and Main Service

Description Values.

By the User

Sub Service Yes Character (50)

List of Values - LOV

(Validated from List)

− Returns Sub Service

Code and Sub Service

Description Values.

By the User

8. Manage Context:

This Screen contains the Tab Pages:

Capability is in Context

190

The main characteristics of the fields for “Capability is in Context” Tab Page are

shown in the following table:

Characteristics of fields

FIELD

NAME

Required Data Type/Length Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

Capability

Code

Yes Character (50)

List of Values - LOV

(Validated from List)

− Returns Business

Capability Code

(Internal &

External) Values.

By the

User

Context

Description

Yes Character (150)

List of Values - LOV

(Validated from List)

− Returns Context

Description

Values.

By the

User

Context

The main characteristics of the fields for “Context” Tab Page are shown in the

following table:

Characteristics of fields

FIELD NAME Required Data

Type/Length

Case Restriction

when the user

fill in the field

Visible

Default

Values

Filled in

Context Code Yes Character (50) − No Automa

tic by

the

System

Context

Description

Yes Character (150) Mixed No By the

User

191

9. Manage Owners:

The main characteristics of the fields for “Manage Owners” Page are shown in the

following table:

Characteristics of fields

FIELD NAME Required Data

Type/Length

Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

Owner Code Yes Character (50) − No Automatic by

the System

Owner Name Yes Character (100) Mixed No By the User

10. Manage Outputs:

This Screen contains the Tab Pages:

Output

192

The main characteristics of the fields for “Outputs” Tab Page are shown in the

following table:

Characteristics of fields

FIELD NAME Required Data

Type/Length

Case Restriction

when the user

fill in the field

Visible Default Values Filled in

Output Code Yes Character (50) Upper No By the User

Output Name Yes Character (50) Mixed No By the User

Capability Code Yes Character (50)

List of Values -

LOV (Validated

from List)

− Returns Business

Capability Code

(Internal & External)

and Business Capability

Description Values.

By the User

Output Type Yes Number(1)

List Item

− Main (=1) or Sub (=0) By the User

Economic Value Yes Number (22) with

Format Mask

“999,999.00”

− No By the User

Recipient Name Yes Character (150) Mixed No By the User

Hierarchies of Outputs

The main characteristics of the fields for “Hierarchies of Outputs” Tab Page are

shown in the following table:

193

Characteristics of fields

FIELD NAME Required Data Type/Length Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

Main Output Yes Character (50)

List of Values - LOV

(Validated from List)

− Returns Main Output

Code and Description

Values.

By the User

Sub Output Yes Character (50)

List of Values - LOV

(Validated from List)

− Returns Sub Output

Code and Description

Values.

By the User

11. Manage Collaboratios Between Capabilities:

This Screen Contains the Tab Pages:

Capabilities Collaborations

The main characteristics of the fields for “Hierarchies of Outputs” Tab Page are

shown in the following table:

Characteristics of fields

FIELD NAME Required Data Type/Length Case Restriction

when the user

fill in the field

Visible Default Values Filled in

Capability A Yes Character (50)

List of Values - LOV

(Validated from List)

− Returns Business Capability

Code (Internal & External) and

Business Capability Description

Values.

By the

User

Capability B Yes Character (50)

List of Values - LOV

(Validated from List)

− Returns Business Capability

Code (Internal & External) and

Business Capability Description

Values.

By the

User

Collaborator

Connector

Yes Character (50)

List of Values - LOV

(Validated from List)

− Returns Collaborator

Connector Code and

Description Values.

By the

User

194

Collaborator Connector

The main characteristics of the fields for “Collaborator Connector” Tab Page are

shown in the following table:

Characteristics of fields

FIELD NAME Required Data Type/Length Case Restriction

when the user

fill in the field

Visible Default

Values

Filled

in

Collaborator

Connector Code

Yes Character (50) Upper No By the

User

Collaborator

Connector Type

Yes Character (20)

List Item

− Procedure or

Information or Policy

By the

User

Economic Value Yes Number (22) with Format

Mask “999,999.00”

Mixed No By the

User

12. Manage Goals:

This Screen Contains the Tab Pages:

Capability Meets Goals

The main characteristics of the fields for “Capability Meets Goals” Tab Page are

shown in the following table:

195

Characteristics of fields

FIELD

NAME

Required Data Type/Length Case Restriction

when the user

fill in the field

Visible Default Values Filled in

Capability Yes Character (50)

List of Values - LOV

(Validated from List)

− Returns Business Capability

Code (Internal & External)

and Business Capability

Description Values.

By the

User

Goals Yes Character (50)

List of Values - LOV

(Validated from List)

− Returns Goal Code and Goal

Description Values.

By the

User

Goals

In this Tab Page there is one field, the Main Goal Code, that is visible only when the

Goal Type field takes the value Sub. Thus the main characteristics of the fields for

“Goals” Tab Page are shown in the following table:

Characteristics of fields

FIELD NAME Required Data Type/Length Case Restriction

when the user

fill in the field

Visible Default

Values

Filled in

Goal Code Yes Character (50) Upper No By the User

Goal Name Yes Character (250) Mixed No By the User

Goal Type Yes Number (1)

List Item

− Main (=1) or Sub

(=0)

By the User

Sub Goal

Code

Yes Character (50)

List of Values - LOV

(Validated from List)

− Returns Sub Goal

Code Values.

Automatic

by the

system

Sub Goal

Description

Yes Character (250) − Automatic

Returns Sub Goal

Description

Values.

Automatic

by the

system

Main Goal

Code

Yes Character (50)

List of Values - LOV

(Validated from List)

− Returns Main

Goal Code Values.

By the User

196

7.6 Chapter Summary

Summarizing, in this chapter we have worked in a fourth level of analysis of our

approach, meaning we have created an external schema, which involves the designing of the

appropriate User Interface for the Maritime Application. In order this to be designed we

have taken into account the physical database that was created in the previous Chapter.

As we have already referred an Interface is “the presentation, communication and

interaction between the user and the system”. The process of developing a User’s Interface

has four major phases, in which the first deals with gathering/ analyzing user’s information,

the second deals with the designing of user’s interface, the third with constructing the user’s

interface and finally the fifth with validating the user’s interface (Mandel, 2002).

Designing an effective interface is important, since users judge a system by this rather

than is functionality. Also a poorly designed interface can cause a user to make catastrophic

errors and is the main reason why many software systems are never used. Thus when

designing an interface we should take into account specific principles: user familiar,

consistency, minimal of surprise, recoverability, user guidance and user diversity

(Sommerville, 2007). Finally when designing an interface except from the basic criteria that

must be taken into account in the software development in general, meaning Functionality,

Reliability, Usability, Efficiency, Maintainability and Portability (Bevan, 1999), some extra

criteria must be identified, which are Convenience, Communicativeness, Reliability and

Evolvability (Oren & Çetin, 1999).

In order to the previous to be specified in this Chapter we have created a Use Case

Diagram, by which we intent to describe the Main Windows of our Application and her

Functional and Non-Functional requirements. In this diagram the users are presented as

actors that interact with the system, use cases represent the set of tasks that actor carry out,

the relationships are represented as include and extension, and the comparison of some

more particular tasks are represented with generalization.

Then we have created a Hierarchy of Form diagram, in order to help us in creating the

Main Menu, by which a user can be navigate between the different forms. Also we have

created a Basic Flow Chart for data entry in a case of a new Business Capability existence. In

more specific this chart appears all the process and decisions that a user takes, during the

procedure of inserting this kind of data. Finally we have presented the Application Screen

with a description of the characteristics of the fields that contains, in order a user to be

familiar with the way he fill in it.

197

During the designing of the interface for the maritime application we can say that a

good knowledge of SQL language was required. Also was required the using of UML

language in order to describe the main windows, to give a hierarchy of forms and to describe

the steps that a user follows in a case of a data entry. By creating the previous three kinds of

diagrams we were able to understand how this application must be created, which was an

important factor in order the current user interface to be characterized by the previous

referred criteria. Finally except from that we were able to implement some of the

constraints that were missing from the previous steps of ORM technique, which had to do

with union textual constraints that discussed in a previous Chapter.

198

CHAPTER 8: Case Study

from the Maritime Field

Structure of this Chapter

8.1 DMC Data Description

8.2 Inform the Application about a New

Business Capability

8.3 Executing Queries

8.4 Removing Current Records in

Specific Forms

8.5 Chapter Summary

This chapter deals with

describing how a User may

interact with the Maritime

Application. Thus in

Section 8.1 we give a

sample of data description

of the Danaos

Management Consultant

Company, which are focus

in a specific Business

Capability that this

company has, the INCAP4:

Maritime Compliance

Capability. Then in Section

8.2 we present the

procedure of informing the

application about this case

of Capability and in Section

8.3 we show how a user

may execute specific

queries in the application.

In Section 8.4 we present

how we removing specific

records in specific forms

and in Section 8.4 we

present a brief summary of

this chapter.

199

8.1 DMC Data Description

The case study was based on an enterprise from the maritime domain field, the

Danaos Management Consultants (DMC), who is a software and services company

specializing in maritime IT company for over 30 years and one of the three subsidiaries of

Danaos Corporation. DMC capabilities have already being identified, decomposed and also

examined from the aspect of their collaborations from Loucopoulos et all (2013). The same

has being done to the services that DMC provides though these capabilities, to the business

goals that meet DMC capabilities, to the business process that DMC follows and to the

business context in which these capabilities exists.

As we have seeing at Loucopoulos et all (2013), DMC provides a variety of capabilities.

However we will focus in one of them, the Internal Maritime Compliance Capability and

thereafter in this section we will specially focus in giving a sample of data for this capability

and for the other Capabilities only where is needed.

Thus as already being described by Loucopoulos et all (2013), DMC Company has

created four main internal capabilities and three main external capabilities which are

discomposed into sub-capabilities. A codification and description of those capabilities is

given in the following table:

 Attributes

 Business Capability Code (capcode)

Capability

Codification

(mcapcode)

Capabilities Description (capdescr)

Sub-Capability

Codification

(subcapcode)

Sub-Capabilities Description (capdescr)

In
te

rn
a

l
C

a
p

a
b

il
it

y
 (

in
ca

p
co

d
e

)

INCAP1 Maritime Management Capability INCAP1.1 Ship Financial Management

 INCAP1.2 Ship Technical Management

 INCAP1.3 Ship Procurement Management

 INCAP1.4 International Safety Management

 INCAP1.5 Human Resource Management

 INCAP1.6 Chartering Management

 INCAP1.7 Operation Management

INCAP2 Social Networking Capability INCAP2.1
Secure Transactions and Communications

Capability

 INCAP2.2 Marketing Capability

INCAP3 Information Store & Management Capability INCAP3.1 Information Storing

 INCAP3.2 Information Management

INCAP4 Maritime Compliance Capability INCAP4.1 Vessel Monitoring Capability

 INCAP4.2 Port Regulation Monitoring Capability

 INCAP4.3 Regulation Inconsistences Reporting Capability

E
x

te
rn

a
l

C
a

p
a

b
il

it
y

(e
x

ca
p

co
d

e

)

EXCAP1
Technical Assistance Management

Capability

EXCAP2 Web-Conference Management Capability

EXCAP3 Maritime BP Outsourcing Capability

200

Those Capabilities are associated with specific owners as shown in the following tables:

Owner

Owner Codification (ownercode) Owner Name (ownername)

OWN1 DMC

OWN2 ComSys

OWN3 Microsoft

OWN4 Danaos Services/India

 Attributes

Main

Capability

Codificatio

n

(mcapcode

)

Main Capabilities Description (capdescr)

Sub-

Capability

Codification

(subcapcode)

Sub-Capabilities Description (capdescr)

Owner

Codific

ation

(owner

code)

Owner

Name

(ownernam

e)

In
te

rn
a

l
C

a
p

a
b

il
it

y
 (

in
ca

p
co

d
e

)

INCAP1 Maritime Management Capability INCAP1.1 Ship Financial Management OWN1 DMC

 INCAP1.2 Ship Technical Management OWN1 DMC

 INCAP1.3 Ship Procurement Management OWN1 DMC

 INCAP1.4 International Safety Management OWN1 DMC

 INCAP1.5 Human Resource Management OWN1 DMC

 INCAP1.6 Chartering Management OWN1 DMC

 INCAP1.7 Operation Management OWN1 DMC

INCAP2 Social Networking Capability INCAP2.1
Secure Transactions and Communications

Capability
OWN1 DMC

 INCAP2.2 Marketing Capability OWN1 DMC

INCAP3 Information Store & Management Capability INCAP3.1 Information Storing OWN1 DMC

 INCAP3.2 Information Management OWN1 DMC

INCAP4 Maritime Compliance Capability INCAP4.1 Vessel Monitoring Capability OWN1 DMC

 INCAP4.2 Port Regulation Monitoring Capability OWN1 DMC

 INCAP4.3
Regulation Inconsistences Reporting

Capability
OWN1 DMC

E
x

te
rn

a
l

C
a

p
a

b
il

it
y

(e
x

ca
p

co
d

e
)

EXCAP1
Technical Assistance Management

Capability
 OWN2 ComSys

EXCAP2 Web-Conference Management Capability OWN3 Microsoft

EXCAP3 Maritime BP Outsourcing Capability OWN4

Danaos

Services/In

dia

One of the main internal capabilities of DMC, as presented in the previous tables is

that of Maritime Compliance Capability (INCAP4). DMC has created and maintaining this

capability because in maritime industry it is essential for every shipping company and each

vessel to conform to all of required regulations and rules at each port, which often differ and

involving a large number of documents. The failure to comply with these may affect in

serious way the operation of the shipping company. Thus analyzing systems and processes

that deals with that data is important for that capability.

201

As already being described by Loucopoulos et all (2013) Maritime Compliance

Capability, owned by DMC (OWN1) and has three sub-capabilities. Those are the Vessel

Monitoring Capability (INCAP4.1), the Port Regulation Monitoring Capability (INCAP4.2) and

the Regulation Inconsistences Reporting Capability (INCAP4.3). The first one deals with the

ability to monitor the data concerning vessel’s status (cargo, medical conditions, emissions

and environmental issues), the second one deals with the effort of the vessel to exchange

information with the port and be aware of regulations enforced by the specific port

authority, and the last one deals with the ability to comparing vessel’s data with related to

them regulations and create alerts in case of non-compliance.

In order DMC to deliver Maritime Compliance Capability collaborations with other

capabilities may exist through the exchange of data, the execution of a business process or

the sharing of a specific data, which collaborations has some economic values. More

especially Vessel Monitoring Capability (INCAP4.1) collaborates with Human Resource

Management (INCAP1.5) through information and collaborates with Operation Management

(INCAP1.7) through procedure. The Port Regulation Monitoring Capability (INCAP4.2)

collaborates with International Safety Management (INCAP1.4) through information. Finally

the Regulation Inconsistences Reporting Capability (INCAP4.3) collaborates with Operation

Management (INCAP1.7) through information. Sample of data for collaborations in Maritime

Compliance Capability are given in the following tables:

Collaboration Connector (collabcode)

Procedure (collabcode) Information (collabcode) Policy (collabcode)

PR1 IN1 PO1

PR2 IN2 PO2

PR3 IN3 PO3

PRn Inn POn

Business Capability collaborates with Business Capability through

Codification

(capcode1)

Sub-Capabilities Description

(capdescr)

Codification

(capcode2)

Sub-Capabilities Description

(capdescr)

Collaboration

Connector

Code

(collabcode)

(connectortype)

INCAP4.1 Vessel Monitoring Capability INCAP1.5 Human Resource Management IN1 INFORMATION

 INCAP1.7 Operation Management PR1 PROCEDURE

INCAP4.2 Port Regulation Monitoring Capability INCAP1.4 International Safety Management IN2 INFORMATION

INCAP4.3
Regulation Inconsistences Reporting

Capability
INCAP1.7 Operation Management IN3 INFORMATION

202

Also Maritime Compliance Capability (INCAP4) is related to a specific context within it

exists. The context of Maritime Compliance Capability concerns changes in maritime

regulations, in laws enforced from port authorities and in vessel’s status. A codification of

the context related to Maritime Compliance Capability is shown in the following tables:

Context

Codification (contcode) Context Description (contdescr)

CONT1 Local Legislations

CONT2 Port Authorities Regulations

CONT3 Vessel’s status

Business Capability Is in context

Codification

(capcode)
Capabilities Description (capdescr)

Codification

(contcode)
Context Description (contdescr)

INCAP4 Maritime Compliance Capability CONT1 Local Legislations

 CONT2 Port Authorities Regulations

 CONT3 Vessel’s status

INCAP4.1 Vessel Monitoring Capability CONT3 Vessel’s status

INCAP4.2 Port Regulation Monitoring Capability CONT2 Port Authorities Regulations

INCAP4.3 Regulation Inconsistences Reporting Capability CONT1 Local Legislations

 CONT2 Port Authorities Regulations

 CONT3 Vessel’s status

 Furthermore Maritime Compliance Capability (INCAP4) is related to top – level

strategic goals, while its sub-capabilities are related to lower level operational goals. Worth

mentioning that when depicting in a goal graph the business goals of an organization the top

– level goals is the strategic goals, while the high – level is the operational goals. Thus the

top – level goals of Maritime Compliance Capability are:

� Goal 9: To participate in research projects

� Goal 10: To collaborate with academic research

� Goal 13: To identify client’ s needs

� Goal 20: To comply with regulations

In order the company to fulfill the “Goal 20: To comply with regulations” then it has its

sub-capabilities to fulfill the low level operational goals:

� Goal 41: To monitor vessel status

� Goal 42: To be informed about the regulation of each port

� Goal 43: To get alert when regulation are not met

203

A codification of business goals related with Maritime Compliance Capability is shown

in the following tables:

Business Goal (goalcode)

Main Goal

Codification

(mgoalcode)

Main Goal Name (goalname)

Sub-Goal

Codification

(subgoalcode)

Sub-Goal Name (goalname)

INCAP4_GOAL1
Goal 9: To participate in research

projects

INCAP4_GOAL2
Goal 10: To collaborate with

academic research

INCAP4_GOAL3 Goal 13: To identify client’ s needs

INCAP4_GOAL4
Goal 20: To comply with

regulations
INCAP4_GOAL4.1 Goal 41: To monitor vessel status

 INCAP4_GOAL4.2 Goal 42: To be informed about the regulation of each port

 INCAP4_GAOL4.3 Goal 43: To get alert when regulation are not met

Business Capability Meets Business goal

Codification

(capcode)

Capabilities Description

(capdescr)

Codification

(goalcode)
Goal Description (goaldescr)

INCAP4 Maritime Compliance Capability INCAP4_GOAL1 Goal 9: To participate in research projects

 INCAP4_GOAL2 Goal 10: To collaborate with academic research

 INCAP4_GOAL3 Goal 13: To identify client’ s needs

 INCAP4_GOAL4 Goal 20: To comply with regulations

INCAP4.1 Vessel Monitoring Capability INCAP4_GOAL4.1 Goal 41: To monitor vessel status

INCAP4.2
Port Regulation Monitoring

Capability
INCAP4_GOAL4.2 Goal 42: To be informed about the regulation of each port

INCAP4.3
Regulation Inconsistences

Reporting Capability
INCAP4_GOAL4.3 Goal 43: To get alert when regulation are not met

In addition Maritime Compliance Capability (INCAP4) produces some Business Output,

meaning some services which are of economic value and received by some recipients. One

main output that Maritime Compliance Capability produces is that of Rule Compliance

Services, which has as sub-output the Service Monitoring Service, the Vessel Monitoring

Service and the Regulation Inconsistence Service. A codification of output and sub-output in

relation with Maritime Compliance Capability is shown in the following tables:

204

Business Output (outputcode)

Main Output

Codification

(moutputcode)

Main Output Name

(outputname)

Sub-Output Codification

(suboutputcode)
Sub-Output Name (outputname)

INCAP4_OUTPUT1 Rule Compliance Services INCAP4_OUTPUT1.1 Vessel Monitoring Services

INCAP4_OUTPUT1.2 Port Regulation Services

INCAP4_OUTPUT1.3
Regulation Inconsistences

Reporting Services

Business Capability Delivers Business Output

Codification

(capcode)
Capabilities Description (capdescr)

Codification

(outputcode)

Output Name

(outputname)

INCAP4 Maritime Compliance Capability INCAP4_OUTPUT1 Rule Compliance Services

INCAP4.1 Vessel Monitoring Capability INCAP4_OUTPUT1.1 Vessel Monitoring Services

INCAP4.2 Port Regulation Monitoring Capability INCAP4_OUTPUT1.2 Port Regulation Services

INCAP4.3 Regulation Inconsistences Reporting Capability INCAP4_OUTPUT1.3
Regulation Inconsistences

Reporting Services

Also DMC for the total of capabilities produces different type of services and sub-

services, which are shown in the following table:

Service (servcode)

Main Service

Codification

(mservcode)

Main Service Name (servname)

Sub – Service

Codification

(subservcode)

Sub-Service Name (servname)

SERV1
Danaos Enterprise Maritime Solutions

(DEMS)
SERV1.1 Ship Management System

 SERV1.2
Commercial Operation Management

System

 SERV1.3 Financial Management System

 SERV1.4 Optimal Routing System

 SERV1.5 Integrated Communications Package

 SERV1.6
Fleet Performance Monitoring System

(WAVES)

 SERV1.7 KPIs Monitoring System

SERV2 Social Platform

SERV3 Mobile Apps

SERV4 Outsourcing

SERV5 E-Compliance System SERV5.1 Port of Calls Application

From the previous services worth mentioning that Port of Calls Application as

described by Loucopoulos et all (2013) was designed for Port Authorities and Ship

Management Companies in order to ease the submission procedures of required compliance

documents. As they stated, this application utilizes a single platform with a comprehensive

user interface, a build-in rule specific scripting language, and a storage facility ready to

205

directly read and write various files ready for automation & orchestration of data flow. Also

it is capable of collecting data form excel forms in one database and compare the data

retrieved from vessel and ports with existing rules in Database. If there are inconsistences

between data and rules, the application creates alerts via an alert mechanism in order for

the vessel to take care of them and align to the current constraints and rules by preparing

the required paperwork by hand.

In order to deliver the previous services to its clients it has establish a standard

Business Process, followed by specific steps/tasks. This Business Process is the Business

Process for Service Request and Quality Control. Except form the previous DMC has establish

a specific Business Process in order to satisfy customer requirements in the case of Maritime

Compliance Capability (INCAP4), the Business Process for Compliance Monitoring, which also

follows specific steps/tasks. A codification of them in relation to services is shown in the

following tables:

Business Process Leads to Tasks

Business

Process

Codification

(processcode)

Business Process

Name

(processname)

Tasks (taskname)

BP1 Business Process for

Service Request and

Quality Control

1. Service request initiates an offer from the Sales & Purchase dept

2. Both parties are discussing the offer and signing the final Contract

3. The requirement analyst is studying and analyzing the requirements of the

client and then conclude to a project plan of development with the

assistance of software engineers

4. Software engineers develop the request service and adjust their

development to the given specification

5. Software engineers proceed to an integration test and if everything is

working fine they deliver the protocol in order for the client to work with

the module for a trial period

6. If anything is missing or malfunctioning then the company is obligated to

review the development stage and the requirement analysis

7. The company offers consistent and permanent maintenance of the derived

service to their clientele

BP2 Business Process for

Compliance

Monitoring

Tasks (manual and user tasks):

� Collect forms with vessel’s status

� Collect forms with cargo status

� Collect forms with crew data

� Collect forms with history data

Tasks (manual and user tasks):

� Insert to the form port’s required information

� Prepare actual port forms

� Import forms to the system

� Save the complete forms for future use

Service tasks (executed by the system):

� Compare imported data with existing of port

Service tasks (executed by the system):

� Create alerts

206

Service (servicecode) Is delivered by Business Process

Main Service

Codification

(mservcode)

Main Service

Name (servname)

Sub – Service

Codification

(subservcode)

Sub-Service Name

(servname)

Business

Process

Code

(processco

de)

Business Process

Name

(processname)

SERV1

Danaos Enterprise

Maritime Solutions

(DEMS)

SERV1.1 Ship Management System BP1

Business Process for

Service Request and

Quality Control

 SERV1.2
Commercial Operation

Management System

 SERV1.3
Financial Management

System

 SERV1.4 Optimal Routing System

 SERV1.5
Integrated

Communications Package

 SERV1.6

Fleet Performance

Monitoring System

(WAVES)

 SERV1.7 KPIs Monitoring System

SERV2 Social Platform BP1

Business Process for

Service Request and

Quality Control

SERV3 Mobile Apps BP1

Business Process for

Service Request and

Quality Control

SERV4 Outsourcing BP1

Business Process for

Service Request and

Quality Control

SERV5
E-Compliance

System
SERV5.1 Port of Calls Application BP1

Business Process for

Service Request and

Quality Control

 BP2

Business Process for

Compliance

Monitoring

In order to deliver this service Maritime Compliance Capability must have the ability

and the capacity to ease the submission procedures of required compliance documents for

the Port of Calls Application, which have an economic value. However Ability may be either

internal or external. The same exist to Capacity. Thus a general codification for describing

those object types may be according to the following tables:

Attributes

 Ability

Ability Codification (abcode) Ability Description (abdescr)

In
te

rn
a

l A
b

il
it

y

(i
n

a
b

co
d

e
)

INCAP1_INAB1

INCAP1_INABn

INCAP2_INAB1

INCAP2_INABn

INCAPn_INAB1

INCAPn_INABn

E
x

te
rn

a
l

A
b

il
it

y

(e
x

a
b

co
d

e
)

INCAP1_EXAB1

INCAP1_EXABn

INCAP2_EXAB1

INCAP2_EXABn

INCAPn_EXAB1

INCAPn_EXABn

207

 Attributes

 Capacity

Capacity Codification (capaccode) Capacity Description (capacdescr)
In

te
rn

a
l

R
e

so
u

rc
e

 S
e

t

(i
n

ca
p

a
cc

o
d

e
)

INCAP1_INRES1

INCAP1_INRESn

INCAP2_INRES1

INCAP2_INRESn

INCAPn_INRES1

INCAPn_INRESn

E
x

te
rn

a
l

R
e

so
u

rc
e

S
e

t
(e

x
ca

p
a

cc
o

d
e

) INCAP1_EXRES1

INCAP1_EXRESn

INCAP2_EXRES1

INCAP2_EXRESn

INCAPn_EXRES1

INCAPn_INRESn

As far for Maritime Compliance Capability (INCAP4) in order to produces its services

it uses some Ability and some Capacity. From the previous description of services, Maritime

Compliance Capability produces the E-Compliance System (SERV5) and thereafter the Port of

Calls Application (SERV5.1). Thus a sample of data and a codification of the previous are

shown in the following tables:

Internal Capability Uses Ability
For

Service

Codification

(incapcode)

Capabilities Description

(capdescr)

Codification

(abcode)
Ability Description (abdescr)

Service

Code

(servcode)

INCAP4 Maritime Compliance

Capability

INCAP4_INAB1 The ability to ease the submission procedures of required

compliance documents for the Port of Calls Application

SERV5.1

INCAP4.1 Vessel Monitoring Capability INCAP4.1_INAB1 The ability for vessel monitoring SERV5.1

INCAP4.2 Port Regulation Monitoring

Capability

INCAP4.2_INAB1 The ability for Port Regulations monitoring SERV5.1

INCAP4.3 Regulation Inconsistences

Reporting Capability

INCAP4.3_INAB1 The ability for regulating inconsistences of reporting SERV5.1

Internal Capability Uses Capacity
For

Service

Codification

(incapcode)

Capabilities Description

(capdescr)

Capacity Code

(capaccode)
Capacity Description (capacdescr)

Service

Code

(servcode)

INCAP4 Maritime Compliance

Capability

INCAP4_INRES1 The capacity to ease the submission procedures of required

compliance documents for the Port of Calls Application

SERV5.1

INCAP4.1 Vessel Monitoring Capability INCAP4.1_INRES1 The capacity for vessel monitoring SERV5.1

INCAP4.2 Port Regulation Monitoring

Capability

INCAP4.2_INRES1 The capacity for Port Regulations monitoring SERV5.1

INCAP4.3 Regulation Inconsistences

Reporting Capability

INCAP4.3_INRES1 The capacity for regulating inconsistences of reporting SERV5.1

208

The Internal Ability that uses the Maritime Compliance Capability and its sub

capabilities in order to produce a service is made of a skill type. A codification of skill type is

relation with ability is shown in the following tables:

 Skill Type

Codification

(skillcode)
Skill Name (skillname)

SK1
IT skills in Microsoft Office (word, excel, access,

power point, internet)

SK2 Daily user of Databases Management Systems

SK3
Familiarization in working at Cloud

environment’s

SK4 Successfully worked to strict deadlines

SK5
Bachelor Degree in Computer Software

Engineering

SK6 Master Degree in Project Management

SKn ……….

Internal Ability Is made of Skill Type

Codification

(abcode)
Ability Description (abdescr)

Codification

(skillcode)
Skill Name (skillname)

INCAP4_INAB1 The ability to ease the submission

procedures of required compliance

documents for the Port of Calls

Application

SK1 IT skills in Microsoft Office (word, excel, access,

power point, internet)

SK2 Daily user of Databases Management Systems

SK3 Familiarization in working at Cloud environment’s

 SK4 Successfully worked to strict deadlines

 SK5 Bachelor Degree in Computer Software

Engineering

 SK6 Master Degree in Project Management

The capacity that uses the Maritime Compliance Capability and its sub capabilities is

made of Resources. Resources may be Physical, Legal, Procedural, Human, Technological,

Financial and Datalogical. A general codification of resources and their relation with Capacity

is shown in the following tables:

209

 Capacity Is made of Resources

Capacity

Codification

(capaccode)

Capacity Description

(capacdescr)

Resources

Codification

(rescode)

Resource Type

Values (restype)

Resources Description

(ph_descr or le_descr

or pr_descr or

hu_descr or te_descr

or fi_descr or da_descr

In
te

rn
a

l
R

e
so

u
rc

e
 S

e
t

(i
n

re
so

u
rc

e
se

tc
o

d
e

)

INCAP1_INRES1

...........

PH_INRES1.1 PH

LE_INRES1.1 LE

PR_INRES1.1 PR

HU_INRES1.1 HU

TE_INRES1.1 TE

FI_INRES1.1 FI

DA_INRES1.1 DA

INCAP1_INRESn PH_INRES1.n PH

LE_INRES1.n LE

PR_INRES1.n PR

HU_INRES1.n HU

TE_INRES1.n TE

FI_INRES1.n FI

DA_INRES1.n DA

INCAP2_INRES1 PH_INRES2.1 PH

LE_INRES2.1 LE

PR_INRES2.1 PR

HU_INRES2.1 HU

TE_INRES2.1 TE

FI_INRES2.1 FI

DA_INRES2.1 DA

INCAPn_INRES1

...........

PH_INRESn.1 PH

LE_INRESn.1 LE

PR_INRESn.1 PR

HU_INRESn.1 HU

TE_INRESn.1 TE

FI_INRESn.1 FI

DA_INRESn.1 DA

INCAPn_INRESn

...........

PH_INRESn.n PH

LE_INRESn.n LE

PR_INRESn.n PR

HU_INRESn.n HU

TE_INRESn.n TE

FI_INRESn.n FI

DA_INRESn.n DA

E
x

te
rn

a
l

R
e

so
u

rc
e

 S
e

t
(e

x
re

so
u

rc
e

se
tc

o
d

e
)

INCAP1_EXRES1 PH_EXRES1.1 PH

LE_EXRES1.1 LE

PR_EXRES1.1 PR

HU_EXRES1.1 HU

TE_EXRES1.1 TE

FI_EXRES1.1 FI

DA_EXRES1.1 DA

INCAP1_EXRESn PH_EXRES1.n PH

LE_EXRES1.n LE

PR_EXRES1.n PR

HU_EXRES1.n HU

TE_EXRES1.n TE

FI_EXRES1.n FI

DA_EXRES1.n DA

INCAP2_EXRES1 PH_EXRES2.1 PH

LE_EXRES2.1 LE

PR_EXRES2.1 PR

HU_EXRES2.1 HU

TE_EXRES2.1 TE

FI_EXRES2.1 FI

DA_EXRES2.1 DA

INCAPn_EXRES1 PH_EXRESn.1 PH

LE_EXRESn.1 LE

PR_EXRESn.1 PR

210

HU_EXRESn.1 HU

TE_EXRESn.1 TE

FI_EXRESn.1 FI

DA_EXRESn.1 DA

INCAPn_EXRESn PH_EXRESn.n PH

 LE_EXRESn.n LE

 PR_EXRESn.n PR

 HU_EXRESn.n HU

 TE_EXRESn.n TE

 FI_EXRESn.n FI

 DA_EXRESn.n DA

Finally DMC in order to deliver the Maritime Compliance Capability (INCAP4) has used

a set of internal resources, which are Human, Technological & Legal. Those resources are

described in the following table:

Internal Capability Uses Capacity

Codification

(incapcode)

Capabilities

Description

(capdescr)

Capacity Code

(capaccode)

Capacity

Description

(capacdescr)

Resources

Codification

(rescode)

Resource

Type

Values

(restype)

Resources Description

(resdescr)

INCAP4 Maritime

Compliance

Capability

INCAP4_INRES1 The capacity to

ease the

submission

procedures of

required

compliance

documents for

the Port of Calls

Application

HU_INRES4.1 Human � 2 Software Engineers from

IT department

� 1 Project Manager

 TE_INRES4.1 Technologi

cal

� RED Programming

Language

� Reading and Learning

Machinery of Word, Excel,

PDF etc files

� Web Services for retrieval

of data

� A database in order to store

laws and regulations

 LE_INRES4.1 Legal � Laws and regulations in

order to create a Database

with rules and constraints

211

8.2 Inform the Application about a New Business Capability

Taking into account the Case Study discussed in the previous section we now will

inform the application with the information about the INCAP4: Maritime Compliance

Capability. A quide for this action will be the flow chart that discussed 7.3, since we are

inserting a New Business Capability

Before we start it is necessary to discuss the Main Menu that exists in the Top of every

Page in our Application. This is the following Menu:

This menu contains the Menu Items:

If we choose one of this items then a list of choises will be presented,by which we can

implement specific actions. Those actions decribed thereafter:

Action Save : Saves any pending changes in the active form

Clear All : Clears all the records of the current form

Print : Prints the current window

Print Setup : Sets up the printing choises

Exit : Quits the current Application

Edit Cut : Cuts the current field to the clipboard

Copy : Copies the current field to the clipboard

Paste : Pastes the contexts of the clipboard into current field

Edit : Makes changes to a current field

Display List : Appears a list of values in a current field

Query Enter : Enters a new query by a specific record or for all records

Execute : Executes a query by a specific record or for all records

Cancel : Cancels an entered query

Last Criteria : Enters a query according to the last used quering criteria

Cout Hits : Counts the number of records appeared in a query

Fetch Next Set : Appears the next set of records

Block Previous : Navigates to the previous block

Next : Navigates to the next block

Clear : Clears the records in the current block

Record Previous : Navigates to the previous record

Next : Navigates to the next record

Scroll Up : Navigates to the first record

Scroll Down : Navigates to the last record

Insert : Inserts a new record

Remove : Removes the current record

Lock : Locks the current record

Duplicate : Dublicates the current record

Clear : Clears the current record

Field Previous : Navigates to the previous field

Next : Navigates to the next field

Clear : Clears the current field

Duplicate : Duplicates the current field

Window Cascade : Displays any open windows in a “cascaded” or stair-stepped fashion

Tile : Displayis any open window in a tile fashion

Arrange Icons : Specifies how to arrange icons

Visible Window : Shows the current opened window

212

Help Help : Shows the properties of the current block

Keys : Shows the following keys:

Display Error : Displays any encountered errors of the system during the operation of

the application

Debug: : Finds and resolvs of defects that prevents correct operation of the

application

The Main Menu also contains the following Tool Bar:

This Tool Bar is a collection of buttons that we may select in order to perform some of

the actions described in the Menu Items direclty. Those actions are:

 : Save any pending changes in the active form

: Cancel an entered query

: Set up the printing choises

: Navigation to the previous block

: Print the current window

: Navigation to the next block

: Quit the current Application : Navigation to the previous record

: Cut the current field to the clipboard

: Navigation to the next record

: Copy the current field to the clipboard

: Insert a new record

: Paste the contexts of the clipboard into current field

: Remove the current record

: Enter a new query by a specific record or for all records

: Lock the current record

: Execute a query by a specific record or for all records

: Show the properties of the current block

213

Thus for opening the Application we double click on the Business Capability Icon ,

and then the following window appears:

In this window we enter the User Name and the Password, and we press the button

. If during the filling in we type an incorrect User Name or Password then the

System appears the following message:

Otherwise the Main Menu appears. With this menu we can navigate between the

different Pages of the Application, by clicking on them.

Also in this Page if we press the button then this message appears:

If we choose yes then we exit the from Business Capability Application, otherwise no

action occurs.

214

The INCAP4 has a pre-existing Owner with value “DMC”, which means that according

to Basic Flow Chart we continue with the next step. However it is neseccary to describe how

we have inserted this Owner. So we suppose that INCAP4 has a New Owner with value

“DMC”. Thus we are choosing from the Main Menu the Form “Manage Owners”. In the

appeared Page we press the button

Insert New Record (), we place the

cursor in the field Owner Name and

enter the value “DMC. Then we press

the Save button () and finally the

button Exit Form (). Worth

mentioning that in this Page the

system automatically creates the

Owner Code in the logic that discussed

in the previous section (meaning

OWN1, OWN2, OWNn). Also when we press the Save button the message “FRM-40400:

Transaction complete: 1 records applied and saved” appears in the bottom of the page,

which confirms the success of this action.

Continuing with the flow chart the INCAP4 is an Internal Capability and also has a New

Ability, which is “INCAP4_INAB1: The Ability to ease the submission procedures of required

compliance documents for the Port of Calls Application”. This Ability is an Internal Ability, so

we are choosing from the Main Menu the Form “Manage Ability” and we are going to the

Tab Page “Internal Ability”. In this Tab Page we press the button Insert New Record () and

then:

� We place the cursor in the field Internal Ability Code and enter the code with the

logic that described in the previous section, meaning “INCAP4_INAB1”. When we

are entering this code the system automatically converts the characters we use

into Upper Case Characters.

� We place the cursor in the field Internal Ability Description and we enter the

information “The Ability to ease the submission procedures of required

compliance documents for the Port of Calls Application”.

� We place the cursor in the field Economic Value and we enter the information

“15.000” (for this field the system show final values in a Format Mask 99,999.00).

215

� We place the cursor in the

field Internal Ability Type, we

click to display values and we

choose the correct value,

meaning the value “Internal”.

� We place the cursor in the

field Skill Name and we enter

the information about the Skills that Defines the Ability INCAP4_INAB1. Thus we

enter the records:

1. «IT skills in Microsoft

Office (word, excel, access,

power point, internet)»

2. «Daily user of Databases

Management Systems»

3. «Familiarization in working

at Cloud environment’s»

4. «Successfully worked to

strict deadlines»

5. «Bachelor Degree in

Computer Software Engineering»

6. «Master Degree in Project Management»

� Then we press the Save Button () and finally the button Exit Form ().

Worth mentioning that the system automatically creates the Skill Code in the logic

that discussed in the previous section (meaning SK1, SK2, SKn).

NOTE: If this New Ability was an External Ability, then we would choose the Tab Page “External Ability” and fill in

the same fields with the same way we have done it in “Internal Ability” Tab Page.

We now continue with the next step. Thus the INCAP4 has a New Capacity, which is

“INCAP4_INRES1: The Capacity to ease the submission procedures of required compliance

documents for the Port of Calls Application”. This is an Internal Capacity, so we are choosing

from the Main Menu the Form “Manage Capacity” and we are going to the Tab Page

“Internal Capacity”. In this Tab Page we press the button Insert New Record () and then:

� We place the cursor in the field Internal Capacity Code and we enter the code with

the logic that described in the previous section, meaning INCAP4_INRES1. When

216

we are entering this code the system automatically converts the characters we use

into Upper Case Characters.

� We place the cursor in the field Internal Capacity Description and we enter the

information “The Capacity to ease the submission procedures of required

compliance documents for the Port of Calls Application”.

� We place the cursor in the field Economic Value and we enter the information

“25.000” (for this field the system show final values in a Format Mask 99,999.00).

� We place the cursor in the

field Internal Capacity Type,

we click to display values and

finally we choose the correct

value, meaning the value

“External”.

The INCAP4_INRES1 has used three set of Resources, meaning Human, Technological

and Legal. Thus for the first set of Resources:

� We place the cursor in the

first record to the field

Resource Type, we click to

display values and we

choose the value ‘Human’.

� We place the cursor in the

field Resource Description

and we enter the

information:

a) 2 Software Engineers

from IT department

b) 1 Project Manager

Also for the second set of Resources:

� We place the cursor in the next record to the field Resource Type, we click to

display values and we choose the value ‘Technological’.

217

� We place the cursor in the

field Resource Description

and we enter the

information:

a) RED Programming

Language,

b) Reading and

Learning Machinery

of Word, Excel, PDF

etc files,

c) Web Services for

retrieval of data,

d) A database in order to store laws and regulations.

Finally for the third set of Resources:

� We place the cursor in the

third record to the field

Resource Type, we click to

display values and we

choose the value ‘Legal’.

� We place the cursor in the

field Resource Description

and we enter the

information: a) Laws and

regulations in order to

create a Database with

rules and constraints.

� Finally we press the Save Button () and finally the button Exit Form ().

Worth mentioning that the system automatically creates the Resource Code in the

logic that discussed in the previous section, meaning HU_INRESR4.1 for Human Resource

Set, TE_INRESR4.1 for Technological Resource Set and LE_INRESR4.1 for Legal Resource Set.

NOTE: If this New Capacity was an External Capacity, then we would choose the Tab Page “External Capacity” and

fill in the same fields with the same way we have done it in “Internal Capacity” Tab Page.

218

We now continue with the next Step. The INCAP4 delivers a New Service which

delivered by a Specific Business Process. As we have already disused in the previous section

DMC has established a specific Business Process in order to satisfy customer requirements in

the case of Maritime Compliance Capability (INCAP4) the Business Process for Compliance

Monitoring. So we are choosing from the Main Menu the Form “Manage Business Process”.

In the appeared Page we press the button Insert New Record (), and then:

� We place the cursor in the field Process Name and we enter the information

“Business Process for Compliance Monitoring”.

� We place the cursor in the field Task Name and we enter the information:

A. Tasks (manual and user tasks):

• Collect forms with

vessel’s status

• Collect forms with

cargo status

• Collect forms with

crew data

• Collect forms with

history data

B. Tasks (manual and

user tasks):

• Insert to the form

port’s required information

• Prepare actual port forms

• Import forms to the system

• Save the complete forms for future use

Service tasks (executed by the system):

• Compare imported data with existing of port

C. Tasks (manual and user tasks):

• Create alerts

� Then we press the Save Button () and then the Exit Form Button ().

Worth mentioning that in this page the system automatically creates the Process Code

in the logic that discussed in the previous section (meaning B1, B2, Bn).

219

As we already mention this Business Process defines a Specific Service so we continue

with step. Thus we are choosing from the Main Menu the Form “Manage Services” and we

are going to the Tab Page “Services”. The INCAP4 capabilty delivers the Main Service

“SERV5: E-Compliance System” which has as Sub Service the “SERV 5.1: Port of Calls

Application”. Thus in this Tab Page we first insert the information about Main Service and

then we insert the information about the Sub Service.

Thus for inserting the information about Main Service SERV5 we press the button

Insert New Record () and then:

� We place the cursor in the field Service Code and we enter the code with the logic

that described in the previous section, meaning SERV5. After entering this code

the system automatically converts the characters we use into Upper Case

Characters.

� We place the cursor in the field Service Name and we enter the value “E-

Compliance System”.

� Then we place the cursor in

the field Process Code, we

click on the List of Values, we

scroll down the list of values

that appears and we select

the value “B2: Business

Process for Compliance

Monitoring”.

� We place the cursor in the field Service Type, we click to display values and we

choose the value “Main”.

� Finally we press the Save

Button ().

Then we inserting the

information about the Sub

Service SERV5.1. Thus we press

the button Insert New Record (

) and then:

� We place the cursor in the

field Service Code and we

enter the code with the logic

220

that described in the previous section, meaning SERV5.1. After entering this code

the system automatically converts the characters we use into Upper Case

Characters.

� We place the cursor in the field Service Name and we enter the value “Port of Calls

Application”.

� Then we place the cursor in the field Process Code, we click on the List of Values,

we scroll down the list of values that appears and we select the value “B2:

Business Process for Compliance Monitoring”.

� We place the cursor in the field Service Type, we click to display values and we

choose the value “Sub”.

When we choose the value Sub in the field Service Type, then the Button

 appears. So we press this button, we go to the Tab Page

“Hierarchies of Services” and then:

� We place the cursor in the

field Main Service, we click on

the List of Values, we scroll

down the list of values that

appears and we select the

value “SERV5: E-Compliance

System”. With this action the

Main Service Code and the Main Service Description appears.

� We place we place the

cursor in the field Sub

Service, we click on the List

of Values, we scroll down

the list of values that

appears and we select the

value “SERV5.1: Port of Calls

Application”. With this

action the Sub Service Code and the Sub Service Description appears.

� Finally we press the Save Button () and then the Exit Form Button ().

We now continue with the next step. The Internal Capability is a Main Capability thus

we are choosing from the Main Menu the Form “Create New Capability” and we are going to

221

the Tab Page “Internal Capabiltity” to enter the information. In this Tab Page we press the

button Insert New Record () and then:

� We place the cursor in the field Internal Capability Code and we enter the code

with the logic that described in the previous section, meaning INCAP4. After

entering this code the system automatically converts the characters we use into

Upper Case Characters.

� We place the cursor in the field Internal Capability Description and we enter the

value “Maritime Compliance Capability”.

� Then we place the cursor in

the field Internal Capability

Owner, we click on the List of

Values, we scroll down the list

of values that appears and we

select the value “OWN1:

DMC”.

� We place the cursor in the

field Internal Capability Type,

we click to display values and

we choose the value “Main”.

The Internal Capability “INCAP4: Maritime Compliance Capability” uses the Internal

Capacity “INCAP4_INRES1: The Capacity to ease the submission procedures of

required compliance documents for the Port of Calls Application” for delivering the

Sub Service “SERV5.1: Port of

Calls Application”. Thus:

� We Go to the block Internal

Capability Uses Capacity For

Service, we place the cursor

in the field Capacity

Description, we click on the

List of Values, we scroll down

the list of values that

appears and we select the

value “INCAP1_INRES1”.

222

� In the same block we place the cursor cursor in the field Service Name, we click on

the List of Values, we scroll down the list of values that appears and we select the

value “SERV5.1”.

The Internal Capability “INCAP4: Maritime Compliance Capability” uses the Internal

Ability “INCAP4_INAB1: The Ability to ease the submission procedures of required

compliance documents for the Port of Calls Application” for delivering the Sub Service

“SERV5.1: Port of Calls Application”. Thus:

� Then we go to the block Internal Capability uses Ability for Service, we place the

cursor in the field Ability Description, we click on the List of Values, we scroll down

the list of values that appears and we select the value “INCAP1_INAB1”.

� In the same block we place the cursor in the field Service Name, we click on the

List of Values, we scroll down the list of values that appears and we select the

value “SERV5.1”.

The Internal Capability “INCAP4: Maritime Compliance Capability” uses the

combination of Internal Ability “INCAP4_INAB1: The Ability to ease the submission

procedures of required compliance documents for the Port of Calls Application” uses

Internal Capacity “INCAP4_INRES1: The Capacity to ease the submission procedures of

required compliance documents for the Port of Calls Application” with the Sub Service

“SERV5.1: Port of Calls Application”.Thus:

� We go to the block Internal Capability Uses the Combination of Ability Uses

Capacity with Service, we place the cursor in the field Ability Description, we click

on the List of Values, we scroll down the list of values that appears and we select

the value “INCAP1_INAB1”.

� In the same block we place the cursor in the field Capacity Description, we click on

the List of Values, we scroll down the list of values that appears and we select the

value “INCAP4_INRES1”.

� In the same block we place the cursor in the field Service Name, we click on the

List of Values, we scroll down the list of values that appears and we select the

value “SERV5.1”.

� Finally we press the Save Button ().

However the INCAP4 Internal Capability is decomposed into Sub Capabilities. Those

Capabilities are the “INCAP4.1: Vessel Monitoring Capability”, the “INCAP4.2: Port

Regulation Monitoring Capability” and the “INCAP4.3 Regulation Inconsistence Reporting

Capability”. So we have to insert each of them separately.

223

However we will only describe how we insert the first of them. Thus for the first Sub

Capability we are going to the Tab Page “Internal Capabiltity”, press the button Insert New

Record () and then:

� We place the cursor in the field Internal Capability Code and we enter the code

with the logic that described in the previous section, meaning INCAP4.1. After

entering this code the system automatically converts the characters we use into

Upper Case Characters.

� We place the cursor in the field Internal Capability Description and we enter the

value “Vessel Monitoring Capability”.

� Then we place the cursor in the field Internal Capability Owner, we click on the List

of Values, we scroll down the list of values that appears and we select the value

“OWN1: DMC”.

� We place the cursor in the

field Internal Capability Type,

we click to display values and

we choose the value “Sub”.

When we choose the value Sub in

the field Internal Capability Type,

then the button

 appears. So

we press this button, we go to the Tab Page “Hierarchies of Capabilities” and then:

� We place the cursor in the field Main Capability, we click on the List of Values, we

scroll down the list of values

that appears and we select

the value “INCAP4: Maritime

Compliance Capability”. With

this action the Main

Capability Code and the Main

Capability Description

appears.

� We place we place the cursor

in the field Sub Capability, we

click on the List of Values, we

scroll down the list of values

224

that appears and we select the value “INCAP4.1: Vessel Monitoring Capability”.

With this action the Sub Capability Code and the Sub Capability Description

appears.

� Then we press the button and return to the Tab Page

“Internal Capability” in order to continue filling in the fields. Worth mentioning

that when we press this button then a commit action implement for the inserted

records in this Tab Page.

The Internal Sub Capability “INCAP4.1: Vessel Monitoring Capability” uses the Internal

Capacity “INCAP4.1_INRES1: The Capacity for Vessel Monitoring” for delivering the

Sub Service “SERV5.1: Port of Calls Application”. Thus:

� We Go to the block Internal Capability Uses Capacity For Service, we place the

cursor in the field Capacity Description, we click on the List of Values, we scroll

down the list of values that appears and we select the value “INCAP4.1_INRES1”.

� In the same block we place the cursor cursor in the field Service Name, we click on

the List of Values, we scroll down the list of values that appears and we select the

value “SERV5.1”.

The Internal Sub Capability “INCAP4.1: Vessel Monitoring Capability” uses the Internal

Ability “INCAP4_INAB1: The ability for Port Regulations monitoring” for delivering the

Sub Service “SERV5.1: Port of Calls Application”. Thus:

� Then we go to the block Internal Capability uses Ability for Service, we place the

cursor in the field Ability Description, we click on the List of Values, we scroll down

the list of values that appears and we select the value “INCAP4.1_INAB1”.

� In the same block we place the cursor in the field Service Name, we click on the

List of Values, we scroll down the list of values that appears and we select the

value “SERV5.1”.

The Internal Sub Capability “INCAP4.1: Vessel Monitoring Capability” uses the

combination of Internal Ability “INCAP4_INAB1: The ability for Port Regulations

monitoring” uses Internal Capacity “INCAP4.1_INRES1: The Capacity for Vessel

Monitoring” with the Sub Service “SERV5.1: Port of Calls Application”.Thus:

� We go to the block Internal Capability Uses the Combination of Ability Uses

Capacity with Service, we place the cursor in the field Ability Description, we click

on the List of Values, we scroll down the list of values that appears and we select

the value “INCAP4.1_INAB1”.

225

� In the same block we place the cursor in the field Capacity Description, we click on

the List of Values, we scroll down the list of values that appears and we select the

value “INCAP4.1_INRES1”.

� In the same block we place the cursor in the field Service Name, we click on the

List of Values, we scroll down the list of values that appears and we select the

value “SERV5.1”.

� Finally we press the Save Button () and then the Exit Form Button ().

NOTE: If this New Capability was an External Capability, then we would choose the Tab Page “External Capability”

and fill in the same fields with the same way we have done it in “Internal Capability” Tab Page. Also we would

miss the previous steps described, except from the Step that concerns the existence of a New Owner.

We now continue with the next Step. The INCAP4 is in a new Context and more

especially in three different Contexts. Those are “Local Legislations”, “Port Authorities

Regulations” and “Vessel’s status”. Since those contexts are new, we are choosing from the

Main Menu the Form “Manage Context”, we are going to the Tab Page “Context”, we press

the button Insert New Record () (or in the Tab Page “Capability is in Context we press the

button ”) and then:

� We place the cursor in the first record to the field Context Description and we

enter the value “Local Legislations”.

� We place the cursor in the

second record to the field

Context Description and we

enter the value “Port

Authorities Regulations”.

� We place the cursor in the

third record to the field Context Description and we enter the value “Vessel’s

Status”.

Worth Mentioning that in this page the system automatically creates the Context

Code in the logic that discussed in the previous section (meaning CONT1, CONT2,

CONTn). Thus:

� We then press the Save Button () and then we push the button

 in order to associate this records of context with the INCAP4.

226

� In the Tab Page

“Capability is in Context

that appears, we place

the cursor in the first

record to the field

Capability Code, we click

on the List of Values, we

scroll down the list of values that appears and we select the value “INCAP4:

Maritime Compliance Capability”. With this action the Main Capability Code

appears.

� Then we place the

cursor in the field

Context Description,

we click on the List of

Values, we scroll down

the list of values that

appears and we select

the value “CONT1: Local Legislations”. With this action the Context Description

appears.

� We then place the cursor in the second record to the field Capability Code, we

click on the List of Values, we scroll down the list of values that appears and we

select the value “INCAP4: Maritime Compliance Capability”.

� Then we place the cursor in the field Context Description, we click on the List of

Values, we scroll down the list of values that appears and we select the value

“CONT2: Port Authorities Regulations”.

� Finally we then place the cursor in the third record to the field Capability Code, we

click on the List of Values, we scroll down the list of values that appears and we

select the value “INCAP4: Maritime Compliance Capability”.

� Then we place the cursor in the field Context Description, we click on the List of

Values, we scroll down the list of values that appears and we select the value

“CONT3: Vessel’s Status”.

� Finally we press the Save Button () and then the Exit Form Button ().

227

We now continue with the next Step. The INCAP4 delivers the Main Output

“INCAP4_OUTPUT1: Rule Compliance Services”. Thus we are choosing from the Main Menu

in the Form “Manage Outputs” and choosing the Tab Page “Output” to enter the

information. In this Tab Page we press the button Insert New Record () and then:

� We place the cursor in the field Output Code and we enter the code with the logic

that described in the previous section, meaning INCAP4_OUTPUT1. During the

entering of this code the system automatically converts the characters we use into

Upper Case Characters.

� We place the cursor in the field Output Name and we enter the value “Rule

Compliance Services”.

� We place the cursor in

the field Capability

Code, we click on the

List of Values, we scroll

down the list of values

that appears and we

select the value

“INCAP4: Maritime

Compliance

Capability”.

� We place the cursor in

the field Output Type,

we click to display

values and we choose

the value “Main”.

� We place the cursor in

the field Economic

Value and enter the

information “15.000”

(for this field the

system show final

values in a Format Mask 99,999.00).

228

� We place the cursor in

the field Recipient

Name and enter the

Value “Bulk Carriers

S.A”

� Finally we press the

Save Button ().

However the INCAP4_OUTPUT1 is decomposed into Sub Outputs. Those Outputs are

the “INCAP4_OUTPUT1.1: Vessel Monitoring Services”, the “INCAP4_OUTPUT1.2: Port

Regulation Monitoring Services” and the “INCAP4_OUTPUT1.3: Regulation Inconsistences

Reporting Services”. So we have to insert each of them separately. However we will only

describe how we insert the first of them. Thus for the first Sub Output we are going to the

Tab Page “Output”, press the button Insert New Record () and then:

� We place the cursor in the field Output Name and we enter the value “Vessel

Monitoring Services”.

� We now place the cursor in the field Capability Code, we click on the List of Values,

we scroll down the list of values that appears and we select the value “INCAP4:

Maritime Compliance Capability”.

� We place the cursor in the field Output Type, we click to display values and we

choose the value “Sub”.

When we choose the value

Sub in the field Output

Type, then the button

 appears.

So we press this button,

we go to the Tab Page

“Hierarchies of Outputs”

and then:

� We place the cursor in

the field Main Output,

229

we click on the List of

Values, we scroll down

the list of values that

appears and we select

the value

“INCAP4_OUTPUT1”.

With this action the

Main Output Code and

the Main Output

Description appears.

� We place we place the

cursor in the field Sub

Output, we click on the

List of Values, we scroll

down the list of values

that appears and we

select the value

“INCAP4_OUTPUT1.1”.

With this action the

Sub Output Code and

the Sub Output Description appears.

� Then we press the button . When we press this button, then a

commit statement occurs in the new record.

� Then we place the cursor in the field Economic Value and enter the information

“5.000” (for this field the system show final values in a Format Mask 99,999.00).

� We place the cursor in the field Recipient Name and enter the Value “Bulk Carriers

S.A”

� Finally we press the Save Button () and then the Exit Form Button ().

 We now continue with the next step. The ICAP4.1: Vessel Monitoring Capability

collaborates with INCAP1.5: Human Resource Management Capability through the

Collaborator Connector “Information”, which costs 2.000. Since we have a new Collaborator

Connector we are choosing from the Main Menu the Form “Manage Collaboratiosn Between

Capabilities”, we are going to the Tab Page “Collaborator Connector”, we press the button

230

Insert New Record () (or in the Tab Page “Capabilities Collaborations” we press the button

) and then:

� We place the cursor in the field

Collaborator Connect Type, we click to

display values and finally we choose

the correct value, meaning the value

“Information”.

� We place the cursor in the field

Economic Value and enter the

information “2.000” (for this field the

system show final values in a Format

Mask 99,999.00).

� Then we press the Save button ().

When we are pressing this button we

see that the system automatically

creates the Collaborator Connector

Code in the logic that discussed in the

previous section (meaning IN1, etc.)

� Then we press the button

, in order to go to

Tab Page “Capabilities Collaboration”.

In the Tab Page “Capabilities Collaborations” we press the button Insert New Record (

) and then:

� We place the cursor in the first record on the field Capability A, we click on the List

of Values, we scroll

down the list of

values that appears

and we select the

value “INCAP4.1:

Vessel Monitoring

Capability”. With this action the Capability Code and the Capability Description

appears.

231

� We place the cursor in the first record on the field Capability B, we click on the List

of Values, we scroll

down the list of values

that appears and we

select the value

“INCAP1.5: Human

Resource Management

Capability”. With this action the Capability Code and the Capability Description

appears.

� We place the cursor in the field Collaborator Connector, we click on the List of

Values, we scroll down the list of values that appears and we select the value

“IN1”. With this action

the Collaborator

Connector Code and the

Collaborator Connector

Type appears.

� Finally we press the

Save Button () and then the Exit Form Button ().

We now continue with the next steps. The INCAP4 Capability meets four new Main

Business Goals, which are “INCAP4_GOAL1= Goal 9: To participate in research

projects”, “INCAP4_GOAL2= Goal 10: To collaborate with academic research”,

“INCAP4_GOAL3= Goal 13: To identify client’s needs” and “INCAP4_GOAL4= Goal 20:

To comply with regulations”. For the previous Goals the last one is decomposed to

three other Sub Goals, which are “INCAP4_GOAL4.1= Goal 41: To monitor vessel

status”, “INCAP4_GOAL4.2= Goal 42: To be informed about the regulation of each

port” and “INCAP4_GOAL4.3= Goal 43: To get alert when regulation are not met”.

Since these Goals are new, we are choosing from the Main Menu the Form “Manage

Goals” and we are going to the Tab Page “Goals”. Since the procedure of inserting this

main goals is the same we will only describe the inserting of INCAP4_GOAL4 and its

Sub Goals. Thus in this Tab Page we press the button Insert New Record () and we

fist insert the Information about the Main Goals as follows:

232

� We place the cursor in the field Goal Code and we enter the code with the logic

that described in the previous section, meaning INCAP4_GOAL4. During the

entering of this code the system automatically converts the characters we use into

Upper Case Characters.

� We place the cursor in the field Goal Name and we enter the value “Goal 20: To

comply with regulations”.

� We now place the cursor in the field Goal

Type, we click on the List of Values and we

select the value “Main”.

When selecting the value “Main” the

following message appears, which says that

a commit action took place in the database

for the inserted records. Thus we press ok.

Then we insert the information about Sub Goals that related with the Main Goal

INCAP4_GOAL4. Since the procedure of inserting every Sub Goal is the same we

will only describe the first one, meaning the INCAP4_GOAL4.1. Thus:

� We place the cursor in the field Goal Code and enter the code with the logic that

described in the previous section, meaning INCAP4_GOAL4.1.

� Then we place the cursor in the field Goal Name and we enter the value “Goal 41:

To monitor vessel status”.

� We now place the cursor in the field Goal

Type, we click on the List of Values and we

select the value “Sub”.

� After selecting the value “Sub” a Main Goal

Code field appears and a List of Values in

that field. We scroll down the list of values

and select the value “INCAP4_GOAL”.

� Then the following message appear:

This message says that the record has being

saved in the database.

233

Then we go to the Tab Page “Capability Meets Goal” in order to associate the INCAP4

capability with the Goals. Thus we click on the Tap Page “Capability Meets Goal” and

then:

� We place the cursor in the first

record on the field Capability, we

click on the List of Values, we scroll

down the list of values that appears

and we select the value “INCAP4:

Maritime Compliance Capability”.

With this action the Capability Code

and the Capability Description

appears.

� We place we place the cursor in the first record on the field Goals, we click on the

List of Values, we scroll

down the list of values

that appears and we

select the value

“INCAP4_GOAL4”. With

this action the Goal

Code and the Goal

Name appears.

The same procedure exists for the association with other goal, however we will

not descibed it, in order to avoid redudancy.

� Thus finally we press the Save Button () and then the Exit Form Button ()

234

8.3 Executing Queries

In the previous section we describe by using a real data the procedure of inserting a

new Business Capability. In this section we will describe how a user can perform queries in

specific cases.

The actions of managing queries are available in every Form of the Application,

through the Main Item and the Tool Bar, that are visible in the top of them. We have

already described each of them in the previous section. For executing queries in the Total of

Forms we simply insert a value of interest or a combination of values, in the associated field

or fields and then we press the button Execute Query (or from the Main Menu of this

Page we choose Query → Execute). However except from the using of the previous case, in

some Forms we have the ability to query and see specific information about an inserting

value in different way.

More specific if we assume that we want to see all the information about a specific

Main Output e.g INCAP4_OUTPUT1: Rule Compliance Services, and also which Sub Outputs

are associated with this Main Output, then we are doing the following:

� We are going from the Main Menu in the Form “Manage Outputs” and we click to

open it.

� In the Page that appears we are going to the Tab Page ‘Outputs’, and from the Tool

Bar we press the button Enter Query (or from the Menu Item of this Page we

choose Query → Enter).

� Then we are entering in the field Output Code the value “INCAP4_OUTPUT1” and

from the Tool Bar we press the button Execute Query (or from the Main Menu

of this Page we choose Query → Execute).

When we are pressing this button then the system automatically bring all the

information about this Output as follows:

235

Now if we want to see which are the Sub Outputs of this Main Output we leave the

results of this query as it is and then:

� We click on the Tab Page “Hierarchies of Outputs”. After entering in this Tab Page,

the cursor is already in the first field, meaning the “Main Output”.

� Then from the Tool Bar we press the button Execute Query .

With this last action the system brings automatically the information about the

hierarchy of this specific Output as follows:

Now if we reverse the query, meaning that we want to see all the information about a

specific Sub Output e.g INCAP4_OUTPUT1.1: Vessel Monitoring Services, and also in which

Main Output it refers, then we are doing the following:

236

� We are going from the Main Menu in the Form “Manage Outputs” and we click to

open it.

� In the Page that appears we are going to the Tab Page ‘Outputs’. Here let’s assume

that we want to bring all the records about Outputs. Thus we press the button

Execute Query (or from the Menu Items of this Page we choose Query →

Execute) to bring all the records.

� Now the cursor is already on the field “Output Code”, thus we navigate with the

help of keyboard Up and Down Arrows, until we find the value

“INCAP4_OUTPUT1.1”. When we choose this value all the information about it

appears.

Now since this Output is a Sub Output we see that in this Page the button

“Hierarchy of Outputs” appears. Thus:

� If pressing this button, then the system goes us to the Tap Page “Hierarchies of

Outputs” and saw us automatically in which Main Output this Output refers to as

follows:

Finally if we want to see all the information about Hierarchies of Outputs, meaning all

the Main Outputs and the Sub Outputs that contains:

� We are going from the Main Menu in the Form “Manage Outputs” and we click to

open it.

� We click in the Tab Page “Hierarchies of Outputs”.

� Then we press the button Execute Query (or from the Main Menu of this Page

we choose Query → Execute) to bring all the records.

The results are as follows:

237

NOTE: Similar queries as the previous described can be executed in the Forms “Create New Capability”

and “Manage Services”.

Another case is when we want to see all the information about a Main Goal e.g.

INCAP4_GOAL4 and also the Sub Goals that is decomposed to. For seeing this kind of

information we are doing the following:

� We are going from the Main Menu in the Form “Manage Goals” and we click to

open it.

� We click in the Tab Page “Goals”.

� Then we press the button Enter Query (or from the Main Menu of this Page we

choose Query → Enter) and we enter in the field Goal Code the value

“INCAP4_GOAL4”.

� We then press the button Execute Query (or from the Main Menu of this Page

we choose Query → Execute).

When we are pressing this button then the system automatically bring all the

information about this Goal as follows:

238

� In this state of the system if you press the button , then the

Sub Goals appears as follows:

Now if we reverse our query, meaning to search all the available information about a

Sub Goal e.g. INCAP4_GOAL4.1 and also in which Main Goal it refers, we are doing the

following:

� We are going from the Main Menu in the Form “Manage Goals” and we click to

open it.

� We click in the Tab Page “Goals”.

� Then we press the button Enter Query (or from the Main Menu of this Page we

choose Query → Enter) and we enter in the field Goal Code the value

“INCAP4_GOAL4.1”.

� We then press the button Execute Query (or from the Main Menu of this Page

we choose Query → Execute).

When we are pressing this button then the system automatically bring all the

information about the Sub Goal and also a “Main Goal” field appears, which says in

which Main Goal this Sub Goal is part of. This follows thereafter:

239

Since we are in this Form let’s executing a query to see whose Goals meets the

INCAP4 Business Capability. For executing this kind of query we are doing the following.

� In the same Form we are clicking on the Tab Page “Capability Meets Goals”.

� Then we press the button Enter Query (or from the Main Menu of this Page we

choose Query → Enter) and we enter in the field Capability the value “INCAP4”.

� We then press the button Execute Query (or from the Main Menu of this Page

we choose Query → Execute).

The last action causes the following results:

NOTE: Similar queries as the last one described, can be executed in the first Tab Pages of the Forms

“Manage Context” and “Manage Collaborations between Capabilities”. Also in more general it can be

executed in every available field included in the Forms of our Application.

Finally our Application contains a Form which has being designed only for executing

queries about Business Capability. This is the “View Total Capability” Form. Thus if for

example we want to see all the Information about the INCAP4 Business Capability, then:

� We are going from the Main Menu in the Form “View Total Capability” and we

click to open it.

� Then we place the cursor in the first record on the field Capability, we click on the

List of Values, we scroll down the list of values that appears and we select the

value “INCAP4: Maritime Compliance Capability”. With this action the Capability

Code and the Capability Description appears.

240

� We then press the button .

When we are pressing this button then the system automatically bring all the available

information about INCAP4.

8.4 Removing Current Records in Specific Forms

The action of removing current records is available in every Form of the Application

through the Main Menu that is visible in the top of them. More specific if a user wants to

remove a specific record in a Form, he simply select this record with the cursor and then

either presses the button , or from the Menu Items he choose Record → Remove. In every

form a specific message appears before this action take place.

For example let’s assume that we want to remove a specific Business Process e.g. BP1.

Thus:

� We are going from the Main Menu in the Form “Manage Business Process” and we

click to open it.

� Then we press the button Enter Query (or from the Main Menu of this Page we

choose Query → Enter) and we enter in the field Process Code the value “BP1”.

� We then press the button Execute Query (or from the Main Menu of this Page

we choose Query → Execute).

241

When we are pressing this button then the system automatically bring all the

information about this Business Process.

� We leave the cursor in the field “Process Name” and then we press the button .

 When we are pressing this button a message appears as follows:

� We then choose the “Yes” button from the two options.

NOTE: This is the general process of removing a record in every Form of our Application.

242

However in our Application in some cases when a user is removing a specific record

then the system automatically removes some others records that associated with it. This

actually refers in the cases of removing a record that refers to a top element in a hierarchy.

More specific if we want to remove a Main Business Capability then the system

removes not only the Information about this Business Capability, but also all the information

about its Sub Capabilities. Thus let’s assume that we want to remove the INCAP4 Business

Capability. Firstly we will execute a query to see which his Sub Capabilities are. Thus

following the procedure that was described in the previous section, we will see that his Sub

Capabilities are:

Thus in this Page we press the button and:

� We leave the cursor in the field “Internal Capability Code” in the current record

and then we press the button .

 When we are pressing this button a message appears as follows:

� In this message we press the Yes button.

Now if you execute a query to see all the records in the Tab Page Internal Capability,

we will see that not only the record for INCAP4 has being deleted, but also the records

for INCAP4.1, INCAP4.2 and INCAP4.3. Also if we go to the Tab Page “Hierarchies of

Goals” and execute a query, none of these records exists.

243

NOTE: The same process as previous exists in the Forms “Manage Outputs”, “Manage Goals” and

“Manage Services”.

By describing the way we remove current records in specific Forms we fulfill the

chapter of this dissertation. Next Chapter deals with the conclusions from the total work of

this dissertation.

8.5 Chapter Summary

In this Chapter we have presented how a user may interact with the maritime

application in different cases. Thus in order the previous scope to be achieved, we have

taken a specific case study from the maritime domain field, the Danaos Management

Consultants (DMC), who is a software and services company specializing in maritime IT.

For a start we have presented a sample of data description from the previous case

study, which was focusing in a specific Business Capability that this Company has, the

INCAP4: Maritime Compliance Capability. Those data was given in a form of tables and in the

top of them is described each value separate in relation with the values types names of the

physical database tables. Also a specific codification for this data is given. Finally a

description for what they refer to.

Then we have presented the Main Menu that exists in the top of every page and

contains specific Menu Items and a Tool Bar. In more specific for this Menu we have

presented all the possible actions that can be executed by the user, when using it.

Thereafter we have taking into account the previous data, in order to show how a

user may interact with the application in a case of informing the application about the

information related with a new Business Capability. In this procedure we have guided by the

Basic Flow Chart that was discussed in the previous Chapter, and we are also having

described the procedure followed in order a user to login the system. Secondly we have

presented the procedure followed in order a user to execute queries according to specific

criteria and in this part a screen for Business Capability that has being designed for that

purpose is presented. Finally we have presented how a user may remove specific record in

specific forms of the application. This has to do with specific actions that the system

automatically executes when removing the data that related with a case of hierarchies.

Thus as we can see interacting with the application is an important part during the

development process of the maritime application. That’s because by this way we can test in

depth the systems functionality, and also we can if the system works properly or not.

244

CHAPTER 9: Conclusions

This chapter deals with the

conclusions of this

dissertation. In more detail

a brief summary of the

total work is given,

including some

observations, the result of

work and some directions

for future work.

245

When searching in bibliography we can find numerous publications and researches

about Capabilities. From the previous we observe that during the time Capabilities played an

important role in Management Science, in order an organization to gain a competitive

advance. Also the evolution of those into global strategies and thereafter into a notion that

describes the whole elements of an organization, meaning the Business Capability notion,

reinforces their importance.

 Business Capabilities describes what an organization does, and this meaning has

turned the researches in bibliography from the Management Theories, into the Business

Informatics, and finally into the searching of using of them as a centric idea for the

development of the digital enterprises of tomorrow. That’s because when an organization

focus in Business Capabilities is able to gain a competitive advance and thereafter to achieve

growth.

Different approaches for modeling Business Capability can found in bibliography

(Holman, 2006; Brits, Botha, & Herselman, 2007; Freitag, Matthes, Schu, & Nowobilska,

2011; Ulrich & Rosen, 2011), with the most complete this of (Ulrich & Rosen, 2011), since

they provide a clear decomposition of Capability map hierarchy and a clear picture of the

role of Business Capabilities in Enterprise Architecture. By using this approach an

organization can achieve the alignment between Business and IT. In the meantime the

extensive use of Internet and its variability led to the development of Capability Driven

Development (CDD) method (Stirna, Grabis, Henkel, & Zdravkovic, 2012) that integrates

organizational with IS development taking into account changes in the application context of

a solution and also uses a Meta – model of Capability.

Thus in this dissertation we have introduced a new way for describing Business

Capability in an empirical form. In more detail we have created a Database Management

System for Business Capability and we have taken a Case Study from the Maritime Domain

Field, the Danaos Management Consultant (DMC) in order to express the information about

that. By this system all the information about Business Capability can be stored, related and

viewed at any time by Managers. Thus Managers have an overall view of what the

organization does and thereafter there are able to analyze their systems and processes more

efficient. Also they can increase control, achieve better planning, make good decisions and

are able to identify any requirements for change that may occur.

246

For creating this Database Management System we have chosen the Object Role

Modeling technique instead of other entity-relationship and object oriented modeling

methods. During the description of ORM technique, we observe that although there was no

official standard for meta-modeling it uses a meta-modeling standard like this of OMG. In

more specific the first level of ORM technique, meaning the Conceptual Schema Design

Procedure, the information about the real word (UoD), can be considered as the M0 level in

meta-modeling. Then this information, is depicted in a Conceptual Schema (in a drawing, in a

conceptual model), which in turn can be considered as the M1 level in meta-modeling.

Thereafter the building blocks or the meta-data that can be used to make this model are

defined, meaning the abstract syntax of this modeling language. These blocks concerns the

object types that can be used to present the model, the relations between the object types,

the identifiers of the object types, the meaning of the object types (semantics) and the rules

to combine the object types. Thus the previous level can be considered are the M2 level in

meta-modeling. Finally the ORM is using a specific graphical notation, meaning the concrete

syntax of this modeling language, which can be considered to be the M3 level. The same

analysis as previous can be considered for the second level of analysis in ORM, meaning the

Relational Schema Procedure, in which a second model is produced, which can be though as

a meta-model since is a model that has being produced according to some other model.

Working with this method in the first level we have redesign a Conceptual Model for

Business Capability definition. By this way we were able to understand in depth the Universe

of Discourse of this project. That’s because this data modeling method is descriptive enough,

since it uses natural language and specific graphical notation to describe the specifications of

the system implemented, which in fact has also helped us enable communication between

stakeholders and to implement a system conforming to the information requirements. From

the above we can understand that an important factor when designing a Conceptual Schema

is the purpose of designing. This purpose usually specifies what kind of information must be

depicted and the way is depicted. On the other hand when describing a specific UoD by a

Conceptual Schema different patterns may be produced according to the way of thinking of

the modeler. For example taking the previous initial of Conceptual Schema for Business

Capability was an important help for producing an accurate and complete model for our

Application. That’s because this model became the basis for the designing of our model,

since it has describe correctively the way most of the data required to be stored in the

maritime application. On the other hand in the new Business Capability meta-model, some

fact types have being depicted in a different way than the initial meta-model. The previous

247

has to do with the way of thinking of the modeling. However, the most important in both

cases is not the way of depicting the different models by the modelers, but the prevention of

missing important information about the under description of UoD. That’ why we are also

agree that in the CSPD procedure the most important part is the first step, where examples

of data are express in term of elementary facts. This is a step where if the information about

the UoD is not expressed in detail, then there is a big possibility to lead into a missing of

data. Thus in this step it is important for the modeler to have a full access and permission by

the company to the all available information about it.

Then this first level model became a guide for creating a second level model, the

Relational Schema. Here we can say that the procedure of Relational mapping is easily

understood and standardized. This means that if we have created an accurate and complete

model in the first level of ORM, then the procedure of mapping into a Relational Schema is

easily implemented. Otherwise, if from the Conceptual Schema we are missing some of the

required information, then the procedure of mapping is flexible enough to express this

information in a wright way, by the Normalization method. The results of this procedure

were a specific number of tables, including all the required by the specification relationships

and constraints.

Also this schema became the guide for creating the physical database schema in the

next level. During the creation of the Database Schema we can say that it is important how

we have designed the Relational Schema in order to create the physical database of our

system. That’s because everything is depicted in this schema, must then take the form of an

object in the database and sometimes this is not feasible at once. This means we have to

implement some extra procedural code like triggers, sequences etc, in order the information

to be maintained with the right way. The last one presupposes a good knowledge of SQL

language by the developer of this system. However in this stage as we observe some of the

textual constraints that refers to unions of specific object (e.g. Business Capability (capcode)

= IntenalCapabilty (incapcode) union ExternalCapability (excapcode)), has not being

implemented yet.

Then taking into account the physical Database Schema we created the User Interface

of the application. During the designing of the interface for the maritime application we can

say that a good knowledge of SQL language was required. Also was required the using of

UML language in order to describe the main windows, to give a hierarchy of forms and to

describe the steps that a user follows in a case of a data entry. By creating the previous

three kinds of diagrams we were able to understand how this application must be created,

248

which was an important factor in order the current user interface to be characterized by a

specific quality criteria. Finally except from the previous in this step we were able to

implement some of the constraints that were missing from the previous steps of ORM

technique, which had to do with the union textual constraints. This means that all the

process of creation the Database Management System was flexible enough, since every

stage overlaps the other.

Finally we can say that interacting with the application is an important part during the

development process of the maritime application. That’s because by this way we can test in

depth the systems functionality, and also we can if the system works properly or not.

Thus results of this dissertation include a proposal of ORM data modeling method for

Business Capability description, in order to support the Capability Driven Development

(CDD) approach. That’s because his technique follows a complete procedures in the different

levels of analysis for a specific UoD, and also it is flexible enough, since every level of analysis

overlaps the other.

Also since the CDD approach lacks from empirical experience of application, we have

taken the Case Study of Danaos Management Consultant (DMC), in order to show that it is

feasible to implement it in a real case example.

Future work on this aspect would include the using of other data modeling methods

or languages, for creating a similar Database Management System of Business Capabilities

definition. By this way it would be possible to confirm, determine and define the appropriate

data modeling method for supporting the CDD approach.

249

CHAPTER 10: Appendix

10.1 Table 1: Literature Review for Business Capability

10.2 Table 2: ORM 2 Graphical Notation

10.3 SQL Script of BC Tables

10.4 SQL Script of Total View

250

10.1 Table 1: Literature review for Business Capabilities

Author Year Title Research aim/ objectives Theoretical

perspective/

framework

Method

(empirical/

theoretical)

Main findings Source/ Journal

Ulrich

Holman

2006 A Business –

Oriented

Foundation for

Service

Orientation

To answer in three main queries about Service Oriented

Architectures.

� How do we prevent Service-Oriented Architectures

from following the architecture mistakes of the past;

� How do we ensure that the chosen implementation

architecture relates to the actual desired state of

business;

� How do we prolong the life expectancy of the

implementation in an ever-changing environment;

Enterprise

Architecture

and Service

Oriented

Architecture

(SEA)

 1) The introduction of a more stable foundation,

focusing in “What” a business actually does

(Business Capabilities).

2) The introduction of a framework for Business

Capability Model implementation.

Microsoft

Corporation

(https://msdn.

microsoft.com/

en-

us/library/aa47

9368.aspx)

Denise

Cook

2007 Business –

Capability

Mapping:

Staying Ahead

of the Joneses

To support the idea that Business – Capability mapping

enables adaptive, sleek architectures that can respond

quickly to changes in today’s competitive business

landscape.

Enterprise

Architecture

A Case Study of

Phone Company

1) Business – Capability mapping promotes a

strong relationship between business mode

and the technical infrastructure that supports

the business requirements.

2) Business – Capability mapping aligning the

Technical Architecture to the Business

Architecture.

3) Business – Capability mapping provides a clear

road map to SOA.

Microsoft

Corporation

(https://msdn.

microsoft.com/

en-

us/library/bb40

2954.aspx)

251

J. Brits,

G.H.K.

Botha, M.E.

Herselman

&

Tshhwane

2007 Conceptual

Framework for

Modeling

Business

Capabilities

To provide a conceptual approach to analyze an

organization and a foundation that would support the

architecture of an agile organization by illustrating

Business Capabilities.

Enterprise

Architecture

Context analysis

and qualitative

research

combined with a

systems approach

in the

development of a

model.

4) The development of a conceptual framework to

construct Business Capabilities.

5) A production of a Business Capability model.

6) A production of two feed-back loops

(Organizational Feedback Loop and Innovative

Feedback Loop).

Informing

Science and IT

Education Joint

Conference

Len Greski 2009 Business

Capability

Modeling:

Theory and

Practice

To provide a theory and practice about Business

Capability.

Business

Strategy &

Business

Architecture

 1) A definition of Business Capability

2) A simple technique for modeling Business

Capability.

3) The reasons for using the model of Business

Capability, by an organization in order to make

decisions.

Architecture &

Governance

Magazine

(Volume 5,

Issue 7)

Len Greski 2009 Business

Capability

Modeling:

Building

Hierarchy

To provide a framework about Building the Hierarchy and

Identifying Key Relationships during the stages of

modeling Business Capability and to provide some

practical considerations about the previous.

Business

Strategy &

Business

Architecture

 1) A framework for Building Hierarchy

2) A framework for Identifying Key Relationships.

Architecture &

Governance

Magazine

(Volume 5,

Issue 11)

Wolfgang

Keller

2009 Using

Capabilities in

Enterprise

Architecture

Management

To explain a few of the basic mechanisms behind capability

based modeling in pattern form.

Enterprise

Architecture

Management

& IT Planning

 1) A Pattern Roadmap to illustrate capabilities.

2) Capabilities make enterprise architectures more

effective and make an organization to have

profit.

Whitepaper –

Version of 2009,

Lochham,

Germany.

Jeff Scott 2009 Business To state Business Capability Models as a new approach to Business 1) Capability models provide a focal point for Architecture &

252

Capability

Maps: The

missing Link

Between

Business

Strategy and IT

Action

close the gap between business interests and IT concerns,

providing the right level of detail and consistency to

facilitate an ongoing dialogue between business and IT

leaders.

Strategy and

Information

Technology

strategic dialogue.

2) Companies are using capability maps to create

value.

3) Capability models are the core component of

the overall business architecture framework.

4) IT architects and planners can take capabilities

as the starting point for discussion about IT

investments.

5) Capability models provide the Rosetta Stone

through which business needs aligned IT action

Governance

Magazine

(Volume 5,

Issue 9)

Mike Rosen 2010 Business

Processes starts

with

Capabilities

To introduce a discussion about how do we get to the

heart of what business capabilities an enterprise needs?

Also how business capabilities currently implemented in

the future state of a more flexible, efficient and aligned

Business/IT Solutions?

Business

Architecture

 1) Analysis of the value streams leads to

identification of the business capabilities.

2) Business processes describe how the business

performs, or implements, the given capability

and how capabilities connect to deliver a desired

outcome.

3) Business Capabilities provide the link between

two complex, disparate environments. The

business and IT Architectures.

A BPT trends

column

(www.bptrends.

com)

Thiago

Barroero,

Giammario

Motta &

Giovanni

Pignatelli

2010 Business

Capabilities

Centric

Enterprise

Architecture

To introduce a well-established and mature Business

Capability Centric Approach at the Enterprise Architecture

design.

Enterprise

Architecture

Case study of

TOGAF

framework in a

telecommunicatio

n organization.

3) The Business Capability Centric Extension (BCCE)

of TOGAF, which provide a linkage between

Business Architecture, Data Architecture,

Application Architecture and Technology of the

Enterprise Architecture.

Enterprise

Architecture,

Integration and

Interoperability,

IFIP Advances in

Information and

253

Communication

Technology

(Volume 326,

p.p. 32-43),

Springer

Andreas

Freitag,

Florian

Matthes &

Christopher

Schultz

2011 A Method for

Business

Capability

Dependency

Analysis

To present a three-phase method to systematically

identify dependences between capabilities and to other

elements of the Enterprise Architecture

Enterprise

Architecture

Management

Existing literature

of research

approach and for

Business

Capability. Also a

Case Study of

multinational

telecommunicatio

n company.

1) A Capability Dependency Analysis Method.

2) Business Capabilities are core elements of the

business Architecture and a communication

between business and IT.

3) Business Capabilities support strategic planning

and innovation.

International

Conference on

IT-enabled

Innovation in

Enterprise

(ICITIE2011),

Sofia 2011.

William

Ulrich &

Michael

Rosen

2011 The Business

Capability Map:

The “Rosetta

Stone” of

Business/IT

Alignment

To discuss how capability mapping enables business

analysis and business/IT alignment.

Enterprise

Architecture

 1) A Capability Mapping Framework.

2) A method of Incorporating Capability into

Business Architecture and Enterprise

Architecture

3) A method for Business/IT roadmap

development.

4) The Business Capability provides the high-level

foundation for alignment and bridges the

Business/IT Chasm.

Cutter

Consortium,

Enterprise

Architectrure

Vol. 14, No 2.

Michael

Vaughan

2011 A Focused

Approach to

To create a focused and specific Business Capability

definition that reduces confusion and enables clarity in

Enterprise

Architecture

Review and

categorization

1) An Architecture model with specific

characteristic that enables to a definition of

The 1
st

International

254

Business

Capability

defining capabilities within an enterprise. existing

definitions from

the literature.

Uses resource –

based theory and

operation

theories from the

literature.

Business Capabilities.

Symposium on

Business

Modeling and

Software Design

(BMSD 11) at

Hilton Sofia

Hotel, Sofia,

Bulgaria.

Rostamzade

h Bakhtiyari

&

Mohamma

d Adel

2012 Business

Capability and

its strategic

impacts

To discuss the strategic impacts of Business Capability. Strategic

Management

Literature

relevant to

Business

Capabilities,

competitive

advance and

value creation.

1) Capabilities are one of the most strategically

relevant artefacts of an organization.

2) Capabilities enable the organization to perform

at level that required to success.

3) Capabilities endow competitive advance.

Australasian

Conference on

Information

Systems (ACIS

2012), 3-5

December

2012, Deakin

University,

Geelong, VIC.

Michael

Rosen

2012 Processes,

Value Streams

and Capabilities

To discuss the difference between processes, values

streams and business capabilities.

Business

Management

and IT

Management

 1) Processes describes how something is done

2) Value Streams describes how value is delivered

to a stakeholder

3) Capability describes what is done regardless of

how, where, who or how cell it is performed.

4) Processes and Value Streams require

capabilities and describe how those capabilities

are used.

A BPT trends

column,

December

2012.

(www.bptrends.

com)

255

Janis Stirna,

Janis

Grabis,

Martin

Henkel &

Jelena

Zdravkokvic

2012 Capability

Driven

Development –

An Approach to

Support

Evolving

Organizations

To propose an approach that integrates organizational

development with information system (IS) development

taking into account changes in the application context of

the solution

Enterprise

modeling,

Business & IT

aligment

Literature

relevant to

Enterprise

Modeling,

Context

Representation &

Service

Specification. Also

a Case Study from

energy efficiency

domain.

1) A Capability Driven Development meta – model The Practice of

Enterprise

Modeling,

Lecture Notes in

Business

Information

Processing

(Volume 134,

2012, p.p.117-

131)

Frank J.

Frey,

Carsten

Hentrich &

Uwe Zdun

2013 Capability –

based Service

Identification in

Service –

Oriented Legacy

Modernization

To describe the Capability – Based Service pattern that

identifies services and defines the service model based on

a model of Business Capabilities, in Legacy Systems

transforming into a SOA.

Software

Architecture

Patterns, SOA,

Legacy

Modernizatio

n.

A Literature

review on legacy

to SOA

transformation

and a chosen of a

top-down

transformation

strategy.

1) A Capability – Based Service Pattern that:

� Provide a solution to identify services

candidates during a preliminary analysis

phase of a modernization program.

� Requires detailed modeling of services and

business process during the execution of the

program.

� Facilitates a durable alignment between

business and IT.

Proceeding of

the 17
th

European

Conference on

Pattern

Languages of

Programs –

EuroPLoP

(Germany 2012,

2013)

256

10.2 Table 2: ORM 2 Graphical Notation

257

258

259

260

261

262

10.3 SQL Script of BC Tables

create table Incapability

(

incapcode varchar2(50) not null,

capdesc varchar2(250) not null,

ownercode varchar2(50) not null,

incaptype number (1) default 1 not null,

constraint Incapabilily_PK primary key (incapcode)

);

comment on column incapability.incapcode is 'Internal Capability Code';

comment on column incapability.capdesc is 'Internal Capabilty Description';

comment on column incapability.ownercode is 'Internal Capability Owner';

comment on column incapability.incaptype is 'Internal Capabitity Type: (1: Main, 0:Sub)';

create table Excapability

(

excapcode varchar2(50) not null,

capdesc varchar2(250) not null,

ownercode varchar2(50) not null,

excaptype number (1) default 1 not null,

constraint Excapabilily_PK primary key (excapcode)

);

comment on column excapability.excapcode is 'External Capability Code';

comment on column excapability.capdesc is 'External Capabilty Description';

comment on column excapability.ownercode is 'External Capability Owner';

comment on column excapability.excaptype is 'External Capabitity Type: (1: Main, 0:Sub)';

create table Owner

(

ownercode varchar2(50) not null,

ownername varchar2(100)not null,

constraint Owner_PK primary key (ownercode)

);

comment on column owner.ownercode is 'Owner Code';

comment on column owner.ownername is 'Owner Name';

alter table Incapability

add constraint Incapability_FK foreign key (ownercode) references Owner (ownercode);

alter table Incapability

add constraint Incaptype_Value_Constraint check (incaptype in (0,1));

alter table Excapability

add constraint Excapability_FK foreign key (ownercode) references Owner (ownercode);

alter table Excapability

add constraint Excaptype_Value_Constraint check (excaptype in (0,1));

create table Capabilityispartof

(

mcapcode varchar2(50) not null,

subcapcode varchar2(50) not null,

constraint Capabilityispartof_PK primary key (mcapcode, subcapcode)

);

comment on column capabilityispartof.mcapcode is 'Top level Business Capability Code: Main Capabilities';

comment on column capabilityispartof.subcapcode is 'Low level Business Capability Code: Sub Capabilities';

alter table Capabilityispartof

add constraint Capabilityispartof_RC check (mcapcode<>subcapcode);

create table Contexts

(

contcode varchar2(50) not null,

contdesc varchar2(150) not null,

263

constraint Contexts_PK primary key (contcode)

);

comment on column contexts.contcode is 'Context Code';

comment on column contexts.contdesc is 'Context Description';

create table Capabilityisincontext

(

capcode varchar2(50) not null,

contcode varchar2(50) not null,

constraint Capabilityisicontext_PK primary key (capcode, contcode)

);

comment on column capabilityisincontext.capcode is 'Internal and External Capabiltiy Code';

comment on column capabilityisincontext.contcode is 'Context Code';

alter table Capabilityisincontext

add constraint Capabilityisincontext_FK foreign key (contcode) references Contexts (contcode)on delete cascade;

create table Goal

(

goalcode varchar2(50) not null,

goalname varchar2(250) not null,

goaltype number (1)default 1 not null,

constraint Goal_PK primary key (goalcode)

);

comment on column goal.goalcode is 'Goal Code';

comment on column goal.goalname is 'Goal Name';

comment on column goal.goaltype is 'Goal Type: (1: Main, 0:Sub)';

alter table Goal

add constraint Goaltype_Value_Constraint check (goaltype in (0,1));

create table Capabilitymeetsgoal

(

capcode varchar2(50) not null,

goalcode varchar2(50) not null,

constraint Capabilitymeetsgoal_PK primary key (capcode, goalcode)

);

comment on column capabilitymeetsgoal.capcode is 'Internal and External Capabiltiy Code';

comment on column capabilitymeetsgoal.goalcode is 'Goal Code: Strategic and Operational Goals Codes';

alter table Capabilitymeetsgoal

add constraint Capabilitymeetsgoal_FK foreign key (goalcode) references Goal (goalcode);

create table Goalispartof

(

mgoalcode varchar2(50) not null,

subgoalcode varchar2(50) not null,

constraint Goalispartof_PK primary key (mgoalcode, subgoalcode)

);

comment on column goalispartof.mgoalcode is 'Top level Business Goal Code: Strategic Goal Code';

comment on column goalispartof.subgoalcode is 'Low level Busines Goal Code: Operational Goal Code';

alter table Goalispartof

add constraint Goalispartof_FK1 foreign key (mgoalcode) references Goal (goalcode);

alter table Goalispartof

add constraint Goalispartof_FK2 foreign key (subgoalcode) references Goal (goalcode);

alter table Goalispartof

add constraint Goalispartof_RC check (mgoalcode<>subgoalcode);

create table Output

(

outputcode varchar2(50) not null,

outputname varchar2(250) not null,

capcode varchar2(50) not null,

outputtype number (1)default 1 not null,

264

constraint Output_PK primary key (outputcode)

);

comment on column output.outputcode is 'Output Code';

comment on column output.outputname is 'Output Name';

comment on column output.capcode is 'Internal and External Capability Code';

comment on column output.outputtype is 'Output Type: (1: Main, 0:Sub)';

alter table Output

add constraint Outputtype_Value_Constraint check (Outputtype in (0,1));

create table Outputisofvalue

(

outputcode varchar2(50) not null,

evalue number(20,2) not null,

recipientname varchar2(250) not null,

constraint Outputisofvalue_PK primary key (outputcode, evalue)

);

comment on column outputisofvalue.outputcode is 'Output Code';

comment on column outputisofvalue.evalue is 'Output Economic Value';

comment on column outputisofvalue.recipientname is 'Recipient Name';

alter table Outputisofvalue

add constraint Outputisofvalue_FK foreign key (outputcode) references Output (outputcode)on delete cascade;

create table Outputispartof

(

moutputcode varchar2(50) not null,

suboutputcode varchar2(50) not null,

constraint Outputispartof_PK primary key (moutputcode, suboutputcode)

);

comment on column outputispartof.moutputcode is 'Top level Output Code: Main Output';

comment on column outputispartof.suboutputcode is 'Low level Output Code: Sub Output';

alter table Outputispartof

add constraint Outputispartof_FK1 foreign key (moutputcode) references Output (outputcode) on delete cascade;

alter table Outputispartof

add constraint Outputispartof_FK2 foreign key (suboutputcode) references Output (outputcode)on delete cascade;

alter table Outputispartof

add constraint Outputispartof_RC check (moutputcode<>suboutputcode);

create table Collaborator

(

collabcode varchar2(50) not null,

connectortype varchar2(20),

evalue number (20,2) not null,

constraint Collaborator_PK primary key (collabcode)

);

comment on column collaborator.collabcode is 'Collaborator Connector Code';

comment on column collaborator.connectortype is 'The type of Collaborator Connector';

comment on column collaborator.evalue is 'The economic value of Collaborator Connector';

alter table Collaborator

add constraint Collaborator_Value_Constraint check (connectortype in ('POLICY','INFORMATION','PROCEDURE'));

create table Policy

(

collabcode varchar2(50) not null,

constraint Policy_PK primary key (collabcode)

);

comment on column policy.collabcode is 'Policy Collaborator Connector Code';

alter table Policy

add constraint Policy_FK foreign key (collabcode) references Collaborator (collabcode);

265

create table Information

(

collabcode varchar2(50) not null,

constraint Information_PK primary key (collabcode)

);

comment on column information.collabcode is 'Information Collaborator Connector Code';

alter table Information

add constraint Information_FK foreign key (collabcode) references Collaborator (collabcode);

create table Procedures

(

collabcode varchar2(50) not null,

constraint Procedures_PK primary key (collabcode)

);

comment on column procedures.collabcode is 'Procedure Collaborator Connector Code';

alter table Procedures

add constraint Procedures_FK foreign key (collabcode) references Collaborator (collabcode);

create table Collaborations

(

capcode1 varchar2(50) not null,

capcode2 varchar2(50) not null,

collabcode varchar2(50) not null,

constraint Collaborations_PK primary key (capcode1, capcode2, collabcode)

);

comment on column collaborations.capcode1 is 'Internal and External Capability Code';

comment on column collaborations.capcode2 is 'Internal and External Capability Code';

comment on column collaborations.collabcode is 'Collaborator Connector Code';

alter table Collaborations

add constraint Collaborations_FK foreign key (collabcode) references Collaborator (collabcode)on delete cascade;

create table Inability

(

inabcode varchar2(50) not null,

abdescr varchar2(250) not null,

evalue number (20,2) not null,

inabtype number (1) default 1 not null,

constraint Inability_PK primary key (inabcode)

);

comment on column inability.inabcode is 'Internal Ability Code';

comment on column inability.abdescr is 'Internal Ability Description';

comment on column inability.evalue is 'Internal Ability Economic Value';

comment on column incability.inabtype is 'Internal Ability Type: 1';

alter table Inability

add constraint Inabtype_value_constraint check (inabtype= '1');

create table Exability

(

exabcode varchar2(50) not null,

abdescr varchar2(250) not null,

evalue number (20,2) not null,

exabtype number (1) default 0 not null,

constraint Exability_PK primary key (exabcode)

);

comment on column exability.exabcode is 'External Ability Code';

comment on column exability.abdescr is 'External Ability Description';

comment on column exability.evalue is 'External Ability Economic Value';

comment on column exability.exabtype is 'External Abilitly Type= 0';

alter table Exability

add constraint Exabtype_value_constraint check (exabtype= '0');

266

create table Skill

(

skillcode varchar2(50) not null,

skillname varchar2(250) not null,

abcode varchar2(50),

constraint Skill_PK primary key (skillcode)

);

comment on column skill.skillcode is 'Skill Code';

comment on column skill.skillname is 'Skill Name';

comment on column skill.abcode is 'Internal and External Ability Code';

create table Process

(

processcode varchar2(50) not null,

processname varchar2(250) not null,

taskname varchar2(1000),

constraint Process_PK primary key (processcode)

);

comment on column process.processcode is 'Business Process Code';

comment on column process.processname is 'Business Process Name';

comment on column process.taskname is 'Tasks Name of Business Process';

create table Service

(

servcode varchar2(50) not null,

servname varchar2(250) not null,

processcode varchar2(50),

servtype number (1)default 1 not null,

constraint Service_PK primary key (servcode)

);

comment on column service.servcode is 'Service Code';

comment on column service.servname is 'Service Name';

comment on column service.processcode is 'Business Process Code';

comment on column service.servtype is 'Service Type: (1: Main, 0:Sub)';

alter table Service

add constraint Service_FK foreign key (processcode) references Process (processcode);

alter table Service

add constraint Servtype_Value_Constraint check (servtype in (0,1));

create table Serviceispartof

(

mservcode varchar2(50) not null,

subservcode varchar2(50) not null,

constraint Serviceispartof_PK primary key (mservcode, subservcode)

);

comment on column serviceispartof.mservcode is 'Top level Service Code: Main Service';

comment on column serviceispartof.subservcode is 'Low level Service Code: Sub Service';

alter table Serviceispartof

add constraint Serviceispartof_FK1 foreign key (mservcode) references Service (servcode)on delete cascade;

alter table Serviceispartof

add constraint Serviceispartof_FK2 foreign key (subservcode) references Service (servcode)on delete cascade;

alter table Serviceispartof

add constraint Serviceispartof_RC check (mservcode<>subservcode);

create table Incapacity

(

incapaccode varchar2(50) not null,

capacdescr varchar2(250) not null,

evalue number (20,2) not null,

incapactype number(1) default 1 not null,

constraint Incapacity_PK primary key (incapaccode)

);

267

comment on column incapacity.incapaccode is 'Internal Resource Set/Internal Capacity Code';

comment on column incapacity.capacdescr is 'Internal Resource Set/Internal Capacity Description';

comment on column incapacity.evalue is 'Internal Resource Set/Internal Capacity Economic Value';

comment on column incapacity.incapactype is 'Incapacity Type= 1';

alter table Incapacity

add constraint Incapactype_value_constraint check (incapactype= '1');

create table Excapacity

(

excapaccode varchar2(50) not null,

capacdescr varchar2(250) not null,

evalue number (20,2) not null,

excapactype number(1) default 0 not null,

constraint Excapacity_PK primary key (excapaccode)

);

comment on column excapacity.excapaccode is 'External Resource Set/External Capacity Code';

comment on column excapacity.capacdescr is 'External Resource Set/External Capacity Description';

comment on column excapacity.evalue is 'External Resource Set/External Capacity Economic Value';

comment on column excapacity.excapactype is 'Excapacity Type= 0';

alter table Excapacity

add constraint Excapactype_value_constraint check (excapactype= '0');

create table Resources

(

rescode varchar2(50) not null,

restype varchar2(10) not null,

resdescr varchar (1000) not null,

capaccode varchar2(50),

constraint Resources_PK primary key (rescode)

);

comment on column resources.rescode is 'Resource Code';

comment on column resources.restype is 'Resource Type Values';

comment on column resources.resdescr is 'Resources Description';

comment on column resources.capaccode is 'Internal Resource Set/Internal Capacity and External Resource Set/Internal

Capacity Code';

alter table Resources

add constraint Resources_Value_Constraint check (restype in ('PH','LE','PR','HU','TE','FI','DA'));

create table Usescapacityforservice

(

incapcode varchar2(50) not null,

capaccode varchar2(50) not null,

servcode varchar2(50) not null,

constraint Usescapacityforservice_PK primary key (incapcode, capaccode)

);

comment on column usescapacityforservice.incapcode is 'Internal Capability Code';

comment on column usescapacityforservice.capaccode is 'Internal Resource Set/Internal Capacity and External Resource

Set/Internal Capacity Code';

comment on column usescapacityforservice.servcode is 'Service Code';

alter table Usescapacityforservice

add constraint Usescapacityforservice_FK1 foreign key (incapcode) references Incapability (incapcode)on delete cascade;

alter table Usescapacityforservice

add constraint Usescapacityforservice_FK2 foreign key (servcode) references Service (servcode)on delete cascade;

create table Usesabilityforservice

(

incapcode varchar2(50) not null,

abcode varchar2(50) not null,

servcode varchar2(50)not null,

constraint Usesabilityforservice_PK primary key (incapcode, abcode)

);

comment on column usesabilityforservice.incapcode is 'Internal Capability Code';

comment on column usesabilityforservice.abcode is 'Internal Ability and External Ability Code';

268

comment on column usesabilityforservice.servcode is 'Service Code';

alter table Usesabilityforservice

add constraint Usesabilityforservice_FK1 foreign key (incapcode) references Incapability (incapcode)on delete cascade;

alter table Usesabilityforservice

add constraint Usesabilityforservice_FK2 foreign key (servcode) references Service (servcode)on delete cascade;

create table Abilityusescapacitywithservice

(

abcode varchar2(50) not null,

capaccode varchar2(50) not null,

servcode varchar2(50) not null,

incapcode varchar2(50) not null,

constraint Abusescapwithserv_PK primary key (abcode, capaccode, servcode)

);

comment on column abilityusescapacitywithservice.abcode is 'Internal Ability and External Ability Code';

comment on column abilityusescapacitywithservice.capaccode is 'Internal Resource Set/Internal Capacity and External

Resource Set/Internal Capacity Code';

comment on column abilityusescapacitywithservice.servcode is 'Service Code';

comment on column abilityusescapacitywithservice.incapcode is 'Internal Capability Code';

alter table Abilityusescapacitywithservice

add constraint Abusescapwithserv_FK1 foreign key (incapcode) references Incapability (incapcode)on delete cascade;

alter table Abilityusescapacitywithservice

add constraint Abusescapwithserv_FK2 foreign key (servcode) references Service (servcode)on delete cascade;

create table Menu

s_num varchar2 (50) not null,

name varchar2(250),

menu_name varchar2 (250)

constraint Menu_PK primary key (s_num)

);

comment on column menu.s_num is 'Unique Identifier of Parent and Child Tree Nodes';

comment on column menu.name is 'Parent and Child Tree Nodes Names';

comment on column menu.menu_name is 'Child Tree Node Values';

create sequence OWNER_SEQ

minvalue 1

maxvalue 99999

start with 1

increment by 1

cache 20;

create sequence SKILL_SEQ

minvalue 1

maxvalue 99999

start with 1

increment by 1

cache 20;

create sequence PROCESS_SEQ

minvalue 1

maxvalue 99999

start with 1

increment by 1

cache 20;

create sequence CONTEXTS_SEQ

minvalue 1

maxvalue 99999

start with 1

increment by 1

cache 20;

create sequence PROCEDURE_SEQ

minvalue 1

maxvalue 99999

start with 1

269

increment by 1

cache 20;

create sequence INFORMATION_SEQ

minvalue 1

maxvalue 99999

start with 1

increment by 1

cache 20;

create sequence SKILL_SEQ

minvalue 1

maxvalue 99999

start with 1

increment by 1

cache 20;

10.4 SQL Script of Total View

create or replace view final_view as

select a.incapcode cd, a.capdesc dscr, a.ownercode, o.ownername, 'Internal' type1 , a.incaptype typ, null capcode, null

capdesc, null servcode, null servname, 1 qry_flg

 from incapability a, owner o

 where a.ownercode = o.ownercode

UNION

select b.excapcode cd, b.capdesc dscr, b.ownercode, o.ownername, 'External' type1, b.excaptype typ, null capcode, null

capdesc, null servcode, null servname, 1 qry_flg

 from excapability b, owner o

 where b.ownercode = o.ownercode

/*****SUBCAPABILITIES*****/

UNION

select a.incapcode cd, a.capdesc dscr, null ownwercode, null ownwename, 'IN' type1 , a.incaptype typ, cp.mcapcode, null

capdesc, null servcode, null servname, 2 qry_flg

 from incapability a, capabilityispartof cp

 where a.incapcode= cp.subcapcode

UNION

select b.excapcode cd, b.capdesc dscr, null ownwercode, null ownwename, 'EX' type1, b.excaptype typ, cp.mcapcode, null

capdesc, null servcode, null servname, 2 qry_flg

 from excapability b, capabilityispartof cp

 where b.excapcode= cp.subcapcode

 /*********** OUTPUTS **************/

UNION

select ot.outputcode cd, ot.outputname dscr, null ownercode, null ownername, 'IN' type1, ot.outputtype typ , ot.capcode

capcode, a.capdesc capdesc, null servcode, null servname, 3 qry_flg

 from output ot, incapability a

where ot.capcode = a.incapcode

UNION

270

select ot.outputcode cd, ot.outputname dscr, null ownercode, null ownername, 'EX' type1, ot.outputtype typ , ot.capcode

capcode, b.capdesc capdesc, null servcode, null servname, 3 qry_flg

 from output ot, excapability b

 where ot.capcode = b.excapcode

 /*********** GOALS ***********/

UNION

select g.goalcode cd, g.goalname dscr, null ownercode, null ownername, 'IN' type1, g.goaltype typ, cmg.capcode capcode,

a.capdesc capdesc, null servcode, null servname, 4 qry_flg

 from goal g, capabilitymeetsgoal cmg, incapability a

 where g.goalcode = cmg.goalcode(+)

 and cmg.capcode = a.incapcode(+)

 and cmg.capcode(+) like 'IN%'

UNION

select g.goalcode cd, g.goalname dscr, null ownercode, null ownername, 'EX' type1, g.goaltype typ, cmg.capcode capcode,

b.capdesc capdesc, null servcode, null servname, 4 qry_flg

 from goal g, capabilitymeetsgoal cmg, excapability b

 where g.goalcode = cmg.goalcode(+)

 and cmg.capcode = b.excapcode(+)

 and cmg.capcode(+) like 'EX%'

 /************ CONTEXT *************/

UNION

select ctx.contcode cd, ctx.contdesc dscr, null ownercode, null ownername, 'IN' type1, null typ, cix.capcode capcode, a.capdesc

capdesc, null servcode, null servname, 5 qry_flg

 from contexts ctx, capabilityisincontext cix, incapability a

 where ctx.contcode = cix.contcode(+)

 and cix.capcode = a.incapcode (+)

 and cix.capcode(+) like 'IN%'

UNION

select ctx.contcode cd, ctx.contdesc dscr, null ownercode, null ownername, 'EX' type1, null typ, cix.capcode capcode, b.capdesc

capdesc, null servcode, null servname, 5 qry_flg

 from contexts ctx, capabilityisincontext cix, excapability b

 where ctx.contcode = cix.contcode(+)

 and cix.capcode = b.excapcode (+)

 and cix.capcode(+) like 'EX%'

 /************** COLLABORATIONS ***************/

UNION

select cl.capcode1 cd, a.capdesc dscr, cl.collabcode ownercode, col.connectortype ownercode, 'IN' type1, a.incaptype typ,

cl.capcode2 capcode, a1.capdesc capdesc, null servcode, null servname, 6 qry_flg

 from collaborations cl, incapability a, collaborator col, incapability a1

 where cl.capcode1 = a.incapcode

 and cl.collabcode = col.collabcode

 and cl.capcode2 = a1.incapcode

UNION

select cl.capcode1 cd, a.capdesc dscr, cl.collabcode ownercode, col.connectortype ownercode, 'IN' type1, a.incaptype typ,

271

cl.capcode2 capcode, b.capdesc capdesc, null servcode, null servname, 6 qry_flg

 from collaborations cl, incapability a, collaborator col, excapability b

 where cl.capcode1 = a.incapcode

 and cl.collabcode = col.collabcode

 and cl.capcode2 = b.excapcode

UNION

select cl.capcode1 cd, b.capdesc dscr, cl.collabcode ownercode, col.connectortype ownercode, 'EX' type1, b.excaptype typ,

cl.capcode2 capcode, a.capdesc capdesc, null servcode, null servname, 6 qry_flg

 from collaborations cl, excapability b, collaborator col, incapability a

 where cl.capcode1 = b.excapcode

 and cl.collabcode = col.collabcode

 and cl.capcode2 = a.incapcode

UNION

select cl.capcode1 cd, b.capdesc dscr, cl.collabcode ownercode, col.connectortype ownercode, 'EX' type1, b.excaptype typ,

cl.capcode2 capcode, b1.capdesc capdesc, null servcode, null servname, 6 qry_flg

 from collaborations cl, excapability b, collaborator col, excapability b1

 where cl.capcode1 = b.excapcode

 and cl.collabcode = col.collabcode

 and cl.capcode2 = b1.excapcode

 /************** USES ABILITY FOR SERVICE ************/

UNION

select uafs.incapcode cd, a.capdesc dscr, a.ownercode, o.ownername, 'IN' type1, a.incaptype typ, uafs.abcode capcode,

ia.abdescr capdesc, uafs.servcode, s.servname, 7 qry_flg

 from usesabilityforservice uafs, incapability a, owner o, inability ia, service s

 where uafs.incapcode = a.incapcode

 and a.ownercode = o.ownercode

 and ia.inabcode = uafs.abcode

 and uafs.servcode = s.servcode

UNION

select uafs.incapcode cd, a.capdesc dscr, a.ownercode, o.ownername, 'IN' type1, a.incaptype typ, uafs.abcode capcode,

ea.abdescr capdesc, uafs.servcode, s.servname, 7 qry_flg

 from usesabilityforservice uafs, incapability a, owner o, exability ea, service s

 where uafs.incapcode = a.incapcode

 and a.ownercode = o.ownercode

 and ea.exabcode = uafs.abcode

 and uafs.servcode = s.servcode

 /************** USES CAPACITY FOR SERVICE ************/

UNION

select ucfs.incapcode cd, a.capdesc dscr, a.ownercode, o.ownername, 'IN' type1, a.incaptype typ, ucfs.capaccode capcode,

ic.capacdescr capdesc, ucfs.servcode, s.servname, 8 qry_flg

 from usescapacityforservice ucfs, incapability a, owner o, incapacity ic, service s

 where ucfs.incapcode = a.incapcode

 and a.ownercode = o.ownercode

 and ic.incapaccode = ucfs.capaccode

 and ucfs.servcode = s.servcode

272

UNION

select ucfs.incapcode cd, a.capdesc dscr, a.ownercode, o.ownername, 'IN' type1, a.incaptype typ, ucfs.capaccode capcode,

ec.capacdescr capdesc, ucfs.servcode, s.servname, 8 qry_flg

 from usescapacityforservice ucfs, incapability a, owner o, excapacity ec, service s

 where ucfs.incapcode = a.incapcode

 and a.ownercode = o.ownercode

 and ec.excapaccode = ucfs.capaccode

 and ucfs.servcode = s.servcode

 /************** ABILITY USES CAPACITY WITH SERVICE ************/

UNION

select aucs.abcode cd, ia.abdescr dscr, a.incapcode ownercode, a.capdesc ownername, 'IN' type1, null typ, aucs.capaccode,

ic.capacdescr capdesc, aucs.servcode, s.servname, 9 qry_flg

 from abilityusescapacitywithservice aucs, inability ia, incapacity ic, service s, incapability a

 where aucs.abcode = ia.inabcode

 and aucs.capaccode = ic.incapaccode

 and aucs.servcode = s.servcode

 and aucs.incapcode = a.incapcode

UNION

select aucs.abcode cd, ia.abdescr dscr, a.incapcode ownercode, a.capdesc ownername, 'IN' type1, null typ, aucs.capaccode,

ec.capacdescr capdesc, aucs.servcode, s.servname, 9 qry_flg

 from abilityusescapacitywithservice aucs, inability ia, excapacity ec, service s, incapability a

 where aucs.abcode = ia.inabcode

 and aucs.capaccode = ec.excapaccode

 and aucs.servcode = s.servcode

 and aucs.incapcode = a.incapcode

UNION

select aucs.abcode cd, ea.abdescr dscr, aucs.incapcode ownercode, a.capdesc ownername, 'IN' type1, null typ, aucs.capaccode,

ic.capacdescr capdesc, aucs.servcode, s.servname, 9 qry_flg

 from abilityusescapacitywithservice aucs, exability ea, incapacity ic, service s, incapability a

 where aucs.abcode = ea.exabcode

 and aucs.capaccode = ic.incapaccode

 and aucs.servcode = s.servcode

 and aucs.incapcode = a.incapcode

UNION

select aucs.abcode cd, ea.abdescr dscr, aucs.incapcode ownercode, a.capdesc ownername, 'IN' type1, null typ, aucs.capaccode,

ec.capacdescr capdesc, aucs.servcode, s.servname, 9 qry_flg

 from abilityusescapacitywithservice aucs, exability ea, excapacity ec, service s, incapability a

 where aucs.abcode = ea.exabcode

 and aucs.capaccode = ec.excapaccode

 and aucs.servcode = s.servcode

 and aucs.incapcode = a.incapcode;

273

CHAPTER 11: Bibliography

274

(1997). UML Summary: Version 1.1. Rational Software, Microsoft, Hewlett-Packard, Oracle

Sterling Software, MCI Systemhouse, Unisys, ICON Computing IntelliCorp, i-Logix,

IBM, ObjecTime, Platinum Technology, Ptech Taskon, Reich Technologies, Softeam.

FCO-IM: Fully Communication Oriented Information Modeling. (2015). Retrieved 2015, from

FCO-IM Foundation: www.fco-im.nl: http://fco-im.nl/

Object Management Group. (2015). Retrieved 2015, from Unified Modeling Language™

(UML): http://www.omg.org/spec/UML/

Anand, P., Hunter, G., & Smith, R. (2005). Capabilities and Well-Being: Evidence Based on the

Sen-Nussbaum Approach to Welfare. Social Indicators Research, 74, 9-55.

Bachman, C. W. (1969). Data Structure Diagrams. 1(2), 4-10.

Bakema, G., Zwart, J. P., & Lek, H. (2002). Fully Communication Oriented Information

Modeling (FCO-IM). FCO-IM Consultancy.

Bakhtiyari, R., & Adel, M. (2012). Business Capability and its Strategic Impacts. Australasian

Conference on Information Systems . Geelong,Australia: Deakin University.

Barney , J. (1991). Firm Resources and Sustained Competitive Advance. Journal of

Management, 17, 99-120.

Barroero, T., Motta, G., & Pign, G. (2010). Business Capabilities Centric Enterprise

Architecture. Enterprise Architecture, Integration and Interoperability. IFIP Advances

in Information and Communication Technology. 326, pp. 32-43. Springer.

Barton, D. L. (1992). Core Capabilities and Core Rigidities: A Paradox in Managing New

Product Development. Strategic Management Journal, 13, 111-115.

Beimborn, D., Martin, S. F., & Holman, U. (2005). Capability-oriented Modeling of the Firm.

Proceedings of the IPSI 2005 Conference.

Berzisa, S., Bravos, G., Gonzalez - Cardona, T., Czubayko, U., Espana, S., Grabis, J., et al.

(2015). Capability Driven Development: An Approach to Designing Digital

Enterprises. Business & Information Systems Engineering. 57, pp. 15-25. Springer.

Berzisa, S., Espana, S., Grabis, J., Henkel, M., Jokste, L., Kampars, J., et al. (2013, September

1). Task 5.1 Result Report: State of Art in Relevant Methodology Areas . Capability as

Service in Digital Enterprises - Collaborative Project Number 611351 .

Bevan, N. (1999). Quality in Use: Meeting User Needs for Quality. Journal of System and

Software.

Bommel, P., Hofstede, A., & Weide, T. (1993). Semantics and verification of object-role

models. Information Systems, 16(5), 471-495.

275

Bravos, G., Gonzslez, T., Grabis, J., Henkel, M., & Jokste, L. (2014). Capability Modeling: Initial

Experiences. Perspectives in Business Informatics Research - Lecture Notes in

Business Information Processing. 194, pp. 1-14. Springer.

Bravos, G., Grabis, J., Henkel, M., Jokste, L., & Kampars, J. (2014). Supporting Evolving

Organizations: IS Development Methodology Goals. Perspectives in Business

Informatics Research - Lecture Notes in Business Information Processing. 194, pp.

158-171. Springer.

Bravos, G., Loucopoulos, P., Stratigaki, C., & Valvis, D. (2014). An Empirical Evaluation of

Capability Modelling using Design Rationale. The 1st International Workshop on

Capability-oriented Business Informatics (CoBI 2014). CEUR Workshop Proceedings

(CEUR-WS.org).

Brits, J., Botha, G., & Herselman, T. M. (2007). Conceptual Framework for Modeling Business

Capabilities. Proceedings of the 2007 Informing Science and IT Education Joint

Conference, 151-170.

Chan, M., & Cheung, S. (1999). Testing Database Applications with SQL Semantics.

Proceedings of 2nd International Symposium on Cooperative Database Systems for

Advanced Applications, 363-374.

Chen, C., Song, Y., & Zhu, W. (2007). Trends in Conceptual Modeling: Citation Analysis of the

ER Conference Papers 1979-2005. In D. Torres-Salinas, & H. F. Moed (Ed.),

Proceedings of the 11th International Conference on the International Society for

Scientometrics and Informatrics (pp. 189-200). Madrid: CSIC.

Chen, P. P.-S. (1976, March). The entity-relashionship model. Retrieved February 2015, from

http://www.minet.uni-jena.de/dbis/lehre/ws2005/dbs1/Chen.pdf

Connoly, T., & Begg, C. E. (2005). Database Systems: A Practical Approach to Design,

Implementation and Management (Fourth ed.). Addison Wesley.

Cook, D. (2007, March). Business-Capability Mapping: Staying Ahead of the Joneses.

Retrieved May 2015, from Microsoft Corporation MSDN Library:

https://msdn.microsoft.com/en-us/library/bb402954.aspx

Curland, M., & Halpin, T. (2010). The NORMA Tool for ORM 2. Proceedings of the CAiSE

Forum 2010. 592. Tunisia: CEUR Workshop Proceeding (http://ceur-ws.org/).

Cusick, K. (1997). The Systems Engineering Capability Maturity Model: Where to start?

Proceedings of The IEEE 1997 Aerospace and Elecronics Conference (NAECON). 1, pp.

410-416. IEEE Xplore Digital Library.

Cuyler, D., & Halpin, T. (2003). Metamodels for Object-Role Modeling. Retrieved 2015, from

citeseerx.ist.psu.edu:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.4841&rep=rep1&typ

e=pdf

276

Cuyler, D., & Halpin, T. (2003). Metamodels for Object-Role Modeling. Retrieved 2015, from

http://citeseerx.ist.psu.edu:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.4841&rep=rep1&typ

e=pdf

Darke, P., & Shanks, G. (1995). Defining System Requirements: A Critical Assessment of the

NIAM Conceptual Design Procedure. Australasian Journal of Information Systems,

2(2).

Deneulin, S., & McGregor, A. J. (2010). The Capability Approach and the Politics of a Social

Conception of Wellbeing. European Journal of Social Theory, 3(4), 501–519.

Duhs, L. A. (2008). Sen’ s Economic Philosophy: Capabilities and Human Development in the

Revival of Economics as a Moral Science . School of Economics Discussion.

Elmasri, R., & Navathe, S. B. (2004). Fundamentals to Database Systems. (M. Hirsch, Ed.)

Addison-Wesley.

Embley, D. W., & Ling, T. W. (1989). Synergistic Database Design with an Extented Entity-

Relationship Model. Proceedings of the Eight International Conference on Enity-

Relationship Approach, (pp. 111-128). Toronto.

Espana, S., Gonzalez, T., Grabis, J., Jokste, L., Juanes, R., & Valverde, F. (2014). Capability-

driven development of a SOA platform: A Case Study. Advanced Information Systems

Engineering Workshops - Lecture Notes in Business Information Processing, 178, 100-

111.

European Commision. (2013). Capability as Service in Digital Enterprises. Retrieved May

2015, from CORDIS - Community Research and Development Information Service:

http://cordis.europa.eu/project/rcn/109917_en.html

Finkelstein , C. (1981-C, June 8). Information Engineering: Part 5. Computer World, XV, pp.

31-40.

Finkelstein , C. (1981-D, June 15). Information Engineering: Part 6 - Infomethod. The

Information Engineering Development Plan. Computer World, XV, pp. InDepth 1 - 8.

Finkelstein, C. (1981-A, May 25). Information Engineering: Part3 - Information Analysis.

Developing A Corporate Model. Computer World, XV, pp. 29-36.

Finkelstein, C. (1981-B, June 1). Information Engineering: Part 4 - Data Analysis and Database

Design. Computer World, XV, pp. InDepth 1 - 12.

Finkelstein, C. (2006). Information Engineering Methodology. In P. Bernus, K. Mertins, & G.

Schmidt (Eds.), Handbook on Architectures of Information Systems (pp. 460-485).

Springer Berlin Heidelberg.

Fowler, M., & Scott, K. (1999). UML Distilled Second Edition A Brief Guide to the Standard

Object Modeling Lanquage (Second ed.). Addison Wesley Longman Inc.

277

FP7 Collabotative Project with No 611351 . (2014, July). CaaS - Capability as Service in Digital

Enterprises. Retrieved May 2015, from Slideshare.net:

http://www.slideshare.net/fp7_caas/fp7-capability-as-a-service-

caas?next_slideshow=1

Freitag, A., Matthes, F., Schu, C., & Nowobilska, A. (2011). A Method for Business Capability

Dependency Analysis. Retrieved May 2015, from CiteSeerX:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.363.9176&rep=rep1&ty

pe=pdf

Frey, F. J., Hentrich, C., & Zdun, U. (2013). Capability-based Service Identification in Service-

Oriented Legacy Modernization. Proceedings of the 17th European Conference on

Pattern Languages of Programs (EuroPLoP). Kloster Irsee, Germany.

Geisler, R., Klar, M., & Pons, C. (1998). Dimensions and dichotomy in metamodeling.

3FACS'98 Proceedings of the 3rd BCS-FACS conference on Northern Formal Methods

(pp. 10-10). ACLDL.

Gregersen, H., & Jensen, C. S. (1999). Temporal Entity-Relationship Models: A Survey. IEEE

Transactions on Knowledge and Data Engineering, 11(3).

Greski, L. (2009-A). Business Capability Modeling: Building Hierarchy. Architecture &

Governance Magazine, 5(11), pp. 1-4.

Greski, L. (2009-B, September 14-15). Business Capability Modeling: Theory & Practice.

Architecture & Governance Magazine, 5(7), pp. 1-4.

Halpin , T. (2010). ORM 2 Graphical Notation. Retrieved June 2015, 30, from Object Role

Modeling: The Official Site for Conceptual Data Modeling:

http://www.orm.net/pdf/ORM2GraphicalNotation.pdf

Halpin, T. (1989). A Logical Analysis of Information Systems: Static Aspects of the Data-

Oriented Perspective. University of Queensland, Department of Computer Science.

Brishbane: www.orm.net.

Halpin, T. (1991). A fact-oriented approach to schema transformation. In B. Thalheim, J.

Demetrovics, & H. Gerhardt (Eds.), MFDBS 91: 3rd Symposium on Mathematical

Fundamentals of Database and Knowledge Base Systems Rostock (pp. 342-356).

Berlin: Springer Berlin Heidelberg.

Halpin, T. (1995-A). Conceptual Schema & Relational Database Desing (Second ed.). (K.

Smith, Ed.) Sydney: Prentice Hall of Australia Pty Ltd.

Halpin, T. (1995-B). Subtyping: conceptual and logical issues. (R. G. Ross, Ed.) Database

Newsletter, 23, 3-9.

Halpin, T. (1996). Business Rules and Object - Role Modeling. Database Programming &

Desing.

278

Halpin, T. (1999, February). UML data models from an ORM perspective: Part 7. Journal of

Conceptual Modeling.

Halpin, T. (2001). Informational Modeling and Relational Database: From Conceptual

Analysis to Logical Design. (J. Gray, Ed.) San Francisco: Morgan Kaufmann Publishers.

Halpin, T. (2002). Part4 Visio-Based Database Modeling in Visual Studio.NET Enterprise

Architect .

Halpin, T. (2005-A). ORM2. In R. Meersman, Z. Tari, & P. Herrero (Eds.), On the Move to

Meaningful Internet Systems 2005: OTM 2005 Workshops (Vol. 3762, pp. 676-687).

Springer Berlin Heidelberg.

Halpin, T. (2005-B). ORM 2 Graphical Notation - Technical Report ORM2-01. Neumont

University.

Halpin, T. (2006). Object-Role Modeling (ORM/NIAM). In P. Bernus, K. Mertins, & G. Schmidt

(Eds.), Handbook on Architectures of Information Systems (pp. 81-101). Springer

Berlin Heidelberg.

Halpin, T. (2007). Fact-Oriented Modeling: Past, Present and Future. In J. Krogstie, A. L.

Opdahl, & S. Brinkkemper (Eds.), Conceptual Modelling in Information Systems

Engineering (pp. 19-38). Berlin, Heidelberg, New York: Springer.

Halpin, T. (Ed.). (2015). Object Role Modeling: The Official Site for Conceptual Data Model.

Retrieved from ORM: http://www.orm.net/

Halpin, T., & Morgan, T. (2008). Information Modeling and Relational Databases (Second

ed.). Burlington: Morgan Kaufmann Publishers.

Halpin, T., & Orlowska, M. (1992). Fact-oriented modelling for data analysis. Information

Systems Journal, 2(2), 97-119.

Halpin, T., & Proper, H. (1995). Database Schema Transformation & Optimization. OOER’95:

14th International Conference on Conceptual Modeling. 1021,, pp. 191-203.

Springer.

Halpin, T., Evans, K., Hallock, P., & Maclean, B. (2003). Database Modeling with Microsoft

Visio for Enterprise Architects. (H. Lothlorien, Ed.) USA: Elsevier.

Hay, D. C. (1999). A Comparison of Data Modeling Techniques. Essential Strategies Inc.

Hinkelmann, K. (2011). Modeling and Meta-Modeling. Retrieved 2015, from

http://knut.hinkelmann.ch/:

http://knut.hinkelmann.ch/lectures/EA2011/EA_2_Modeling_Meta-Modeling.pdf

Hinkelmann, K. (2015, September). Meta-Modeling and Modeling Languages. Retrieved

2015, from http://knut.hinkelmann.ch/:

http://knut.hinkelmann.ch/lectures/EA2014-15/EA_4_Metamodeling.pdf

279

Hoffer, J. A., Prescott, M. B., & McFadden, F. R. (2007). Modern Database Management

(Eight ed.). (B. Horan, Ed.) New Jersey: Pearson Prentice Hall.

Hofstede, A., & Weide, T. (1993). Expressiveness in conceptual data modelling. Data &

Knowledge Engineering, 10(1), 65-100.

Holman, U. (2006, February). A Business-Oriented Foundation for Service Orientation.

Retrieved May 2015, from Microsof Corporation MSDN Library:

https://msdn.microsoft.com/en-us/library/aa479368.aspx

Jackson, M. (1996). Academia.edu. Retrieved May 2015, from

http://www.academia.edu/168883/Object_Role_Modelling_and_Conceptual_Datab

ase_Design

Karagiannis, D., & Kühn, H. (2002). Metamodelling Platforms. In E-Commerce and Web

Technologies (Vol. 2455, pp. 182-182). Springer.

Keller, W. (2009). Using Capabilities in Enterprise Architecture Management. Retrieved May

2015, from Objectarchitects:

http://www.objectarchitects.biz/ResourcesDontDelete/CapabilityBasedEAMWhitep

aper.pdf

Kogalovsky, M., & Kalinichenko, L. (2009, September). Conceptual and ontological modeling

in information systems. Programming and Computer Software, 35(5), 241-256.

Lee, T. Y. (1999). Information Modeling from Design to Implementation. Proceedings of the

Second World Manufacturing Congress (pp. 315-321). Gaithersburg: CiteSeerX.

Leppanen, M. (2006). An Integrated Framework for Meta Modeling. In Y. Manolopoulos, J.

Pokorný, & T. K. Se (Ed.), 10th East European Conference, ADBIS 2006. 4152, pp. 141-

154. Thessaloniki: Spinger.

Long, C., & Vickers-Koch, M. (1995). Using Core Capabilities to Create Competitive Advance.

24(1), 7-22.

Loucopoulos, P., Bravos, G., Stratigaki, C., & Vavlis, D. (2013). Deliverable 3.1: Capability

Models for Business Compliance Controlling and Auditing (CaaS-Collaborating

Project Number 611351). Athens.

Mamayev, R. (2013). Data Modeling of Financial Derivatives - A Conceptual Approach

(APresss ed.). Springer.

Mandel, T. (2002). Interface Design and Development. In User/System Interface Design.

Proof.

Mayer, R. J., Painter, M. K., & deWitte, P. S. (1992). IDEF Family of Methods for Concurrent

Engineering and Business Reengineering Applications. Knowledge Based Systems Inc.

Merson, P. (2009). Data Model as an Architectural View. Software Engineering Institute .

280

Montali, M. (2011-2012). Conceptual Modelling for Information Systems-Relational

Mapping. Retrieved 02 27, 2015, from Faculty of Computer Science Trilingual and

Intercultural-KRDB Research Centre-Faculty of Computer Science-Free University of

Bozen-Bolzano: http://www.inf.unibz.it/~montali/1213/cmis/slides/4.relational-

mapping.pdf

Mylopoulos, J. (1992). Conceptual Modelling and Telos. Retrieved February 2015, from

Universitiy of Toronto:

http://www.cs.toronto.edu/~jm/2507S/Readings/CM+Telos.pdf

Mylopoulos, J. (1998, May). Information modeling in the time of the revolution. Journal

Information Systems, 23(3-4), 127-155.

National Institute of Standards & Technology. (1993). Integration Definition For Information

Modeling - IDEF1X. Federal Information Processing Standards Publications.

Nijssen, G., & Leunc, C. (1988). Relational Database System Design using the NIAM

conceptual Schema. Information Systems, 13(2), 219-227.

Nussbaum, M. S. (2000). Women and Human Development: The Capability approach. New

York: Cambridge University Press.

Oracle Corporation. (April 2011). PL/SQL Developer 9.0 User's Guide. Allround Automations.

Oren, T., & Çetin, S. (1999, January 12-14). Quality Criteria for User/System Interfaces. RTO

Meeting Proceedings 38 – Modelling and Analysis of Command and Control, 18-1,

18-8.

Phahalad, C. K., & Hamel, G. (1990). The Core Competence of a Corporation. Harvard

Business Review, 68(3), 79-91.

Ponniah, P. (2007). Data Modeling Fundamentals: A Practical Guide for IT Professionals. New

Jersey, Canada: A John Wiley & Sons, INC. Publications.

Rapakrishnan, R., & Gehrke, J. (2003). Database Management systems. USA: McGraw-Hill.

Rasdorf, W. J., & Abudayyeh, O. Y. (1992). NIAM Conceptual Data-Base Design in

Construction Management. Journal of Computing in Civil Engineering, 6(1), 41-62.

Rosen, M. (2010). Business Processes Start with Capabilities. Retrieved May 2015, from BPT

trends column: http://www.bptrends.com/publicationfiles/12-07-10-COL-

BPM%20%26%20SOA--

BusProcesses%20begin%20with%20Capabilities%201003%20v01--Rosen.pdf

Rosen, M. (2012). Processes, Value Streams, and Capabilities. Retrieved May

http://www.bptrends.com/publicationfiles/12-04-2012-COL-BA-

ProcessesValueStreams%26Capabilities-Rosen.pdf, 2015, from BP Trends Column.

Roussopoulos, N., & Karagiannis, D. (2009). Conceptual Modeling: Past,Present and the

Continuum of the Future. In A. T. Borgida, V. K. Chaudhri, P. Giorgini, & E. S. Yu

281

(Eds.), Conceptual Modeling: Foundations and Applications (pp. 139-152). Berlin,

Heidelberg: Springer.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The Unified Modeling Language Reference

Manual. Massachusetts, Harlow, England, Menlo Park, California, Berkeley, Don

Mills, Ontario, Sydney, Bonn, Amsterdam, Tokyo, Mexico City: Addison Wesley

Longman Inc.

Scott, J. (2009). Business Capability Maps: The Missing Link Between Business Strategy and IT

Action . Architecture & Governance Magazine, 5(9), pp. 1-4.

Sharron, A., & Evan, T. (2005). Beginning Relational Data Modeling (Second ed.). (T. Davis,

Ed.) Springer.

Shoval, P., & Zohn, S. (1991). Binary-Relationship Integration Methodology. Data &

Knowledge Engineering, 6(3), 225-250.

Sommerville, I. (2007). Software Engineering (8th Edition ed.). Addison-Wesley.

Sprinkle, J., Rumpe, B., & Vangheluwe, H. (2010). 3 Metamodelling: State of the Art and

Research Challenges. In Model-Based Engineering of Embedded Real-Time Systems

(Vol. 61100, pp. 57-76). Springer Berlin Heidelberg.

Stalk, G., Evans, P., & Shulman, L. E. (1992). Competing on Capabilities: The New Rules of

Corporate Strategy. Harvard Business Review, 70(2), 57-69.

Stirna, J., Grabis, J., Henkel, M., & Zdravkovic, J. (2012). Capability Driven Development – An

Approach to Support Evolving Organizations. The Practice of Enterprise Modeling.

Lecture Notes in Business Information Processing. 134, pp. 117-131. Springer.

Stratigaki, C., Loucopoulos, P., & Nikolaidou, M. (2014). Designing a Meta Model as the

Foundation for Compliance Capability. The 1st International Workshop on Capability-

oriented Business Informatics (CoBI 2014). CEUR Workshop Proceedings (CEUR-

WS.org).

Tallman, S., & Fladmoe-Lindquist, K. (2002). Internationalization, Globalization, and

Capability-Based Strategy. California Management Review, 45(1), 116-135.

Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic Capabilities and Strategic Management.

Strategic Management Journal, 18(7), 509-533.

Tell, A. W. (2014). What Capability Is Not. Perspectives in Business Informatics Research.

Lecture Notes in Business Information Processing, 194, pp. 128-142. Springer.

Teorey, T. J., Yang, D., & Fry, J. P. (1986, June). A logical design methodology for relational

databases using the extended entity-relationship model. Journal ACM Computing

Surveys (CSUR), 18(2), 197-122.

Teorey, T., Lightstone, S., & Nadeau, T. (2006). Database Modeling & Design: Logical Design

(Fourth ed.). (J. Gray, Ed.) San Francisco: Morgan Kaufmann, Elsevier.

282

Thalheim, B. (1991). Foundations of Entity-Relationship Modeling. Computer Science

Department, University of Rostock.

Thalheim, B. (2011). The Theory of Conceptual Models, the Theory of Conceptual Modelling

and Foundations of Conceptual Modelling. In D. W. Embley , & B. Thalheim (Eds.),

Handbook of Conceptual Modeling (pp. 543-577). Heidelberg, Dordrecht, London,

New York: Springer.

Tickoo, S., & Raina, S. (2010). Oracle 11g with PL/SQL Approach. Dorling Kindersley Pvt Ltd.

Tryfona, N., Busborg, F., & Borch, J. G. (1999). starER: A Conceptual Model for Data

Warehouse Design.

Ulrich, W., & Rosen, M. (2011). The Business Capability Map: The “Rosetta Stone” of

Business/IT Alignment. Retrieved May 2015, from Cutter Consortium:

http://www.cutter.com/content-and-analysis/resource-centers/enterprise-

architecture/sample-our-research/ear1102.html

Vaughan , M. (2011). A Focused Approach to Business Capability. The 1st International

Symposium on Business Modeling and Software Design. Sofia, Bulgaria: Informatics

Research Centre, Henley Business School, University of Reading, Whiteknights,

Reading, UK.

Wambler, S. (2015). Data Modeling 101. Retrieved May 2015, from Agile Data:

http://www.agiledata.org/essays/dataModeling101.html

Wernerfelt, B. (1984). A Resource-Based View of the Firm. Strategic Management Journal, 5,

171-180.

Wikipedia: The Free Encyclopedia. (n.d.). Retrieved May 2015, from Information Technology:

https://en.wikipedia.org/wiki/Information_technology

Wikipedia: The Free Encyclopedia. (n.d.). Retrieved from

https://en.wikipedia.org/wiki/Information_technology#cite_note-2

Windows Enterprise Support Database Servises. (2015). Liberty University. Retrieved May

2015, from

http://www.liberty.edu/media/1414/%5B6330%5DERDDataModeling.pdf

Wintraecken, J. (1990). The NIAM Information Analysis Method: Theory and Practice.

Netherlands: Kluwer Academic Publishers.

www.db-engines.com. (n.d.). Retrieved from http://db-

engines.com/en/ranking/relational+dbms

www.onestopsoftwaretesting.com. (n.d.). Retrieved from Tutorial Database Testing using

SQL: http://www.softwaretestingtimes.com/2010/04/tutorial-database-testing-

using-sql-sql.html

283

www.softwaretestinghelp.com. (n.d.). Retrieved 2016, from Software Testing Help:

http://www.softwaretestinghelp.com/database-testing-process/

www.softwaretestinghelp.com. (n.d.). Retrieved 2016, from Software Testing Help:

http://www.softwaretestinghelp.com/database-testing-process/

www.tutorialspoint.com. (n.d.). Retrieved 2016, from Database Testing Tutorial:

http://www.tutorialspoint.com/database_testing/

www.zentut.com. (n.d.). Retrieved from http://www.zentut.com/sql-tutorial/

Zdravkovic, J., Pastor, O., & Loucopoulos, P. (2014). On the Capability Notion in Business

Informatics. The 1st International Workshop on Capability-oriented Business

Informatics (CoBI 2014). CEUR Workshop Proceedings (CEUR-WS.org).

Zdravkovic, J., Stirna, J., & Henkel, M. (2013). Modeling Business Capabilities and Context

Dependent Delivery by Cloud Services. Advanced Information Systems Engineering -

Lecture Notes in Computer Science, 7908, 369-383.

Zhang, Y., Sreedharan, S., & Kambhampati, S. (2015, May 4-8). Capability Models and Their

Applications in Planning. Proceedings of the 14th International Conference on

Autonomous Agents and Multiagent Systems, 1151-1159.

Σκουρλάς, Χ. (2001). Υλοποίηση Εφαρμογών με Γλώσσα Σ:Λ (1η Έκδοση ed.). Αθήνα:

Εκδόσεις Νέων Τεχνολογιών.

Tutorials from the web:

� Tutorial 1: Creating a basic form with Oracle Form Builder 10G:

https://www.youtube.com/watch?v=hs8jpRklez4

� Tutorial 3: Creating a simple master-detail form:

https://www.youtube.com/watch?v=emKtt6TRJrg

� Tutorial 4: LOV and LOV buttons:

https://www.youtube.com/watch?v=ebEo_dx0imA#t=2.733446

� Tutorial 5: Alerts:

https://www.youtube.com/watch?v=4nw_Bmqdu7A&ebc=ANyPxKo18Nkmo2TplQFkd

Vp95O7jTVEKMPeFnQ5ovce-

YWQsL4I0DLQZIpYilT0w6U9UAH8n1gtAXYuyDiBv_NcVXO_tdYSjmg

� Tutorial 6: Item Validation and Advanced Controls:

https://www.youtube.com/watch?v=VndMv1VrwoQ&ebc=ANyPxKo18Nkmo2TplQFkd

Vp95O7jTVEKMPeFnQ5ovce-

YWQsL4I0DLQZIpYilT0w6U9UAH8n1gtAXYuyDiBv_NcVXO_tdYSjmg

� Forms 6i tutorial en espanol: https://www.youtube.com/watch?v=qGhMPT4XZqs

� Oracle Forms lesson 2:

https://www.youtube.com/watch?v=Fum3MJm5yKU&list=PL26C3B8E96CFC7AC1

284

� Oracle Forms Lesson 4 (create LOV):

https://www.youtube.com/watch?v=bVSYAK2kyJk&list=PL26C3B8E96CFC7AC1#t=8.6

55532

� Oracle Forms Lesson 5 (create LOV manual):

https://www.youtube.com/watch?v=oYkwm_40-

n0&index=2&list=PL26C3B8E96CFC7AC1#t=1.306041

� Oracle Forms Lesson 6 part 1 (working with Alerts forms):

https://www.youtube.com/watch?v=YgBPEVHwhKQ&index=2&list=PL26C3B8E96CFC

7AC1#t=2.121625

� Oracle Forms Lesson 6 part 2 (Working with Alerts forms):

https://www.youtube.com/watch?v=6CTTlRSVO0w&index=2&list=PL26C3B8E96CFC7

AC1#t=28.340479

� Oracle Forms Lesson 6 part 3 (Working with Alerts forms):

https://www.youtube.com/watch?v=vDEGrqu_Ioc&index=2&list=PL26C3B8E96CFC7A

C1#t=28.340479

� Oracle Forms Lesson 7 part 1(Working with Multiple Forms):

https://www.youtube.com/watch?v=tFYnBnKlqFw&index=2&list=PL26C3B8E96CFC7A

C1#t=0.21125

� Oracle Forms Lesson 7 part 2(Working with Multiple Forms):

https://www.youtube.com/watch?v=3UEX2Wu2pN4&index=2&list=PL26C3B8E96CFC

7AC1#t=0.21125

� Oracle Forms Lesson 9 (Working with Parameters):

https://www.youtube.com/watch?v=KaUjwAWsidA&index=2&list=PL26C3B8E96CFC7

AC1#t=1.940083

� Oracle part 3 Visual attribute:

https://www.youtube.com/watch?v=yphPXBZxaw0&index=2&list=PL26C3B8E96CFC7

AC1#t=0.40977

� Oracle part 4 Lovs and Record Group By Wizard:

https://www.youtube.com/watch?v=J76z-

_naFfI&list=PL26C3B8E96CFC7AC1&index=12

� Oracle part 5 Manual Lov and Record Group:

https://www.youtube.com/watch?v=ZLyTXoSJc2c&index=13&list=PL26C3B8E96CFC7A

C1

� Oracle part 6 H and V menu bars:

https://www.youtube.com/watch?v=_Bzb63VWuW8&index=14&list=PL26C3B8E96CF

C7AC1

� Oracle part 7 Stack Canvas:

https://www.youtube.com/watch?v=kp9ldF6Mr78&index=15&list=PL26C3B8E96CFC7

AC1

� Oracle part 8 Tab Canvas:

https://www.youtube.com/watch?v=eAR1ptuWGXM&index=16&list=PL26C3B8E96CF

C7AC1

� Oracle Forms 11g - When-Validate-Item Trigger:

https://www.youtube.com/watch?v=zm-xRE5hCW4

285

� Oracle Developer - Lecture 11 - Ustad Ahmad Shah:

https://www.youtube.com/watch?v=KFIWh8ywMW4&list=PLjlWxiqmfbg1y0-

MfsIeKFUfAcnS3Ve41

� Oracle Developer - Lecture 10 - Ustad Ahmad Shah – Pashto:

https://www.youtube.com/watch?v=j5_W7SffLoA&index=2&list=PLjlWxiqmfbg1y0-

MfsIeKFUfAcnS3Ve41

� Scope of triggers:

https://www.youtube.com/results?search_query=Oracle+Forms+11g

� Forms Builder / Insert:

https://www.youtube.com/watch?v=cZ0QZCJ0wcE&ebc=ANyPxKpV17npxjCse0lTE25g

R5C8ovuE1b03NxVvOdlxr8PkX964P8cn5L-

1bhq_jhMNDKQtI_8YcSGtkD8Rnkk6kE7E0Stq8A&nohtml5=False

� Using Sequence to generate automated data:

https://www.youtube.com/watch?v=NQ38hlPoSg4

� Tutorial 2 - Using radio buttons:

https://www.youtube.com/watch?v=X5L3rHU5TBY&annotation_id=annotation_6167

81&src_vid=hs8jpRklez4&feature=iv

� Oracle Forms Training: Master Details with Tab Canvas:

https://www.youtube.com/watch?v=ZmLRneqP51M

� How to convert content canvases item to tab canvas:

https://www.youtube.com/watch?v=KHqtbplh7c0

� Oracle Forms 10g: How to enable disable buttons or item with check box?:

https://www.youtube.com/watch?v=DrUcSGypSdE

� Oracle Forms 10g: How to create iconic button or animated button:

https://www.youtube.com/watch?v=3w-PinuEKqw&nohtml5=False

� Forms 6 Triggers When Button Pressed Trigger example:

https://www.youtube.com/watch?v=XG4yAee2ed8

� Oracle Forms Lesson 8 Part 2(search/Query Form):

https://www.youtube.com/watch?v=kCkpBnXuOMI&ebc=ANyPxKp9zidP02MXgJWpH

x4WfSGj1TwH82ChqMQYs8TzVm4WhfFOWFLRmDWF1Ty4bMJHD4g5MZ0MVNynFbjl

wriL8jeFexyr0A&nohtml5=False

� Oracle forms lesson 12: https://www.youtube.com/watch?v=w4aSoNIrvzU

� Login Screen: https://www.youtube.com/watch?v=mj1x5y1Qt-I

� Create Login Forms Oracle 10g by Muhammad Nur E Alam from Bangladesh with

Bangla: https://www.youtube.com/watch?v=LPel6Gk0YZs

� Part 19 Change Password: https://www.youtube.com/watch?v=7j6kxvTqjjg

� Part 18 login validation type 1: https://www.youtube.com/watch?v=lJKPiMcJUAQ

� Hide Default Icon from Forms Runtime:

http://oracledevelopersuite.blogspot.gr/2010/03/hide-default-icon-from-forms-

runtime.html

� Disable menu item of login form:http://oracle.ittoolbox.com/groups/technical-

functional/oracle-dev-l/how-to-enable-or-disable-the-default-menu-items-in-forms-

6i-468143

� How to create the Hierarchical Tree in oracle forms?:

http://startapps.blogspot.gr/2009/12/how-to-create-hierarchical-tree-in.html

286

� Create Tree:

http://www.orafaq.com/forum/t/198850/

http://www.orafaq.com/forum/m/608702/?srch=tree#msg_608702

http://www.orafaq.com/forum/m/604341/?srch=tree+call+form#msg_604341

http://www.orafaq.com/forum/m/416642/?srch=tree+call+form#msg_416642

� Oracle Lesson 17 (Open form & continuous changing of time on display item):

https://www.youtube.com/watch?v=JErnZ00giww

