Harokopio University of Athens

Department of Information and Telematics

Msc in Web Engineering

Thesis

Techniques for Identifying
unique

characteristics of Servers

Nicholaos Koroniotis

Nicholas Koroniotis

Acknowledgements
This thesis, was composed as a requirement for completing the Master's in Web Engineering

program of the Department of Information and Telematics at Harokopio University of Athens.

During the implementation of this project, I came in contact with a number of technologies
and at the same time, I had to apply most of the skills and knowledge that I acquired during my

studies.

Also, I had a close cooperation with the personnel of the Department of Information and would
like to thank all the people that provided me with the much needed support, that made the

completion of this thesis possible.

More specifically, I would like to thank Dr. Panagiotis Rizomiliotis who trusted me with the

assignment of this thesis and provided me with the necessary support.

Finally, this work was completed with the full moral support of my family, which supported me
through all the difficulties that I encountered in the course of my studies .

Nicholas Koroniotis

Nicholas Koroniotis

Contents

ACKNOWIBAGEIMENLS.ccuviiiiiiiieiieeieeete ettt ete e te st e st e e teesaeessbeesaeesseesseesssessaesssesssseesnsseesnns 3
LO10) 111<] 11T PP TP PP PPPPRPPPPPN 5)
AADSITACE ..ottt ettt et ettt et e e bt et sa e h et h e e b e et e e a b e bt et e e st e he e e bt e e nnneenaneeane 7
TTEPTATIUITL. vttt ettt ettt ettt e et e et e et e e bt e e e be e beeesbeessaeesseesseessseessaessseessaansseenseenssessseensseenseensaanes 9
1. INETOAUCHION. ...ttt ettt ettt et e e s bt et et e sbt e beesbe e e st e eneeennne 11
1.1 Defining the ProbIeM........ccceiiiiriiiiiieieeeeee ettt 11
1.2 PUrpose Of this thesSiS.......ccuieciiiriiiiiiieeeeeeeeeeee ettt e s 13

2. So what is a vulnerability SCANNET?.........cccccoriiiiiiiriieiiieeieeteeeeete ettt 15
2.1 Defining vulnerabilities..........cccueeviirriiriiiiiieeiieeeeieeeee ettt e e s 15
2.2 Defining vulnerability SCANMETS...........cceeieiierieriirienteieeieste ettt et enaee s 17
2.3 OUT @PPIOACKH. ... ttiiieeieeieceeete ettt ettt et e st e s te e st e e beessaesnseesssaessssaesassaesnnns 18
2.3.1 Nmap, the POt SCANMET.......ccueeeeureerireeeieeesreeesteeesreeeesreessseeessseeessseessssseeesesssnsssees 19

2.3.1 The National Vulnerability Database...........cccceereuerrieinieriiiinienieenieeieeeeeeee e 21

3. Implementing OUI SCANMET.........cccctiriiiiriiirieeniteeteert ettt e st e st e s bt e saeesbeeessteeeeneeeens 23
3.1 Development related infOrmMation...........cccueecueerienieinienieeeeee e ere e saeesaeee s 23
3.1.1 Setting up the development eNVIrONMENL..........ccecuerrieerierrieerieerieenieeeerreeeesieee s 23

3.1.2 Describing some key parts of the Project.........ccceeeeereieerieeniiiriieeerieeerieeeereee s 25

3.2 RUNNING OUL PTOGIAIMN.....eeeiiiiirieeieiitteeeeiiteeeeeireeesesreteeeenraeessenraeesesssnrrsraneeeeeeessssssennas 33

4. Conclusion and futtire WOTK..........cocueeiiieriiiniineeee ettt e 35
BiIDLIO@IaDRY ... eeiiieiieeee ettt ettt ettt ae e st nre s 36
AL ADDEINAICES.eeeeiieiiieiieeieete ettt e et e st eete e eteete e st e s be e st eesbeesseesseesate e beeesteeennsaeeennteeeenres 38
Appendix A: The scanning module Code.............cooiieiieriiiniiniiiteeeeeeee e 38
Appendix B: The testingXMLParsing module code............ccceceeriirriirniienneenniieeeieeeeenn 40
Appendix C: The vulnerabilityDetector module code...........cccccervieeiiinieniiiniienienieneeee 45

Nicholas Koroniotis

Nicholas Koroniotis

Abstract

The Internet has had a massive impact in our lives. Allowing instant communication
between people located anywhere on the globe, granting the ability to make purchases by
remotely accessing one's bank accounts and even providing a reliable access to global news as
they unfold, it should surprise no one, that the general public would come to rely so much on this
medium to make their lives simpler. Naturally though, where some see a way to improve their
everyday lives, others see a chance to exploit the symbiotic connection that exists between
humanity and the Internet. This exploitation comes in various forms of network/computer
security attacks, for example: targeting servers and attempting to disrupt their natural flow of
execution (Denial Of Service attacks), stealthily stealing sensitive information (Phishing attacks),
or even infecting a multitude of Personal Computers (PCs) in a process of planning future attacks
(Bot nets). A lot of the aforementioned scenarios are made possible by exploiting various
security bugs in programs. Although most, if not all bugs are eventually fixed in future versions
or patches, a user must be willing, or at least remember to perform the necessary updates, leaving
such sensitive security matters open to the wild card that is human nature. As a result, the ability
to either directly identify the existence of a vulnerability, or indirectly, locate the version of a
program and track down any known vulnerabilities, the knowledge of which should be sufficient
motivation for any security-conscious administrator to make the appropriate updates, would be a

step forward into making the Internet a safer place.

The purpose of this thesis is the development of a Python program that, given an IP
address will produce a report listing all identified programs running on that machine as well as
any existing vulnerabilities associated with these programs. Our software utilizes nmap, a well
known and open source program for the identification procedure and accesses the National

Vulnerability Database (NVD) in order to identify the existence of any vulnerabilities.

Nicholas Koroniotis

Nicholas Koroniotis

Iepiinyn

To dwdiktvo &yl emnpedoet aontd T1g Lwég pag. Emrpémovtag actpamaio extkotvovia
aveCapTNTOG AMOCTAGEMY, OTVOVTOG TNV SLVATOTNTO Y10, AY®PES KOO PLon TV TPOreCik®mv
AOYOPLOGU®V €E OMOGTACEMS KO TAPEXOVTOS Lol ASIOTIOTN TUYT TOYKOGULOG TANPOPOPTONG LE
TaYOTOTEG EVIUEPOGELS, Ogv Ba Empene va pag Eapvialet to yeyovog 0Tt katd TAElOYnQia
e€aPTOHOGTE OAOEVO KO TEPIGGATEPO GE AVTO TO GYETIKA VEO HEGO. DLGIKE OH®G, OOV pEeptKol
PAETOVY Evav VEO dpOLO Yo va. BEATIOGOVY TV KAONUEPVOTNTA TOVS, AALOL BAETOLY pia
gvkarpia yo va ekpetadllentohv Kakdfovia v “eaption’ mov £xel oymuatiotel petaln
KOW@viog Kot S1001kTHoV. AVTH 1] EKUETAALELGT EPYETOL LLE TV HOPPY] SLOPOPOV SIKTVOKDV
embéoev ac@areiag OTMG: 6TOYEVOT EELANPETNTOV LLE GKOT® TNV O10KOTY| TNG AElTovPYiog
toug (Denial Of Service attacks), kpven KAomn evaicOntmv tAnpoeopidv (Phishing attacks),
aKOUO Kot “pUOAVLVET” TANODPOG TPOCOTIKDOV VITOAOYIGTAOV LE GKOTO TNV LETOYEVEGTEPT] YPTION
ToVG o€ MePETEP emBéoelg (Bot nets). Apketd and ta wpoavagepOEévta ceviplo yivovtat EQIKTA
pécm G ekpeTdAAEVONG AaBdV ac@aleiog mov eviomilovion HEGH GE TPOYPAUUATE. AV Kot T
TeEPLoGOTEPO OO OVTA T AGOEL, d1opOBdVoVTIL EiTE GE PETAYEVEGTEPEG EKOOCELG EITE E TNV
ékdoon tomKav dlopBmcemv (patches), 0 ¥pNoTNG TOL EKACTOTE VTOAOYIGTIKOY GLGTHATOG Oa
npémnet va, gtvor TpoBupog 1 Tovddyiotov va Bopn et va Tpdet T amapaitnTeg AVaVEDGELS,
aeNVovTog £T61 10 Aemtd (TN TS AGQAAELOS TOV VITOAOYIGTIKOD TOV GUGTNLOTOG GTNV
ampOPAETTN GVOT TOL AVOPMOTOV. Tav AmOTEAES A, N IKAVOTNTA EiTE VO EvTOTILOVLE AUESH TNV
vmoapén wog advvapiog, ite épupeca va avoyvopilovpe Ty K606 VO TPOYPALLATOS Kot
énerta vo avalnrovpe v Thavav advvopmy, Bo arotelovse va Prpa Tpog v dnuovpyio

€VOG A0PUAEGTEPOV SASIKTVOV.

O okomdg TG TaPOVONG SIMAMUATIKNG EPYUCING, vt 1) avATTVEY EVOC AOYIGUIKOD LLE
YPNON TNG TPOYPOUUATICTIKNG YADGSGog Python, to omolo, dedopévng piog dtevbuvong IP, Oa
apdyet pio avaeopd oty onoia B KaToypdeovtal OAo To OVAYVOPIGUEVE, OO TO AOYICUIKO
L0 TPOYPELUATO TTOV TPEXOVVE GTO OITOUOKPUOUEVO LUNYAVIILO, GE GUVOLOGHO LE TVYOV
VILOPKTEG adLVAiEg TOoV cvoyeTifovtat pe T Tpoypdupato avtd. To Tpdypappa pog aglomotel
TO nmap, £vo. ToGIyVOGTO AOYIGUIKO OVOIKTOD KMOLKO, Yo TNV d1ad1kacio TG ToTomoinong Kot
ypnowonotel Tnv Aebvi Bdon Aedopévov Advvapmv (National Vulnerability Database) yio tov

EVIOTIOUO TOV OOLVOLULDV.

Nicholas Koroniotis

10

Nicholas Koroniotis

1. Introduction

1.1 Defining the problem

Consisting of a multitude of interconnected networks, a fact which lead to its name in 1974 [1],
the Internet has undoubtedly had a major impact on our life. Ever expanding and evolving, it has
existed for many years in many forms, some of which are quite different than what we see today.
With the introduction of social media: e-commerce, on-line gaming, Internet Telephony, the
World Wide Web and even streaming media, it is no wonder that this new medium of

information grows in popularity each day.

Over the years, as the general public has come to rely upon the Internet, so too have many
companies recognized its usefulness and have ended up incorporating it into various aspects of
their business procedures, such as on-line advertising, newsletters, on-line ordering and so forth.
An example of this evolution that has been brought by the Internet, is Amazon.com, Inc. [2].
Originally an on-line bookstore, now a multi-billion dollar company which serves consumers
around the globe, Amazon has evolved over the years into selling a large variety of items ranging
from DVDs, audiobooks, video games, furniture and even food while at the same time provides

users, with access to cloud computing services and other electronic goods and services.

Everyones attention is, in one way or another focused on the Internet. Considering the fact that,
most conduct business over it, and since where there's a way to make an honest buck, there's also
a way to make a dishonest one, it is pretty understandable that illegal activities would arise and,

in some cases thrive in the Internet.

As stated in [3] and [4], cyber attacks that target every node of the Internet infrastructure, have
become more stable in their frequency over the years, increasing both in complexity and in
severity. Attacks which target both software as well as hardware have been recorded, costing
billions to companies who are most frequently the targets. In most scenarios, a vulnerability is
required in order to function as the fuse that detonates the attack, and so the ability to detect the

presence of such vulnerabilities is paramount to ensure that ones infrastructure is approaching a

11

Nicholas Koroniotis

secure state. In order to reach this goal, a certain type of software was developed, and this family

of softwares is called vulnerability scanners.

Total annualized cost of cyber crime targeting U.S. companies in 2014 and
2015 (in million U.S. dollars)

80
60
5 40
23
20
0
Maximum Mean Meadian Minimum
I 2014 1MW 2015

Sources:: Additional Information:
0nem

on Institute; Hewlett-Packard (HP Enterprise |Jnited States: August 2015; 58 U.S. companies

Image 1.1: Cost of cyber attacks targeting U.S. Companies 2014-2015

Source: http://www.statista.com/statistics/193444/financial-damage-caused-by-cyber-attacks-in-
the-us/

The above chart (which was found on the statista site), depicts the estimated damage a successful
cyber attack will cost a U.S. business between the years 2014 to 2015, with the maximum total

annualized cost occurring in 2015 and reaching up to 65.05 million U.S. dollars.

12

http://www.statista.com/statistics/193444/financial-damage-caused-by-cyber-attacks-in-the-us/
http://www.statista.com/statistics/193444/financial-damage-caused-by-cyber-attacks-in-the-us/

Nicholas Koroniotis

1.2 Purpose of this thesis

At its core, the purpose for implementing this dissertation, is the creation of a software that scans
a remote host by receiving it's IP address, identifies any applications that have network access
and are running on the machine, and finally attempts to identify any vulnerabilities that might
arise, due to either the existence of a vulnerable version of a program, or a vulnerable

configuration of multiple programs.

The people that should be interested in this software, are server administrators who wish for an
easy way to see if their system is at risk at any given time, security annalists who require a
portable, platform-independent tool that will assist them in their work and finally any security
aware individuals who intend to keep their Personal Computers (PCs) updated with the latest

security patches.

13

Nicholas Koroniotis

14

Nicholas Koroniotis
2. So what is a vulnerability scanner?

In this chapter, we will define what a vulnerability scanner is and does. But to do so, we first

need to understand what a vulnerability is.

2.1 Defining vulnerabilities

According to [5] and [6], there are many ways one can define a vulnerability, considering the fact
that they exist in many forms and affect more than one type of asset (software, hardware, etc).
For the purposes of this thesis, we are more interested in defining software vulnerabilities. A
software vulnerability is a weakness in a software, which allows an attacker to violate the
security of a system, or more generally access the system and perform actions, in a way not
originally planned by the architect of that system, such as perform phishing attacks with Cross
Site Scripting, attempt to compromise or illegally gain access to the system's database with
SQLInjections and so forth. It is stated in [5], that a vulnerability can be thought as the
intersection of three elements: 1) a system flaw, 2) an attacker's access to that flaw and 3) an
attacker's capability to exploit the flaw, characterizing the vulnerability as the attack surface that
is, the way that an adversary performs an attack. A vulnerability can surface due to various
reasons, such as([5]):
1. Complexity:The complexity of the system, making a system complex, increases the risk
of creating unintentional flaws and access points
2. Unchecked user input: Assuming that any input inserted by the user is safe, is a prelude to
disaster, as neglecting to make the proper checks and sanitization may lead to direct
execution of commands (SQL injection)

3. Software bugs: Can lead to the misuse of the application by a malicious user.

A famous, or rather infamous example of a software vulnerability, is the quite recent. Heartbleed
vulnerability. The Heartbleed vulnerability, was discovered in the beginning of April 2014 and
affected some versions of the OpenSSL cryptography library, more specifically OpenSSL 1.0.1
through 1.0.1f and OpenSSL 1.0.2-beta. The security bug functioned, by taking advantage of a
lack of checking the integer field that depicted the sent text's length that was present in the

heartbeat request of the heartbeat extension of the vulnerable OpenSSL versions, against the

15

Nicholas Koroniotis

actual length of the text that was sent, allowing an attacker to send a relatively small string
accompanied by a large integer value, which in turn would allow the attacker to receive, apart
from the proper response, parts of the victim's memory, that could contain sensitive information,

such as primary keys, username passwords (identifiers) etc [7], [8].

16

Nicholas Koroniotis

2.2 Defining vulnerability scanners

Now that we have a general idea of what a vulnerability is, we can define the purpose for
vulnerability scanners and how they function. A vulnerability scanner at its core, is a piece of
software that scanns computing systems, networks or applications in order to identify any
existing flaws/vulnerabilities that may be exploited by an attacker([9]). There are many types of
scanners, such as port scanners and web application security scanners, with each type having
significant differences in their purpose and way of functioning, for instance, port scanners are

programs that probe a host (machine) in order to determine the existence of open ports.

Nmap, is a good example of port scanning software, supporting both port and service scanning,
the latter being the process of identifying the services running behind open ports, which Nmap
achieves by probing the remote probes and comparing the results it receives to those stored in a
local database. We shall describe Nmap in more detail in a further chapter, since we relied upon

both its port and service scanning for the service identification of our project.

Other vulnerability scanners, include Nessus and OpenVAS. Initially named GNessUs, OpenVas
is an open source vulnerability scanner which contains over 35.000 network vulnerability tests
and was developed as a fork project since Tenable Network Security made Nessus a closed
source software in October 2005 [15]. Nessus, is a vulnerability scanner the development of
which initially started in 1998 and became the most famous vulnerability scanner of 2002, 2003
and 2006 [16].It providing a multitude of scanning operations, such as Denial of Service, remote

access attacks and even various password-related attacks on system accounts [16].

17

Nicholas Koroniotis

2.3 Our approach

In our project, we chose to rely upon many well established technologies. We chose Python
(3.4.3) as the programming language to use, for it is considered quite easy to use, and makes our
software portable, since Python is platform independent. As we progressed with the development
of our scanner, we chose to split its architecture into two main parts:

1. the service identification segment, and

2. the vulnerability searching segment.
The first part (service identification), utilizes nmap in order to identify any open ports and
services running on those ports. When the nmap scan ends, the produced output is forwarded to
the second segment (vulnerability search), which accesses the National Vulnerability
Database(NVD), in order to identify any existing vulnerabilities based on the services that nmap

identified.
In the following sub-chapters, we will describe all the aforementioned aspects of our project,

starting with Nmap, then saying a few words about NVD and finally, in the next chapter we will

examining the steps we took to implement our program.

18

Nicholas Koroniotis

2.3.1 Nmap, the port scanner

Nmap, is an open source multipurpose scanning tool, originally released in September 1997 by
Gordon Lyon (also known as Fyodor Vaskovich)([10], [11]). Originally developed for Linux
systems, it has since been ported into a multitude of other platforms, such as Windows and
Solaris. It has various features, such as: 1) host discovery (Identifies hosts that respond to TCP or
ICMP requests), 2) port scanning (Lists the open ports of a scanned host), 3)version detection
(Determines the version of network services based on their response to specially crafted requests,
found in Nmap's Database), OS detection (Detects the Operating System as well as general
hardware characteristics of a host), and can be used by either an administrator or security analyst
for performing routine scans on their machines and networks for maintenance or auditing
reasons, or by an attacker (black hat) for identifying hosts with open ports their operating system
as well as the services running on any open ports, which in turn leads to a better targeted attack

on the targeted system.

Our program utilizes Nmap's service scanning feature (via a third party module), which performs
a service scan (Nmap argument: -sV) and thus identifies any open ports and the services running
under them. Nmap version scanning, is designed to be a fast and simple process, and can be

described as follows:

Initially, a port scan is performed, in order to identify any open or possible open ports
(characterized by Nmap as openl|filtered). After the scan is complete, the open and open|filtered
ports of either TCP or UDP protocol, are passed as input to a service scanning module, which
probes each port in parallel, and attempts to identify the running services under each port. From
here, Nmap's behavior depends upon the type of port it is currently scanning. If the port is a TCP
port, then Nmap attempts to connect to that port. If the connection is established successfully,
then Nmap waits for approximately 5 seconds, since many services produce a banner describing
their identity, this is called the “Null probe” since Nmap does not send any data in this stage of
the scan. If Nmap succeeds in fully identifying the service by using the data received in these
first five minutes, then the scan for that port is over. Otherwise, if the identification is partial,
Nmap proceeds by sending the next probe, making sure to pick probes that are likely to lead to a

full identification based on the information that it has already extracted from the previous probe.

19

Nicholas Koroniotis

Now if the “Null probe” fails, Nmap uses the probable ports field of the probes, which
indicates that a probe is considered to be most effective for the specified probes, to speed up the
scanning process. Now if this method fails to identify the service as well, then the entirety of the
probe database that Nmap keeps is used, which as mentioned in the official Nmap site, is quite

time consuming [12].

20

Nicholas Koroniotis

2.3.1 The National Vulnerability Database.

The National Vulnerability Database or NVD for short, is a repository of vulnerability related
data, has been publicly available since 2005, managed by the National Institute of Standards and
Technologies, and belonging to the U.S Government. Information that is stored in the NVD, is
freely accessible by anyone and it is kept in XML form. Updates for the various entries are often

provided and when a new vulnerability is discovered, a new entry is added to the Database.

All XML files belonging to NVD have a similar built, starting with the ent ry tag which
encapsulates each entry in the file, has a unique ID for every entry and all the information about
a vulnerability. A vuln:vulnerable-configuration tag which contains lists of
software, that if exist together in a machine, may cause the vulnerability that is described by that
entry tag. A vuln:cvss tag which contains various information about the vulnerability's nature
itself, such as: Access-vector, access complexity, the need for authentication (to use the
vulnerability)and Confidentiality Integrity and Availability impact. There is also a Summary
field which gives a short description about the vulnerability and what an adversary can do by
using it.

Here is an example of an entry:

<entry id="CVE-2016-0003">
<vuln:vulnerable-configuration id="http://nvd.nist.gov/">
<cpe-lang:logical-test operator="OR" negate="false">
<cpe-lang:fact-ref name="cpe:/a:microsoft:edge:-"/>
</cpe-lang:logical-test>
</vuln:vulnerable-configuration>
<vuln:vulnerable-software-list>
<vuln:product>cpe:/a:microsoft:edge:-</vuln:product>
</vuln:vulnerable-software-list>
<vuln:cve-id>CVE-2016-0003</vuln:cve-id>
<vuln:published-datetime>2016-01-13T00:59:02.683-05:00</vuln:published-
datetime>
<vuln:last-modified-datetime>2016-01-14T710:45:21.937-05:00</vuln:last-
modified-datetime>
<vuln:cvss>

<cvss:base metrics>

21

Nicholas Koroniotis

<cvss:score>9.3</cvss:score>
<cvss:access-vector>NETWORK</cvss:access-vector>
<cvss:access-complexity>MEDIUM</cvss:access-complexity>
<cvss:authentication>NONE</cvss:authentication>
<cvss:confidentiality-impact>COMPLETE</cvss:confidentiality-impact>
<cvss:integrity-impact>COMPLETE</cvss:integrity-impact>
<cvss:availability-impact>COMPLETE</cvss:availability-impact>
<cvss:source>http://nvd.nist.gov</cvss:source>
<cvss:generated-on-datetime>2016-01-13T20:49:08.090-
05:00</cvss:generated-on-datetime>
</cvss:base metrics>
</vuln:cvss>
<vuln:cwe id="CWE-119"/>
<vuln:references xml:lang="en" reference type="VENDOR ADVISORY">
<vuln:source>MS</vuln:source>
<vuln:reference
href="http://technet.microsoft.com/security/bulletin/MS16-002"
xml:lang="en">MS16-002</vuln:reference>
</vuln:references>
<vuln:summary>Microsoft Edge allows remote attackers to execute arbitrary
code via unspecified vectors, aka "Microsoft Edge Memory Corruption
Vulnerability."</vuln:summary>

</entry>

22

Nicholas Koroniotis
3. Implementing our Scanner

In this chapter, we will describe the steps we took to setup the development environment by
giving the commands we used to install the various tools that were needed for the development
of our project. Afterward, we shall describe some key parts of the code and give examples of our

software in action.

3.1 Development related information

Our implementation took place on an Ubuntu 14.04, 64-bit processor personal computer (PC).
We chose to work on Ubuntu, since it's an easy to use, open source operating system (OS), and
we had some personal experience working on such machines. As such, all following commands
regarding the installation of the various segments that make up our scanner, can be applied on a
PC with the same, or possibly similar characteristics (OS family, CPU architecture,etc.) as the

one we used during our own implementation.
3.1.1 Setting up the development environment

Since, as we mentioned earlier we have some experience in using Linux-based computers, we
installed the Python 3.4.3 interpreter, via terminal. So, after accessing the terminal, we typed the
following commands. It should be noted here, that in order to run the following commands, one

should have superuser privileges (sudo).

sudo apt-get install python3.4.3

After installing python, we need to install pip in order to proceed. PIP is a package management
system, that simplifies the installation of python packages, and so it will assist us in adding the

third party packages we need in our implementation([1317).

sudo apt-get install python3-pip

23

Nicholas Koroniotis

Now, by using pip we are able to install some modules that our scanner utilizes. Specifically, we

will install the Ixml, urllib3 and python-nmap.

pip install 1xml
pip install urllib3

pip install python-nmap

The Ixml module provides easy access to xml files.Our software uses the Ixml module, in order
to access the National Vulnerability Database (NVD) which is a series of XML files containing
vulnerabilities, the software version responsible for it and various other information describing
the security bug's characteristics. In order to download locally the entirety of the NVD Database,
as well as perform updates when needed, our project uses the urllib3 module to access the
individual URLs and download the (XML) files necessary. Finally, we use nmap in order to
perform scans on remote hosts, and so we need python-nmap which provides access between the
nmap tool and Python code. Our last statement, implies that we require nmap for our scanner to

function, so we installed nmap in our machine by using the following command.

sudo apt-get install nmap

To develop our Python code, we used the Python IDE (Intergrated Development Environment)
PyCharm Community Edition 5.0.3 which can be found at their official site

(https://www.jetbrains.com/pycharm/). In order to run pycharm, one needs to first install a java

runtime environment (jre). For example :

sudo apt-get install openjdk-7-jre

24

https://www.jetbrains.com/pycharm/

Nicholas Koroniotis

3.1.2 Describing some key parts of the project

In this sub-chapter, we will attempt to give a thorough description of our source code. Lets start
off by saying that our project consists of three Python modules and two text files, each
containing 15 URLs. The modules are named: scanning, testingXMLParsing, and

vulnerabilityDetector and the text files: NVD_DBLinks, and NVD_DB_METADATA.

The text files contain URLs that allow our program to access and download specific files, more
precisely in the NVD_DBLinks text file, reside the URLSs that point to the compressed forms of
the NVD Database (which is segmented based on the years since 2002, and are in XML form)
and in the NVD DB METADATA, the URLS that point to the metadata describing the
individual XML file, which allows our application to update any part of its database if it notices
any changes based on the metadata (our database keeps a local copy of the metadata files for

each segment from the latest download, so that it can tell when our database is outdated).

As we mentioned in the above text, our Python program consists of three modules. Here we are
going to describe some key parts of the code with some detail and afterwards, we will display
our software in action. Our fully commented and complete code can be found in the Appendix

section.

Describing the scanning module code

To begin with, we have the scanning module. This module handles the user input (an ip address),

and attempts to scan the host by accessing nmap via the python-nmap module.

def mkProfilesDir():
if os.path.isdir (profileDir)==False:
os.mkdir (profileDir)
def mkProfDir (ip):
global currentPath
if os.path.isdir (profileDir+"/"+ip)==False:
os.mkdir (profileDir+"/"+ip)

currentPath=profileDir+"/"+ip

25

Nicholas Koroniotis

These two functions, are tasked with creating the appropriate directories for storing a report
produced by scanning a host. The mkProfilesDir, produces the single profiles directory (if
it isn't present), under which all the individual profile directories for each distinct host scanned

are crafted by the mkProfDir.

def fullNmapScan (ip) :#Nmap scan
nmS=nmap.PortScanner ()
nmS.scan (hosts=ip, arguments="'-sV")

return nmS.csv ()

The fullNmapScan, as its name sugests, calls the nmap tool, in order to start scanning the host
to which the IP address we provide belongs to, and uses the arguments we specified in the code.
Specifically the ' —sV ' arguments inform nmap that we wish to perform a probing scan of all
open ports that can be found by nmap and produce the service name and version of any services

running under those ports.

def createReport (writeContent) :#Method that creates a report
global currentPath
if os.path.isdir (currentPath) :

currentPath=currentPath+"/"+str (datetime.date.today () .year)
+" "+str(datetime.date.today () .month)+" "+str (datetime.date.today () .day)

if os.path.isdir (currentPath)==False:

os.mkdir (currentPath)

currentPath=currentPath+"/report "+str (datetime.datetime.now().time())
if os.path.isdir (currentPath)==False:
os.mkdir (currentPath)
currentPath=currentPath+"/report Simple"
profile=open (currentPath, 'w')
profile.write (writeContent)
profile.close ()

return currentPath

26

Nicholas Koroniotis

As the name suggests, createReport,is the function that produces one of the two kinds of
reports that our scanner creates. This function creates a simple report, which informs the user
about the network services that were located by nmap, and the number of any possible existing
vulnerabilities that our program located by accessing NVD. As can be seen in our code, in this
function, more directories are produced, separating the scans of an individual machine, based on

the date and afterwards on the time of the scan.

def main() :
global currentPath
while (True) :
ip=input ("Enter ip address: ")
address=None
try:

address=socket.gethostbyname (ip) #Try Catch way of checking if ip
is valid. IP returned

break
except:

print ("\tWrong input please enter IPv4 address of a form like
192.168.1.1")

print ("Commencing scan of "+ip+" host")
buffer=fullNmapScan (address)

print ("Scan complete.")
results=buffer.split ("\r\n")
mkProfilesDir ()

mkProfDir (ip)
reportPath=createReport (buffer)

findVulnerability (reportPath)

Finally, we have the main function, which is called when we run the scanning module. Here we
can see the execution flow of the program, starting with handling the user input. The user is
prompted to type in a valid IP address. If the IP address is valid, the program exits the while loop
, forwarding the given address to nmap and awaiting the data returned by it. Afterwards the

appropriate directories are created (if they do not exist) and finally, in order to initiate the

27

Nicholas Koroniotis

vulnerability search procedure, a function named £indVulnerability, which belongs to

the the vulnerabilityDetector module is called.

Describing the vulnerabilityDetector module code

Next up, we have the vulnerabilityDetector module. This module's main responsibility, is to
make the initial download of the database, create the necessary directories within which the

database is stored and finally keep the database up to date (when the need arises).

def downloadZip() :
global url,path
checkMetaData ()
nvdLinks=open ('NVD DBLinks', 'r'")
http=urllib3.PoolManager ()

for link in nvdLinks:#Maybe thread this and add the META file in order to
update propperly

url=link.rstrip("\n")
buf=url
buf=buf.replace(".xml.zip","")
bufList=buf.split ("/")
dirName=bufList[len (bufList)-1]
pathL=path
if os.path.isdir (pathl)==False:
os.mkdir (pathlL)
if os.path.isdir (pathL+"/"+dirName)==False:
os.mkdir (pathL+"/"+dirName)
pathL=pathL+"/"+dirName
if os.path.isfile(pathL+"/"+dirName+".xml")==True:#I1f xml file exists

if metaDictionary[dirName]==False:#And there is no need to re-
download it

continue
print ("\t entering "+url)
response=http.request ('GET',url)
if os.path.isfile(pathL+"/"+dirName+".xml") :
os.remove (pathL+"/"+dirName+" .xml")

if os.path.isfile (pathL+"/"+dirName+"-sanitized.xml") :

28

Nicholas Koroniotis

os.remove (pathL+"/"+dirName+"-sanitized.xml")
file=open (pathL+"/"+dirName+".xml.zip", "wb")
file.write (response.data)
file.flush()
file.close()

response.release conn ()

As the name implies, the downloadZip function downloads the NVD database segments (in
.zip form) based on the values in metaDictionary. If there was a difference in the metadata files
that are locally stored with the ones fetched from the site of NVD, we download that part of the
XML database which has changed. When a download is completed, any pre-existing .xml files
that are going to be updated, are deleted.

def checkMetaData () :###allways downloads chec]

global path,metaDictionary
nvdMeta=open ('NVD DB METADATA', 'r')
http=urllib3.PoolManager ()
for link in nvdMeta:#Maybe thread this and add the META file in order to update propperly
url=link.rstrip("\n")
buf=url
buf=buf.replace(".meta","")
bufList=buf.split("/")
dirName=bufList[len (bufList)-1]
pathM=path
if os.path.isdir (pathM)==False:
os.mkdir (pathM)
if os.path.isdir (pathM+"/"+dirName)==False:
os.mkdir (pathM+"/"+dirName)
pathM=pathM+"/"+dirName+"/"+dirName+" .meta"
if os.path.isfile(pathM)==False:#If path to metadata doesn't exist
http=urllib3.PoolManager ()
response=http.request ('GET',url)
file=open (pathM, "wb")
file.write (response.data)
file.flush ()
file.close()
metaDictionary[dirName]=True#will let the downloadZip () method download this zip File
else:

response=http.request ('GET',url)

29

Nicholas Koroniotis

file=open ("TempMeta", "wb") #Temporary fle containing the fetched metadata for the
current nvd xml

file.write (response.data)

file.flush()

file.close()

file=open ("TempMeta","r")

reading=file.read()

splitting=reading.split ("\n")

fieldsMax=len (splitting)

countingHits=0

checkingData={}

for item in splitting:
buf=item.split(":")
checkingDatal[buf[0].rstrip(":")]=item.replace (buf[0]+":","")

file.close ()

fileM=open (pathM)

Mdata=fileM.read () .split ("\n")

exitFlag=True

for item in Mdata:#Check if the fields of the fetched metadata are identical to the
one fetched from NVD servers (if they aren't then download that xml by setting metaDictionary of
that xml to true)

exitFlag=True
for key in checkingData:
if item.find(key) !=-1:
if item.replace(key+":","")==checkingDatalkey]:
countingHits+=1
exitFlag=False
else:
exitFlag=True
break
if exitFlag==True:
break
fileM.close ()
os.remove ("TempMeta')
if fieldsMax==countingHits:#If all local metadata fields match the remote ones
metaDictionary[dirName]=False#Do not download zip
else:
metaDictionary[dirName]=True#Download zip
metalocal=open (pathM, "w") ##Update the local Metadata file
metalocal.write (reading)

metalLocal.close ()

30

Nicholas Koroniotis

In the checkMetaData function, the local metadata files are compared with the ones received
from the NVD site and if changes are recorded, the local database is updated(via the
downloadZip function). The text files containing URLSs pointing to the remote metadata files

(in the NVD site) are accessed here.

def unzipAll () :
global path
if os.path.isdir (path) !=False:
dirs=os.listdir (path)
for dir in dirs:
if os.path.isdir (path+"/"+dir) !=False:
localCont=os.listdir (path+"/"+dir)
for file in localCont:
if os.path.isfile(path+"/"+dir+"/"+file) !=False and file.endswith(".zip"):
zFile=zipfile.ZipFile (path+"/"+dir+"/"+file)
zFile.extractall (path+"/"+dir+"/")
zFile.close ()

os.remove (path+"/"+dir+"/"+file)
The unzipAll function, uncompresses any .zip files that were downloaded from the NVD site

and removes the compressed files.

def searchDB (fileName) :

report=open (fileName, "r")
list=report.read().splitlines()
report.close ()
buf=1ist[0]
bufList=buf.split(';")
reportContent=1list.copy ()
list.remove (buf)
dictOfCpe=dict ()
for item in list:

seg=item.split(';")

for b in bufList:

if b.find("cpe") !=-1:
if seg[bufList.index(b)]!="":

dictOfCpe[seg[bufList.index ("host")]
+" "+seg[bufList.index ("port")]]=seg[bufList.index (b)]

None

dictOfVulnerabilities=vulnerabilitySearcher (dictOfCpe, fileName)

writeReport=open (fileName, "w") #

for item in reportContent:

31

Nicholas Koroniotis

if item.find(reportContent[0]) !=-1:
writeReport.write (item+",;vulnerabilities\n")
else:
Iine=""

bufLine=item.split(";")

numberOfVulnerabilities=0##Variable that keeps

ge to at the ol

for key in dictOfVulnerabilities:
tempBuf=key.split (' ')
ip=tempBuf[0]
portNum=tempBuf[]1]

if bufLine[bufList.index ("host")]==ip and

bufLine[bufList.index ("port") J==portNum:#Locate the line with the correct ip

line=item+";Found "+ (dictOfVulnerabilities[key])+" Vulnerabilities"
numberOfVulnerabilities=dictOfVulnerabilities[key]
break
else:
line=item+";Found 0 Vulnerabilities"
numberOfVulnerabilities=(

("Port: "+bufLine[bufList.index ("port")]+" Product:
""+bufLine [bufList.index ("product")]+"'" Version: '"+bufLine[bufList.index("version")]J+""'
Vulnerabilities: "+ (numberOfVulnerabilities))

writeReport.write (line+"\n")

writeReport.close ()
The searchDB function, uses our last module, in order to traverse the .xml files and determine if
there are any vulnerabilities present (based on the Common Platform Enumeration or CPE for
short [14]). It also alters the simple report, by adding a count of the vulnerabilities that have been

found.

Describing the testingXMI.Parsing module code

Finally, we have the testingXMLParsing module, which accesses the NVD database and reports
if the services that were identified by nmap are vulnerable.

The vulnerabilitySearcherSafeModeWithlxml handles the searching of all .xml files for the
existence of the CPEs reported by nmap, and if there is a match, reports that a vulnerability was
located. The function also produces a full report containing all the “hits” from the database, with
more detailed information, as to the nature of the vulnerability, the date that it was discovered
and if necessary a list of software that, combined with the the program that is being scanned,
produce this reported vulnerability. In some cases there has to be a subcategory of programs
(defined in a number of lists in the XML database) in a machine, in order for a vulnerability to
manifest. Our program crosschecks these lists (from the DB) against the identified applications
(returned from nmap), and if we have identified applications from all the lists in the database

32

Nicholas Koroniotis

(under the vuln:vulnerable-configuration tag in XML) then, in the Full report we indicate that
there's a high probability that the vulnerability is active (field in FULL report: Likelihood of
Vulnerability Existence: , possible values High or Medium). If we have identified programs
from a subset of the lists (DB) then we say that there is a medium chance that the vulnerability is
active. The full code of vulnerabilitySearcherSafeModeWithlxml can be found in Appendix
B.

3.2 Running our program

In the following sub-chapter, we will present our program's phases of execution. Initially, the
user is prompted to type the IP address of a machine he or she wishes to scan. For the following
examples, we used a Metasploitable virtual machine running locally in a virtual box as the

target machine.

Fun fgd scanning

.4 [/home/nick

Image 3.1: Initial prompt

Then, based on the user's input, we have two possibilities. If the IP address is invalid, our

program informs the user with this screen:

ease enter IPv4 address of a form like 192.168.1.1

Image 3.2: Invalid IP Address

Else, a full nmap scann commences, and after that is finished, and the NVD database has been

used in the vulnerability search, we have the following display:

33

Nicholas Koroniotis

Image 3.3: Complete execution results

Finally, the user is able to review the scann results, by viewing the report files located under an
easily deduced path of directories, based on the following pattern: [<Profiles Directory> / <IP

Address OR Name of machine> / <date of scan> / <time of scan> /].

34

Nicholas Koroniotis

4. Conclusion and future work

In the context of this thesis, I came across many technologies and techniques regarding the
identification of unique characteristics of remote Servers. Generally we noticed that there are a
few open source tools a developer can use to implement a scanner similar to our own, although
the attempt to build the entire scanner from scratch (port scanner, service recognition and

database) is going to be met with some difficulties.

The software that we implemented, fully covers the requirements of this thesis, since it does
identify services running on a machine and gives a report on the possible vulnerabilities,

although, there is always room for improvement in the future.

For starters, we could add other port scanners, service recognition software and databases
containing vulnerabilities, or develop our own scanners, in order to improve the accuracy of our
results. Also, the software could be used in order to conduct Internet-wide searches to discover
information related to the spread of vulnerabilities, or even the security-update habits of people
around the globe, something that can be made possible by adding threading characteristics to our
software. Finally, we could also add new functionality to our existing scanner, such as making it
automatically perform test in order to verify the identified vulnerabilities, which would greatly
improve the accuracy of our results (although such test should always only be conducted with the

willing consent of the target machine's owner).

35

Nicholas Koroniotis

Bibliography
[1] Wikipedia. Internet /website] URL: https://en.wikipedia.org/wiki/Internet#History
(visited 11/02/2016)

[2] Wikipedia. Amazon.com /website] URL: https://en.wikipedia.org/wiki/Amazon.com
(visited 11/02/2016)

[3] Signal. Cyber attacks frequency /website] URL: http://www.afcea.org/content/?q=Article-

destructive-cyber-attacks-increase-frequency-sophistication

(visited 11/02/2016)

[4] Hackmagedon. 2015 Cyber attack Statistics /website/ URL:

http://www.hackmageddon.com/2016/01/11/2015-cyber-attacks-statistics/
(visited 11/02/2016)

[5] Wikipedia. Vulnerability (computers) [website] URL:
https://en.wikipedia.org/wiki/Vulnerability %28computing%29
(visited 13/02/2016)

[6] CVE. Terminology [website] URL: https://cve.mitre.org/about/terminology.html
(visited 13/02/2016)

[7] Wikipedia. Heartbleed [website] URL: https://en.wikipedia.org/wiki/Heartbleed
(visited 14/02/2016)

[8] US-CERT. OpenSSL Heartbleed Vulnerability [website] URL: https://www.us-
cert.gov/ncas/alerts/TA14-098A
(visited 14/02/2016)

[9] Wikipedia. Vulnerability Scanners [website] URL:
https://en.wikipedia.org/wiki/Vulnerability scanner
(visited 14/02/2016)

36

https://en.wikipedia.org/wiki/Vulnerability_scanner
https://www.us-cert.gov/ncas/alerts/TA14-098A
https://www.us-cert.gov/ncas/alerts/TA14-098A
https://en.wikipedia.org/wiki/Heartbleed
https://cve.mitre.org/about/terminology.html
https://en.wikipedia.org/wiki/Vulnerability_(computing)
http://www.hackmageddon.com/2016/01/11/2015-cyber-attacks-statistics/
http://www.afcea.org/content/?q=Article-destructive-cyber-attacks-increase-frequency-sophistication
http://www.afcea.org/content/?q=Article-destructive-cyber-attacks-increase-frequency-sophistication
https://en.wikipedia.org/wiki/Amazon.com
https://en.wikipedia.org/wiki/Internet#History

Nicholas Koroniotis

[10] Wikipedia. Nmap [website] URL: https://en.wikipedia.org/wiki/Nmap
(visited 16/02/2016)

[11] Official Nmap site. Nmap Description [website] URL: https://nmap.org/book/man.html
(visited 16/02/2016)

[12] Official Nmap site. Service and Application Version Detection [website] URL:

https://nmap.org/book/vscan-technique.html
(visited 16/02/2016)

[13] Wikipedia. PIP (package manager) [website] URL:
https://en.wikipedia.org/wiki/Pip (package manager)
(visited 17/02/2016)

[14] Official NIST site. Common Platform Enumeration (CPE) [website] URL:
http://scap.nist.gov/specifications/cpe/

(visited 19/02/2016)

[15] Wikipedia. OpenVAS [website] URL: https://en.wikipedia.org/wiki/OpenVAS
(visited 22/02/2016)

[16] Wikipedia. Nessuss_(software) [website] URL:

https://en.wikipedia.org/wiki/Nessus_(software)
(visited 22/02/2016)

37

https://en.wikipedia.org/wiki/Nessus_(software)
https://en.wikipedia.org/wiki/OpenVAS
http://scap.nist.gov/specifications/cpe/
https://en.wikipedia.org/wiki/Pip_(package_manager)
https://en.wikipedia.org/wiki/Pip_(package_manager
https://nmap.org/book/vscan-technique.html
https://nmap.org/book/man.html
https://en.wikipedia.org/wiki/Nmap

Nicholas Koroniotis

A. Appendices

Appendix A: The scanning module code

Code of scanning module:

import nmap
import socket
import re
import os
import datetime
from vulnerabilityDetector import findVulnerability
profileDir="./profiles"
currentPath=None
def mkProfilesDir () :
if os.path.isdir (profileDir)==False:
os.mkdir (profileDir)
def mkProfDir (ip) :
global currentPath
if os.path.isdir (profileDir+"/"+ip)==False:
os.mkdir (profileDir+"/"+ip)

currentPath=profileDir+"/"+ip

def fullNmapScan (ip) :#Nmap scan
nmS=nmap.PortScanner ()
nmS.scan (hosts=ip,arguments="'-sV"')

return nmS.csv()

def createReport (writeContent) : #l
global currentPath
if os.path.isdir (currentPath) :

currentPath=currentPath+"/"+str (datetime.date.today () .year)
+" "+str(datetime.date.today () .month)+" "+str (datetime.date.today().day)

if os.path.isdir (currentPath)==False:

os.mkdir (currentPath)
currentPath=currentPath+"/report "+str (datetime.datetime.now().time())
if os.path.isdir (currentPath)==False:

os.mkdir (currentPath)
currentPath=currentPath+"/report Simple"
profile=open (currentPath, 'w')
profile.write (writeContent)

profile.close()

38

Nicholas Koroniotis

return currentPath
def main() :
global currentPath
while (True) :
ip=input ("Enter 1ip
address=None

try:

address=socket.gethostbyname (ip) #Try Catch way of checking if ip is valid.

returned

break

print ("\tWrong

print ("Commencing scan

address: ")

input please enter IPv4 address of a form like 192.168.1.1")

of "+ip+" host")

buffer=fullNmapScan (address)

print("Scan complete.")

results=buffer.split ("\r\n")

mkProfilesDir ()

mkProfDir (ip)

reportPath=createReport (buffer)

findVulnerability (reportPath)

if name == ' main ':

main ()

39

IP

Nicholas Koroniotis

Appendix B: The testingXMLParsing module code

Code of the testing XML Parsing module:

import os
import xml.etree.ElementTree as ET

from lxml import etree

def fixNSProblem():#Initially there was an issue with the xmlns attribute in the xml files that
prevented the programm from executing (and searching these files) This method removes that
parameter

path="./DB"

subPath=None
if os.path.isdir (path) :
subDirs=os.listdir (path)
for dir in subDirs:
if os.path.isdir (path+"/"+dir) !=False:
localCont=os.listdir (path+"/"+dir)
for file in localCont:
sanAlreadyExists=False

for buf in localCont:#check 1f sanitized file exists (the xml file with xmlns
removed that allows the program to execute (had some issues because xmlns's link lead to a 404
page))

if buf.endswith("sanitized.xml") !=False:
sanAlreadyExists=True
break
if sanAlreadyExists==True:
break
if os.path.isfile(path+"/"+dir+"/"+file) !=False and file.endswith(".xml") and

file.endswith("sanitized.xml")==False:#reads all xml files in subDirs of DB (could enter if

condition to make it read only xml files with same file name as parent dir)

subPath=path+"/"+dir+"/"+file
file=open (subPath,"r")
file2=open (subPath.replace (".xml","-sanitized.xml") ,"w")
for buffer in file:
if
buffer.find("xmlns=\"http://scap.nist.gov/schema/feed/vulnerability/2.0\"") !==1:
buffer=puffer.replace ("xmlns=\"http://scap.nist.gov/schema/feed/vulnerability/2.0\"","")
file2.write (buffer)
file2.flush()
file.close()
file2.close()
def vulnerabilitySearcherSafeModeWithlxml (dictOfCpe, reportPathName) :
path="./DB"

subPath=None

40

Nicholas Koroniotis

dictOfVulnghs
dictOfFullReport={}
ipAddress=""

for key in dictOfCpe:

ipAddress=key

dictOfFullReport|[(key.split (" ")) [1]]=""
ipAddress=str (ipAddress) .split (" ")
fixNSProblem()
reportOutput=open (reportPathName.replace (" Simple","")+" Full","w")
reportOutput.write ("Full report for " "+ipAddress([0]+""' host\n")
if os.path.isdir (path) :
subDirs=os.listdir (path)
for dir in subDirs:
if os.path.isdir (path+"/"+dir)!=False:
localCont=os.listdir (path+"/"+dir)

for file in localCont:#Traverse the DB subdirectories and access any .xml files
found that contain the word sanitized in their names

if os.path.isfile(path+"/"+dir+"/"+file) !=False and file.endswith(".xml") and
file.find("sanitized")!=-1:

subPath=path+"/"+dir+"/"+file
tree = etree.parse (subPath)
root = tree.getroot()

for element in root.findall ("entry/vuln:vulnerable-software-
list/",root.nsmap) :

for key in dictOfCpe:
bufferText=""
if dictOfCpe[key]==element.text:
bufferElement=element
fullReportDict={}
#bufferText+="\nPort: "+ (key.split(" ")) [1]

while bufferElement.tag!="entry":#Locate entry entity that
encapsulates the found vulnerability

bufferElement=bufferElement.getparent ()
fullReportDict["cve Id"]=bufferElement.attrib["id"]
bufferText+="\n\tCVE ID: "+fullReportDict["cve Id"]
fullReportDict["published Date Time'"]=bufferElement.find('./vuln:published-
datetime',root.nsmap) .text

bufferText+="\n\tPublished Date time:
"+fullReportDict["published Date Time"]

fullReportDict["lastModified Date Time']=bufferElement.find('./vuln:published-
datetime',root.nsmap) .text

bufferText+="\n\tLast modified Date time:
"+fullReportDict["lastModified Date Time'"]

41

Nicholas Koroniotis

fullReportDict["cvss Score']=bufferElement.find('./vuln:cvss/cvss:base metrics/cvss:score',root.n
smap) . text

bufferText+="\n\tCvss score: "+fullReportDict["cvss Score']

fullReportDict["cvss AccessVector'"]=bufferElement.find('./vuln:cvss/cvss:base metrics/cvss:access
-vector',root.nsmap) .text

bufferText+="\n\tCvss accessVector:
"+fullReportDict["cvss AccessVector"]

fullReportDict["cvss Access Complexity']=bufferElement.find('./vuln:cvss/cvss:base metrics/cvss:a
ccess-complexity',root.nsmap) .text

bufferText+="\n\tCvss access Complexity:
"+fullReportDict["cvss Access Complexity']

fullReportDict["cvss Authentication Needed'"]=bufferElement.find('./vuln:cvss/cvss:base metrics/cv
ss:authentication',root.nsmap) .text

bufferText+="\n\tCvss # Authentications Needed:
"+fullReportDict["cvss Authentication Needed"]

fullReportDict["cvss Confidentiality Impact']=bufferElement.find('./vuln:cvss/cvss:base metrics/c
vss:confidentiality-impact',root.nsmap) .text

bufferText+="\n\tCvss Confidentiality impact:
"+fullReportDict["cvss Confidentiality Impact"]

fullReportDict["cvss Integrity Impact']=bufferElement.find('./vuln:cvss/cvss:base metrics/cvss:in
tegrity-impact',root.nsmap) .text

bufferText+="\n\tCvss Integrity impact:
"+fullReportDict["cvss Integrity Impact']

fullReportDict["cvss Availability Impact"]=bufferElement.find('./vuln:cvss/cvss:base metrics/cvss
ravailability-impact',root.nsmap) .text

bufferText+="\n\tCvss Availability Impact:
"+fullReportDict["cvss Availability Impact']

fullReportDict["cve Summary"]=bufferElement.find('./vuln:summary',6 root.nsmap).text

bufferText+="\n\tSummary:
\n\t\t"+fullReportDict["cve Summary"]

bufferX=bufferElement.findall ('./vuln:vulnerable-
configuration',root.nsmap)

for vulnConfigItem in bufferX:#Series of for loops that
traverse the vulnerable configurations tags and produce a likelihood that a specific
vulnerability could be present on the machine we are scanning. Values of likelihood range from
High indicating that we identified programs on the machine, that appear on all the existing
vulnerable configuration lists and Medium if we located software that exist in a subcategory of
all the lists

tempList=[]

garboFlag=False#Variable to indicate the existence of a
cpe in thexml 1list

likelihoodOfVuln=0#Integer for counting and producing the
likelihood of the vulnerability existence

numberOfVulnSubgroups=0#Integer indicating the number of
subLists that exist in the xml DB under the <vuln:vulnerable-configuration> tag

children=vulnConfigItem.getchildren () #Get children of
current vulnerable configuration

for child in children:

42

Nicholas Koroniotis
if str(child.tag).find("logical-test")!=-1 and
("operator"” in child.attrib) :
if child.attrib["operator"].upper ()=="AND":
for GrandChild in child:
garboFlag=False#Empties the list
numberOfVulnSubgroups+=1
flagB=True

for list in GrandChild:#for loop to fill
the vulnerable configuration list (keeps only the CPEs list that doesn't contain the cpe that is
beeing scanned)

tempList.append (list.attrib["name"])
if
list.attrib["name"]==dictOfCpe [key] :
garboFlag=True

if flagB==True:#Limits the program to
identify one CPE per list of vulnerable configuration in XML DB

for ke in dictOfCpe:#Check if
current xml DB entry in vulnerable configuration list, has been identified by the scanner and is
not the current CPE for which we are identifying vulnerabilities (excludes the cpe that is being
scanned at each time)

list.attrib["name"]==dictOfCpe[ke] : H
likelihoodOfVuln+=1
flagB=False
break
if garboFlag==True:
tempList.clear ()
elif child.attrib["operator"].upper()=="0OR":
GrandChild=child
garboFlag=False#Empties the list
numberOfVulnSubgroups+=1
flagB=True

for list in GrandChild:#for loop to fill the
vulnerable configuration list (keeps only the CPEs 1list that doesn't contain the cpe that is
beeing scanned)

tempList.append(list.attrib["name"])
if list.attrib["name"]==dictOfCpe[key]:
garboFlag=True

if flagB==True:#Limits the program to
identify one CPE per list of vulnerable configuration in XML DB

for ke in dictOfCpe:#Check if current
xml DB entry in vulnerable configuration list, has been identified by the scanner and is not the
current CPE for which we are identifying vulnerabilities (excludes the cpe that is being scanned
at each time)

if
list.attrib["name"]==dictOfCpe[ke]:

likelihoodOfVuln+=1
flagB=False

break

43

Nicholas Koroniotis

if garboFlag==True:
tempList.clear ()
fullReportDict["Vulnerable Configuration'"]=tempList

if likelihoodOfVuln!=0:#if condition, so that we can
isplay a list for which there are some "hits"

bufferText+="\n\tVulnerable Configurations with this
program:"+str (fullReportDict["Vulnerable Configuration"])

fullReportDict["Likelihood Of Vulnerability Existence"]=("High" if
likelihoodOfVuln==numberOfVulnSubgroups and likelihoodOfVuln!=0 else ("Medium" if
(1ikelihoodOfVuln<numberOfVulnSubgroups and likelihoodOfVuln>0) else ("Low"
if(likelihoodOfVuln<numberOfVulnSubgroups and likelihoodOfVuln==0) else "Error")))

bufferText+="\n\tLikelihood of Vulnerability
Existence: "+fullReportDict["Likelihood Of Vulnerability Existence"]+"\n"

bufferText+="\n"+"~"*len (fullReportDict["cve Summary"])+"\n"
dictOfFullReport|[(key.split (" ")) [1]]+=bufferText
i ctozvul Ul ooz v JE e
for key in dictOfFullReport:
if dictOfFullReport[key]!="":
reportOutput.write ("\nPort: "+ (key)+dictOfFullReport [key])

reportOutput.close ()

44

Nicholas Koroniotis

Appendix C: The vulnerabilityDetector module code

Code of the vulnerabilityDetector module:

import zipfile
import urllib3
import os
from testingXMLParsing import vulnerabilitySearcherSafeModeWithlxml
url="'https://nvd.nist.gov/feeds/xml/cve/nvdcve-2.0-2016.xml.zip"
path="./DB"
metaDictionary={}
def downloadZip () :
global url,path
checkMetaData ()
nvdLinks=open ('NVD DBLinks','r")

http=urllib3.PoolManager ()

for link in nvdLinks:#Maybe thread this and add file in order to update propperly
url=link.rstrip("\n")
buf=url
buf=buf.replace(".xml.zip","")
bufList=buf.split("/")
dirName=bufList[len (bufList)-1]
pathL=path
if os.path.isdir (pathlL)==False:
os.mkdir (pathL)
if os.path.isdir (pathL+"/"+dirName)==False:
os.mkdir (pathL+"/"+dirName)
pathL=pathL+"/"+dirName
if os.path.isfile(pathL+"/"+dirName+".xml")==True:#I1f xml file exists

if metaDictionary[dirName]==False:#And there is no need to re-download it
continue
print ("\t entering "+url)
response=http.request ('GET',url)
if os.path.isfile(pathL+"/"+dirName+".xml") :
os.remove (pathL+"/"+dirName+".xml")
if os.path.isfile(pathL+"/"+dirName+"-sanitized.xml") :

os.remove (pathL+"/"+dirName+"-sanitized.xml")

file=open (pathL+"/"+dirName+".xml.zip", "wb")

file.write (response.data)
file.flush()

file.close()

45

Nicholas Koroniotis

response.release conn()
def checkMetaData () :###allways downloads check why
global path,metaDictionary
nvdMeta=open ('NVD DB METADATA','r')
http=urllib3.PoolManager ()
for link in nvdMeta:#Maybe thread this and add the META file in order to update propperly
url=link.rstrip("\n")
buf=url
buf=buf.replace(".meta","")
bufList=buf.split("/")
dirName=bufList[len (bufList)-1]
pathM=path
if os.path.isdir (pathM)==False:
os.mkdir (pathM)
if os.path.isdir (pathM+"/"+dirName)==False:
os.mkdir (pathM+"/"+dirName)
pathM=pathM+"/"+dirName+"/"+dirName+".meta"
if os.path.isfile(pathM)==False:#I1f path to metadata doesn't exist
http=urllib3.PoolManager ()
response=http.request ('GET',url)
file=open (pathM, "wb")
file.write (response.data)
file.flush()
file.close()
metaDictionary[dirName]=True#will let the downloadZip () method download this zip File
else:
response=http.request ('GET',url)

file=open ("TempMeta","wb") #Temporary fle containing the fetched metadata for the
current nvd xml

file.write (response.data)

file.flush()

file.close()

file=open ("TempMeta,"r")

reading=file.read/()

splitting=reading.split("\n")

fieldsMax=len (splitting)

countingHits=0

checkingData={}

for item in splitting:
buf=item.split(":")
checkingData [buf[0].rstrip(":")]=item.replace (buf[0]+":","")

file.close()

46

Nicholas Koroniotis

fileM=open (pathM)
Mdata=fileM.read () .split("\n")
exitFlag=True
for item in Mdata:#Check if the fields of the fetched metadata are identical to the
one fetched from NVD servers (if they aren't then download that xml by setting metaDictionary of
that xml to true)
exitFlag=True
for key in checkingData:
if item.find(key)!=-1:
if item.replace (key+":","")==checkingData[key]:
countingHits+=1
exitFlag=False
else:
exitFlag=True
break
if exitFlag==True:
break
fileM.close ()
os.remove ("TempMeta')
if fieldsMax==countingHits:#If all local metadata fields match the remote ones
metaDictionary[dirName]=False#Do not download zip
else:
metaDictionary[dirName]=True#Download zip
metaLocal=open (pathM, "w") ##Update the local Metadata file
metalLocal.write (reading)
metalLocal.close()
def unzipAll():
global path
if os.path.isdir (path) !=False:
dirs=os.listdir (path)
for dir in dirs:
if os.path.isdir (path+"/"+dir)!=False:
localCont=os.listdir (path+"/"+dir)
for file in localCont:
if os.path.isfile(path+"/"+dir+"/"+file) !=False and file.endswith(".zip"):
zFile=zipfile.ZipFile (path+"/"+dir+"/"+file)
zFile.extractall (path+"/"+dir+"/")
zFile.close()
os.remove (path+"/"+dir+"/"+file)
def searchDB (fileName) :
report=open (fileName, "r")
list=report.read().splitlines()

report.close()

47

Nicholas Koroniotis

buf=1ist[0]
bufList=buf.split(';")
reportContent=1list.copy ()
list.remove (buf)
dictorcoom

for item in list:

“t ()

seg=item.split(';")
for b in bufList:
if b.find("cpe") !=-1:
if seg[bufList.index(b)]!="":

[seg[bufList.index ("host")]
+" "t+seg[bufList.index ("port")]]=seg[buflList.index (b)]

None
dictOfVulnerabilities=vulnerabilitySearcher , fileName)
writeReport=open (fileName, "w") #Write report including vulnerabilities
for item in reportContent:
if item.find(reportContent[0]) !=-1:
writeReport.write (item+",;vulnerabilities\n")
else:
line=""
bufLine=item.split(";")

numberOfVulnerabilities=0##Variable that keeps number of vulnerabilities in order to
print a message to user at the end

for key in dictOfVulnerabilities:
tempBuf=key.split (' ')
ip=tempBuf[0]
portNum=tempBuf[1]

if bufLine[bufList.index ("host")]==ip and
bufLine[bufList.index ("port") J==portNum:#Locate the line with the correct ip address, portNumber

line=item+";Found "+str (dictOfVulnerabilities[key])+" Vulnerabilities"
numberOfVulnerabilities=dictOfVulnerabilities[key]
break
else:
line=item+";Found 0 Vulnerabilities"
numberOfVulnerabilities=0
print ("Port: "+bufLine[bufList.index ("port")]+" Product:
""+bufLine [bufList.index ("product")]+"'" Version: '"+bufLine[bufList.index("version")]J+""'
Vulnerabilities: "+str (numberOfVulnerabilities))
writeReport.write (line+"\n")
writeReport.close ()

None

def vulnerabilitySearcher (dictOfCpe, reportPathName) :#Access the XML Databases and find any
vulnerabilities

return vulnerabilitySearcherSafeModeWithlxml (dictOfCpe, reportPathName)

48

Nicholas Koroniotis

None
def updateDB () :
downloadZip ()
unzipAll ()
def findVulnerability (reportName) :
updateDB ()

searchDB (reportName)

if name ==

main ":#Can be used to update th

downloadZip ()

unzipAll ()

49

	Acknowledgements
	Contents
	Abstract
	Περίληψη
	1. Introduction
	1.1 Defining the problem
	1.2 Purpose of this thesis

	2. So what is a vulnerability scanner?
	2.1 Defining vulnerabilities
	2.2 Defining vulnerability scanners
	2.3 Our approach
	2.3.1 Nmap, the port scanner
	2.3.1 The National Vulnerability Database.

	3. Implementing our Scanner
	3.1 Development related information
	3.1.1 Setting up the development environment
	3.1.2 Describing some key parts of the project

	3.2 Running our program

	4. Conclusion and future work
	Bibliography
	A. Appendices
	Appendix A: The scanning module code
	Appendix B: The testingXMLParsing module code
	Appendix C: The vulnerabilityDetector module code

